Early Sarmatian paleoenvironments in the easternmost Pannonian Basin (Borod Depression, Romania) revealed by the micropaleontological data

SORIN FILIPESCU¹, ANGELA MICLEA¹, MARTIN GROSS², MATHIAS HARZHAUSER³, KAMIL ZÁGORŠEK⁴ and CĂTĂLIN JIPA⁵

¹"Babeş-Bolyai" University, Department of Geology, Kogălniceanu str. 1 M., 400084 Cluj-Napoca, Romania;

sorin.filipescu@ubbcluj.ro; angela.miclea@ubbcluj.ro

²Universalmuseum Joanneum, Geology & Paleontology, Weinzöttlstrasse 16, A-8045 Graz, Austria; martin.gross@museum-joanneum.at ³Natural History Museum Vienna, Burgring 7, A-1014 Vienna, Austria; mathias.harzhauser@nhm-wien.ac.at

⁴National Museum, Department of Paleontology, Václavské náměstí 68, 115 79 Praha 1, Czech Republic; kamil_zagorsek@nm.cz ⁵"Babeș-Bolyai" University, Faculty of Environmental Science, Fântânele str. 30, 400294 Cluj-Napoca, Romania; catajipa12@yahoo.com

(Manuscript received March 13, 2013; accepted in revised form October 16, 2013)

Abstract: The Sarmatian sedimentary record of the Borod Depression (eastern Pannonian Basin) consists of a marine sequence with continental influence. The investigated section, located near Vârciorog, was biostratigraphically and paleoenvironmentally analysed. The micro- and macrofossil assemblages include dasycladaceans, characeans, foraminifera, molluscs, polychaetes, ostracods, crabs, bryozoans, fish and vertebrate remains, which are characteristic for a shallow marine setting with local transitions to continental facies. The microfossil assemblages are characteristic for the *Elphidium reginum* Zone and *Mohrensternia* Zone of the early Sarmatian (Serravallian). The succession of populations correlates with the sedimentological trend, allowing the separation of several genetic units. The relative sea-level changes and the progradational trend from the top of the section suggest active tectonics in the hinterland (Apuseni Mountains). The shallow seas surrounding the emerging islands (Apuseni Mountains) provided the connections between the Pannonian and Transylvanian basins during the early Sarmatian.

Key words: Sarmatian (late Middle Miocene), Borod Depression (NW-Romania), paleoenvironments, paleogeography, sequence stratigraphy, molluscs, bryozoans, foraminifera, ostracods.

Introduction

The Borod Depression represents an eastern extension of the larger Pannonian Basin (Fig. 1), developed on the western slopes of the Apuseni Mountains (Istocescu & Istocescu 1974; Györfi & Csontos 1994; Papaianopol & Macalet 1998). Its evolution was guite similar to the development of other small basins (Simleu, Beius, and Zarand) near the uplifted structures of the Apuseni Mountains and other older structures in the vicinity (Meses and Preluca Massifs). The basin's fill consists of Neogene and Quaternary siliciclastic deposits with local intercalations of coal, which unconformably cover the Mesozoic (sedimentary) and Paleozoic (metamorphic) basement. Several studies already highlighted the particular macro- and microfossil contents of the Neogene formations (Givulescu 1957, 1991; Istocescu et al. 1970; Nicorici & Istocescu 1970; Nicorici 1971; Şuraru & Şuraru 1973; Bucur et al. 1993; Popa et al. 1998; Filipescu et al. 2000; Popa 2000; Filipescu & Popa 2001; Miclea et al. 2011). However, paleoenvironmental interpretations and their relation to a wider paleogeographical context are missing until now.

The studied section is located near Vârciorog (Vişinilor Stream, 46°58 ' 42" N; 22°15 ' 57" E; Fig. 2) and belongs to the Sarmatian (Middle Miocene) Cornițel Formation (Popa 2000). Nine outcrops (D1-D9) were sampled, but this study refers mainly to outcrop D9, which has been considered as the

most representative. Here, we document the micropaleontological record and discuss the detected paleoenvironmental changes in order to restore a part of the paleogeographical evolution at the eastern border of the Pannonian Basin.

Material and methods

Forty-three samples were collected from fine-grained siliciclastic intervals along the ~9 m thick section, at distances between 5 to 20 cm (Fig. 2). All the samples were processed by standard micropaleontological methods. The microfossils were recovered from the 63 μ m sieve fraction after washing 250 g of dried sediment from each sample. Identification of taxa was followed by quantitative analyses of foraminifera based on percentage distribution of different groups (Fig. 4). Representative taxa are documented by stereomicroscope and the scanning electron microscope (SEM) photographs inserted in Figures 5 to 10.

Results

The microfossil assemblages were interpreted from the biostratigraphic and paleoecological points of view, trying to point out their relationship to the relative sea-level changes

generated by regional events and consequently their potential for stratigraphic dating and correlation.

Biostratigraphy

The recorded foraminiferal species are characteristic for the early Sarmatian (*Elphidium reginum* Zone — Grill, 1941 — Fig. 3) and are very similar to other assemblages described from the Central Paratethys (Grill 1941; Brestenska 1974; Görög 1992; Popescu 1995; Filipescu et al. 2000; Schütz et al. 2007; Toth & Görög 2008; Koubová & Hudáčková 2010; Toth et al. 2010).

Several ostracod taxa are also indicative for an early Sarmatian age, namely Cytheridea hungarica-Aurila mehesi Zone (NO11) of the Central Paratethys (Jiříček & Říha 1991): Callistocythere tokajensis Pietrzeniuk, 1973, Callistocythere pantoi Pietrzeniuk, 1973, C. maculata Pietrzeniuk, 1973, Cytheridea hungarica Zalányi, 1913, Aurila mehesi (Zalányi, 1913), A. merita (Zalányi, 1913), Tenedocythere cruciata Bonaduce, Ruggieri & Russo, 1986 (e.g. Kollmann 1960; Pietrzeniuk 1973; Jiříček 1974; Zelenka 1990; Fordinál & Zlinská 1994; Szczechura 2000; Tóth 2004, 2008; Fordinál et al. 2006; Gross 2006; Tóth et al. 2010). Miocyprideis sarmatica (Zalányi, 1913) is characteristic for the early Sarmatian Elphidium reginum Zone but also occurs in the Elphidium hauerinum Zone (Jiříček 1974; Tóth 2004, 2008). Hemicyprideis dacica (Héjjas, 1895) ranges from the Late Oligocene to the Sarmatian but is frequently found in lower Sarmatian deposits of the Central Paratethys (Kollmann 1960; Jiříček 1974; Gebhardt et al. 2009; Schäfer 2011). Hemicytheria omphalodes (Reuss, 1850) is known from the Late Badenian to the Early Pannonian, however, predominantly from the Sarmatian (Cernajsek 1974; Gross 2006; Gross et al. 2007). Senesia

vadaszi (Zalányi, 1913) is documented from the Karpatian but is particularly common in lower Sarmatian sediments (Jiříček 1974; Zelenka 1990; Gross 2006). Loxoconcha kochi Mehes, 1908 (sensu Cernajsek, 1974) occurs during Late Badenian and Sarmatian times (Cernajsek 1974; Gross 2006). Morphotypes resembling Xestoleberis aff. tumida (Fordinál et al., 2006) and Xestoleberis ex gr. dispar (Tóth, 2004, 2008) are known from Sarmatian strata. Heterocypris sp. seems to be related to Heterocypris steinheimensis (Lutz, 1965) of Janz (1994) as well as Ilyocypris sp. is close to Ilyocypris sp. in Janz (1994), both from Middle Miocene deposits of the South German Steinheim Basin.

The presence of the genus *Mohrensternia* allows a clear correlation of the mollusc fauna with the early Sarmatian *Mohrensternia* Zone (Papp, 1956), equivalent to the fora-miniferal zonation.

The bryozoan assemblages display a low diversity (5-7 taxa) and are dominanted by opportunistic cyclostomatous *"Tubulipora"* and *Crisia*. Other species of *Cryptosula* and *Schizoporella* are typical for Sarmatian assemblages (Ghiurcă & Stancu 1974; Vávra 1977; Zágoršek 2007).

