Petrography of the Upper Miocene sandstones from the North Croatian Basin: Understanding the genesis of the largest reservoirs in the southwestern part of the Pannonian Basin System

MARIO MATOŠEVIĆ1,3, FRANE MARKOVIĆ2, DIJANA BIGUNAC1, SANJA ŠUICA1, KREŠIMIR KRIZMANIĆ1, ADALETA PERKOVIĆ1, MARIJAN KOVAČIĆ2 and DAVOR PAVELIĆ4

1INA – Industrija nafte d.d., Exploration & Production, Subsurface & Field Development, Exploration & Production Laboratory, Lovinčićeva 4, 10000 Zagreb, Croatia; 2University of Zagreb, Faculty of Science, Department of Geology, Division of Mineralogy & Petrology, Horvatovac 95, 10000 Zagreb, Croatia; 3INA – Industrija nafte d.d., Exploration & Production, Subsurface & Field Development, Subsurface, Avenija Većeslava Holjevea 10, 10000 Zagreb, Croatia; 4University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10000 Zagreb, Croatia

(Manuscript received July 15, 2022; accepted in revised form March 6, 2023; Associate Editor: Ján Soták)

Abstract: This paper presents a petrographic study of the Upper Miocene sandstones from exploration wells in the Sava and Drava Depressions in the North Croatian Basin (SW of the Pannonian Basin System), Central Europe. These sandstones represent the most important reservoir rocks for oil and gas in Croatia. A total of 130 core samples from depths of more than 3000 m were examined. The sandstones generally have a feldspatho–litho–quartzose (fLQ) composition. The modal composition of samples from the Sava Depression is Q = 26.1–42.3, F = 8.9–26.0, L = 6.6–23.3, and for those from the Drava Depression, L = 20.9–42.3. Lithic fragments are dominated by extrabasinal carbonates with subordinate metamorphic grains (mostly schists) and less frequent magmatics (granitoids). Garnet, tourmaline, apatite, rutile, epidote, clinzoisite, zoisite, titanite, zircon, staurolite, and opaque minerals form the heavy mineral association and imply an area of provenance dominated by metamorphic rocks. The tectonic setting of the sandstones corresponds to recycled orogen, i.e., a subduction complex or fold-thrust belt. There are no significant compositional differences between the sandstone samples from the two depressions, thus indicating a common main source area and similar diagenetic processes in the subsurface. The sandstones originated from eroded parts of the uplifted Alpine–Carpathian fold belt and are distinct from the Lower and Middle Miocene sandstones in the North Croatian Basin. Observed variations in the sandstones’ composition with regards to geographic location and depth are associated with variations in the erosion of parent rocks, including subsequent modification of detrital sediment during transport, mixing, and deposition, as well as burial diagenesis. The Sava and Drava Depressions were part of Lake Pannon in the Late Miocene with no significant topographical obstacles between them for the inflow of the detritus. The study will therefore help with the correlation of the Upper Miocene reservoir rocks in various parts of the North Croatian Basin (as well as adjacent parts of the Pannonian Basin System) and thereby assist with future hydrocarbon exploration in this area.

Keywords: petrography, sedimentary provenance, sandstone reservoirs, Late Miocene, Pannonian Basin System

Introduction

Petrography is a fundamental method in sedimentary provenance studies and remains the prevailing geological approach for understanding the generation of sediments, i.e., their modifications during erosion, transport, deposition, and subsequent diagenesis (e.g., Dickinson et al. 1983; Weltje et al. 1998; Garzanti 2016, 2019; Augustsson 2021). Since the primary composition of source rocks in hinterlands affects the final petrographic composition of sediment in a sedimentary basin (Suttner et al. 1981; Bhatia 1983; Pettijohn et al. 1987; Armstrong-Altrin & Verma 2005; Garzanti 2016, 2019) and plays a major role in sediment behaviour during burial diagenesis affecting its petrophysical parameters (e.g., Ehrenberg 1990; Worden et al. 2018; Lawan et al. 2021), petrography is crucial for estimating reservoir development and quality (Worden et al. 1997, 2018; Worden & Burley 2003; Gier et al. 2008; Rahman & Worden 2016; Lawan et al. 2021). In addition to well-log and seismic data interpretation and integration, petrography persists as an indispensable method in hydrocarbon exploration, contributing to better-quality correlation and modelling of sediments and their properties in the subsurface.

The main goal of sedimentary provenance analysis is to reconstruct and interpret the geology of a source area and to connect the final burial of a detritus with the initial erosion of parent rocks (Ibbeken & Schleyer 1991; Weltje & von Eynatten 2004). Petrography is the only method used in sandstone provenance analysis that simultaneously provides both mineralogical and textural data of sandstones and their forming
constituents (small-scale originals of their parent rocks), thereby allowing direct visualization and reconstruction of the source area (Garzanti 2016). Detrital modes of sandstones can be related to the plate-tectonic setting of a sedimentary basin they were deposited in (Dickinson & Suezek 1979; Dickinson et al. 1983; Dickinson 1985; Weltje & von Eynatten 2004; Weltje 2006) and can reflect the nature of the source terrains, as well as the tectonostratigraphic level achieved by erosion in space and time (Garzanti 2016).

Neogene rocks are the main hydrocarbon deposits of the Pannonian Basin System (PBS). They account for more than 80 % of all reservoirs reported in this area – sandstones constitute 95 % of this, with 90 % being of Miocene age (Dolton 2006). Hydrocarbon generation was triggered by a high geothermal gradient during the initial and subsequent thermal subsidences of the basin (Saftić et al. 2003). The most important reservoir rocks of the PBS in Croatia are the Upper Miocene sandstones, which had been formed through the mechanism of lacustrine cyclic turbidite deposition associated with the progradation of delta systems in Lake Pannon (Magyar et al. 1999, 2013; Ivković et al. 2000; Saftić et al. 2003; Kovačić et al. 2004; Kovačić & Grizelj 2006; Vrbanac et al. 2010; Malvić & Velić 2011; Sztanó et al. 2013, 2015; Balázs 2017; Balázs et al. 2018; Sebe et al. 2020; Andelković & Radićová 2021). In the North Croatian Basin (NCB), these sandstones exhibit high values of porosity and permeability. The porosity is usually in the range of 10 % to more than 35 %, with permeability between 0.01 to 1000 mD (Vrbanac et al. 2010; Velić et al. 2012; Kolenković Močilac et al. 2022).

This paper presents a petrographic study of the Upper Miocene sandstones in the NCB (SW part of the PBS), the largest reservoirs of oil and gas discovered in Croatia. Although the basin is a relatively mature petroleum province that has been studied for several decades (e.g., Lučić et al. 2001; Saftić et al. 2003; Dolton 2006; Vrbanac et al. 2010; Malvić & Velić 2011; Velić et al. 2012; Matošević et al. 2019b,c, 2021; Kolenković Močilac et al. 2022), the reservoir properties of the sandstones themselves are not well-known. These sandstones not only continue to be of great interest to the oil industry but in terms of new exploration and the development of existing oil fields, but also in terms of the energy transition, including carbon capture, utilization, and storage, and geothermal energy (cf. Sneider 1990; Alcalde et al. 2019; Davies & Simmons 2021; Willems et al. 2021). Understanding of the primary composition of sandstone reservoir rocks and the factors which influence their petrophysical characteristics is the first step toward reservoir quality evaluation and prediction (Worden et al. 1997, 2018; Worden & Burley 2003; Rahman & Worden 2016; Lawan et al. 2021).

For this study, petrographic analyses were performed on sandstone samples from exploration wells in the Sava and Drava Depression, which are the two largest depressions in the NCB. The paper aims to determine the petrographic composition of the sandstones, compare the samples from the two depressions, interpret their provenance areas, and assess their variability in terms of geographic location and depth. The results will contribute to further exploration of the area and, in particular, to the improved correlation of the Upper Miocene sandstones in the Croatian and adjacent parts of the PBS.

