Abstract: Gorzeń beds represent the sedimentary succession of the Subsilesian Unit. The Gorzeń beds developed as thin- up to medium-bedded sandstones intercalated with grey clayey shales occur in a few tectonic windows of the Lanckorona – Żegocina zone. Palaeocene age of these flysch deposits has been determined on the base of investigations of foraminiferal assemblages predominated by agglutinated forms. These assemblages indicate Rzehakina fissistomata Zone.

Key words: Subsilesian Unit, Gorzeń beds, lithology, biostratigraphy, foraminifera

Introduction:
Sedimentary facies of the Silesian and Subsilesian nappes have been deposed in adjacent sedimentary areas and together represent continuous succession of deposits of the age interval from Late Jurassic and Early Cretaceous to Early Miocene time. Up to the beginning of Late Cretaceous the sedimentation in both areas was similar, but later differentiated and during Late Cretaceous - Paleogene age interval the Subsilesian succession has got individual development. During Senonian more shallow water (above CCD) carbonate sedimentation of marls and occasionally limestone dominated there. In the Paleogene it was replaced by the flysch facies with dominant sedimentation of fine material.

Unique development of the sedimentary succession makes the Subsilesian Unit very interesting. Though investigations have been leaded (e.g. Książkiewicz 1951 a, b; 1972; Skoczylas-Ciszewska 1960; Geroch et al., 1967) there from more than fifty years, last examinations (e.g. Cieszkowski et al. 2000; Leśniak & Waśkowska-Oliwa, 2001) supplied many new details.
Authors of this paper concerned on Paleogene deposits of the Subsilesian Unit and turned a special attention to the Palaeocene flysch facies of the Gorzeń beds, which had been described by Książkiewicz (1951a, b) as glauconitic Gorzeń sandstones. Lithological and micropaleontological examination took place in type section area.

Geological setting:

Gorzeń beds that represent deposits of the sedimentary succession of the Subsilesian Unit have got their type section area south of Wadowice in Gorzeń village and its surroundings. Here, the Subsilesian Unit occurs in the one of tectonic windows of the Lanckorona – Żegocina zone. The Lanckorona – Żegocina tectonic zone is an anticlinal structure of the Silesian Nappe, extending in the Polish sector of the Outer Carpathians between Skawa and Dunajec rivers. It forms the Silesian Nappe overthrust onto the Subsilesian Nappe and refolded together with it. Latter erosion cut part of the Silesian Nappe strata and uncovered strongly tectonized rocks of the Subsilesian Nappe in numerous tectonic windows located along the axes of the Lanckorona – Żegocina structure.

The sedimentary sequence of the Subsilesian Unit south of Wadowice consists of the Late Cretaceous marly facies and the Paleogene flysch. The Palaeocene Gorzeń beds are known only from the tectonic windows between Wadowice and Lanckorona. They overlie here the organodetritic Szydłowiec Sandstone (Książkiewicz 1951a, b). The lithostratigraphic position of the Gorzeń beds is adequate to the Palaeocene deposits from other areas of the Subsilesian Unit, which are represented by the Czerwin beds, glauconitic sandstones and partly the variegated and green shales.

Lithology:

The Gorzeń beds represent flysch facies that consists of thin- to medium-beded sandstones with intercalations of shales. Occasionally thick-beded sandstone layers occur too. The sandstones are siliceous, graded, fine- or rarely medium-grained with parallel and/or cross lamination. Occasionally on the bottom of sandstone layers flute marks and/or trace fossils occur. In some cases ichnofossils are frequent also at top of sandstone layers. Shales are usually calyey, grey and grey-greenish in colour, more or less bioturbated. The turbidites mainly represent T_{bcde} and T_{cde} Bouma’s sequences, but rare T_{abcde} occur too.