Microfossil assemblages and paleoenvironments

Microfossil assemblages along the sampled section provided valuable information on the paleoenvironmental evolution. Our interpretations are based on the estimated autecology of several taxa:

a. Among foraminifera (Figs. 5-7), the opportunistic *Ammonia* species are detritivorous and able to dwell in very unstable nearshore environments with fluctuating salinities (Zaninetti 1982; Walton & Sloan 1990), eutrophic conditions, and short term dysoxia (Murray 2006). *Elphidium* spe-

cies (keeled epifaunal herbivorous and rounded infaunal detritivorous morphotypes — Murray 1991; Langer 1993) are indicators of almost normal marine conditions and quite stable environments. Miliolid foraminifera (epifaunal detritivorous and/or herbivorous) are characteristic for very shallow waters with normal marine to hypersaline conditions (Łuczkowska 1972, 1974; Murray 1991). The rotaliids are represented by opportunistic epifaunal or infaunal dwellers, while buliminids document deeper and less oxygenated environments (Corliss 1985; Corliss & Fois 1990; Murray 1991; Jorissen et al. 1995).

b. Ostracod assemblages (Table 1, Fig. 8), which are dominated by *Miocyprideis* and *Hemicyprideis*, refer to highly fluctuating salinities, as suggested by the comparison with modern *Cyprideis*. Frequently these dominate in marginal marine, brackish waters (Kollmann 1960; Morkhoven 1963; Gebhardt et al. 2009; Pirkenseer & Berger 2011; Schäfer 2011). *Hemicytheria omphalodes* (Reuss, 1850) is frequently found in sandy, brackish water deposits (Cernajsek 1974). The euryhaline *Aurila* occurs preferably in epineritic, sandy coastal settings (Hartmann 1975). Xestoleberidids with well

Ag	ge	Chrons	Mollusc zones	Foraminifera zones					
ene	late	C5r.3r	Sarmatimactra vitaliana	Porosononion granosum					
Mioc		C5An.1n C5An.1r	upper Ervilia						
liddle		C5An.2n	lower Ervilia	Elphidium hauerinum					
Σ	early	C5Ar1r	Mohrensternia	Elphidium reginum					
		05AI. 11		Anomalinoides					

Fig. 3. Chrono- and biostratigraphic correlation table for the Middle Miocene (after Harzhauser et al. 2008).

developed eyespots dwell typically in littoral to sublittoral, sandy and phytal habitats of marine and brackish waters (Athersuch 1976; Bonaduce & Danielopol 1988). *Senesia* and *Loxoconcha* are considered as marginal marine taxa (Morkhoven, 1963; Gross, 2006), while *Ilyocypris* and *Heterocypris* are typical freshwater dwellers. A deepening trend in the euphotic zone can be documented by *Cytherella* (a littoral to epibathyal, marine filter feeder; Gross 2006, cum Lit.) and by *Tenedocythere* (an infralittoral element of warm seas; Breman 1976; Bonaduce et al. 1976).

c. Poorly preserved Bryozoa (Fig. 9), are dominated by cyclostomatous colonies of "Tubulipora" (possibly belonging to genus Oncousoecia) and Crisia, which prefer unstable (shallow, high energy) environments and usually belong to pioneer assemblages. This is also supported by the few specimens of Nelia. The identified "Tubulipora" specimens are very similar to Tubulipora cumulus (Sinzow, 1892) as described by Zágoršek & Fordinál (2006). At least two species of Crisia were identified: Crisia haueri Reuss, 1847 and Crisia romanica Zágoršek, Silye & Szabó, 2008. Among cheilostomes, which are common in more stable conditions, Schizoporella tetragona (Reuss, 1848) and/or S. dunkeri (Reuss, 1848) and Hippopleurifera cf. semicristata (Reuss, 1848) and/or Cryptosula terebrata (Sinzov, 1892) are present. Better preserved specimens are needed for more detailed determination. The assemblages are similar to those described from the Danube Basin (Zágoršek & Fordinál 2006) with elements from Cerna-Strei Depression (Zágoršek et al. 2008).

d. Among molluscs (Table 2, Fig. 10), *Tropidomphalus* sp. and clausiliids derived from the adjacent woodland. The coastal mudflats were inhabited by large populations of *Agapilia picta* (Ferussac, 1825), *Granulolabium bicinctum* (Brocchi, 1814) and *Cerithium rubiginosum* (Eichwald, 1830). Harzhauser & Kowalke (2002) and Lukeneder et al. (2011) described comparable mudflat assemblages throughout the Sarmatian Paratethys Sea. Various species of *Mohrensternia*, the carnivorous *Clavatula doderleini* (Hörnes, 1856) and the byssate bivalve *Musculus sarmaticus* (Gatujev, 1916) might have preferred the transition towards the very shallow sublittoral zone. *Duplicata duplicata* (Sowerby, 1832) represented a scavenging nassariid.

Fig. 4. Quantitative distribution (no. of specimens per sample) of the main foraminiferal groups identified at Vârciorog. Particular abundances of taxa characteristic to low salinity (*Ammonia*), normal salinity (*Elphidium*, *Nonion*, *Porosononion*), high salinity/shallow environments (Miliolids), and lower oxygenation/deeper environments (Buliminids) can be observed. Highest diversities (Fisher α index) are related to normal marine conditions.

e. Fragments of fossil tetrapods indicate the proximity of continental environments. The most representative groups are the rodents (Muridae), insectivores (Gliridae), and omnivores (Erinaceidae) — Molnar (2011).

The lowermost part of the section (samples V1-2 in Fig. 2) was deposited under continental influence. This was suggested by the presence of terrestrial gastropods, such as apex fragments of unidentified clausiliids and fragments of the helicid *Tropidomphalus* sp. The latter indicates moist woodland and wetlands (Binder 2004; Harzhauser et al. 2008), which is consistent with the amphibian and mammal remains occurring in the same samples. Likewise, abundant plant debris document significant terrestrial input.

Coastal marine conditions established with samples V3-4, which are moderately abundant in the gastropods Agapilia picta, Granulolabium nodosoplicatum (Hörnes, 1856), Staja tholsa (Jekelius, 1944), Cornirostra moesiensis (Jekelius, 1944) and the bivalve Loripes niveus (Eichwald, 1853). Ostracods are rare in V3-4 and dominated by Miocyprideis sarmatica (Zalányi, 1913), which is accompanied by Hemicyprideis dacica (Héjjas, 1895), Hemicytheria omphalodes, and a few Aurila mehesi (Zalányi, 1913), and Xestoleberis aff. tumida (Reuss, 1850). The dominant foraminifera (Fig. 4) are Ammonia beccarii (Linné, 1758), A. tepida (Cushman, 1926), associated with rare specimens of Elphidium crispum (Linné, 1758) and E. flexuosum (d'Orbigny, 1846), which are able to tolerate low and fluctuating salinities (Walton & Sloan 1990; Murray 1991). Accordingly, shallow, marginal marine (brackish) depositional environments with considerable fluctuations in salinity are indicated for the interval V3-4.

verse microfossil assemblages. The foraminifera reach a relatively high diversity (Fisher α =9) in V7: *Elphidium crispum*, E. aculeatum (d'Orbigny, 1846), E. grilli Papp, 1963, E. reginum (d'Orbigny, 1846), E. josephinum (d'Orbigny, 1846), E. fichtelianum (d'Orbigny, 1846) - more than 60 % of the assemblage - Nonion commune (d'Orbigny, 1825), N. bogdanowiczi Voloshinova, 1952, Porosononion granosum (d'Orbigny, 1846), Lobatula lobatula (Walker & Jacob, 1798), Rosalina brady (Cushman, 1915), and rare miliolids: Varidentella reussi (Bogdanowich, 1952), Quinqueloculina hauerina (d'Orbigny, 1846), Q. seminula (Linné, 1758), Pseudotriloculina consobrina (d'Orbigny, 1846), Articulina problema Bogdanowich 1952, A. sarmatica (Karrer, 1877). The ostracods diversified as well, but are still dominated by Miocyprideis sarmatica. Hemicytheria omphalodes and Senesia vadaszi (Zalányi, 1913) which co-occur with some specimens of Aurila merita (Zalányi, 1913), Loxoconcha sp. 1, and a few valves of Ilyocypris sp. and Heterocypris sp. The faunal spectrum is quite similar to the previous one (V3-4), but several marginal marine taxa such as Senesia and Loxoconcha are also present. Nevertheless, the occurrence of rare freshwater ostracods (Ilyocypris, Heterocypris) documents some terrestrial (fluvial) input. Probably, the dominance of Aurila in V7 indicates somewhat more stable (salinity) conditions and a slight transgressive trend. Cytheridea hungarica Zalányi, 1913, another epineritic, brackish to normal marine mussel shrimp (Gross 2006, cum Lit.) was found only in V7, associated with M. sarmatica. Subordinately H. dacica, H. omphalodes, S. vadaszi and rare specimens Loxoconcha and Xestoleberis occur. The mollusc assemblage is also diverse