Geological background

The Miocene PBS, which is surrounded by the Alps, the Carpathians, and the Dinarides (Fig. 1), is paleogeographically related to the area of the Central Paratethys. During the Miocene, the connection of the Central Paratethys with the world ocean had been established and ceased several times. The final isolation of the Central Paratethys commenced some 11.6 Ma ago (Steininger & Rögl 1979; Rögl & Steininger 1983; Rögl 1998; Magyar et al. 1999; Harzhauser et al. 2007; Pillier et al. 2007; Harzhauser & Mandic 2008; Kovač et al. 2017, 2018; Magyar 2021). The nature of the Central Paratethys evolution and the occurrences of endemic faunas have thus necessitated the establishment of regional Miocene stages (Fig. 2).

The SW part of the PBS, which covers almost the entire area of northern Croatia, is represented by the NCB (Figs. 1 and 3). The NCB is elongated, with a WNW–ESE-trending direction and includes several depressions which are bordered by mountains (Pavelić & Kovačić 2018; Figs. 1 and 3). The two largest are the Sava Depression (SD) along the southern edge of the basin, and the Drava Depression (DD) along the northern edge of the basin. These depressions represent river lowlands on the modern surface and, as border areas between Croatia and neighbouring countries, are of vast ecological and economic importance. The maximum depth prior to the pre-Miocene bedrock is 5500 m in the SD and 7000 m in the DD (Prelogović 1979; Pavelić 2001; Saftić et al. 2003; Horváth et al. 2006; Malvić 2011; Malvić & Cvetković 2013). Miocene siliclastic sediments of the NCB unconformably cover strongly tectonized Paleozoic, Mesozoic, and Paleogene bases, and were deposited from the Early to the Late Miocene in marine, brackish, and freshwater environments (Pamić 1999; Pavelić 2001; Saftić et al. 2003; Pavelić & Kovačić 2018; Šuica et al. 2022a,b).

The development of the PBS began in the Early Miocene as a result of continental collision and subduction of the Eurasian plate under the African (Apulian) plate, including other continental fragments from the south that caused thermal perturbation of the upper mantle, thereby resulting in the weakening and extension of the crust and formation of a back-arc type sedimentary basin (Royden 1988; Horváth 1993, 1995; Kovač et al. 1998; Pavelić 2001; Matenco & Radićová 2012; Horváth et al. 2015; Balázs et al. 2016; Pavelić & Kovačić 2018). The first stage of the PBS development was characterized by tectonic thinning of the crust and isostatic subsidence, with sedimentary environments changing from continental to fully marine (syn-rift phase; Royden 1988; Tari et al. 1992). The second stage was characterized by reduced tectonic influence, termination of rifting, and subsidence caused by
Fig. 1. A — Europe with the geographic position of the Pannonian Basin System. B — The location of the Sava and Drava Depressions in the SW part of the Pannonian Basin System (North Croatian Basin) surrounded by the mountain ranges of the Alps, the Carpathians, and the Dinarides. C — Modified schematic presentation of the main tectonic units of the region (after Schmid et al. 2008, 2020).
cooling of the lithosphere, with gradual isolation of the PBS from marine influences of the Central Paratethys (post-rift phase; Royden 1988; Tari et al. 1992; Fig. 2). The transition from the syn-rift to the post-rift phase was diachronous through the PBS (Matenco & Radivojević 2012). The final isolation happened approximately 11.6 Ma ago when the large and long-lived Lake Pannon, which existed from the Late Miocene to the Early Pliocene, was formed (Magyar et al. 1999; Harzhauser & Piller 2007; Piller et al. 2007; Mandic et al. 2015). In the NCB, the main hydrocarbon source rocks are represented by the Middle Miocene late syn-rift and early post-rift marine deposits (Badenian and Sarmatian mudrocks), as well as the Upper Miocene early post-rift lacustrine deposits (early Pannonian mudrocks; Barić et al. 2000; Lučić et al. 2001; Safić et al. 2003; Troskot-Čorbić et al. 2009; Zečević et al. 2010; Matošević et al. 2019a).

The sandstones that later became significant oil and gas reservoirs were formed during the post-rift phase as prograding systems of delta environments within Lake Pannon, which were associated with turbidites in deeper parts of the lake (Juhász 1994; Magyar et al. 1999; Ivković et al. 2000; Zečević et al. 2010; Matošević et al. 2019a).

Fig. 2. Stratigraphic scheme of the North Croatian Basin, modified after Safić et al. (2003), Mandic et al. (2015), and Pavičić & Kovačić (2018).
The thickness of the Upper Miocene deposits in the NCB, which, according to regional chronostratigraphy, belong to the Pannonian stage (Hilgen et al. 2012; Mandic et al. 2015; Neubauer et al. 2015; Fig. 2), fluctuates between 2000 m in the western part of the SD to 4000–5000 m along the SW edge of the DD (Saftić et al. 2003). The Pannonian (Upper Miocene) deposits, situated below Cernikian (Pliocene to Pleistocene) lacustrine and alluvial deposits, overlie the Sarmatian (Middle Miocene) marine deposits. (Pavelić 2001; Mandic et al. 2015; Kurečić 2017; Pavelić & Kovačić 2018; Fig. 2). The thickness of the Upper Miocene sandstone bodies varies and is usually in the range of a few meters to several tens of meters, commonly intercalated with mudrocks (layers of siltstones, mudstones, claystones, marls, and shales). The sandstones appear as turbidite mass flow deposits on the slope and basin floor (deeper-water fan lobes, channels, and levees) and are subsequently covered by delta and fluvial system deposits that are morphologically related to regional progradation of the shelf (prodelta, delta front, delta plain and alluvial plain, including distributary channels and mouth bars; Pogácsás 1984; Saftić et al. 2003; Sztanó et al. 2013, 2015). Turbidite systems are restricted to deeper and central parts of the depressions (Sztanó et al. 2015), while delta systems succession and subsequent fluvial deposits are associated with subsequent progradation of the shelf-margin slope (corresponding to clinoforms on seismic profiles; Magyar et al. 2013). The high material inflow in the PBS was mainly from the Alpine–Carpathian source areas, generally following a W/N-NW towards E/S-SE direction (Šćavničar 1979; Ivković et al. 2000; Saftić et al. 2003; Kovačić et al. 2004; Kovačić & Grizelj 2006; Magyar et al. 2013; Sebe et al. 2020). This applies especially to the sources in the ALCAPA tectonic mega-unit of the Eastern Alps and Western Carpathians (e.g., Kuhlemann et al. 2002; Asch 2003; Schmid et al. 2008, 2020). Some explorations of the Upper Miocene sandstones outcropping on the surface in the NCB show that their detritus is of uniform composition, as well as mineralogically and texturally mature (Kovačić et al. 2004, 2011; Kovačić & Grizelj 2006).

The Pliocene and Quaternary are characterized by a transition towards overall compression and structural inversion in the entire NCB (Pavelić 2001; Tomljenović & Csontos 2001). This change is reflected in the formation of many compressional structures and the uplift of basement blocks that formed the present mountains in the area. The uplift was accompanied by strike-slip faulting and counter-clockwise rotation of blocks (Jamičić 1983; Márton et al. 1999, 2002).

Materials and methods

Materials

A total of 130 core samples from the exploration wells drilled by INA – Industrija nafte d.d. were selected and prepared for analyses. The samples included 61 sandstones from seven wells in the SD (Figs. 3 and 4) and 69 sandstones from...
seven wells in the DD (Figs. 3 and 4). In order to investigate variations in the sandstones’ composition and provenance in both space and time, core samples were taken from wells that covered almost the entire area of the two depressions and were derived from depths ranging from 827.70 m to 3073.90 m in the SD and from 1098.95 m to 4141.15 m in the DD, i.e., covering the entire Upper Miocene succession. The stratigraphic affiliation of the samples was verified by previous biostratigraphic (palynological) analyses, well-log correlation, and seismic interpretation of key horizons representing regional stratigraphic tops, performed in the INA – Industrija nafte d.d. The sampled sandstones were macroscopically homogeneous and massive and were selected from relatively thick beds which represent major reservoir units. Samples without significant sedimentary structures (such as erosional, depositional, and post-depositional structures, and bioturbations) and which were of similar grain size were chosen to avoid significant inter-sample variations.

