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Abstract: Anisotropy of magnetic susceptibility and anisotropy of anhysteretic remanent magnetization were studied  
in the Oligocene turbidites of the weakly deformed Central Carpathian Paleogene Basin. In order to decide whether  
the magnetic fabric can be related to deposition from a paleoflow or to incipient weak tectonic deformation we compared 
magnetic fabrics in individual intervals of the Bouma sequence with sedimentary structures and tectonic brittle 
mesostructures (joints). In the Ta–Te intervals we observed a good correlation between maximum susceptibility axes and 
SW(W)–NE(E) oriented paleoflows. Within convoluted and slump folded sandstones the AMS fabric coincides with  
the orientation of soft-sediment deformation structures. These features suggest the sedimentary origin of the AMS fabric. 
Three types of AARM sub-fabric were distinguished. The AARM type 1 represents magnetic foliations parallel either to 
NNW–SSE or to NE–SW oriented joints with magnetic lineations distributed along the joins. In the AARM type 2 
magnetic foliations remained parallel to the bedding while magnetic lineations group around the joint to bedding 
intersections. The AARM type 3 coincides with the AMS fabric. Magnetic and microscopic analyses indicate that  
the AARM fabrics are connected to magnetite associated with subordinate ferrimagnetic iron sulphides. Both minerals 
occur in a sub-microscopic size and formed most likely during late diagenesis through the alteration of pyrite, possibly 
accompanied by burial clay transformation processes. The growth of the authigenic ferrimagnetic minerals was 
conditioned by combined effects of the sedimentary petrofabric, lithology and stress conditions during the inversion of 
the basin in the Early to Middle Miocene.

Keywords: turbidite facies, magnetic fabrics, sedimentary structures, paleoflows, joints, Central Carpathian Paleogene 
Basin.

Introduction

The study of magnetic fabric, including the measurements of 
the anisotropy of magnetic susceptibility (AMS), anisotropy 
of anhysteretic (AARM) or isothermal remanent magnetiza-
tion (AIRM), has been a well-recognized petrofabric tool 
among geoscientists for decades (Hrouda 1982; Tarling & 
Hrouda 1993; Parés et al. 1999; Borradaile & Jackson 2010; 
Parés 2015 for review). The magnetic fabric has been used to 
reveal the preferred orientation in various types of rocks (e.g. 
Averbuch et al. 1992; Gregorová et al. 2009; Tomek et al. 
2014; Závada et al. 2017) and was documented as an espe-
cially sensitive strain marker in low-deformation settings  
(e.g. Cifelli et al. 2009; Mattei et al. 1997; Soto et al. 2009). 

In sedimentary rocks, the magnetic fabric may reflect  
the mutual arrangement and orientation of all dia-, para- and 
ferromagnetic s.l. particles attained during the transport and 
deposition, successfully used to detect flow directions (e.g. 
Rees 1965; Taira & Scholle 1979; Baas et al. 2007; Veloso et 
al. 2007; Dall’Olio et al. 2013; Felletti et al. 2016). However, 
the primary sedimentary magnetic fabric can be partly or 
 completely reoriented by syn- and early post-depositional 

processes (Pueyo Anchuela et al. 2011; García-Lasanta et al. 
2013), diagenesis (Larrasoaña et al. 2004) and/or tectonic 
deformation acting already during or after deposition in both 
extensional (Mattei et al. 1999; Cifelli et al. 2005) and com-
pressional settings (Parés et al. 1999; Soto et al. 2009; Márton 
et al. 2012). 

Water flow-generated magnetic fabrics in sedimentary  
rocks are characterized by oblate anisotropy ellipsoid lying 
paral lel to the bedding plane with maximum susceptibility 
axes (Kmax; magnetic lineations) aligned parallel to the flow 
direction, often gently inclined up-current (Tarling & Hrouda 
1993). In fast flowing currents (≥ 1cm/s) or on steep slopes 
Kmax may occasionally become oriented perpendicular or even 
oblique to the flow direction (Baas et al. 2007). In the case of 
incipient deformation the Kmax rotate to the position perpen-
dicular to the compression, while minimum susceptibility axes 

(Kmin; pole to the magnetic foliation) remain near the bed-
ding poles (Kissel et al. 1986; Parés et al. 1999; Hrouda et al. 
2009). In extensional settings Kmax coincides with the maxi-
mum extension direction, which is usually parallel to the bed-
ding dip (Mattei et al. 1999; Cifelli et al. 2005). Deposition 
from a water current and weak tectonic deformation can, 
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therefore, produce very similar magnetic fabrics, and thus it may 
be difficult to differentiate their origin (Dall’Olio et al. 2013). 

In the Central Carpathian Paleogene Basin (CCPB) (Fig. 1), 
which represents a relatively weakly deformed fore-arc basin, 
a primary sedimentary or transitional sedimentary to weak tec-
tonic deformation magnetic fabric in turbidite sandstones has 
been reported (Hrouda & Potfaj 1993; Hrouda et al. 2018).  
In previous magnetic fabric studies of fine-grained deposits of 
the CCPB a sedimentary magnetic fabric has been observed, 
inferring that the magnetic lineation could serve as a proxy  
for paleoflow directions (Márton et al. 1999; 2009a). In the 
Oligocene turbidites of the CCPB sedimentological methods 
indicate sedimentary transport mostly from W to E and from 

SW to NE in the Liptov, Orava and Podhale Basins (Fig. 1B, C) 
(Marschalko & Radomski 1960; Soták et al. 2001; Králiková 
et al. 2014; Starek & Fuksi 2017a, b; Starek et al. 2019). 
Opposite directions from E to W or from SE to NW and sub-
ordinate directions from NE to SW were measured in the 
Levočské vrchy Mts. and Šarišská vrchovina Upland  
(Fig. 1B, C) (Marschalko 1968, 1970; Marschalko & Gross 
1970; Janočko et al. 1998; Soták et al. 2001; Janočko 2002). 