Conditions change with sample V5, which yielded more di-

Fig. 5. Foraminifera from Vârciorog (SEM pictures): 1 — *Cycloforina badenensis* (d'Orbigny, 1846), sample V7; **2-3** — *Quinqueloculina hauerina* d'Orbigny, 1846, sample V16; **4** — *Pseudotriloculina consobrina* (d'Orbigny, 1846), sample V22; **5** — *Varidentella reussi* (Bogdanowicz, 1952), sample V21; **6** — *Quinqueloculina akneriana* d'Orbigny, 1846, sample V16; **7** — *Quinqueloculina bogdanowiczi* (Serova, 1955), sample V16; **8** — *Quinqueloculina buchiana* d'Orbigny, 1846, sample V17; **9** — *Varidentella latelacunata* (Venglinski, 1953), sample V43; **10–11** — *Articulina sarmatica* (Karrer, 1877), sample V36; **12** — *Articularia articulinoides* Gerke & Issaeva, 1952, sample V32; **13** — *Articulina problema* Bogdanowicz, 1952, sample V31; **14–15** — *Bolivina moldavica* Didkowski, 1959, sample V30; **16–17** — *Bolivina nisporenica* Maissuradze, 1988, samples V14 and V16; **18** — *Bolivina pseudoplicata* Heron-Allen & Earland, 1930, sample V14; **19** — *Bolivina sarmatica* Didkowski, 1959, sample V30.

Fig. 6. Foraminifera from Vârciorog (SEM pictures): **1–2** — Ammonia beccarii (Linné, 1758), sample V5; **3** — Ammonia tepida (Cushman, 1926), sample V16; **4** — Ammonia beccarii (Linné, 1758), twin test, sample V4; **5–6** — Lobatula lobatula (Walker & Jacob, 1798), sample V7; **7** — Nonion commune (d'Orbigny, 1825), sample V19; **8** — Eponides sp.(?), sample V34; **9** — Rosalina bradyi (Cushman, 1915), sample V34; **10** — Caucasina schichkinskye (Samoylova, 1947), sample V7; **11** — Fursenkoina sarmatica (Venglinski, 1958), sample V32; **12** — Fursenkoina pontoni (Cushman, 1932), sample V31; **13** — Buliminella elegantissima (d'Orbigny, 1839), sample V31; **14–15** — Schackoinella imperatoria (d'Orbigny, 1846), sample V17.

Fig. 7. Foraminifera from Vârciorog (SEM pictures): **1–2** — *Elphidium grilli* Papp, 1963, sample V4; **3** — *Elphidium crispum* (Linné, 1758), sample V13; **4**, **5** — *Elphidium crispum* (Linné, 1758), sample V24; **6** — *Elphidium fichtelianum* (d'Orbigny, 1846), sample V7; **7** — *Elphidium obtusum* (d'Orbigny, 1846), sample V15; **8**, **9** — *Elphidium hauerinum* (d'Orbigny, 1846), sample V17; **10** — *Elphidium josephinum* (d'Orbigny, 1846), sample V28); **11–12** — *Elphidium reginum* (d'Orbigny, 1846), sample V23.