Fig. 4. Positions of the Upper Miocene sandstones’ samples from the exploration wells of the Sava (A) and Drava (B) Depressions. The stratigraphic correlation of the wells is based on the well-log data boundaries between the Upper Miocene (Pannonian) and Pleistocene/Pliocene (Cernikian) in shallower intervals (upper dashed line) and the Upper Miocene (Pannonian) and Middle/Lower Miocene or the Neogene basement in deeper intervals (lower dashed line). For the geographic location of wells, see Fig. 3.

GEOLOGICA CARPATHICA, 2023, 74, 2, 155–179
Methods

Petrography

A total of 130 thin sections of sandstones were prepared and analyzed under Olympus BX51 and Leitz Orthoplan polarizing microscopes with an Olympus DP 70 camera and analySIS Five imaging software. The samples were stained with Alizarin Red S according to Evamy & Shearman (1962) to distinguish carbonate minerals (calcite and dolomite), while some were impregnated with blue dye epoxy. At least 100 grains per thin section were measured to determine grain size ranges and the average grain size of each sandstone using the Wentworth (1922) scale. The grain sizes were manually measured (both length (the largest diameter) and width (average diameter)), from which the arithmetic means of the grain sizes were calculated. Based on these measurements, an approximation of the average grain size for each sample was deduced. For the grain-matrix size, a cut-off of 20 µm was applied. The measured grain sizes were generally rounded to whole numbers (expressed in intervals of 10 µm). The roundness of grains was visually estimated using graphical determination charts (Powers 1953; Krumbein & Sloss 1963). Grain sorting was estimated according to Jerram (2001). The textural maturity of the sandstones was estimated according to Folk (1951).

The modal composition of the sandstones was determined by examining the relative proportion of the three main components: quartz (Q), feldspars (F), and lithics or rock fragments (L). At least 300 grains per sample were analyzed (except for the D7-2a, due to the small amount of the material). To classify provenance lithotypes, emphasis was placed on detailed microscopic analyses of rock fragments and their textures (Garzanti 2016). The amounts of phyllosilicates (mica and chlorite) and heavy minerals present were also considered; however, they were not included in the classification of the sandstones since they are mostly conditioned by hydraulic sorting and depositional environment. These components were, however, considered part of the abundance of detrital modes. Sandstone classifications were based on modal compositions (Garzanti 2016, 2019), thereby allowing provenance models to be inferred (Dickinson 1985; Weltje 2006; Garzanti 2016; Augustsson 2021).

The QFL detrital mode analyses were performed according to the modification of the Gazzi-Dickinson point-counting method (Dickinson 1970; Ingersoll et al. 1984; Zuffa 1985). Total quartz content (Q or Qt) included all types of monocrystalline (Qm) and all types of polycrystalline quartz (Qp). Polycrystalline quartz (Qp) included polycrystalline quartz grains, all types of polycrystalline tectonic quartz (quartzite), and polycrystalline micocrystalline quartz (cherty grains). Feldspar content (F) included twinned plagioclase feldspar (Pt) and all potassium (alkali) feldspar (i.e., microcline, orthoclase, perthite, and sanidine), non-twinned plagioclase feldspar, sericitized plagioclase feldspar, albiteitized potassium (alkali) feldspar, and other altered and partly-dissolved plagioclase or potassium (alkali) feldspar, all represented as a single value (K+P). Rock fragments or lithic grains (L) included metamorphic (Lm), magmatic (igneous; Lv), and sedimentary (Ls) rocks. Rock fragments were considered as such only if individual minerals forming the rock fragments were less than 63 µm (e.g., quartz, feldspar, and mica forming a granitoid fragment). Carbonatic clasts were considered rock fragments, regardless of the sizes of individual minerals and/or fossils forming the clast. The share of total rock fragments (Lt; Dickinson 1985) included all types of polycrystalline quartz (Qt), together with tectonic quartz and cherty grains. The modal composition of rock fragments (L), excluding polycrystalline quartz (Qt; Garzanti 2019), along with tectonic quartz and cherty grains, included the content of metamorphic rocks (Lm) with all types of quartz–mica tectonites (TQM) and polycrystalline mica grains (Mp), the content of migmatic (igneous) rocks (Lv) with extrusive (volcanic) rocks (Lex) and intrusive (plutonic) rocks (Lp), and the content of sedimentary rocks (Ls) with all types of carbonatic (Lcarb) and siliciclastic (Lncarb) sediments. Quartz–mica tectonite grains (TQM) included all types of metasandmite grains, with or without feldspar, and all types of metagneous grains, along with gneiss and some types of mica schist (including those with more than 25–30 % share of quartz). Polycrystalline mica grains (Mp) included all types of metapelitic grains, along with slate, phyllite, some types of mica schist (including those with less than 25–30 % share of quartz), and metamorphic rocks of possible primary volcanic origin as well. Extrusive (volcanic; Lex) grains included all types of extrusive (effusive) grains, along with volcaniclastic rocks (and/or tuffs) and volcanic glass. Intrusive (plutonic; Lp) grains included granitoid rocks, along with microlithic granites, and all types of other intrusive rocks (e.g., diorite, gabbro, etc.). Sedimentary carbonatic grains (Lcarb) included all types of limestones and dolomites (micrite, sparite, grainstone, packstone, wackestone, etc.) and evaporites, along with recrystallized carbonatic grains and metacarbonatic grains, since it was difficult to distinguish diagenetically altered and recrystallized carbonatic rock fragments from e.g., rock fragments of marble, as well as all types of intrabasinal or recycled carbonate bioclasts. Sedimentary siliciclastic grains (Lncarb) included all types of mudrocks (siltstones mudstones, claystones, marls, shales, etc.). Phyllosilicates were grouped separately in the M group, including mica (muscovite, biotite, etc.) and chlorite. Accessory heavy minerals and opaque minerals were grouped in the HM group. Miscellaneous and unidentified grains were grouped in the Misc group, including hardly-recognized, deformed, and altered (usually dissolved) grains, as well as those that were indeterminable due to other reasons (e.g., knowledge, size, etc.).

SEM & EDS

Scanning electron microscope (SEM) analyses were performed on selected sandstone samples to confirm the features observed using polarizing light microscopes. The morphological characteristics of the sandstones and individual grains,
including their chemical and mineralogical composition, were studied. Particular attention was given to the determination of heavy minerals and rock fragments that were hard to determine by optical microscopes due to the small dimensions or to alteration (e.g., dissolution and recrystallization). SEM analyses were also used to determine types of cement and clay minerals present in intergranular space. The mineral determination relied on the combination of morphological characteristics of a single crystal, which had been acquired with a secondary electron (SE) image, back-scattered electron (BSE) image, and energy-dispersive X-ray spectroscopy (EDS) spectra. X-ray spectra were compared to literature data of known spectra, and a mineral name was assigned to the point of interest (Siverin 2004). Measurements were performed on gold-coated samples. Analytical conditions included a high vacuum and a variety of acceleration voltages (5–25 kV), spot sizes (30–50), and magnifications (25–20,000×). Analyses were performed using a JEOL JSM-6510 LV SEM apparatus (JEOL, Tokyo, Japan) equipped with an energy-dispersive X-ray spectroscopy using Oxford INCA X-act system (Oxford Instruments, High Wycombe, UK).