Paleostress analyses of brittle and semibrittle structures in 
the CCPB showed the progressive clockwise rotation of  
the compressive paleostress field from NW–SE to NE–SW 
during the Miocene (Pešková et al. 2009; Vojtko et al. 2010; 
Sůkalová et al. 2012; Králiková et al. 2014). This must have 
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Fig. 1. A — Geological map showing the location of the studied area within the framework of the Alpine-Carpathian region; B — the CCPB 
system occupying several intramontane sub-basins surrounded by uplifted core mountains; C — geological sketch map of the study area (based 
on Bezák et al. 2004; Starek et al. 2012) with the sampling sites and general paleoflow directions in the Oligocene turbidites (see text for 
citations).
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been an apparent paleostress field rotation as a result of  
the Miocene en-mass counterclockwise rotation of the Outer 
and Inner Western Carpathians in a stress field of roughly N–S 
oriented compression (Márton & Fodor 1995, 2003; Márton et 
al. 1999, 2009a, b, 2013, 2016; Márton 2020). In the general 
frame of sedimentary transport directions as well as of  
the stress field orientation, the magnetic fabrics in the weakly 
deformed rocks of the CCPB were interpreted either as orien-
ted by turbidity currents (Márton et al. 1999, 2009a) or by  
the tectonic deformation (Hrouda & Potfaj 1993; Hrouda et al. 
2018). In order to decide about the dominance of one or  
the other of the governing factors in orienting the magnetic 
fabrics, we studied several outcrops in turbidite deposits of  
the CCPB where direct comparison between magnetic fabrics 
(AMS, AARM) and orientation of sedimentary structures 
(bedding, flute casts, slump folds) and mesoscopic brittle 
structures (prevailingly joints) was possible. Comparison of 
magnetic fabrics between individual turbidite facies (Ta–Te 
intervals sensu Bouma 1962) and syn- or early post-sedimen-
tary hydroplastically deformed facies seems to be an espe-
cially effective way to distinguish a primary sedimentary or 
tectonic deformation origin of magnetic fabrics (Piper et al. 
1996; Dall’Olio et al. 2013; Felletti et al. 2016; Stachowska et 
al. 2020).

Geological settings

The CCPB formed within the Western Carpathians as a fore-
arc basin system on the Alpine–Carpathian–Pannonian des-
tructive margin behind the Outer Carpathian accretionary 
wedge (Royden & Baldi 1988; Tari et al. 1993; Soták et al. 
2001; Kázmér et al. 2003; Kováč et al. 2016). It belongs to  
the basin system of Peri- and Para-Tethyan seas and represents 
the largest accommodation space of submarine fan deposits in 
the Central Western Carpathians (Soták et al. 2001). 

The remnants of the basin have been preserved in several 
intramontane basins situated between uplifted basement-invol-
ved horst structures known as “core mountains” of the Central 
Western Carpathians (Plašienka et al. 1997; Plašienka 2018) 
(Fig. 1). The deposits of the CCPB overlie the Central Western 
Carpathian nappe units, which consolidated during the pre- 
Senonian thrusting (Plašienka 2018). The northern boundary 
is tectonic, represented by the Pieniny Klippen Belt, which is 
a complex transpressional strike-slip shear zone considered as 
a suture zone (Ratschbacher et al. 1993; Kováč & Hók 1996; 
Plašienka et al. 2019).

The sedimentary fill of the CCPB is composed mostly of 
turbidite-like sediments covering the time span from the Bar-
tonian to the end of the Oligocene or up to the lowermost 
Miocene (Olszewska & Wieczorek 1998; Gedl 2000; Garecka 
2005; Soták 2010; Starek et al. 2019). In Slovakia, the CCPB 
is formally divided into four formations of the Podtatranská 
skupina Group (Gross et al. 1984; Fig. 2). The lowermost 
Borové Fm. is represented by terrestrial deposits covered by 
carbonate platform sediments known as the “Numulitic Eocene” 

in Poland (Gołab 1959; Roniewicz 1969). The Borové Fm. 
also includes regressive–transgressive cycles of alluvial fan 
and fluvial deposits (Hornád Mb. and Chrasť Mb., Filo & 
Siráňová 1996). Shallow-marine fluvio-deltaic sediments of 
the Tomášovce Mb. (Filo & Siráňová 1998) are exposed mainly 
in the Levočské vrchy Mts. and in the Hornád Depression.  
The dynamic environment is recorded by the lateral input of 
coarse-grained deposits of the Pucov Mb. in the Orava region 
(Gross et al. 1982, 1984; Starek et al. 2012) and Tokáreň con-
glomerates in the Spišská Magura Mts. (Janočko & Jacko 
1998; Janočko et al. 2000). These sediments deposited during 
important relative sea level changes at tectonically active 
basin margins in the Late Eocene (Starek et al. 2012).  
The Borové Fm. is overlain by the Huty Fm., a.k.a. the Zako-
pane Beds, which consists of mud-rich deposits with horizons 
of Globigerina Marls and dysoxic Menilite Shales (Soták et al. 
2007; Soták 2010). Above the Menilite Shales unusually thick 
sandstone–siltstone–claystone turbidite beds appear. They are 
called the Orava megabeds, and were formed by catastrophic 
events flushing enormous amount of sediment trapped in  
a proximal deltaic environment (Starek et al. 2013). The Huty 
Fm. continuously passes into rhythmically-bedded turbidites 
of the Zuberec Fm., a.k.a. the Chocholów Beds. In places  
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the Zuberec Fm. is formed by more sand-rich deposits of  
the Kežmarok Mb. (Gross 1998). The sedimentary sequence 
of the CCPB is terminated by the Biely Potok Fm. a.k.a.  
the Ostrysz Fm. composed prevailingly of thick amalgamated 
sandstone beds. A more distal development of the Biely Potok 
Fm., the Brzegi Beds, is known from the eastern part of  
the Podhale Basin (Watycha 1959; Olszewska & Wieczorek 
1998; Gedl 2000; Garecka 2005). Deposits of the Zuberec and 
Biely Potok Fms represent various facies associations of 
 sand-rich submarine fans (Westwalewicz-Mogilska 1986; 
Wieczorek 1989; Janočko et al. 1998; Starek et al. 2000; Soták 
et al. 2001; Starek & Fuksi 2017a, b).

