International Geological Journal - Official Journal of the Carpathian-Balkan Geological Association

Volume 69 no. 4 / August 2018

Volume 69 no. 4 / August 2018

Search in this volume

By author Fulltext search

Articles in this issue

  • A calcite crisis unravelling Early Miocene (Ottnangian) stratigraphy in the North Alpine–Carpathian Foreland Basin: a litho- and chemostratigraphic marker for the Rzehakia Lake System

    Abstract: Within the Lower Austrian part of the North Alpine Foreland Basin (NAFB), up to 1000 m of sediments were deposited throughout the Ottnangian (Early Miocene, Burdigalian). According to homogeneous compositions and sparse biostratigraphic resolution, a consistent stratigraphic concept from the basin margins into the foreland depocenter was still lacking. New investigations on several deep drill cores throughout the basin provide comprehensive sedimentological, mineralogical, chemical and micropaleontological data. A calcite poor, fossil- and pyrite-free, smectite-rich, up to 800 m thick interval was identified and correlated to the time interval of the late Ottnangian brackish Rzehakia Lake System. For this section, we introduce the term Calcite Minimum Interval (CMI). We define the onset of the CMI by a sharp decrease of calcite contents and the disappearance of autochthonous (and reworked) calcareous nannofossils. We define the termination of the CMI by the permanent increase of pyrite contents and the reappearance of calcareous nannofossils. The CMI as a litho- and chemostratigraphical marker for the Rzehakia Lake System constitutes a stratigraphic key horizon. Within the NAFB in Lower Austria, its onset corresponds to the middle/upper Ottnangian transition while its termination correlates roughly to the Ottnangian / Karpatian boundary. This allows a precise definition, identification and correlation of (upper) Ottnangian stratigraphic units of the NAFB. For the central basinal parts of the Rzehakia Lake System, we introduce the new lithostratigraphic term Wildendürnbach Formation which correlates to the marginal Traisen Formation.
  • Cummingtonite-bearing volcanic rocks: first evidence in the Central Slovak Volcanic Field

    Abstract: Within the framework of reinterpretation of the depositional evolution of the Komjatice depression, presence of cummingtonite in weakly lithified sediment has been detected. The sediment is formed by volcanic lithoclasts and phenocrysts with a small admixture of non-volcanic grains. The different mineral composition and various degrees of alteration of volcanic lithoclasts, together with structural features point to epiclastic origin. Therefore, the studied samples can be described as volcanic paraconglomerate and sandstone. The cummingtonite is found in rusty coloured volcanic lithoclasts and in the heavy fraction. Cummingtonite-bearing volcanic rocks have not been described so far from the Slovak Neogene volcanic fields. Therefore its presence in the studied samples represents the first indication of such volcanic rock in Slovakia. The aim of the article is to invoke interest for finding these volcanic rocks in situ.
  • Depositional architecture of marginal multiple-source ramp of the Magura Basin (Eocene Flysch formation, Outer Western Carpathians)

    Abstract: The Zembrzyce Beds were studied to interpret the environments and facies in the western part of the Siary Subunit. New sedimentological data were obtained for the reconstruction of the depositional architecture of the Zembrzyce Beds. Based on detailed facies analysis, 9 facies and 4 facies associations were recognized. The facies associations represent different architectural elements of a submarine fan, such as: termination of distributary channel with transition to depositional lobe (distal part of mid-fan /outer fan sub-deposystem), lobes and distal lobes (outer fan sub-deposystem). According to the classification of Reading & Richards (1994) the fan deposystem can be classified as mud /sand-rich ramp. This system consists of several elongated lobes that formed synchronously, migrated laterally, and then retreated or decayed. The depositional system was supplied from the north and north-east. The inner-fan sub-deposystem was not detected. The sediments were deposited by high- and low-density turbidity currents and hyper-concentrated density flows sensu Mulder & Alexander (2001) with participation of the depositional background processes (pelagic settling). The sedimentary conditions of the Zembrzyce Beds during the Late Eocene were controlled by tectonic movements, the progress of the subduction and the global sea level changes.
  • Nucleation and amplification of doubly-plunging anticlines: the Butkov pericline case study (Manín Unit, Western Carpathians)