Results

Modal composition

In the following section, the results of petrographic analyses of the Upper Miocene sandstones from the wells in the SD and DD are presented. Tables with detailed results of modal compositions for each sample are provided in the Electronic Supplement, which can be found online (Supplementary Tables S1–S14).

The Upper Miocene sandstones from 35 cores from the SD and 33 cores from the DD were examined (Fig. 4). The sandstones have angular to sub-rounded grains with average sizes (30–50), and magnifications (25–20,000×). Analyses were performed using a JEOL JSM-6510 LV SEM apparatus (JEOL, Tokyo, Japan) equipped with an energy-dispersive X-ray spectroscopy using Oxford INCA X-act system (Oxford Instruments, High Wycombe, UK).

The framework petrography (QFL modal composition) of the sandstones in the samples from the SD matches the content of Q in the range of 39.2–61.0 % (average: 50.3 %), F 8.0–26.0 % (average: 15.6 %), and L 26.1–42.3 % (average: 34.1 %; Table 1; Figs. 5 and 6). In samples from the DD, the content of Q is 40.6–63.5 % (average: 51.4 %), F 6.6–23.3 % (average: 14.7 %), and L 20.9–42.3 % (average: 33.9 %; Table 1; Figs. 5 and 6). In the DD, Qm in the range of 28.5–48.6 % (average: 37.2 %) and the share of Lt is between 37.6–57.8 % (average: 47.2 %; Table 1). In the DD, Qm is in the range of 28.1–48.7 % (average: 36.5 %) and the share of Lt is between 37.7–60.6 % (average: 48.8 %; Table 1).

The modal composition of rock fragments in samples from the SD is characterized by Lm ranging from 11.6 % to 42.9 % (average: 27.9 %), Ls 4.9–22.1 % (average: 10.0 %), and Lt 43.2–77.7 % (average: 62.1 %; Table 2; Figs. 7 and 8). For samples from the DD, Lm range from 14 % to 41.9 % (average: 28.8 %), Ls 2.2–28.5 % (average: 9.7 %), and Lt 37.4–80.9 % (average: 61.4 %; Table 2; Figs. 7 and 8). In the total modal grain composition of samples from the SD, M accounts for 4.5–23.4 % (average: 15.5 %) and HM for 1.2–6.7 % (average: 3.4 %; Table 1). M accounts for 6.4–26.3 % (average: 15.5 %) and HM for 0.8–6.2 % (average: 3.4 %) in samples from the DD (Table 1).

If considering only the most abundant QFL component (Garzanti 2019), all analyzed sandstones can be classified as quartzose sandstones, except for one sample from S6 which responds to lithic sandstone. Based on the two most abundant QFL components, the sandstones belong to the LQ group and, to a lesser extent, to the QL group (some samples from S6). Similarly, according to the sixfold subdivision (Weltje 2006), the sandstones can be classified as quartzolithic (Ql), and only one sample from S6 as lithoquartzose (Lq) sandstone. According to the expanded scheme of Garzanti (2016), the sandstones can generally be classified as feldspatho–litho–quartzose (FLQ) and less often as litho–quartzose (LQ; some samples from S4, and some samples from D1, D3, and D4) and feldspatho–quarto–lithic (FQL; one sample from S6; Fig. 6).

Rock fragments

A significant presence of fragments of numerous rock types in the analyzed sandstones was determined in both depressions (Tables 1 and 2; Figs. 5, 7 and 8). The most frequently observed fragments are those of Ls, followed by Lm and Lv (Table 2; Figs. 5, 7 and 8). Lc Arb are the dominant type of sedimentary rock fragments, constituting on average 20.8 % of the sum of QFL composition in the SD and 20.5 % in the DD (Figs. 5 and 7; Suppl. Tables S1–S14). They include different types of dolomites and limestones, usually in the form of altered and recrystallized sparite, micrite (mudstone), packstone to grainstone, etc. Lc Arb also include possible metamorphosed carbonates (metacarbonate and marble), as well as rarely observed recycled bioclasts, such as fragments of undetermined foraminifera shells, mollusks, and red algae (Fig. 7). The carbonate fragments are more rounded in comparison to other grains (Figs. 5 and 7). Lc Arb can be observed to a lesser degree, with an average of only 0.7 % in the sum of QFL composition in both depressions (Suppl. Tables S1–S14). They are usually in the form of mudrocks (mostly marls, claystones to mudstones, shales rich with organic matter, and siltstones) and generally represent deformed rip-up clasts (Figs. 5 and 7). Although imperceptible through the modal composition, fragments of sandstones were also observed during the analyses, albeit in extraordinarily small quantities. Cherty grains are extremely rare (Fig. 7). Lm are very frequent and mostly
Table 1: Modal composition of the Upper Miocene sandstones from the exploration wells of the Sava (S1–S7) and Drava Depression (D1–D7) with minimal, average, and maximal values for the individual components: Q – quartz; Qm – monocrystalline quartz; F – feldspar; L – rock fragments; Lt – total rock fragments (including polycrystalline quartz); M – phyllosilicates; HM – heavy minerals.

<table>
<thead>
<tr>
<th>Exploration Well</th>
<th>Exploration Well (Nr. of Samples)</th>
<th>Q (%)</th>
<th>Qm (%)</th>
<th>F (%)</th>
<th>L (%)</th>
<th>Lt (%)</th>
<th>M (%)</th>
<th>HM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (6)</td>
<td>42.4</td>
<td>28.5</td>
<td>51.4</td>
<td>47.6</td>
<td>34.6</td>
<td>13.4</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>S2 (6)</td>
<td>43.4</td>
<td>35.3</td>
<td>53.6</td>
<td>42.7</td>
<td>35.4</td>
<td>14.2</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>S3 (10)</td>
<td>46.4</td>
<td>42.3</td>
<td>56.3</td>
<td>47.5</td>
<td>34.4</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>S4 (11)</td>
<td>47.5</td>
<td>45.7</td>
<td>56.3</td>
<td>46.2</td>
<td>35.3</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>S5 (11)</td>
<td>45.7</td>
<td>49.8</td>
<td>51.2</td>
<td>49.3</td>
<td>33.1</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>S6 (5)</td>
<td>48.4</td>
<td>51.3</td>
<td>54.6</td>
<td>50.4</td>
<td>35.3</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>S7 (14)</td>
<td>47.3</td>
<td>49.9</td>
<td>51.7</td>
<td>47.3</td>
<td>33.1</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>D1 (10)</td>
<td>46.2</td>
<td>51.2</td>
<td>54.6</td>
<td>45.7</td>
<td>32.7</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>D2 (11)</td>
<td>49.3</td>
<td>53.1</td>
<td>56.2</td>
<td>49.3</td>
<td>30.6</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>D3 (11)</td>
<td>49.3</td>
<td>54.3</td>
<td>56.5</td>
<td>49.3</td>
<td>31.4</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>D4 (10)</td>
<td>49.3</td>
<td>52.9</td>
<td>54.3</td>
<td>50.4</td>
<td>32.7</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>D5 (17)</td>
<td>49.3</td>
<td>54.6</td>
<td>53.1</td>
<td>49.3</td>
<td>32.7</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>D6 (5)</td>
<td>49.3</td>
<td>53.1</td>
<td>54.3</td>
<td>50.4</td>
<td>32.7</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
<tr>
<td>D7 (4)</td>
<td>46.2</td>
<td>51.2</td>
<td>54.6</td>
<td>45.7</td>
<td>32.7</td>
<td>12.7</td>
<td>25.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Almost the same association of accessory minerals was identified in both depressions. Garnet is the most abundant heavy mineral in the sandstones and is present in all analyzed samples in greater quantities (Figs. 5 and 9). It is followed by apatite, tourmaline, rutile, and zircon (Fig. 9). Minerals of epidote, clinozoisite, and zoisite, as well as staurolite and in rare circumstances, amphibole, are more significantly present in shallower intervals of wells (up to 1000–1500 m), especially in the SD. A small amount of chloritoid and titane was also observed. SEM and EDS analyses confirmed the heavy mineral association (Fig. 5) detected via optical microscopy and determined additional heavy minerals in extremely small quantities – monazite and barite. The EDS of garnet grains frequently matches the almandine phase. Numerous opaque minerals were also detected with optical microscopy. SEM and EDS analyses of these opaque minerals confirmed that they mostly correspond to iron oxides, hydroxides, and sulfides (magnetite, hematite, goethite, and pyrite).