Sampling and methods

The sedimentary rocks studied belong to the Tomášovce 
Mb. of the Borové Fm. (2 sites), Huty Fm. (19 sites), Zuberec 
Fm. (13 sites) and to the Biely Potok Fm. (3 sites) (Figs. 1C, 2; 
Supplementary Table 1). The standard sedimentological inves-
tigation involved recording of bed thicknesses, grain sizes, 
sedimentary structures, and the analysis of paleocurrent mar-
kers. The paleoflow orientations in the studied deposits were 
obtained by measurements of erosional structures on bed soles 
(flute casts, groove marks, tool marks, etc.). Occasionally, 
structures such as a parting lineation on the upper bed planes 
were also measured. In total, 222 paleoflow orientations were 
measured at 38 sites (Fig. 3), either directly on the beds sam-
pled for magnetic anisotropy measurements or on the nearest 
available beds. The evaluation of the paleoflow orientations 
was performed by using Orient 3 software (Vollmer 2015). 
The orientations of paleoslopes were inferred from the orien-
tation of overturned limbs of slump folds and of slump fold 
axes. Paleoflow orientations were restored to their original 
pre-tilting orientation by simple tilt correction along the bed-
ding strike. Tectonic features, prevailingly joints, faults and 
folds, were recorded at each sampling site in order to compare 
their orientations with the observed magnetic fabric.

Oriented samples for the magnetic fabric study were col-
lected by using a portable gasoline-powered water-cooled drill 
at 19 sites including individual outcrops or more or less con-
tinuous sections distributed throughout the northern and north- 
eastern part of the CCPB in Slovakia. The drill cores were 
sliced to standard size paleomagnetic specimens by a wheel 
saw in the laboratory. Additionally, 17 sites studied previously 
by Márton et al. (1999, 2009a) (Fig. 1C, Supplementary  
Table 1) were revisited for measuring paleoflow directions 
and structural features. 

For the new magnetic anisotropy study, 4–12 samples were 
drilled from each bed consisting of one or more turbidite facies 
(Ta–Te intervals sensu Bouma 1962). At sites where samples 
were collected from mudstones also for paleomagnetic study 
(in preparation), 3–8 samples from 2–4 beds covering a few 
metres of an outcrop were drilled. Each sample was oriented 
individually with a magnetic compass. Magnetic susceptibility 
and AMS were measured on 459 specimens (Supplementary 

Table 1) by using a KLY-2 kappabridge (Agico Ltd., former 
Geofyzika n.p. Brno, the Czech Republic). The site mean ten-
sors were evaluated with Anisoft 4.2 program (Jelínek 1977, 
1978; Hrouda et al. 1990; Chadima & Jelínek 2008).

From each interval of the Ta–Te turbidite facies at least  
5 samples were selected for the measurement of anisotropy of 
anhysteretic remanent magnetization (AARM) in order to dis-
criminate the ferromagnetic s.l. sub-fabric from the bulk AMS 
(i.e. the contribution of all dia-, para- and ferromagnetic s.l. 
particles). For the AARM experiments a LDA-3A demagne-
tizer accompanied by a AMU-1 anhysteretic magnetizer (both 
Agico Ltd., the Czech Republic) were used. The specimens 
were demagnetized at 100 mT alternating field (AF) and then 
 magnetized at 80 mT AF and 50 μT direct field (DF) in  
12 positions (Jelínek 1993). After each magnetization step,  
the rema nence was measured by a JR-5A spinner magneto-
meter (Agico Ltd., the Czech Republic). The data were com-
puted with the AREF program (Jelínek 1993). The site means 
were evaluated with Anisoft 4.2 program (Jelínek 1977, 1978; 
Hrouda et al. 1990; Chadima & Jelínek 2008). 

Magnetic mineralogy experiments involved the acquisition 
of isothermal remanent magnetization (IRM) followed by 
thermal demagnetization of the three-component IRM (Lowrie 
1990). IRM was imparted on selected representative speci-
mens by using a Molspin pulse magnetizer (maximum field  
1 T). All anisotropy measurements and magnetic mineralogy 
experiments were carried out in the paleomagnetic laborato-
ries at the Earth Science Institute of the Slovak Academy of 
Sciences in Banská Bystrica, Slovakia and at the Mining and 
Geological Survey of Hungary in Budapest.

In order to reveal microtextures helpful to elucidate the ori-
gin of magnetic minerals, and therefore the origin of magnetic 
sub-fabrics, 12 thin sections from selected samples were 
 prepared for optical microscopy and scanning electron micro-
scopy (SEM). Thin sections for SEM were polished and car-
bon-coated. SEM observations and energy-dispersive spectra 
(EDS) analyses were performed on a JEOL JXA-8530FE 
microprobe with accelerating voltage 15 kV, probe current  
20 nA, probe diameter 2 μm, counting time 10 s on peak and  
5 s for background. To trace the elemental distributions of 
iron, sulphur and oxygen for the investigated (para-, ferro-) 
magnetic minerals, aiding to reveal processes controlling their 
formation and/or transformation, we performed a composi-
tional mapping by using a wavelength-dispersive spectro-
meter (WDS). A map of 600 × 400 pixels was generated with 
acceleration voltage fixed at 15 keV, probe current at 20 nA, 
the beam and step size at 200 nm and dwell time at 100 ms. 
Electron probe micro-analysis (WDS) of pyrite was performed 
with the following conditions: accelerating voltage 20 kV, 
probe current 15 nA, beam diameter 2 μm and ZAF matrix 
correction was used. The EPMA was calibrated by the natural 
and synthetic standards. Used standards, X-ray lines are:  
Fe (Kα) – pyrite, As (Lβ) – arsenopyrite, S (Kα) – pyrite,  
Cu (Kα) – chalcopyrite, Co (Kα) – cobaltite, Ni (Kα) – NiS. 
All petrographic analyses were carried out in the Laboratory 
of Electron Microanalysis in Banská Bystrica, Slovakia.

http://geologicacarpathica.com/data/files/supplements/GC-72-2-Madzin_Suppl_Table1.docx
http://geologicacarpathica.com/data/files/supplements/GC-72-2-Madzin_Suppl_Table1.docx
http://geologicacarpathica.com/data/files/supplements/GC-72-2-Madzin_Suppl_Table1.docx
http://geologicacarpathica.com/data/files/supplements/GC-72-2-Madzin_Suppl_Table1.docx
http://geologicacarpathica.com/data/files/supplements/GC-72-2-Madzin_Suppl_Table1.docx
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Results