V43 - - x x x x x rare, badly preserved V41 - - - x x x x rare, badly preserved V39 x - - - x x x x rare, badly preserved V38 - - - - - x x x x moderately rich V38 - - - - - - rare, badly preserved V38 - - - - - rare rare, badly preserved V38 - - - + + + x x moderately rich, badly preserved V33 - - - - x x x moderately rich V31 x x x x - x x x moderately rich V31 x x x x x x x moderately rich V29 x <	Sample Species	Cytherella sp.	Ilyocypris sp.	Heterocypris sp.	Callistocythere tokajensis Pietrzeniuk, 1973	Callistocythere pantoi Pietrzeniuk, 1973	Callistocythere maculata Pietrzeniuk, 1973	Cytheridea hungarica Zalányi, 1913	Hemicyprideis dacica (Héjjas, 1895)	Miocyprideis sarmatica (Zalányi, 1913)	Hemicytheria omphalodes (Reuss, 1850)	Aurila mehesi (Zalányi, 1913)	Aurila merita (Zalányi, 1913)	Senesia vadaszi (Zalányi, 1913)	Tenedocythere cruciata Bonaduce, Ruggieri & Russo, 1986	Loxoconcha kochi Méhes, 1908 (sensu Cernajsek, 1974)	Loxoconcha sp. 1	Loxoconcha sp. 2	Xestoleberis aff. tumida (Reuss, 1850)	Xestoleberis ex gr. dispar Müller, 1894	Remarks on the assemblage
V42 Image: Constraint of the constrai	V43	-									_	X	x	x	x					x	rare, badly preserved
V41 Image: Constraint of the second constraint of	V42										-	X		-						X	rare, badly preserved
3'3 x $ +$ $+$ $+$ $+$ $+$ x	V41												X		x	X				X	rare, badly preserved
V38 - - $rare$ rare $V37$ x - + + x x + moderately rich, badly preserved $V36$ x - - x x x moderately rich, very badly preserved $V33$ - x x x - x - - rare $V33$ - x x x - x - - rare $V33$ - x x x - x - - rare $V31$ x x x x - + + + x x moderately rich $V30$ x x - + + + + x x - moderately rich $V29$ x x - + + + x x moderately rich $V22$ - - - - - - rere very rare $V19$ -	V39	X			-	-	-					+	+	+	X	X	X			X	moderately rich
V37 x x + - + - + x x + moderately rich, badly preserved V36 x x x x x x moderately rich, very badly preserved V33 - x x x - rare V32 x x x x + + + x x moderately rich, very badly preserved V31 x x x x + + + x x moderately rich V30 x x x x + + + + x x rare V30 x x x + + + x x x moderately rich V30 x x x + + + x x x moderately rich V28 x x x x x x moderately rich V21 - - + + x x	V38	-										X		X	X	-			-		rare
V36x+x-x-xmoderately rich, very badly preservedV33xrareV32xxxx-xrareV31xxxx-x+++xxmoderately richV30xxxx-+++xxrichV30xxx-+++xxmoderately richV29xx+++xxmoderately richV28xmoderately richV21rareV20++xxxxrichV18rareV18xxxxmoderately richV16rareV13rareV13rareV13V14 <t< td=""><td>V37</td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>_</td><td>+</td><td>X</td><td>X</td><td></td><td></td><td></td><td>+</td><td>moderately rich, badly preserved</td></t<>	V37	X										+	_	+	X	X				+	moderately rich, badly preserved
V33 - x - x - - rare V32 x x x x - x x - rare V31 x x x x + + + x x moderately rich V30 x x x x + + + x x rare V30 x x x + + + x x rich V30 x x - + + + + x x rich V29 x x - - - - - rare V28 x x - - - - - - rare V21 - - - - - - - rare rare V20 - - + + x x x x rich very rare V18 - <th< td=""><td>V36</td><td>X</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>х</td><td></td><td></td><td></td><td>X</td><td>X</td><td>moderately rich, very badly preserved</td></th<>	V36	X			-							+			х				X	X	moderately rich, very badly preserved
V32 x x x x + - x x x moderately rich V31 x <td>V33</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td>-</td> <td>X</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>rare</td>	V33	-										X		-	X	-			-		rare
V31 x x x x + + + + x x x rich V30 x x x x + + + + x x x rich V29 x x x x + + + + x x - moderately rich V28 x x x + + + + x x x moderately rich V28 x	V32	X			X	X						X		+	-	X	X			X	moderately rich
V30 x x x + + + + x x - moderately rich V29 x x x + x x x x x moderately rich V28 i x x - - i x x moderately rich V28 i x x - - i i x moderately rich V22 i i x i - - i x moderately rich V21 i i i x x x x x x i i i i i i i i i i i x x i i x x i i x x i i i i i i x x i i i i x x i i x i i x i i x i x	V31	X			X	X				X			+	+	+	X		X	X	X	rich
V29 x x x + x + + + x x x moderately rich V28 x - - - - rare V22 - - - - very rare V21 - + + + x x - rich V20 - - + + + x x - rich, very badly preserved V19 - - - x x x rich, very badly preserved V18 - - - x x x x rich V16 - - x + + x x x moderately rich V14 - - - - x x x rich, badly preserved V13 - - - - - very rare	V30	X			X							+	+	+	+	X	X		-		moderately rich
V28 Image: Constraint of the system of	V29	X			X					+	X	+	+	+		X	X			X	moderately rich
V22 V21 V	V28									X	-			-							rare
V21 - + + X X X - rich V20 - - + + X X X x rich, very badly preserved V19 - - - - - x x x rich, very badly preserved V18 - - - - x - - - rare, badly preserved V17 - - - x - - - rich V16 - - - x x x moderately rich V16 - - - + + + x x moderately rich V16 - - + + + - - very rare V14 - - - + + + - - very rare V13 - - - - - - rare very rare V7 - - x x	V 22									-	-									-	very rare
v_{20} $ +$ $+$ $+$ x $+$ x	V21 V20								-	+	+	X	X	X				X		-	
V17Image: Constraint of the systemImage: Constraint of the systemVery rareV18Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV17Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV17Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV16Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV16Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV16Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV18Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV13Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV17Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV18Image: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemImage: Constraint of the systemV12Image: Constraint of the systemImage: C	V 20 V 10				-					+	+		X	+			X		X	X	hen, very badly preserved
V10 -	V19 V18									-	-			w							very rate
V1/ - - + + + + X X X Mith V16 - - X + + + X X moderately rich V15 - - + X + X X moderately rich V14 - - + + + + - very rich, badly preserved V14 - - + + + + - very rich, well preserved V13 - - - - - very rare very rare V12 - - - X X - - rare V7 X X - - - rare rare V5 - - - X X - rare V4 - - - - - rare V3 - - - - rare	V17					-				-	-	-		X		v	v	-	- v	-	rich
V10 - - - + x + x x indecately from V15 - - + x + x x rich, badly preserved V14 - - + + + x x x rich, badly preserved V13 - - + + + + - very rare V13 - - - - - - very rare V12 - - - - - - rare V7 - X - X X - - rare V5 - - + + X + X - rare V4 - - - - - rare - rare V3 - - - - - rare	V1/ V16				_					+	+	+		+		X	X.		X	v	moderately rich
V13 - - + + + + - - very rich, well preserved V13 - - + + + + - - very rich, well preserved V13 - - - - - very rich, well preserved V12 - - - - very rare V12 - - x x x - rare V7 X - x - - - rare V5 - - + + x + x - rare V4 - - - - - rare rare V3 - - - - - rare	V15				-					<u>А</u>	T	T V		T			T V	v	A V	A	rich badly preserved
V13 - - - - - - - very new preserved V13 - - - - - - very new V12 - - x x - - rare V17 - x - x - - rare V7 - x - x - - rare V5 - - + + x + x V4 - - x - - rare V3 - - x - - rare	V14				_				_	-	⊤ +	А	+	+ +			<u>л</u>	Α	Α	_	very rich well preserved
V12 - x x x - rare V12 - - x x - - rare V7 - - x - x - - rare V7 - - - x - - - rare V5 - - + + x + rare V4 - - - - rare V3 - - x - rare	V13				-	_			_	-	-			'			_			-	very rare
V7 X - X - X - - - - rare V5 - - + + X + - rare V4 - - - - - rare V3 - - X - - rare	V12								_	x	x	x							_		rare
V5 - - + + x - rich V4 - x - rich V3 - x - rare	V7							x	_	x	-	x	x	-					_	_	rare
V4 - x - - rare V3 - - - - rare	V5		_	_						+	+		x	+			x		_		rich
V3 - x r	V4		<u> </u>						_	X	_	_		·							rare
	V3								_	x	_	_							_		rare

FILIPESCU, MICLEA, GROSS, HARZHAUSER, ZÁGORŠEK and JIPA

 Table 1: Distribution of ostracods along the Vârciorog section.

and suggests a mixture of different habitats: coastal mudflats (large populations of *Agapilia picta, Granulolabium bicinc-tum*, and *Cerithium rubiginosum*) and transition to the very shallow sublittoral zone (*Mohrensternia angulata* (Eichwald, 1830), *Clavatula doderleini* (Hörnes, 1856), *Musculus sar-maticus* (Gatujev, 1916), and *Duplicata duplicata* (Sowerby, 1832)). Pioneer bryozoans with *Tubulipora* and *Crisia* can be observed in V7. The assemblage became more diverse after-wards. Microfossil assemblages identified in samples V5-7 and relatively high values of diversity point to water salinities, close to normal marine values.

The gradual disappearance of typical marine taxa and a coarsening of the sediment in samples V8–9 suggests an alteration of the marine environment due to a higher terrestrial influence.

The re-establishment of marine conditions is documented in sample V12 by the presence of shallow marine foraminifera (*Ammonia beccarii* and *Elphidium hauerinum* (d'Orbigny, 1846)), molluscs (outstanding predominance of *Duplicata duplicata*, occurring along with *Granulolabium bicinctum* and *Agapilia picta*), and rare ostracods (*Miocyprideis sarmatica*, *Hemicytheria omphalodes*, *Aurila merita*).

The proportions of *Elphidium* become higher in samples V13-16 (*E. grilli*, *E. flexuosum*, *E. crispum*, *E. rugosum* (d'Orbigny, 1846), *E. obtusum* (d'Orbigny, 1846)). Miliolids are particularly abundant in sample V17 (Varidentella reussi, Quinqueloculina akneriana d'Orbigny, 1846, *Q. bogdanowiczi* (Serova, 1955), *Q. seminula* (Linné, 1758), *Cycloforina contorta* (d'Orbigny, 1846), *C. badenensis* (d'Orbigny, 1846), *Pseudotriloculina consobrina*, Miliolonella sp., Sinu-

Fig. 8. Ostracoda from Vârciorog (SEM pictures — all in external view; L=left, R=right valve): **1** — *Cytherella* sp. (L), sample 39; **2** — *Ilyocypris* sp. (L), sample 5; **3** — *Heterocypris* sp. (L), sample 5; **4** — *Callistocythere tokajensis* Pietrzeniuk, 1973 (R), sample 39; **5** — *Callistocythere pantoi* Pietrzeniuk, 1973 (L), sample 39; **6** — *Callistocythere maculata* Pietrzeniuk, 1973 (L), sample 39; **7** — *Cytheridea hungarica* Zalányi, 1913 (L), sample 7; **8** — *Hemicyprideis dacica* (Héjjas, 1895) (L), sample 7; **9** — *Miocyprideis sarmatica* (Zalányi, 1913) (L), sample 21; **10** — *Hemicytheria omphalodes* (Reuss, 1850) (L), sample 21; **11** — *Aurila mehesi* (Zalányi, 1913) (L), sample 7; **12** — *Aurila merita* (Zalányi, 1913) (L), sample 5; **13** — *Senesia vadaszi* (Zalányi, 1913) (L), sample 5; **14** — *Tenedocythere cruciata* Bonaduce, Ruggieri & Russo, 1986 (L), sample 39; **15** — *Loxoconcha kochi* Méhes, 1908 (sensu Cernajsek, 1974) (R), sample 39; **16** — *Loxoconcha* sp. 1 (R), sample 39; **17** — *Loxoconcha* sp. 2 (R), sample 21; **18** — *Xestoleberis* aff. *tumida* (Reuss, 1850) (L), sample 5; **19** — *Xestoleberis* ex gr. *dispar* Müller, 1894 (L), sample 7.