Compositional changes with the geographic position and depth

Petrographic analyses of the Upper Miocene sandstones revealed trends of relative changes in the modal composition with a change of geographic position and depth (Supplementary Figs. S1–S7). From the W/NW towards the E/SE, both depressions exhibit an increase in F (Suppl. Fig. S1), Lm (Suppl. Fig. S3), and Lv (Suppl. Fig. S3) components, as well as a decrease in Q (Suppl. Fig. S1), L (Suppl. Fig. S1), Lt (Suppl. Fig. S2), and Ls (Suppl. Fig. S3) components. Subgroups of Q, F, Lm, Lv, and Ls further display uniform trends of changes from the W/NW towards the E/SE in both depressions: a decrease in Qp, Lex, Lcarb, and TQM, as well as an increase in all types of K+P, Lp, Lncarb, and Mp. However, a slight decrease in Pt can be detected in the SD, while an increase can be observed in the DD. The decreasing trends of
Q in both depressions are not overly pronounced (Suppl. Fig. S1). Coincidentally, the SD exhibits almost no changes in Qm from the W/NW towards the E/SE, while a slight increase can be observed in the DD (Suppl. Fig. S2). Increasing trends of F and Lm, as well as the decreasing trends of Lt and Ls are more prominent in the DD (Suppl. Figs. S1–S3). A more pronounced increase in Lv values was detected in D5 (Suppl. Fig. S3). M shows increasing trends from the W/NW towards the E/SE in both depressions. A very slight increasing trend of HM in the SD and a decreasing trend of HM in the DD can also be noticed. The sandstones’ grain size from the W/NW towards the E/SE has a decreasing trend in the SD and an increasing trend in the DD.

An increase in Q and Lt components, as well as a decrease in F, L, Lm, and Ls components can be observed in both depressions with the increase of relative depth (Suppl. Fig. S4 and S6). However, a slightly decreasing trend of Lv can be observed in the SD, while an increasing trend can be detected in the DD (Suppl. Fig. S4 and S6). In addition, some subgroups of Q, F, Lm, and Ls display uniform trends of changes with depth in both depressions: a decrease in K+P, TQM, and Lncarb, as well as an increase in Qp. Trends of Qm, Pt, Mp, and sub-groups of Lv do not coincide between the two depressions. There are no indications of changes with the depth of Lncarb in the SD, while the DD exhibits a decreasing trend of Lncarb. The increasing trend of Q and the decreasing trend of F are more prominent in the SD (Suppl. Fig. S4 and S6). HM shows decreasing trends with depth in both depressions (Suppl. Fig. S5 and S7); however, in the SD, the trend is more noticeable. While the SD exhibits an increase in M with depth, the DD exhibits a decrease in M (Suppl. Fig. S5 and S7). The sandstones’ grain size with depth has a decreasing trend in the SD (Suppl. Fig. S5) and an increasing trend in the DD (Suppl. Fig. S7). Furthermore, a mutual connection and dependence of ratios of M and Mp values can be observed in most samples. Changes in HM in relation to changes in M, in the form of an increased share of one in relation to a decreased share of the other and vice versa, were noticed in the samples as well (Suppl. Fig. S5 and S7). A strong bond between the HM component and grain size is also confirmed in the sandstones (Suppl. Fig. S5 and S7) – the smaller the average grain size of the sample, the higher the concentration of HM.

Matrix and cement composition

For samples from both depressions, the intergranular volume of the sandstones is either unfilled, i.e., with empty pores between grains, or is partly or fully filled with carbonate cement and a fine-grained matrix, as well as different types of clay minerals (Fig. 5).

SEM and EDS analyses confirmed the matrix and cement composition of the sandstones. Carbonate cement largely matches calcite and ankerite (Fig. 5). The fine-grained matrix occurs as a combination of carbonate minerals (including calcite, dolomite, and ankerite), quartz, mica, and feldspar (Fig. 5). Different types of detrital and authigenic clay minerals were determined as well in the samples – kaolinite, illite, chlorite, and different types of interstratified clays (Fig. 5). Silica cement was also frequently observed, usually in the form of quartz overgrowths on the main quartz grains (Fig. 5).

Discussion

The Upper Miocene sandstones from the SD and DD are compositionally very similar. The sandstones’ most abundant rock fragments are carbonate sedimentary rocks, mica schists, quartzites, gneisses, and granitoid rocks. Although the composition of the HM assemblage could have been modified by diagenesis, similar HM association of the Upper Miocene sandstones was earlier detected on the surface and in deep exploration wells in the NCB (Ščavnčar 1979; Kovačić & Grizelj 2006). Therefore, it can be proposed that HM, along with rock fragments, reflects the composition of the source area. The majority of HM in the sandstones could have been derived from two groups of parent rocks: low and medium-grade dynamo-thermal metamorphic and felsic to
intermediate igneous rocks (either as primary minerals or alteration products). One portion of HM is resistant to weathering and transport (e.g., rutile, tourmaline, zircon, barite) and could also have recycled sedimentary origin. Other than limestones and dolomites, which have no influence on the HM content, the composition of rock fragments corresponds to rocks that could be sources of the HM assemblage. It is thus reasonable to conclude that sandstones from the SD and DD

Fig. 6. QFL diagrams for the Upper Miocene sandstones from exploration wells of the Sava (S1–S7) and Drava Depression (D1–D7) according to Garzanti (2016).

<table>
<thead>
<tr>
<th>Exploration Well (Nr. of Samples)</th>
<th>Lm (%)</th>
<th>Lv (%)</th>
<th>Ls (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Average</td>
<td>Max</td>
</tr>
<tr>
<td>S1 (6)</td>
<td>23.2</td>
<td>26.3</td>
<td>39</td>
</tr>
<tr>
<td>S2 (6)</td>
<td>28.7</td>
<td>32.1</td>
<td>41.8</td>
</tr>
<tr>
<td>S3 (10)</td>
<td>11.6</td>
<td>22.6</td>
<td>29.7</td>
</tr>
<tr>
<td>S4 (11)</td>
<td>19.8</td>
<td>31.5</td>
<td>37.9</td>
</tr>
<tr>
<td>S5 (4)</td>
<td>24</td>
<td>29.1</td>
<td>33.6</td>
</tr>
<tr>
<td>S6 (10)</td>
<td>19.6</td>
<td>26.3</td>
<td>34.2</td>
</tr>
<tr>
<td>S7 (14)</td>
<td>14.9</td>
<td>28.4</td>
<td>42.9</td>
</tr>
<tr>
<td>D1 (4)</td>
<td>14</td>
<td>22.6</td>
<td>26.6</td>
</tr>
<tr>
<td>D2 (10)</td>
<td>21.9</td>
<td>26.5</td>
<td>34.8</td>
</tr>
<tr>
<td>D3 (11)</td>
<td>22.2</td>
<td>29.9</td>
<td>37.9</td>
</tr>
<tr>
<td>D4 (13)</td>
<td>16.5</td>
<td>24.4</td>
<td>32.8</td>
</tr>
<tr>
<td>D5 (10)</td>
<td>16.2</td>
<td>30.9</td>
<td>41.9</td>
</tr>
<tr>
<td>D6 (17)</td>
<td>24.3</td>
<td>33</td>
<td>37.9</td>
</tr>
<tr>
<td>D7 (4)</td>
<td>21.2</td>
<td>29.7</td>
<td>35.9</td>
</tr>
</tbody>
</table>
PETROGRAPHY OF THE UPPER MIOCENE SANDSTONES FROM THE NORTH CROATIAN BASIN