Paleoflow orientations

In the Upper Eocene fluvio-deltaic deposits of the Tomá-
šovce Mb. (studied at sites 35 and 37, see Figs. 1C, 2, 
Supplementary Table 1) the SSE–NNW trend of paleoflows 
was observed (Fig. 3). The pebble material from intercalating 
conglomerate beds suggests southerly (in present coordinates) 

source areas composed of crystalline and sedimentary rocks of 
the Central Western Carpathian tectonic units (Marschalko 
1966; Filo & Siráňová 1996, 1998). Within the Oligocene 
 turbidite deposits (the Huty, Zuberec and Biely Potok fms.)  
the paleoflow directions are quite consistent through the sequence 
(Fig. 3). Regardless of some variations at site level, the paleo-
flows keep the general WNW–ESE to WSW–ENE trend with 
directions prevailingly towards E and NE in the Liptov, Orava 
and Podhale Basins (cf. Králiková et al. 2014; Starek & Fuksi 
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2017a, b; Starek et al. 2019). Occasionally, opposite reverse 
directions from E to W were also measured (cf. Starek et al. 
2019). In the Spišská Magura Mts. and in the Poprad Basin  
the WSW–ENE to WNW–ESE directions prevail but occasio-
nally the NNW–SSE trend was observed. In the eastern part  
of the CCPB, in the Levočské vrchy Mts., the E–W trend of 
paleoflows was measured (Fig. 3). It is in line with the pre-
viously reported W-ward directed paleoflows (Janočko et al. 
1998; Soták et al. 2001).

Magnetic mineralogy

The mean magnetic susceptibility (Km) ranges from 111 to 
365 × 10-6 SI (mean 218.9 ± 53.5 × 10-6 SI) in mudstones and 
from 66 to 252 × 10-6 SI (mean 139.5 ± 41.1 × 10-6 SI) in 
sandstones (Fig. 4). The identification of the magnetic minerals 
was attempted by IRM acquisition experiments followed by 
thermal demagnetization of the three orthogonal IRM com-
ponents acquired in fields of 0.12, 0.36 and 1 T, respectively 
(Lowrie 1990). These experiments showed that the magnetic 
minerals were fast saturating in both sandstone and mudstone 
facies (Fig. 5). The demagnetization curves revealed that  
the dominant component is represented by the coercivity 
lower than 0.12 T. This component continuously decays up to 
the 580°C (Fig. 5), which suggests the presence of fine-grained 
magnetite (cf. Márton et al. 2009a). Magnetic mineralogy 
experiments performed by Hrouda et al. (2018) indicate wider 
grain size range of single- to multi-domain slightly non-
stoichiometric magnetites in sandstones. The rise of the sus-
ceptibility above 400 °C can be related to the decomposition  
of iron sulphides, weakly indicated also by the decay of  
the medium coercivity component by 400 °C.

SEM observations

In seven representative samples selected (Fig. 6) ferro-
magnetic minerals s.l. have not been directly identified by 
means of the SEM observations. The presence of trellis struc-
tures in some grains (Fig. 6A) with Ti-rich exsolution lamellae 

and completely dissolved Fe-rich domains suggests a com-
plete dissolution of detrital Fe–Ti oxides during diagenesis.  
In this regard, the ubiquitous presence of paramagnetic iron 
sulphide, pyrite (cf. Márton et al. 1999, 2009a), is remarkable 
because of its potential as a prerequisite mineral for neofor-
mation of ferromagnetic phases during early or late diagenesis 
(Kodama 2012 and references therein). The SEM investiga-
tion revealed at least two generations of pyrite (Fig. 6B–G). 
Pyrite, occurring as spherical framboids up to 10 µm com-
posed of euhedral grains up to 1 µm in size (Fig. 6B–E), is 
typical for early diagenetic reduction processes (Roberts & 
Weaver 2005). Cryptocrystalline pyrite (Fig. 6C, D) or euhed-
ral pyrite grains in micron/submicron sizes (Fig. 6E, F), both 
surrounding larger framboids, represent younger pyrite gene-
ration(s). The occurrence of pyrites is restricted mostly to 
 carbonate cement (Fig. 6E, F), clay matrix or to voids filled  
by organic matter (Fig. 6G). Iron sulphides were also identi-
fied on cleavage planes of phyllosilicate minerals such as 
muscovite or chlorite (Fig. 6H). It was difficult to correctly 
determine the exact Fe : S ratio of the iron sulphides, and 
 therefore distinguish between pyrite, greigite or pyrrhotite, 
because the sizes of crystals are at the precision limit of  
the microprobe with likely element contamination from  
the host iron bearing chlorites. However, prismatic habit of  
the iron sulphides within phyllosilicate minerals suggest 
 pyrrhotite (Fig. 6H). 

Finer-grained phyllosilicate minerals and associated iron 
sulphides are not distributed equally but are concentrated 
within laminae aligned parallel to the bedding. In particular 
depositional intervals (e.g. ripple cross-laminated sandstones, 
convoluted sandstones) the laminae represent either cross- 
laminated ripples oriented oblique to the bedding plane or  
the laminae are contorted or folded due to a syn- or early post- 
sedimentary soft-sediment deformation (Fig. 6I). 

Large amounts of pyrites occur in places. On the other hand, 
calcite veins are devoid of pyrite or any opaque mineral. 
Dolomite crystals with iron rich rims were frequently observed 
as a part of carbonate cement. Occasionally, paramagnetic iron 
carbonate, siderite, was identified.
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The compositional distribution mapping showed that  
the darker zones surrounding the pyrite crystals (Fig. 6C, D) 
and framboids (Fig. 7A) reflect distinct composition of iron 
and sulphur in the rims (Fig. 7B, C). The rims are characte-
rized by the decrease of iron and sulphur (cf. Kars et al. 2014), 
while the oxygen content increases at the rims and at the sur-
face of the pyrite crystals (Fig. 7D). To prove the presence  
of different generations of pyrite and oxidation processes  
the euhedral grains of pyrite (Fig. 6C, D) were measured on  
a microprobe (WDS analyses). The lighter zones on BSE 
images (Fig. 6C, D), representing mainly cores of grains, 
 correspond to stoichiometric pyrite with a crystallochemical 
formula based on 3 apfu to FeS2.00. The darker zones surroun-
ding the cores show decreased content of Fe. The analyses 
have lower totals (97–97.8 wt. %) and the crystallochemical 
formulae can be expressed as Fe0.97S2.00. The decreased iron 
content is balanced with oxygen, which is clearly visible from 
the compositional maps (Fig. 7) and was confirmed and quan-
tified by EDS analyses (~ 3.4 wt. %).