Fig. 9. Bryozoa from Vârciorog (SEM pictures): 1 - Oncousoecia cf. biloba (Reuss, 1847) from *sample showing large gonozooecium with small oeciopore (left margin of the colony); the specimen differs from Reuss species in having much larger pseudopores on gonozooecium (sample V7); <math>2 - Annectocyma sp. — large gonozooecium with centrally situated oeciopore on short peristome; very similar is Recent species *A. arcuata* (Harmelin, 1976) growing, however, in narrower colonies (sample D2-30); 3 - Cryptosula? sp. — enlarged *peristomail part of each zooecium carrying small oral avicularia; the development of avicularia on each zooecium is uncommon in true Cryptosula (sample D7-31); 4 - Inner view of *Cryptosula*? showing perforation of the frontal shield and large condyles in the aperture (sample D7-02); 5 - Crisia romanica Zágoršek, Silye & Szabó, 2008 showing well developed gonozooecium; note the longitudinal pseudopores and dented proximal of the gonozooecium (sample D7-30); 6 - encrusting base of *Schizoporella* indicate algal meadow on the spot (sample D8-11); 7 - Schizoporella sp. — encrusting colony with ovicells and avicularia; the specimen is similar to *Schizoporella dunkeri* (Reuss, 1847) but differs in having much wider sinus and larger avicularia (sample D8-11); 8 - Nelia sp. showing only one avicularium on the gymnocyst of each zooecium; the specimen is similar to Recent *Nelia tenella* (Lamarck, 1816), which however usually has two avicularia on gymnocyst of entire zooecium (sample V7).

			Specimens per sample															
Environment	Family	Taxon	V1	V2	V3	V4	V5	۲۷	V12	V15	V16	V17	V18	V21	V26	V29	V37	V42
Mar. — Paratethys Sea	Acmaeidae	Tectura aff. zboroviensis Friedberg, 1928 (sp. nov.)	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Mar Paratethys Sea	Neritidae	Agapilia picta (Ferussac, 1825)	0	1	18	1	718	0	40	1	1	1	0	0	0	4	0	0
Mar. — Paratethys Sea	Trochidae	Gibbula cf. guttenbergi (Hilber, 1897)	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Batillariidae	Granulolabium bicinctum (Brocchi, 1814)	0	0	1	7	350	2	59	1	1	1	3	1	0	0	0	0
Mar Paratethys Sea	Batillariidae	Thericium rubiginosum (Eichwald, 1830)	0	0	0	1	50	0	8	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Batillariidae	Potamides nodosoplicatum (Hörnes, 1855)	0	0	27	1	5	0	11	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Hydrobiidae	Hydrobia sp. 1	0	0	1	1	5	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Hydrobiidae	Hydrobia soceni Jekelius, 1944	0	0	0	0	4	1	2	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Hydrobiidae	Hydrobia cf. subprotractra Jekelius, 1944	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Hydrobiidae	Staja tholsa (Jekelius, 1944)	0	0	78	2	1	1	22	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Hydrobiidae	Staja immutata (Hoernes, 1856)	0	0	17	0	2	0	2	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Hydrobiidae	Staja depressa (Jekelius, 1944)	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Rissoidae	Rissoa banatica Jekelius, 1944	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Rissoidae	Mohrensternia hydrobioides Hilber, 1897	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Rissoidae	Mohrensternia angulata (Eichwald, 1830)	0	0	0	1	38	2	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Rissoidae	Mohrensternia pseudoangulata Hilber, 1897	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Rissoidae	Mohrensternia inflata (Andzejowski, 1835)	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Rissoidae	Mohrensternia sarmatica Friedberg, 1923	0	0	0	0	7	1	0	0	0	0	0	0	0	0	0	0
Freshwater	Bithyniidae	Bithynia sp. (operculum)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Terrestrial	Pomatiidae	Pomatias cf. conicus (Klein, 1853) (operculum)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Mar. — Paratethys Sea	Nassariidae	Duplicata duplicata (Sowerby, 1832)	0	0	0	0	32	0	89	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Clavatulidae	Clavatula doderleini (Hörnes, 1856)	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Acteonidae	Acteocina lajonkaireana (Basterot, 1825)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1
Mar. — Paratethys Sea	Cornirostridae	Cornirostra moesiensis (Jekelius, 1944)	0	0	6	2	10	2	0	0	0	0	0	0	0	0	0	0
Terrestrial	Clausilidae	Clausiliidae indet.	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Terrestrial	Helicidae	Tropidomphalus sp.	2	3	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Mytilidae	Musculus sarmaticus (Gatujev, 1916)	0	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0
Mar. — Paratethys Sea	Lucinidae	Loripes niveus (Eichwald, 1853)	0	0	2	3	33	0	0	0	0	0	0	1	0	0	0	0
Mar. — Paratethys Sea	Semelidae	Ervilia dissita (Eichwald, 1830)	0	0	0	0	0	1	0	0	0	1	0	0	1	0	1	2
Mar Paratethys Sea	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0		

Table 2: Distribution of diagnostic gastropods along the Varciorog section.

loculina consobrina (d'Orbigny, 1846)) occurring together with buliminids (Bolivina sarmatica Didkovski, 1959, B. moldavica Didkowski, 1959, B. pseudoplicata Heron-Allen & Earland, 1930, B. nisporenica Maissuradze, 1988, Caucasina schichkinskye (Samoylova, 1947), Buliminella elegantissima (d'Orbigny, 1839), Fursenkoina sarmatica (Venglinski, 1958), F. pontoni Döderlein, 1884) and rotaliids (Rosalina bradyi, Nonion commune, Schackoinella imperatoria (d'Orbigny, 1846)). At the level of sample V17, the diversity reaches the highest value of the section (Fisher α = 13.63). Together with the composition of the foraminiferal assemblage, this points to more stable salinity conditions and probably slightly deeper environments. Less stressful conditions are also suggested by increasing ostracod abundances within samples V14-17 (Hemicytheria omphalodes, Aurila spp. and Senesia vadaszi became important elements, while the amounts of Miocyprideis sarmatica relatively decrease). The presence of Nelia and Crisia together with rich assemblages of cyclostotate bryozoan "Tubulipora" may indicate a normal saline environment.

Ammonia specimens (A. beccarii, A. tepida) are associated with keeled Elphidium (E. crispum, E. aculeatum, E. fichtelianum, E. grilli), Nonion, Porosononion and very rare Bolivina in the shallow environments documented by samples V18-22. The trend continues up to sample V25, with assemblages containing varying proportions of foraminifera, ostracods (abundant only in samples V20 and V21), and fish remains, suggesting unstable shallow marine environments. This change is also suggested by the decreasing diversity of for aminifera (Fisher α : 1.74–4.77 in Fig. 4) between samples V18 to V25.

Another flooding event is documented in the marshy environments from samples V26-27. Opportunistic shallow marine foraminifera assemblages with Elphidium and Ammonia occur in sample V28. Stable environments, indicated by relatively high values of diversity in samples V29-32 (Fisher α = 5.48-9.48), allowed the diversification of assemblages. which contain rotaliids (Elphidium grilli, E. reginum, E. crispum, Ammonia beccarii, Nonion commune), miliolids (Varidentella reussi, Cycloforina badenensis, Articulina problema, Sinuloculina consobrina), and buliminids (Bolivina moravica, B. sarmatica, Buliminella elegantissima, Fursenkoina sarmatica). A deepening trend, but still within the euphotic zone, can also be documented by the first occurrence of the ostracod Cytherella in V29 and by Tenedocythere in V30, followed by the last occurrence of Miocyprideis sarmatica in V31. Bryozoans show another acme in V32, which may suggest salinity levels close to normal marine values.