Fig. 7. Rock fragments in the Upper Miocene sandstones from the Sava Depression with sedimentary (A–H), metamorphic (I–M), and magmatic rock fragments (N–P). (1): A — Recrystallized dolomite (S4-4a, PPL); B — Recrystallized limestone (sparite) stained with Alizarin Red S (S7-3b, PPL); C — Limestone of packstone/grainstone type (S6-7, PPL); D — Recycled carbonate bioclastic (planktonic foraminifera shell) (S7-3b, PPL); E — Fossiliferous limestone (mudstone/wackestone; S5-1, PPL); F — Deformed unstable mudrock (marl rip-up clast; S6-2b, PPL); G — Silstone (S4-3a, PPL); H — Chert (S1-3b, XPL); I — Metapellete/slate (S7-1, PPL); J — Fragment of mica schist under cross-polarized light (S5-2, XPL); K — Gneiss/schist (S7-2b, XPL); L — Microcrystalline mica schist (S1-3a, XPL); M — Quartzite (S1-1, XPL); N — Granitoid fragment (S7-5b, XPL); O — Granite (S5-4a, XPL); P — Altered volcanic rock (S6-1, PPL); and rock fragments in the Upper Miocene sandstones from the Drava Depression with sedimentary (A–I), metamorphic (J–N), and magmatic rock fragments (O & P). (2): A — Recrystallized dolomite (D5-2b, PPL); B — Recrystallized limestone (mudstone) stained with Alizarin Red S and dolomite (D7-2b, XPL); C — Limestone of grainstone type (D3-3, PPL); D — Recycled undetermined carbonate bioclast (D4-2a, PPL); E — Fragment of carbonate bioclast (bentic foraminifera shell; D5-1b, PPL); F — Deformed unstable rip-up clast of mudrock (claystone/marl; D2-1d, PPL); G — Mudrock rich in organic matter (shale; D7-1b, PPL); H — Silstone under cross-polarized light (D4-3a, PPL); I — Chert (D2-1b, XPL); J — Metapellete/slate (D5-1a, PPL); K — Mica schist under cross-polarized light (D3-5a, XPL); L — Gneiss/mica schist (D7-2b, XPL); M — Fragment of mica schist (D2-3c, XPL); N — Quartzite with euhedral pyrite minerals (D4-5a, XPL); O — Granitoid rock fragment (D3-5b, XPL); P — Altered volcanoclastic rock (tuff; D2-3d, XPL). PPL = plane-polarized light, XPL = cross-polarized light. Photo: M. Matošević

have provenance mainly from carbonate, followed by low to medium-grade metamorphic and, to a lesser extent, granitoid rocks.

Detected small-scale origins of source rocks point toward recycled carbonate-clastic, axial belt metamorphic complex, and continental-block orogenic provenance (Garzanti 2016). Based on the QFL or QtFL modal compositions, according to Dickinson (1985) and Weltje (2006), the analyzed sandstones correspond to the tectonic setting of recycled orogen (subduction complex or fold-thrust belt; Fig. 10). This complex tectonic setting is the result of collisional processes that put together different tectonic units of the Alpine–Carpathian–Dinaridic orogenic system, including the basement of the PBS, which all represent potential source areas of the material in the Upper Miocene sandstones of the NCB. Furthermore, the tectonic units of Schmid et al. (2008, 2020) and the geological map of Europe by Asch (2003) were used to describe the regional geological situation (Fig. 1). The Southern Alps are mainly composed of Mesozoic carbonates, while the Eastern Alps and the Western Carpathians (ALCAPA mega-unit) are comprised of both Mesozoic carbonates and Proterozoic to Paleozoic low to medium-grade metamorphic rocks, with Paleozoic granitoids mainly confined to the Western Carpathians. Similarly, the Tisza mega-unit is predominantly composed of Paleozoic low to medium-grade metamorphic rocks and granitoids, with Upper Paleozoic and Mesozoic siliciclastic and carbonate sedimentary rocks. The Eastern and Southern Carpathians (Dacia mega-unit) are comprised of both Paleozoic medium to high-grade metamorphic rocks and Mesozoic ophiolitic rocks. At the same time, the Dinarides are mainly composed of Mesozoic carbonates (High Karst Unit and Dalmatian zone), partially metamorphosed Paleozoic siliciclastic rocks, and Mesozoic ophiolites (Pre-Karst Unit and Adria-derived nappes with Western Vardar Ophiolitic Unit). The innermost unit of the Dinarides is the Sava Zone, which is composed of various igneous, metamorphic, and sedimentary rocks of the Late Cretaceous. Additionally, various Mesozoic and younger siliciclastic flysch basins, as well as younger granitoid intrusions, volcanic rocks, volcanioclastics, and sedimentary rocks of the Late Cretaceous, Paleogene, and Neogene ages can be detected in different tectonic units in this region.

Parts of the PBS basement outcropping on the surface in the NCB today (e.g., Kalnik, Medvednica, Mošlavča Gora, Slavonian Mts.; e.g., Pamić & Lanphere 1991; Horvat et al. 2018; Starijaš et al. 2010; Biševac et al. 2010, 2011; Balen & Petrinec 2011; Balen et al. 2013, 2020; Belak et al. 2022; Schneider et al. 2022) or found deep in exploration wells in the depressions inside the NCB (e.g., Pamić 1986, 1999; Matošević et al. 2015; Matošević & Šuica 2017; Šuica et al. 2022a,b) also include the aforementioned types of rocks and belong to different tectonic units. They mostly incorporate tectonized magmatic, metamorphic, and sedimentary rocks belonging to the Tisza mega-unit, as well as the Sava zone and the Adria-derived nappes with Western Vardar Ophiolitic Unit of the Dinarides.

The massive inflow of detritus into the Lake Pannon during the Late Miocene (Bérczi et al. 1988; Juhász 1994; Magyar et al. 2013; Pavelić & Kovačić 2018; Andelković & Radivojčević 2021) produced considerable thicknesses of the sediments in the SD and DD (Ivković et al. 2000; Saffić et al. 2003; Kovačić et al. 2004; Kovačić & Grizelj 2006; Pavelić & Kovačić 2018; Malvić & Vešić 2011). It is thus not likely that local parts of the NCB basement, with their relatively small volumes, served as the main sources of the material. Some islands within the lake and peninsulas that surrounded it at some point could have contributed to a smaller amount of the detritus (Bérczi 1988; Kovačić & Grizelj 2006; Sztanó et al. 2015). It is, however, not likely that these sources contributed greater amounts of detritus, since the lake reached its largest extension around 10.5 Ma (Magyar et al. 1999). Moreover, due to a high rate of subsidence of the basin and wet climate, great water depths developed (up to 1000 m locally) leaving all the islands under water (Pogácsás 1984; Sztanó et al. 2013; Balázs et al. 2018). Finally, the Upper Miocene sediments cover some parts of the mountains in the NCB today and therefore signal their major uplift after the Late Miocene, i.e., during the later compressional phase of the basin evolution (e.g., Pavelić 2001; Tomljenović & Csontos 2001; Márton et al. 2002; Pavelić & Kovačić 2018).
The Lower and Middle Miocene rocks stratigraphically underlying the Upper Miocene sediments in northern Croatia include different types of sediments deposited in freshwater and marine environments, including fossiliferous carbonates and different types of siliciclastic sediments, as well as volcanic and volcaniclastic rocks (Tadej 2011; Kovačić et al. 2011; Matošević et al. 2015, 2019a; Pavelić & Kovačić 2018; Hernitz Kučenjak et al. 2018; Avanić et al. 2018, 2021; Brlek et al. 2020, 2023; Grizelj et al. 2020, 2023; Biguac et al. 2022; Kopecká et al. 2022; Premec Fućek et al. 2022; Sremac et al. 2022). Similar types of Lower and Middle Miocene rocks were also found in other basins of the PBS (cf. Rybár et al. 2016, 2019; Sant et al. 2020; Nyíri et al. 2021; Bordy & Sztanó 2021; Csibri et al. 2022). As a consequence, the possible local origin of some of the carbonatic fragments (e.g., micritic limestones and recycled carbonate bioclasts) or volcanic/volcaniclastic rocks in the Upper Miocene sandstones, which were possibly eroded from the underlying Lower and Middle Miocene rocks in the Late Miocene, cannot be completely ruled out. The same applies to siliciclastic sediments (e.g., mudrocks in the form of intrabasinal rip-up clasts) that could have been delivered from different parts of the PBS into the depressions and be partly of the same Late Miocene age. Nevertheless, a large share of fragments of carbonates in the sandstones does not bear any physical (textural) resemblance to those of the Early and Middle Miocene. They are principally non-fossiliferous and largely recrystallized. Even carbonatic bioclasts are found extremely rarely in the samples.