Turbidite facies and AMS

The anisotropy degree Pj (Jelínek 1981) in sedimentary 
rocks is usually up to ˂1.05 (Tarling & Hrouda 1993; Hrouda 
et al. 2009). In the studied material it is somewhat higher:  

in mudstones Pj <1.16 (mean 1.089 ± 0.040), in sandstones 
Pj <1.07 (mean 1.029 ± 0.013) (Fig. 8A). The shape of aniso-
tropy ellipsoid is mostly oblate to triaxial and occasionally 
slightly prolate (Fig. 8B). Magnetic fabric is well-developed 
(Fig. 9) with magnetic foliation oriented subparallel with  
the bedding planes and the magnetic lineations are quite well-
grouped on regional as well as site levels (Fig. 9). ). In general, 
there is a common orientation of the AMS fabric, yet slight  
to significant differences between the Ta–Te intervals sensu 
Bouma (1962) on the turbidite facies were observed (Fig. 10).

Massive or normally graded sandstones – Ta

Massive or normally graded sandstones were collected at  
8 sites (10 beds, 59 samples, Fig. 9, Supplementary Table 1). 
They are represented by fine-grained to medium-grained sand-
stones mostly without visible structures (Fig. 10A). Normal 
gradation sporadically developed. Most frequently, the mas-
sive sandstones occur as the lowermost parts of thicker  
(15–25 cm) beds overlain by parallel-laminated intervals. 

The minimum susceptibility axes (Kmin) are oriented near 
the bedding poles. Magnetic lineations (Kmax) are well-
grouped and oriented WSW–ENE, parallel to the flow orienta-
tions measured on the sampled beds or on the nearest available 
beds (Fig. 9).
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Parallel-laminated sandstones – Tb

Parallel-laminated sandstones represent fine- to medium- 
grained sandstones which constitute either a part of repetitive 
Ta–Tb or Tb–Tc intervals within one bed (Fig. 10B, C) or  
the entire bed consists of the planar lamination (Fig. 10D).  
The planar lamination comprises mm-thick individual lami-
nae. The lower parts of the beds are often sharp with erosional 
contacts and well-developed sole marks (Fig. 10B). The paral-
lel-laminated sandstones were sampled at 6 sites (13 beds,  
87 samples, Fig. 9, Supplementary Table 1). 

The magnetic fabric is characterized by Kmin perpendicular 
or gently inclined to the bedding. The well-grouped magnetic 

lineations are mostly oriented WSW–ENE, parallel to the flow 
orientations (Fig. 9). Occasionally the Kmax are oriented 
oblique or perpendicular to the flow orientations.

Ripple cross-laminated sandstones – Tc

Ripple cross-laminated sandstones were sampled only at 
one site (1 bed, 6 samples, Fig. 9, Supplementary Table 1). 
They occur mostly in thinner up to 10–15 cm beds (Fig. 10E). 
The Tc intervals form very frequent repetitions with the Tb 
parallel-laminated intervals within a single bed (Fig. 10C). 
The height of the cross-laminated parts was up to 5 cm. 
Climbing ripple lamination was rarely observed.
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The magnetic lineations in cross-laminated sandstones are 
very well-clustered parallel to the local paleoflow orientation 
(Fig. 9). The Kmin are situated near the bedding pole.

Convoluted sandstones – Tcv

Fine- to medium-grained sandstones with a convex-upward 
lamination, sometimes slightly overturned lamination and/or 
concave-upward dish structures are regarded here as convo-
luted sandstones. Convolutions continuously develop mostly 
from ripple cross-laminated or parallel-laminated parts or 
alternate with them (Fig. 10F, G). In some cases, where convo-
lutions developed from parallel-laminated sandstones, the con-
volution crests are oriented parallel or slightly oblique to  
the sole marks measured on the bottom beds. Samples from 
the convoluted sandstones were collected at 3 sites (3 beds, 20 
samples, Fig. 9, Supplementary Table 1). 

The AMS fabric in the convoluted sandstones is less ordered 
than in the undisturbed Ta–Tb–Tc intervals. Clustering of 
Kmax varies at different sampling sites from well to poorly 
clustered. The magnetic lineations are oriented roughly paral-
lel to the paleoflow and to the convolution crest. The Kmin 
create a small to moderate girdle oriented perpendicular to  
the Kmax (Fig. 9).

Slump folded sandstones – Tsf

Sandstone beds internally deformed by cm-scale slumping 
were sampled at two sites (2 beds, 20 samples, Fig. 9, 
Supplementary Table 1). These beds contain deformation 
structures such as disharmonic folds often with overturned 
limbs. The syn-sedimentary origin of the folds is obvious 
since the folded beds are distributed between non-deformed 
parallel-laminated or massive mudstone and sandstone beds 
(Fig. 10H, I). The orientation of slump fold axes follow the 
local paleoslopes oriented roughly perpendicular to the gene-
ral paleoflow direction.

The AMS fabric in the slump folded sandstones is different 
from the AMS fabric in the undisturbed turbidite Ta–Tb–Tc 
intervals. The magnetic lineations are well-grouped and orien-
ted parallel to the slump fold axes (Fig. 9). The Kmin create  
a girdle oriented perpendicular to the Kmax.

Massive and parallel-laminated mudstones – Te

Samples from mudstones were collected primarily for paleo-
magnetic study (in preparation), thus massive mudstones  
Fig. 10J) without visible lamination were preferred for this 
purpose. However, such massive mudstone beds were rare, 
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therefore, samples were collected mostly from parallel-lami-
nated mudstones (Fig. 10K). The massive mudstones were 
devoid of visible structures. The parallel-laminated mudstones 
consist of mm laminae of fine-grained silt material. At one site 
(site 31, Fig. 1, Supplementary Table 1) well-developed flute 

marks, as negative casts on the upper bed planes, were 
observed in parallel-laminated mudstones (Fig. 10L).