Biostratigraphy:
The age of the considered deposits has been established thanks to assemblages of benthic foraminifers. Samples were taken from shaly intervals of Gorzeń beds in Gorzeń village. Foraminiferal associations consist mainly of deep water agglutinated benthos. Very good preserved fossil foraminifers represent more than twenty genera. (see appendix). Nothia is the most frequent group and tubular forms belonging to Rhabdamnia and Rhizammina genus as well. There have been found quite a lot of representatives of Recurvoides div. sp., Bolivinopsis spectabilis (Grzybowski), Hormosina velascoensis (Cushman), Caudammina ovuloides (Grzybowski) and Kalamopsis grzybowskii (Dylążanka). Characteristic species with the biostratigraphical importance such as Dorothia crassa (Marsson), Glomospira diffundens Cushann et Renz, Haplophragmoides walteri (Grzybowski), Haplophragmoides mjatliukae (Maslakowa), Remesella varians (Glaessner), Rzehakina fissistomata (Grzybowski), Rzehakina epigona (Rzehak) and Spiroplectammina dentata (Alth) have been recognized among studied microfauna. Moreover, a few poorly preserved planktonic specimens, probably Subbotina have been found only in one sample. The common occurrence of mentioned above genera is typical for the Palaeocene age of the sediments and indicates the Rzehakina fissistomata zone (zone after Olszewska, 1997).

The presence of foraminiferal associations within the Gorzeń beds, especially predominant agglutinated forms with organic cement (there have been found only single taxa with calcareous cement e.g. Dorothia and Remesella) is characteristic of the depth below but close the CCD. The occasional occurrence of a few badly preserved planktonic foraminifers and the scarcity of benthos with the calcareous cement, found only in few samples, could have been caused by little fluctuation of the CCD-level.

Appendix – Species list

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathysiphon sp.</td>
<td></td>
</tr>
<tr>
<td>Nothia div. sp. (mainly Nothia excelsa) (Grzybowski)</td>
<td>Glomospira charoides (Jones et Parker)</td>
</tr>
<tr>
<td>Rhabdammina cylindrica Glaessner</td>
<td>Glomospira diffundens Cushman et Renz</td>
</tr>
<tr>
<td>Rhabdammina discreta Brady</td>
<td>Glomospira gordialis (Jones et Parker)</td>
</tr>
<tr>
<td>Rhizammina idivisa Brady</td>
<td>Glomospira glomerata (Grzybowski)</td>
</tr>
<tr>
<td>Saccammina placenta (Grzybowski)</td>
<td>Glomospira serpens (Grzybowski)</td>
</tr>
<tr>
<td>Saccammina scabrosa Mjatliuk</td>
<td>Glomospirella grzybowskii (Jurkiewicz)</td>
</tr>
<tr>
<td>Ammodiscus cretaceus (Reuss)</td>
<td>Psamminopelta gradsteini Kaminski et Geroch</td>
</tr>
<tr>
<td>Ammodiscus incertus (d’Orbigny)</td>
<td>Rzehakina epigona (Rzehak)</td>
</tr>
<tr>
<td>Ammodiscus peruvianus Berry</td>
<td>Rzehakina fissistomata (Grzybowski)</td>
</tr>
<tr>
<td>Ammodiscus planus Loeblich</td>
<td>Aschemocella carpathica Neagu</td>
</tr>
<tr>
<td>Ammodiscus tenuissimus Grzybowski</td>
<td>Kalamopsis grzybowskii (Dylążanka)</td>
</tr>
</tbody>
</table>
Caudammina ovuloides (Grzybowski)
Caudammina ovulum (Grzybowski)
Hormosina velascoensis (Cushman)
Haplophragmoides mjatliukae (Masłakowa)
Haplophragmoides walteri (Grzybowski)
Paratrochamminoides contortus (Grzybowski)
Paratrochamminoides irregularis (White)
Paratrochamminoides heteromorphus (Grzybowski)
Paratrochamminoides multilobus (Dylążanka)
Paratrochamminoides olszewskii (Grzybowski)
Ammosphaeroidina pseudopauciloculata (Mjatliuk)
Recurvoides div. sp.
Thalmannammina subturbinata (Grzybowski)
Spiroplectammina dentata (Alth)
Bolivinopsis spectabilis (Grzybowski)
Trochammina globigeriniformis (Parker et Jones)
Gerochammina conversa (Grzybowski)
Karrerulina coniformis (Grzybowski)
Remesella varians (Glaessner)
Dorothia crassa (Marsson)
? Subbotina sp.

This research has been financially supported by the KBN grant no 1172/PO4/2000/19.
A. Waśkowska-Oliwa is a scholarship-holder of the Foundation for Polish Sciences.

References:

Plate 1. Agglutinated foraminifera from the Gorzeń beds.
Plate 1
Agglutinated foraminifera from Gorzeń beds.

Scale bar = 100mm