Fig. 8. LmLvLs diagrams of the Upper Miocene sandstones from exploration wells of the Sava (S1–S7) and Drava Depression (D1–D7) according to Garzanti (2019).

Fig. 9. Heavy mineral association in the Upper Miocene sandstones from the Sava Depression. (1): A — Garnet with inclusions and mechanical fractures surrounded by calcite cement (S1-1, PPL); B — Skeletal garnet (S1-3a, PPL); C — Rounded triangular cross-section of color-zoned tourmaline with irregular fractures (S7-3, PPL); D — Tourmaline under cross-polarized light (S3-4b, XPL); E — Subhedral rutile (S2-2a, PPL); F — Epidote (S6-7, PPL); G — Clinozoisite (S5-1, XPL); H — Staurolite with inclusions (S5-1, PPL); I — Fractured zircon with inclusions under cross-polarized light (S7-3b, XPL); and heavy mineral association in the Upper Miocene sandstones from the Drava Depression. (2): A — Garnet within calcite-filled intergranular space (D4-4a, PPL); B — Etched garnet due to dissolution (D6-4b, PPL); C — Fractured skeletal garnet (D3-5c, PPL); D — Fractured and partly dissolved tourmaline (D3-1b, PPL); E — Trigonal cross-section of tourmaline under cross-polarized light (D4-2b, XPL); F — Fractured rutile under cross-polarized light (D2-3b, XPL); G — Prismatic apatite (D5-3, PPL); H — Staurolite (D6-5, XPL); I — Small zircon crystal with inclusions (D4-1c, PPL). PPL = plane-polarized light, XPL = cross-polarized light. Photo: M. Matošević
It is therefore possible to conclude that the fragments of carbonates correspond rather to those of the Paleozoic and Mesozoic age found in the surrounding area of the NCB and the PBS as a whole.

Furthermore, fragments of mudrocks, on average, form less than 0.7%, while extrusive (volcanic) rocks form less than 0.3% in the total modal composition. They are, in comparison to other rock fragments, insignificant for determining and interpreting main sources. According to von Eynatten (2003) and his modified conceptual model of the petrographic data based on Weltje et al. (1998), the weathering index for the Upper Miocene sandstones in the SD and DD corresponds to the field value ‘0’ and indicates the early stages of weathering of plutonic and metamorphic/sedimentary source rocks in the high mountain relief area.

Earlier studies have shown that accumulated sediments in the PBS had mostly been eroded from the Eastern Alps and Carpathians between the Late Miocene (ca. 11–10 Ma) and Late Pliocene (Šćavničar 1979; Kuhlemann et al. 2002; Kovačić et al. 2004; Kovačić & Grizelj 2006; Magyar et al. 2013; Sebe et al. 2020). Nevertheless, it is often difficult to distinguish the Alpine and Carpathian sediment provenance, since they share a similar evolution history with similar bedrock composition (Arató et al. 2021). Since the Upper Miocene sandstones of the SD and DD do not contain any significant amounts of mafic and ultramafic rocks or radiolarites, nor any heavy minerals derived from these rocks (e.g., chrome spinel), the Dinarides, as well as the Southern and the Eastern Carpathians can be ruled out as main source areas (cf. Lužar-Oberiter et al. 2009, 2012; Ustaszewski et al. 2009, 2010). The exclusively Western Carpathian provenance would have resulted in a larger content of volcanic or volcaniclastic material (e.g., Seghedi & Downes 2011). Based on the previously mentioned lithic fragments determined in the sandstones, the Eastern Alps are proposed as the most probable major source area. Even studies of the present-day Drava and Mur River sediments, those sourced in the Eastern Alps with dominantly metamorphic lithologies, show similarities in the HM composition with the Upper Miocene sandstones from the SD and DD, with garnet as the major component, followed by epidote, amphibole, rutile, apatite, tourmaline, and titanite (Arató et al. 2021).

Progradation of the Upper Miocene sandstones’ clinoforms from seismic profiles indicates high material inflow from N/NW and W directions into the SD and DD (Ivković et al. 2000; Saftić et al. 2003; Magyar et al. 2013; Špelić et al. 2019; Sebe et al. 2020). The same general directions were detected on the surface in the NCB (Kovačić & Grizelj 2006; Kovačić et al. 2013).
As inferred from the seismic data, parts of the DD depositional system are also locally characterized by sets of clinoform sediments with shelf-margin slope progradation from a N/NE towards S/SW direction. Similar findings in the Bjelovar sub-depression (Fig. 3) were recently demonstrated by Ružić (2021). Altogether, these findings point towards the Alps (Eastern Alps and potentially Southern Alps) as major source areas of the Upper Miocene sandstones, with a minor addition from the Carpathians (Western Carpathians and potentially Eastern Carpathians; Šćavničar 1979; Kovačić & Grizelj 2006; Kovačić et al. 2011; Magyar et al. 2013; Sztanó et al. 2013).

Additionally, there is no progradation of the sandstones’ clinoforms observed from seismic profiles indicating main material inflow from S, SW, or SE directions into the SD and DD. Compositional equivalence, which was detected by petrographic analyses of the samples and paleotransport of the sandstones, implies that the two depressions were connected in the Late Miocene with no significant topographical obstacles for the inflow of the sandy detritus. This additionally supports the concept that the main uplift of the mountains in the NCB occurred during the Pliocene and Quaternary (Prelogović et al. 1998; Tomljenović & Csontos 2001; Pvelić 2001; Márton et al. 2002; Saftić et al. 2003; Pvelić & Kovačić 2018; Kurečić et al. 2021).