The Kmin axes are oriented near the bedding poles. 
Magnetic lineations are well-grouped around the paleoflow 
orientations measured on the nearest available sandstone beds 
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or in one case directly on the mudstone beds (Figs. 9, 10L, 11). 
Occasionally the Kmax were poorly clustered and dispersed 
within the bedding plane (Fig. 11, site 20).

Turbidite facies and AARM

To consider a magnetic fabric anisotropic the F test at  
the 95 % confidence level must be above 3.48. This criterion 
was satisfied in a few cases for mudstone facies, where  
the error angles are also within the acceptable limit E12 ˂ 15. 
For some other mudstone samples and for all sandstone facies 
studied the F test was negative, in other words, the fabric was 
defined as isotropic. Moreover, the error angle E12 was often 
very large, exceeding 30 (cf. Márton et al. 2009a). Nevertheless, 
the principal axes of the AARM ellipsoids showed distinct 
patterns, permitting to distinguish the following types of  
the ferromagnetic s.l. fabrics (Fig. 12). 

AARM Type 1

This type was recognized at two sites (17 and 21, Figs. 1, 
12) in the ripple cross-laminated sandstones and in the slump 
folded sandstones, respectively. In these facies the AARM 
 pattern differs from the AMS fabric (Fig. 12). The minimum 
anisotropy axes (Amin) are grouped near the poles to the joint 
sets trending NNW–SSE and NE–SW, respectively. The maxi-
mum and intermediate axes of the AARM are distributed 
along one of the joint planes, which are the NE–SW trending 
joints at site 17 and the NNW–SSE trending joints at site 21 
(Fig. 12). 

AARM Type 2a

This type was observed in the mudstones at site 21 (Figs. 1, 
12). In this case the Amax is oriented N–S, slightly deflected 
from the bedding to joint intersection and perpendicular to  
the Kmax. The Amin coincide with the Kmin and both are 
situated close to the bedding poles. 

AARM Type 2b

The AARM type 2b was observed in the massive and 
 parallel-laminated sandstones at site 2 (Figs. 1, 12). The Amax 
gently plunging to the NW are oriented almost perpendicular 
to the Kmax and group close to the joint to bedding inter-
sections (Fig. 12). The Amin coincide with the Kmin.  
In one case the Amin interchanged its position with the Aint 
(Fig. 12).

AARM Type 3

The AARM type 3 was revealed in the convoluted sand-
stones at site 30 (Figs. 1, 12). This type is oriented similarly to 
the AARM type 2b at site 2, but unlike that, the AARM fabric 
of this type roughly coincides with the AMS fabric. The Amax 
are slightly better grouped than the Kmax.

Discussion

Origin of the AMS fabrics

In sedimentary rocks where magnetic susceptibility does 
not exceed 5 × 10−4 SI (Tarling & Hrouda 1993) (Figs. 4, 8)  
the AMS fabric has often been interpreted as basically reflec-
ting the preferred orientation of paramagnetic minerals with 
very small contributions from ferromagnetic s.l. minerals 
(Rochette 1987; Cifelli et al. 2009). X-ray diffraction investi-
gation identified dia- and paramagnetic minerals (clays, chlo-
rite) as the main constituents of the studied rocks (Środoń et al. 
2006) and the SEM investigations found few indications for 
ferromagnetic s.l. phases. Low temperature variation of sus-
ceptibility shows dominant paramagnetic hyperbola, documen-
ting that paramagnetic susceptibility contributes to the total 
bulk susceptibility more than 90 % (Hrouda et al. 2018). 
Moreover, the orientations of the ferromagnetic s.l. fabrics 
(AARM) mostly differ from the AMS fabrics (Fig.12). Thus,  
it is reasonable to suggest that paramagnetic minerals are  
the main carriers of the AMS. 

The AMS ellipsoids are dominantly oblate with magnetic 
foliation sub-parallel to the bedding, which can be attributed 
to deposition/compaction processes. The correlation is fairly 
good between the AMS lineations and W–E to SW–NE orien-
ted general and local paleoflows (Figs. 9, 11). Slight diffe-
rences between the Kmax and measured paleoflow orientations 
could be explained by small differences in flow directions 
during erosive phases, generating sole marks, and final depo-
sitional phases of the turbiditity currents in which massive, 
planar and cross-planar structures formed (Felletti et al. 2016). 
Deviations up to several tens of degrees from a flow direction 
might be caused by the spatial variations in current directions 
due to several factors, like incomplete reorientation of rolling 
(flow-perpendicular) fabric to flow-aligned fabric and vice 
versa, changes in bed roughness and post-sedimentary defor-
mation such as bioturbation, fluidization or soft-sediment 
deformation (Bass et al. 2007).

In spite of the strong arguments in favour of the sedimentary 
origin of the AMS lineations, the alternative possibility of their 
deformation origin also has to be considered, since the studied 
sediments clearly show evidence for tectonic deformation due 
to basin inversion. In a compressional stress field, the first 
expected response to deformation is the layer parallel shorte-
ning producing an AMS lineation sub-parallel to the bedding 
strike (roughly perpendicular to the maximum compression) 
while the Kmin remain near the bedding pole (Tarling & 
Hrouda 1993; Parés et al. 1999; Hrouda et al. 2009; Soto et al. 
2009; Almqvist & Koyi 2018). In order to investigate the pos-
sibly deformational origin of the AMS lineations, we were 
able to make direct comparisons for 12 sites (sandstone beds 
bearing reliable flute casts) between the AMS lineations and 
the bedding strikes on one hand, and between the AMS linea-
tions and the paleoflow directions, on the other hand. This 
leads to the conclusion that the AMS lineations must be of sedi-
mentary origin, due to the poor correlation between the local 
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strike and magnetic lineations (Fig. 13A) and the good posi-
tive correlation between the AMS lineations and local paleo-
flows in the Ta–Tb–Tc intervals (Fig. 13B).