Diversity decreases gradually in samples V33-43 (Fisher α = 8.26-4.83) due to the shallowing trend and progradation of tide-influenced deltas, as shown by foraminifera (rare and poorly preserved miliolids and rotaliids), ostracods (*Aurila* spp., *Senesia vadaszi* and *Tenedocythere sulcata*, which prefer sandy substrates), and fish remains. Molluscs are only represented by rare and poorly preserved remains of *Agapilia picta* and by *Acteocina lajonkaireana* (Basterot, 1825) in the uppermost sample V42. The topmost part of the section con-

Fig. 10. Molluscs from Vârciorog (stereomicroscope pictures): 1 — Tectura aff. zboroviensis Friedberg, 1928 (sp. nov.), sample V5;
2 — Agapilia picta (Férussac, 1825), sample V12; 3 — Therithium rubiginosum (Eichwald, 1830), sample V5; 4 — Granulolabium bicinctum (Brocchi, 1814), sample V5; 5 — Potamides nodosoplicatus (Hörnes, 1855), sample V3; 6 — Duplicata duplicata (Sowerby, 1832), sample V12; 7 — Clausiliidae indet., sample V5; 8 — Hydrobia soceni Jekelius, 1944, sample V5; 9 — Mohrensternia hydrobioides Hilber, 1897, sample V7; 10 — Mohrensternia angulata (Eichwald, 1830), sample V5; 11 — Mohrensternia sarmatica Friedberg, 1923, sample V7; 12 — Mohrensternia inflata (Andzejowski, 1835), sample V7; 13 — Rissoa banatica Jekelius, 1944, sample V7; 14 — Acteocina lajonkaireana (Basterot, 1825), sample V42; 15 — Cornirostra moesiensis (Jekelius, 1944), sample V7; 16 — Tropidomphalus sp., sample V5; 17 — Pomatias cf. conicus (Klein, 1853), sample V29; 18 — Loripes niveus (Eichwald, 1853), sample V5.

GEOLOGICA CARPATHICA, 2014, 65, 1, 67-81

tains frequently reworked microfossils, due to the stronger erosion driven by the fluvial incision.

Sea-level changes and regional paleogeography

A transgressive trend was observed throughout the Paratethys during the *Elphidium reginum* Zone of the Sarmatian. It caused flooding of incised valleys in the North Alpine Foredeep (Mandic et al. 2008) and of marginal areas in the Vienna and Styrian Basins (Harzhauser & Piller 2004a,b; Kováč et al. 2008), as well as the Transylvanian Basin (Krezsek & Filipescu 2005).

At Vârciorog, the sea-level trend is recorded by the parasequences (Fig. 2) formed mainly in shallow marine, with relatively high-energy environments (beach to shoreface). Changes in sedimentary facies correlate with changes in the diversity and taxonomic composition of the microfossil assemblages (Fig. 4); very shallow unstable settings were characterized by opportunistic taxa (e.g. *Ammonia*) while diverse assemblages (with rotaliids, buliminids, and miliolids) inhabited deeper and more stable environments.

The lower parasequences (samples V1-11 in Fig. 2) probably represent the early stage of a sea-level rise, when the sedimentary input was still higher than the accommodation space (lowstand systems tract — LST in Fig. 2). The microfossils identified in this interval show a continental influence in the beginning, but turn gradually into marine assemblages.

The main phase of sea-level rise (transgressive systems tract — TST) was recorded in the following interval (samples V12-18), based on the sedimentological trend and on the deeper and more diversified microfossil assemblages (the offshore taxa suggest the maximum flooding in sample V18).

The highstand systems tract (HST), related to the late stage of the relative sea-level rise can be documented by samples V19-43. Dominant aggradation (V29-31), which created quite stable conditions on the substrate, stimulated diversification. Subsequent progradation of delta systems developed tide influenced channels and coal marshes (samples V32-43).

The progradational trend from the top of the section is related to the high sediment input from the hinterland, which produced regression and diversity decrease.

Regional tectonics was probably the cause for the sequence development. This is supported by the biostratigraphic position of the Vârciorog section relative to the global cycles chart of Haq et al. (1988), sequences described from the Transylvanian Basin (Krezsek & Filipescu 2005), and by the particular paleogeography in the Paratethyan area. Beside the relative sea-level changes, the active tectonics generated a chain of islands during the early Sarmatian, populated in the marginal areas by shallow marine assemblages. Such shallow marine assemblages were described from other sites on the eastern margin of the Pannonian Basin and in the vicinity of the Apuseni Mountains (Paucă 1954; Istocescu et al. 1965; Clichici 1971, 1972; Istocescu & Gheorghian 1971; Nicorici 1971; Rado 1972; Chintăuan & Nicorici 1976; Chintăuan 1977; Popa 1998, 2000; Filipescu et al. 2000; Zágoršek et al. 2008). This paleoenvironmental setting demonstrates that, during the Sarmatian, the shallow seas in the vicinity of the rising Apuseni Mountains represented the connections between the Pannonian Basin and the deep areas of the Transylvanian Basin.

Conclusions

The microfossil assemblages identified at Vârciorog are characteristic for the early part of the Sarmatian (*Elphidium reginum* Zone). These are similar to other assemblages identified in the Pannonian Basin and on the border of the Apuseni Mountains.

Paleoenvironments suggested by the micropaleontological assemblages are mainly marginal to shallow marine, with fairly high energy and fluctuating salinity. Specific microvertebrates, molluscs, and ostracods demonstrate the proximity of continental paleoenvironments. Cyclic successions of microfossil assemblages follow the sedimentological trend in the parasequences and fit into the characteristic systems tracts of almost an entire stratigraphic sequence.

Shallow marine paleoenvironments on the borders of the Apuseni Mountains (easternmost Pannonian Basin), as described herein, document marine seaways between the Pannonian Basin and the Transylvanian Basin. Our paleoenvironmental interpretation demonstrated repeated sea-level changes and a progradational trend suggesting an uplifting in the source area. This could be the early stage of an important uplift in the Apuseni Mountains during the late Sarmatian (Krézsek & Filipescu 2005).

Acknowledgments: This work was funded by the Sectorial Operational Program for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the Project POSDRU/107/1.5/S/76841 entitled "Modern Doctoral Studies: Internationalization and Interdisciplinarity". Part of the work was supported by the Project GAČR 205/09/0103. Authors are grateful to Prof. Johann Hohenegger, Dr. Natália Hudáčková, Prof. Michal Kováč, and Dr. Jozef Michalík for their valuable suggestions during the review process.

Reference

- Athersuch J. 1976: The genus *Xestoleberis* (Crustacea: Ostracoda) with particular reference to Recent Mediterranean species. *Pubblicazioni della Stazione Zoologica di Napoli* 40, 282-343.
- Binder H. 2004: Terrestrial, freshwater and brachyhalin Gastropoda from the Lower Miocene deposits of Oberdorf (Steiermark, Österreich). Ann. Naturhist. Mus. Wien 105A, 189–229.
- Bonaduce G. & Danielopol D.L. 1988: To see and not to be seen: The evolutionary problems of the Ostracoda Xestoleberididae. In: Hanai T., Ikeya N. & Ishizaki K. (Eds.): Evolutionary biology of ostracoda. *Developments in paleontology and stratigraphy* 11, 375-398.
- Bonaduce G., Ciampo G. & Masoli M. 1976: Distribution of Ostracoda in the Adriatic Sea. *Pubblicazioni della Stazione Zoologica di Napoli*, *Suppl.* 1, 40, 1–154.
- Breman E. 1976: The distribution of ostracodes in the bottom sedimentes of the Adriatic Sea. *Krips Repro Meppel* I-XIII, 1–165.
- Brestenská E. 1974: Die Foraminiferen des Sarmatien s. str. In: Brestenská E. (Ed.): Chronostratigraphie und Neostratotypen —

Miozän der Zentralen Paratethys, M5 Sarmatien. Verlag Slowak. Akad. Wissenschaft., Geol. Inst., Bratislava 4, 243–293.