Almost all trends of relative changes in the sandstones’ modal composition with the change of geographic position and depth are correspondent between the two depressions. They can be associated with characteristics and variations of the exhumation in the source area – in the form of potential primary erosion of covering sedimentary (carbonate) rocks and subsequent erosion of underlying metamorphic and magmatic (plutonic) rocks. This is indicated by the decrease of L and Lt values, supported by the decrease of Ls values, from the W/NW to the E/SE in both depressions, i.e., in the direction of the progradation of the sandstones. The same assumption is indicated by the increase of Lv and Lm values, supported by the increase of F values, from the W/NW to the E/SE, but also by the decrease of L and F values with depth. The observed trends could additionally be caused by the mixing of detritus before the final influx in the basin (e.g., a possible admixture of material from local islands and peninsulas or other rivers and tributaries from the northern and north-eastern parts of the PBS, such as the paleo-Danube and paleo-Tisza; e.g., Magyar et al. 2013). Further causes could also embrace weathering and alteration processes (including dissolution of carbonate rock fragments with time and length of the transport from source to sink), as well as the consequences of diagenetic processes within the basin (including stronger or weaker resistance of some grains to burial depth). The higher increase of Lv in D5 could indicate an increased inflow of plutonic (granitoid) detritus from other, possibly local source(s) or a possible existence of a minor geographic (topographical) barrier for the main inflow of detritus in this area (e.g., an island or an underwater elevation of the lake bottom). Changes in Ls with depth are primarily the result of diagenesis since they strongly depend on deformation, alteration, and dissolution during the burial. The same applies to the HM component – a significant decrease or complete absence of some of the minerals (e.g., epidote, clinodiozoisite, zoisite, staurolite, amphibole) in deeper intervals of the wells (generally deeper than 1000 m) is a direct consequence of their dissolution with depth, i.e., instability with increasing temperature, pressure, and interaction with pore fluids (Pettijohn 1957; Šćavničar 1979; Morton & Hallsworth 2007; Andó et al. 2012; Garzanti 2016). Some of the grains (e.g., F, Lv, and Lm, including their sub-groups) have been better preserved with depth in the DD than in the SD. The prevention of deformation and chemical alterations of the grains is a consequence of early carbonate cement precipitation in intergranular space in deeper parts of the DD. Similarly, changes in Q values with depth are largely the result of diagenesis, since quartz is more resistant to burial processes than other grains. Seeing that the sandstones from both depressions are exclusively very fine and fine-grained, it can be assumed that the grain size does not play a significant role in the distribution of trends of individual components. The changes in the HM share in relation to changes in the M share strongly support the theory of the influence of hydraulic sorting on the deposition of grains of the same provenance (Cascalho & Fradique 2007; Kompar 2007; Garzanti et al. 2008; Garzanti 2016).

Additionally, the NCB Upper Miocene sandstones largely differ from those from the Lower and Middle Miocene, which are subordinate oil and gas reservoirs in the area (Lučić et al. 2001; Saftić et al. 2003; Pvelić & Kovačić 2018). The sandstones from the two depressions are fine-grained, generally well- to moderately well-sorted, and texturally mature, in accordance with the results of previous studies (Kovačić et al. 2004, 2011; Kovačić & Grizelj 2006). They contain fragments of magmatic, metamorphic, and sedimentary rocks, including fragments of extrabasinal carbonates from further regional sources. The Lower and Middle Miocene sandstones are, by contrast, principally of coarser grain sizes, poorly-sorted, and texturally less mature. They were formed during the syn-rift phase of the PBS development and are frequently interbedded with breccias and conglomerates generated along normal faults associated with the initial rifting of the NCB (Pvelić et al. 1998; Saftić et al. 2003; Pvelić 2005; Matošević et al. 2015; Brlek et al. 2016; Pvelić & Kovačić 2018; Bigunac 2022). They are intermittently interbedded with volcanoclastic sediments and mudrocks (e.g., fossiliferous marls) associated with marine transgressions occurring during the existence of the Central Paratethys (Matošević et al. 2019a; Brlek et al. 2020, 2023; Marković et al. 2021; Grizelj et al. 2020, 2023; Premec Fuček et al. 2022; Sremac et al. 2022). As can be observed from seismic profiles, the paleo-transport of their detritus is from locally uplifted parts of the NCB basement with no preferable main transport directions, primarily perpendicular to the normal faults. The Lower and Middle Miocene sandstones form facies of alluvial fans and related fluvial and deltaic environments, with detritus being further transported into deeper parts of the depressions (Tadej 2011;
Pavlić & Kovačić 2018; Bigunac 2022). Aside from a much larger ratio of fragments of extrusive volcanic and volcaniclastic rock, they also include a much larger ratio of intrabasinal carbonatic rock fragments and abundant and diverse quantities of carbonate bioclasts (this applies especially to the Middle Miocene sandstones formed in marine environments; e.g., Brlek et al. 2016, 2023; Kovačić et al. 2011; Matošević et al. 2019a; Sremac et al. 2022; Premec Fućek et al. 2022; Grizelj et al. 2023). The findings of this study demonstrate that this is atypical for the Upper Miocene sandstones.

Conclusions

For the most part, the Upper Miocene sandstones from the SD and the DD in the NCB correspond to feldspato-litho–quartzose sandstones and are interpreted to have been derived from a provenance area of a recycled orogen. Sandstones’ modal compositions and detailed analyses of rock fragments and heavy minerals suggest an equivalent external source terrain without major local influences – parent rocks consist of carbonates, metamorphic rocks, and plutonic rocks, mainly of the Alpine–Carpathian fold belt (ALCAPA tectonic mega-unit). The uniform composition of the sandstones from both depsects suggests time-identical processes of source rock erosion, sandy material transport, and deposition, mainly as a relatively fast and massive inflow into the basin during the Late Miocene. Both depsects show an increase in the F, Lm, and Lv components, and a decrease in the Q, L, Lt, and Ls components from the W/NW towards the E/SE. These changes in the sandstones’ composition reflect a combination of changes in the source area (erosion of parent rocks), alterations during transport, and mixing of the detrital material prior to deposition. An increase in the Q, Op, and Lt components, as well as a decrease in F, K+P, Lm, TQM, Ls, Lncarb, and HM with depth was noticed in both depsects. In general, these changes in sandstone composition reflect diagenetic factors, such as the stability or instability of individual components post-depositional alteration. Diagenetic alteration can be explained by compaction, the progressive increase of temperature and pressure with burial depth, and the presence of pore fluids. The Upper Miocene sandstones from the NCB differ in terms of their texture and composition from the Lower and the Middle Miocene sandstones in this area, which are of more local provenance. The results of the study show that no major morphological barriers were present between the SD and DD that could have obstructed the inflow of detrital material via rivers and deltas into the Lake Pannon. And so, the main uplift of the mountains in the NCB is inferred to have taken place after the Upper Miocene, which is consistent with previous studies.

Acknowledgements: The PhD scholarship of Mario Matošević is financed by the Faculty of Mining, Geology, and Petroleum Engineering, University of Zagreb. The research is a part of the SEDBAS project financed by the Croatian Science Found-
dation (IP-2019-04-7042). We acknowledge INA – Industrija naftne d.d. for support in conducting this research. We would like to thank Ljiljana Kirin for help with sample preparations, Gabrijela Pecimotika for paleontological analyses, and Neven Šuica for help with graphic design. The authors would also like to thank the reviewers, Katarina Sarinovac and Robert Arató, for their constructive comments and suggestions which improved the manuscript.

References

GEOLOGICA CARPATHICA, 2023, 74, 2, 155–179

Balen D., Horváth P., Finger F. & Starijaš B. 2013: Phase equilibrium, geothermobarometric and xenotime age dating constraints on the Alpine metamorphism recorded in chloritoid schist from the southern part of the Tisza Mega-Unit (Slavonian Mts, NE Croatia). International journal of earth science 102, 1091–1109. https://doi.org/10.1007/s00531-012-0850-8

Belak M., Slovenec D., Kolar-Jurkovšek T., Garašić V., Pécskay Z., Tibilj D. & Mišur I. 2022: Low-grade metamorphic rocks of the Tethys subduction-collision zone in the Medvednica Mt. (NW Croatia). Geologica Carpathica 73, 207–229. https://doi.org/10.31577/GeoCarp.73.3.3

PETROGRAPHY OF THE UPPER MIOCENE SANDSTONES FROM THE NORTH CROATIAN BASIN

Kurečić T. 2017: Sedimentology and paleoecology of Pliocene Viviparus beds from the area of Vukomerički gorice. *Dissertation, Faculty of Science, University of Zagreb.*

Ružič T. 2021: Geological characterization of the 3D seismic record in the Upper Miocene deposits of the northern part of Bjelovar subdepression. Dissertation, Faculty of Science, University of Zagreb.

PETROGRAPHY OF THE UPPER MIOCENE SANDSTONES FROM THE NORTH CROATIAN BASIN

Electronic supplementary material is available online at http://geologicacarpathica.com/data/files/supplements/GC-74-2-Matosevic_Supplement.xlsx