The sedimentary origin of the AMS fabrics is further sup-
ported by the following observations: (1) In the Upper Eocene 
fluvio-deltaic sandstones of the Tomášovce Mb. the AMS 

 lineations are oriented differently to the magnetic lineations  
of the Oligocene turbidites (Figs. 3, 14) and coincide with  
the measured NNW-N directed paleoflows (Marschalko 1966; 
Filo & Siráňová 1996, 1998). (2) In the hydroplastically defor-
med facies such as convolute and slump folded sandstones  
the AMS fabrics (Fig. 9) correspond well with the soft- 
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sediment deformation structures. The magnetic lineations 
corre late with the slump fold axes/convolution crests and  
the Kmin create a girdle perpendicular to it (Figs. 9, 11). This 
magnetic fabric formed during slumping on an unstable depo-
sitional slope when the sediment was still wet and poorly lithi-
fied (cf. Schwehr & Tauxe 2003; Pueyo Anchuela et al. 2011). 

For the mudstone facies, the good correlation between Kmax 
and the local paleoflow directions measured on the inter-
calated sandstone/mudstone beds (Figs. 9, 11) also provides  
a proof for the sedimentary origin of the AMS lineation.  
The studied mudstones were mostly deposited by genetically 
related dilute turbidite flows generating coarser-grained facies 
rather than from the (hemi-) pelagic settling from the water 
column between flow events (cf. Dall’Olio et al. 2013), 
although scattered lineations within the bedding planes were 
also observed (Fig. 11, site 20).

Origin of the AARM fabrics

Origin of the ferrimagnetic minerals

In most of the studied cases, the AARM fabrics were orien-
ted differently from the AMS fabrics. The former seem to  

be related to a common network of diagonal joints (Fig. 12).  
In this regard, it is important to discuss the origin and forma-
tion time of the ferrimagnetic minerals carrying the AARM 
fabrics.

The network of several medium to widely spaced sub-ver-
tical diagonal joints striking NNW–SSE (NW–SE) and  
NE–SW, respectively, is the ubiquitous feature throughout  
the northern part of the CCPB (Ludwiniak 2010, 2018; 
Ludwiniak et al. 2019 and references therein). The joints are 
often opened and filled with several generations and types of 
calcite and quartz crystals (Hurai et al. 1995, 2002, 2006). 
Methane fluid inclusions trapped in the blocky and drusy 
quartz crystals infer a crack-sealing mechanism of the joint 
formation during upward and lateral migration of hot-methane-
rich fluids in the CCPB (Hurai et al. 1995, 2002, 2004, 2006). 
Calculated PT conditions point to 130–205 °C temperature 
and 0.5–1.5 kbar pressure during the methane liberation caused 
by thermal decomposition of organic matter due to burial 
(Hurai et al. 1995, 2002, 2004, 2006). The reported PT values 
correspond in the western part of the CCPB to the 2–3 km  
(90–100 ºC) and up to 5.3–6.5 km (130–205 ºC) depth of 
burial in the Spišská Magura Mts., in the east (Hurai et al. 
2004; Środoń et al. 2006). Isotopic K–Ar dating of the clay 
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fractions < 2 µm revealed that the maximum burial of the CCPB 
was reached very quickly due to a rapid sedimentation rate 
close to the incipient inversion of the basin at ~ 16–19 Ma 
(Środoń et al. 2006). These values fit well the conditions 
required for the late diagenetic formation of ferrimagnetic iron 
oxides/sulphides in non-metamorphic fine-grained deposits 
(Aubourg & Pozzi 2010; Aubourg et al. 2012). Consequently, 
the ferrimagnetic minerals carrying the AARM fabrics could 
form at the same time as the joints.

The growth of ferrimagnetic minerals during burial can be 
basically related to the clay transformation processes (Katz et 
al. 1998) or to the oxidation of pyrite crystals (Suk et al. 1990; 
Elmore et al. 2012). A characteristic feature for the Oligocene 
deep-water deposits of the CCPB is the relatively high content 
of paramagnetic iron sulphide, pyrite (Márton et al. 1999, 
2009a). The SEM observations of the present study revealed 
several generations of pyrite indicating their different forma-
tion time during diagenesis (Fig. 6). Compositional mapping 
and WDS analyses revealed oxidized rims surrounding both 
pyrite framboids and euhedral pyrite grains (Fig. 7). This has 

been observed in several remagnetized 
rocks (Suk et al. 1993; Banerjee et al. 
1997; Jiang et al. 2001; Kars et al. 2014). 
Although, ferrimagnetic minerals were 
not observed directly, submicroscopic 
ferrimagnetic phases are assumed to be 
pre sent at the rims of the pyrite grains. 
Therefore, the late dia genetic pyrite alte-
ration and neoformation of ferrimagnetic 
minerals is very likely. We observed iron 
(ferrimagnetic?) sulphides also within 
phyllosilicate minerals (Fig. 6H), thus 
clay transformation processes could be 
involved as well (Katz et al. 1998; Roberts 
& Weaver 2005).

Orientation of the AARM fabrics

Recently, the tectonic origin of mag-
netic fabrics of some CCPB sandstones 
was inferred from the results of in-phase 
and out-of-phase AMS and AARM mea-
surements (Hrouda et al. 2018), sugges-
ting that, in this case, the ferrimagnetic 
mine rals are more sensitive recorders of  
a tectonic overprint than paramagnetic 
phyllosilicates. Consequently, the ferri-
magnetic fabric should correspond to  
the compressional Early to Middle Mio-
cene paleostress field documented by 
structural studies (Pešková et al. 2009; 
Vojtko et al. 2010; Sůkalová et al. 2012; 
Králiková et al. 2014). 

The observed phyllosilicate–pyrite– 
ferri magnetic iron oxide/sulphide asso-
cia tion (Figs. 6, 7) and non-coaxiality 

bet ween the AMS and AARM sub-fabrics indicate a complex 
relationship between strain, original sedimentary petrofabric 
(facies types), lithology and rheological contrast between 
para- and ferrimagnetic minerals.

Pyrite crystals are isotropic and seem to be resistant to 
 tectonic deformation (Calvín et al. 2018a, b). As new ferri-
magnetic minerals grow on the surface or inside the pyrite 
grains, they are influen ced only by the stress conditions during 
their growth (Calvín et al. 2018a, b). On the other hand, during 
burial clay diagenesis, newly formed authigenic ferri mag netic 
grains may grow mimetically with the preferred orientation of 
the parent clay minerals (Calvín et al. 2018a, b). Addi tionally, 
phyllosilicate minerals bea ring the well-developed sedimen-
tary/com paction AMS fabrics are resistant to further weak 
deformation (Parés & van der Pluijm 2002; Chadima et al. 
2006; Pueyo Anchuela et al. 2011).