- Bucur I.I., Nicorici E. & Şuraru N. 1993: Sarmatian calcareous algae from Romania. Boll. Soc. Paleont. Ital., Modena 1, 81–91.
- Cernajsek T. 1974: Die Ostracodenfaunen der Sarmatischen Schichten in Österreich. In: Papp A., Marinescu F. & Seneš J. (Eds.): Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, (M5). *VEDA*, Bratislava 4, 458–491.
- Chintăuan I. 1977: Study of the ostracods from the Neogene sediments from Delureni (Borod Basin). *Nymphaea*, Oradea 5, 63-69 (in Romanian).
- Chintăuan I. & Nicorici E. 1976: Miocene ostracods from the southern Şimleu Basin. D.S. Şedinţelor, Bucureşti LXII/3 (1974-1975), 3-23 (in Romanian).
- Clichici O. 1971: Macrofauna of the Sarmatian deposits from the eastern Şimleu Basin. *Stud. Univ. "Babeş-Bolyai", Geologia-Mineralogia,* Cluj-Napoca XVI/2, 43-53 (in Romanian).
- Clichici O. 1972: Microfaunal study of the Sarmatian deposits from the Şimleu Basin. *Stud. Univ. "Babeş-Bolyai", Geologia–Mineralogia*, Cluj-Napoca 2, 49–56 (in Romanian).
- Corliss B.H. 1985: Microhabitats of benthic foraminifera within deep-sea sediments. *Nature* 314, 435-438.
- Corliss B.H. & Fois E. 1990: Morphotype analysis of deep-sea benthic foraminifera from the Northwest Gulf of Mexico. *Palaios* 5, 589-605.
- Filipescu S. & Popa M. 2001: Biostratigraphic and palaeoecologic significance of the macro- and microfossils assemblages in the Borod Formation (Eastern Borod Depression, North-West Romania). Acta Palaeont. Romaniae 3, 135–148.
- Filipescu S., Popa M. & Wanek F. 2000: The significance of the Sarmatian faunas from the south-western part of the Pădurea Craiului Mountains (Romania). Acta Palaeont. Romaniae 2(1999), 163-169.
- Fordinál K. & Zlinská A. 1994: Sarmatian fauna from Stretavy and Kochanovice formation from surrounding of Sečovce (Albinov hill, East Slovakian Basin) — in Slovakian. *Geol. Práce, Spr.* 99, 77-82.
- Fordinál K., Zágoršek K. & Zlinská A. 2006: Early Sarmatian biota in the northern part of the Danube Basin (Slovakia). *Geol. Carpathica* 57, 2, 123–130.
- Gebhardt H., Zorn I. & Roetzel R. 2009: The initial phase of the early Sarmatian (Middle Miocene) transgression. Foraminiferal and ostracod assemblages from an incised valley fill in the Molasse Basin of Lower Austria. *Austrian J. Earth Sci.* 102, 2, 100–119.
- Ghiurcă V. & Stancu J. 1974: Les Bryozoaires sarmatiens du Paratethys Central. In: Papp A., Marinescu F. & Seneš J. (Eds.): Sarmatien. Chronostratigraphie und Neostratotypen M5. VEDA, Bratislava 4, 298–317.
- Givulescu R. 1957: Geological research in the Neogene Borod Basin (Oradea Region). *Stud. Cerc. Geol.-Geogr.*, Cluj-Napoca VIII/1-2, 99-158 (in Romanian).
- Givulescu R. 1991: Fossil plants in the Well 3153 from Borod, Bihor county. *Stud. Cerc. Geol.*, Bucureşti 36, 73-76 (in Romanian).
- Görög Á. 1992: Sarmatian Foraminifera of the Zsámbék Basin, Hungary. Ann. Univ. Sci budapestinensis Rolando Eötvös, Sect. Geol. 29, 31–153.
- Grill R. 1941: Stratigraphische Untersuchungen mit Hilfe von Mikrofaunen im Wiener Becken und den benachbarten Molasse-Anteilen. *Oel und Kohle* 37, 595–602.
- Gross M. 2006: Mittelmiozäne Ostracoden aus dem Wiener Becken (Badenium/Sarmatium, Österreich). Österr. Akad. Wissenschaft., Schriftenreihe der Erdwissenschaftlichen Kommissionen, Sonderband 1, 1-224.
- Gross M., Harzhauser M., Mandic O., Piller W.E. & Rögl F. 2007: A stratigraphic enigma: the age of the Neogene deposits of Graz (Styrian Basin; Austria). Joannea Geol. Paläont. 9, 195–220.

Haq B.U., Hardenbol J. & Hardenbol P.K. 1988: Mesozoic and Cenozoic chronostratigraphy and cycles of sea level changes. In: Wilgus C.K., Hastings B.S., Kendall C.G.St.C., Posamentier H.W., Ross C.A. & Van Wagooner J.C. (Eds.): Sea-level changes — An integrated approach. SEPM Spec. Publ. 42, 71-108.

Györfi I. & Csontos L. 1994: Structural evolution of SE Hungary

- Hartmann G. 1975: Ostracoda. Dr. H.G. Bronns Klassen und Ordnungen des Tierreichs, 5, 1. Abteilung, 2. Buch, 4. Teil, 4. *Lieferung, VEB Gustav Fischer Verlag*, Jena, 569–786.
- Harzhauser M. & Kowalke T. 2002: Sarmatian (Late Middle Miocene) Gastropod Assemblages of the Central Paratethys. *Facies* 46, 57–82.
- Harzhauser M. & Piller W.E. 2004a: The Early Sarmatian hidden seesaw changes. Cour. Forsch.-Inst. Senckenberg 246, 89-111.
- Harzhauser M. & Piller W.E. 2004b: Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. *Stratigraphy* 1, 65-86.
- Harzhauser M., Gross M. & Binder H. 2008: Biostratigraphy of Middle Miocene (Sarmatian) wetland systems in an Eastern Alpine intramontane basin (Gratkorn Basin, Austria): the terrestrial gastropod approach. *Geol. Carpathica* 59, 1, 45-58.
- Istocescu D. & Gheorghian M.D. 1971: Micropaleontological data on the Upper Miocene from the Crişului Alb Basin. D.S. Sedințelor LVII/3 (1969-1970), 77-83 (in Romanian).
- Istocescu D. & Istocescu F. 1974: Geological considerations on the Neogene deposits of the Crişurilor Basin. *Stud. Cerc. Geol. Geofiz. Geogr. (Geol.), Acad. RSR*, Bucureşti 19, 115–127 (in Romanian).
- Istocescu D., Diaconu M. & Istocescu F. 1965: Contributions to the knowledge of the Upper Miocene from the north-eastern border of the Beiuş Basin. D.S. Comitetului Geol. 51, 1(1963-1964), 251-256 (in Romanian).
- Istocescu D., Mihai A., Diaconu M. & Istocescu F. 1970: Geological study of the area between Crişul Repede and Crişul Negru. *D.S. Inst. Geol.*, Bucureşti LV/5 (1967–1968), 89–106 (in Romanian).
- Janz H. 1994: Zur Bedeutung des Schalenmerkmals "Marginalrippen" der Gattung Ilyocypris (Ostracoda, Crustacea). Stuttgarter Beitr. Naturkunde, B 206, 1–19.
- Jiříček R. 1974: Biostratigraphische Bedeutung der Ostracoden des Sarmats s. str. In: Papp A., Marinescu F. & Seneš J. (Eds.): Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys (M5). Verlag Slowak. Akad. Wissenschaft., Bratislava 4, 434-457.
- Jiříček R. & Říha J. 1991: Correlation of Ostracod Zones in the Paratethys and Tethys. Saito Ho-on Kai Spec. Publ. (Proceedings of Shallow Tethys) 3, 435–457.
- Jorissen F.J., De Stigter H.C. & Widmark J.G.V. 1995: A conceptual model explaining benthic foraminiferal microhabitats. *Mar. Micropaleont.* 26, 3-15.
- Kollmann K. 1960: Cytherideinae und Schulerideinae n. subfam. (Ostracoda) aus dem Neogen des östl. Österreich. *Mitt. Geol. Gesell. Wien* 51(1958), 89–195.
- Koubová I. & Hudáčková N. 2010: Foraminiferal successions in the shallow water Sarmatian sediments from the MZ 93 borehole (Vienna Basin, Slovak part). Acta Geol. Slovaca 2, 1, 47–58.
- Kováč M., Sliva Ľ., Sopková B., Hlavatá J. & Škulová A. 2008: Serravallian sequence stratigraphy of the Vienna Basin: high frequency cycles in the Sarmatian sedimentary record. *Geol. Carpathica* 59, 6, 545–561.
- Krézsek C. & Filipescu S. 2005: Middle to late Miocene sequence stratigraphy of the Transylvanian Basin (Romania). *Tectonophysics* 410, 437–463.