    Abstract: The Manín Unit represents a transitional tectonic element between the Central Western Carpathians and the Pieniny Klippen Belt. The overall map-view structure of the Manín Unit is dominated by elliptical antiforms composed of comparatively competent Jurassic and Lower Cretaceous strata, surrounded by soft Upper Cretaceous shales, marls and sandstones. During layer-parallel shortening, the Manín sedimentary succession behaved as a multilayer reinforced by a variously thick rigid layer of massive Urgonian limestone. The multilayer deformed by flexural slip folding, but the fold wavelength was controlled by the rigid layer undergoing buckling. It is inferred that, besides the lateral thickness differences in the rigid layer, development of brachyfolds and particularly periclines such as the Butkov fold also resulted from the interference of two perpendicular macroscopic fold systems.
  • Integrated biostratigraphical, sedimentological and provenance analyses with implications for lithostratigraphic ranking: the Miocene Komjatice depression of the Danube Basin

    Abstract: The Komjatice depression, situated on the Danube Basin’s northern margin, represents a sub-basin of the Neogene epicontinental Central Paratethys Sea and Lake Pannon. The paper provides an insight into the character of sediment provenance evolution by study of well cores (ZM-1, IV-1, MOJ-1, VR-1 wells). A modern combination of provenance, sedimentology and biostratigraphy together with the reported redefinition of Pannonian formations resulted in a new lithostratigraphy of the study area. Moreover, newly published volcanic rock age data were used for calibration of biostratigraphy. The overall age span of the sedimentary fill is occupied only by late Badenian–Sarmatian (Serravallian) to Pannonian (Tortonian–Messinian) strata: 1) the basal alluvial sediments of the newly defined Zlaté Moravce Formation; 2) late Badenian–Sarmatian (Serravalian) marine sediments of the Vráble-Pozba Fm., connected with tectonic opening of the depression; 3) Pannonian (Tortonian) coarse grained sediments of the Nemčiňany Fm. with an erosional base; 4) Pannonian (Tortonian–Messinian) predominantly fine-grained, basin floor to slope Ivanka Fm., sandy deltaic Beladice Fm. and predominantly muddy, alluvial Volkovce Fm. In the middle Miocene provenance is situated in Paleozoic sequences and Neogene volcanic rocks occurring currently in the NE. During the late Miocene, provenance is changed to the NNW (Tribeč Mts.), although the transport from the NE also remained.
  • Depositional environment and petroleum potential of Oligocene rocks in the Waschberg Zone (Austria)

    Abstract: Oligocene successions in the North Alpine Foreland Basin (NAFB) and the Western Carpathians reflect Paratethys-wide paleogeographic changes, which also control their petroleum potential. Whereas these rocks have been studied in detail in both areas, the transition zone is still under-researched. In order to fill this gap, the Oligocene succession in the Waschberg Zone, comprising the Ottenthal Formation (NP21–23) and the overlying Thomasl Formation (NP23–24) has been studied using outcrop (Waldweg section) and borehole samples (Thomasl, Poysdorf) and a multi­disciplinary approach. The Ottenthal Formation is subdivided from base to top into marls and shales (Ottenthal Mbr.), diatomaceous shales (Galgenberg Mbr.) and marlstones (Dynow Mbr.). Biogenic silica contents, determined using atomic absorption spectroscopy, reach 30 wt. % in the carbonate-free Galgenberg Member, but also in the Dynow Members, which is characterized by upward decreasing productivity of calcareous nannoplankton. Close lithological relations exist with the Oligocene succession in the NAFB, but diatoms are largely missing in the latter. Organic matter contents are surprisingly low in the Ottenthal and Thomasl formations in the Waldweg section, which therefore are poor hydrocarbon source rocks. In contrast, the Thomasl Formation, encountered in the Thomasl and Poysdorf boreholes, holds a fair to good hydrocarbon potential (~ 2.2–2.5 wt. % TOC; type III and type II kerogen) and may generate 1.0 to 1.6 tons of hydrocarbons/m². Obviously TOC contents of borehole samples are significantly higher than in outcrop samples. Because of severe indications of weathering (e.g., presence of gypsum and jarosite), a detrimental effect of weathering on the samples from the Waldweg section cannot be excluded. Biomarker data suggest a nearshore depositional environment with changing oxygen-availability and salinity. Vitrinite reflectance measurements show that the investigated sections are thermally immature.