In the AARM type 1 the magnetic folia tion strikingly coin-
cides with the orientation of the joints while the Amax are 
distributed along the joints (sites 21, 17, Fig. 12). It may sug-
gest a possibility of an inverse fabric (Rochette et al. 1992; 
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Ferré 2002) due to the expected presence of uniaxial single- 
domain authigenic magnetites (Potter & Stephenson 1988). 
The normal magnetic fabric with respect to the joints may 
result from the inverse orientation of single-domain magnetite 
grains to the joints (i.e. longer grain axes oriented perpen-
dicular to the joints) with the Amax parallel to their short  
axis and Amin parallel to their longer axis (e.g. Chadima et al. 
2009). Therefore, the single-domain magnetites could grow 
under fluid pressure during the opening of the joints (Hurai et 
al. 2002). The single- domain magnetites seemingly do not 
contribute to the bulk AMS fabric, which reflects the sedimen-
tary petrofabric (sites 17, 21, Figs. 11, 12).

At site 21 the ferrimagnetic fabric is oriented differently in 
sandstones (AARM type 1) and mudstones (AARM type 2a) 
(Fig. 12). The difference can be a result of different response 
to deformation in sandstones and mudstones (Chadima et al. 
2006). Mudstones contain more phyllosilicate minerals and 
show more flattened AMS fabric due to compaction (Fig. 8). 
The orientation of ferrimagnetic minerals partly mimic the 
original AMS fabric, because the magnetic foliation remained 
parallel to the bedding while the Amax is oriented to the N–S 
direction, slightly deflected from the joint to bedding intersec-
tion (Fig. 12). The deflection of the Amax could be apparent 
because the joints are less developed and more scattered in  
the mudstones than in the more competent sandstones 
(Ludwiniak 2010). For example, the Amax parallel to the bed-
ding /joint intersection is more clearly visible in the massive 
and parallel-laminated sandstones at site 2 (AARM type 2b, 
Fig. 12). The N-NW oriented Amax were also observed in 
mudstones from several localities in the Podhale Basin 
(Márton et al. 2009a). The AARM type 2 most probably 
reflects the compressive regime in which the joints started  
to develop (Ludwiniak 2010; 2018; Ludwiniak et al. 2019).

The coincidence between the AARM and AMS fabric 
(AARM type 3) was observed in the convoluted sandstones at 
site 30 (Fig. 12). Paramagnetic phyllosilicates, the source of 
the AMS fabric, were re-oriented early after deposition by 
 processes generating convolutions, followed by pyrite forma-
tion (Fig. 6H), and eventually by pyrite alteration due to burial 
and neoformation of ferrimagnetic minerals. In this case,  
the deformation was not strong enough to affect ferrrimagne tic 
minerals, so they mimic the original syn-sedimentary to early 
diagenetic AMS fabric. Alternatively, burial clay transforma-
tion processes (e.g. Katz et al. 1998) could be more dominant 
in this part of the basin and the ferrimagnetic minerals grew 
mimetically with the parent phyllosilicates (Fig. 6H).

The distinct ferrimagnetic populations were indicated in  
an experiment where we re-measured the AARM type 1 after 
heating samples to 580 °C (samples SMP466A, SMP478A, 
site 17 in Fig. 12). After the heating, the original AARM fabric 
was destroyed and the heating produced a new ferrimagnetic 
mineral, which mimics the sedimentary AMS fabric. It implies 
that the paramagnetic phyllosilicates and ferrimagnetic phases 
were not originally related and the pyrite oxidation seems to 
be the more dominant process in neoformation of ferrimag-
netic minerals in turbidite deposits of the CCPB.

Conclusions

This study revealed that in the Oligocene turbidites of  
the CCPB, the AMS fabrics are dominantly of sedimentary 
origin. They are governed mostly by the preferred orientation 
of paramagnetic phyllosilicate minerals. The Kmax in the Ta–
Tb–Tc turbidite intervals are well-clustered and oriented  paral lel 
to the measured paleoflow directions. The well-grouped Kmax 
in the mudstone facies (Te interval) coincide with the local 
paleoflow directions measured on the intercalated turbidite 
sandstones or directly on the mudstones, suggesting that the 
mudstones were deposited during the final stages of waning 
dilute turbidite flows. The AMS fabric in the hydroplastically 
deformed facies such as convolute and slump folded sand-
stones reflects the soft-sediment deformation structures.

The comparison of the AMS fabrics, especially, between orga-
nized Ta–Te turbidite intervals and the hydroplastically defor-
med facies proved to be an effective way of distin gui shing  
an original sedimentary from a tectonically induced magnetic 
fabric in weakly deformed turbidite deposits. As the turbidite 
deposits were affected by compression, in the Miocene,  
the sedimentary origin of the AMS fabrics was  further sup-
ported by the poor correlation between the bedding strikes and 
AMS lineations.

The implication of our study is that once the sedimentary 
origin of magnetic fabric in turbidite deposits is proved,  
the AMS lineations from any of the Ta–Te intervals seem to 
give useful information about paleoflow orientations.

The AARM and the AMS fabrics are oriented differently. 
The former seem to be genetically related to the formation of 
the diagonal conjugate joint set. We could distinguish three 
types of the AARM fabrics. The AARM type 1 represents 
magnetic foliations oriented parallel to the joints while mag-
netic lineations are distributed along the joints. The AARM 
type 2 shows signs of transitional sedimentary to tectonic mag-
netic fabric and the AARM type 3 coincides with the sedimen-
tary AMS fabric. 

Magnetic mineralogy experiments documented dominant 
magnetite accompanied by ferrimagnetic iron sulphides.  
Both seem to be authigenic phases associated with pyrite, as 
the microscopic investigations (SEM, WDS) revealed. These 
sub-microscopic phases formed during late diagenesis through 
the alteration of pyrite, possibly accompanied by clay transfor-
mation processes during burial. The growth of the authigenic 
ferrimagnetic minerals was conditioned by combined effects 
of the sedimentary petrofabric, lithology and stress conditions 
during the inversion of the basin in the Early to Middle 
Miocene.
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