GEOLOGICA CARPATHICA, 2014, 65, 1, 67-81

- Langer M.R. 1993: Epiphytic foraminifera. Mar. Micropaleont. 20, 235–265.
- Lukeneder S., Zuschin M., Harzhauser M. & Mandic O. 2011: Mollusc-based statistics in an endemic marine system as tool in paleoecology and stratigraphy. *Acta Paleont. Pol.* 56, 767–784.
- Łuczkowska E. 1972: Miliolidae (Foraminiferida) from Miocene of Poland. Part I. Revision of the classification. Acta Paleont. Pol. 17, 3, 341-377, 2 pls.
- Łuczkowska E. 1974: Miliolidae (Foraminiferida) from the Miocene of Poland. Part II. Biostratigraphy, palaeoecology and systematics. Acta Paleont. Pol. 19, 1–176.
- Mandic O., Harzhauser M., Roetzel R. & Ţibuleac P. 2008: Benthic mass-mortality events on a Middle Miocene incised-valley tidalflat (North Alpine Foredeep Basin). *Facies* 54, 343-359.
- Miclea A., Jipa C., Bucur I.I. & Filipescu S. 2011: The dasycladacean Halicoryne morelleti from Borod Basin (Romania) and its paleoecologic significance. 10th International Symposium on Fossil Algae, Cluj-Napoca, Romania, 12–18 September 2011. Abstracts volume, 1–56.
- Molnar D.G. 2011: Middle Miocene micromammal assemblage from Vârciorog (Bihor). Graduation Thesis, Babeş-Bolyai Univ., Cluj-Napoca, 1-58 (in Romanian).
- Morkhoven van F.P.C.M. 1963: Post-Palaeozoic Ostracoda, their morphology, taxonomy, and economic use. Vol. 2. Generic descriptions. *Elsevier*, 1-478.
- Murray J.W. 1991: Ecology and paleoecology of benthic foraminifera. John Longman Scientific & Technical, Essex, 1-397.
- Murray J.W. 2006: Ecology and applications of benthic foraminifera. *Cambridge University Press*, 1-426.
- Nicorici E. 1971: The Sarmatian fauna from Vârciorog (Vad Basin). Stud. Cerc., Geol. Geofiz. Geogr. (Geol.), București 16, 1, 215-232 (in Romanian).
- Nicorici E. & Istocescu D. 1970: Biostratigraphic investigations on the Sarmatian from Vârciorog (Vad Basin). *Stud. Univ.* "*Babeş-Bolyai*", *Geol.-Mineralogie*, Cluj-Napoca 2, 49–55 (in Romanian).
- Papaianopol I. & Macaleţ R. 1998: La lithostratigraphie et la biostratigraphie du Sarmatien du golfe du Borod (Bassin Pannonique, Roumanie). An. Știinţ. Unive. "Al. I. Cuza", Geol., Iaşi XLIV, 151-166.
- Papp A. 1956: Fazies und Gliederung des Sarmats im Wiener Becken. Mitt. Geol. Gesell. Wien 47, 1–97.
- Paucă M. 1954: The Neogene from the external basins of the Apuseni Mountains. An. Com. Geol., Bucureşti XXVII, 259-336 (in Romanian).
- Pietrzeniuk E. 1973: Neue Callistocythere-Arten (Ostracoda) aus dem Unteren Sarmat des Tokajer Gebirges (nördliche Ungarische VR). Z. Geol. Wiss. 1, 6, 703–733.
- Pirkenseer C. & Berger J.P. 2011: Paleogene Ostracoda from the southern Upper Rhine Graben: Taxonomy, palaeoecology and palaeobiogeography. *Palaeontographica*, A 295(1-6), 1-152.
- Popa M. 1998: Biostratigraphy of the Neogene deposits from the eastern part of the Vad-Borod Basin (in Romanian). *PhD Thesis, Babeş-Bolyai Univ.*, Cluj-Napoca 1–248, 31 pls.
- Popa M. 2000: Lithostratigraphy of the Miocene deposits in the eastern part of Borod Basin (North-Western of Romania). *Stud. Univ. Babeş-Bolyai*, XLV(2), 93-103.

- Popa M., Cociuba I. & Filipescu S. 1998: The occurrence of Sarmatian deposits close to the springs of Vida Valley (Apuseni Mountains, Romania). Stud. Univ. "Babeş-Bolyai", Geol., Cluj-Napoca XLIII/2, 57-64.
- Popescu G. 1995: Contribution to the knowledge of the Sarmatian Foraminifera of Romania. *Romanian J. Paleont.* 76, 85–98.
- Rado G. 1972: Biostratigraphic study of the Sarmatian from Bucuroaia-Calea Mare-Mierlău area (Beiuş Basin). An. Univ. Bucureşti, Geol. XXI, 117-125 (in Romanian).
- Schäfer P. 2011: Beiträge zur Ostracoden- und Foraminiferen-Fauna der Unteren Süßwassermolasse in der Schweiz und in Savoyen (Frankreich). 3. Das Findreuse-Profi l (Département Haute-Savoie, Frankreich). Zitteliana, A 51, 255-283.
- Schütz K., Harzhauser M., Rögl F., Corié S. & Galovic I. 2007: Foraminiferen und Phytoplankton aus dem unteren Sarmatium des südlichen Wiener Beckens (Petronell, Niederösterreich). *Jb. Geol. Bundesanst.* 147, 449-488.
- Szczechura J. 2000: Age and evolution of depositional environments of the supra-evaporitic deposits in the northern, marginal part of the Carpathian Foredeep: micropalaeontological evidence. *Geol. Quart.* 44, 1, 81–100.
- Şuraru N. & Şuraru M. 1973: On the presence of the Lower Miocene in the Borod Basin (Bihor). *Stud. Unive. "Babeş-Bolyai", Geol. Mineral.*, Cluj-Napoca XVIII/2, 29–38 (in Romanian).
- Tóth E. 2004: Sarmatian ostracods from Budapest (Hungary). *Hantkeniana* 4, 129-159.
- Tóth E. 2008: Sarmatian (Middle Miocene) ostracod fauna from Zsámbék Basin, Hungary. Geol. Pannonica 36, 101-151.
- Tóth E. & Görög Á. 2008: Sarmatian foraminifera fauna from Budapest (Hungary). 125th Anniversary of the Department of Palaeontology at Budapest University —A jubilee volume. Hantkeniana 6, 187–217.
- Tóth E., Görög Á., Lécuyer C., Moissette P., Balter V. & Monostori M. 2010: Palaeoenvironmental reconstruction of the Sarmatian (Middle Miocene) Central Paratethys based on palaeontological and geochemical analyses of foraminifera, ostracods, gastropods and rodents. *Geol. Mag.* 147, 2, 299–314.
- Vávra N. 1977: Bryozoa tertiaria. Catalogus Fossilium Austriae, Heft Vb/3, 1-189.
- Walton W.R. & Sloan B.J. 1990: The genus Ammonia Brünnich, 1772: its geographic distribution and morphologic variability. J. Foram. Res. 20, 2, 128-156.
- Zaninetti L. 1982: Les foraminiféres des marais salants de Salins de Giraud (Sud de la France): milieu de vie et transport dans le salin, comparaison avec les microfaunes marines. Géol. Méditerranéenne 9, 447-470.
- Zágoršek K. 2007: A new Miocene Bryozoa from the Sarmatian of the Danube basin. *Neu. Geol. Paleont.* 243, 2, 299–303.
- Zágoršek K. & Fordinál F. 2006: Lower Sarmatian Bryozoa from brackish sediment in the northern part of the Danube Basin (Dubová, Slovakia). *Linzer Biol. Beitr.* 38, 1, 93–99.
- Zágoršek K., Silye L. & Szabo B. 2008: New Bryozoa from the Sarmatian (Middle Miocene) deposits of the Cerna-Strei Depression, Romania. *Stud. Univ. Babeş-Bolyai, Geol.* 53, 1, 25–29.
- Zelenka J. 1990: A review of the Sarmatian Ostracoda of the Vienna Basin. In: Whatley R. & Maybury C. (Eds.): Ostracoda and global events. *Chapman & Hall*, London, 263–270.