Remobilization of Ni–Co–As and platinum-group elements by carbonate metasomatic alteration (listvenitization) of metalultramafic rocks from Dobšiná, Slovakia

STEFAN KIEFER 1,2, PETER IVAN 3, ANDREAS B. KAUFMANN 1,3, MAREK VĎAČNÝ 4 and JURAJ MAJZLAN 1

1 Institute of Geosciences, Friedrich Schiller University, Burgweg 11, Jena, Germany; Stefan.Kiefer@uni-jena.de
2 Department of Geochemistry, Comenius University, Ilkovičova 6, Bratislava, Slovakia
3 Institute of Mineralogy, Leibniz University, Callinstr. 3, Hannover, Germany
4 Earth Science Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, PO BOX 106, Bratislava, Slovakia

(Manuscript received August 3, 2022; accepted in revised form April 4, 2023; Associate Editor: Peter Kodéra)

Abstract: Hydrothermal processes are mainly responsible for the release and accumulation of metals and metalloids in rocks. In this work, we investigated the mineralogy and geochemistry of altered metalultramafic rocks (listvenites) that are spatially associated with Ni–Co ores near Dobšiná aiming to identify the sources of the elements in the hydrothermal Ni–Co-mineralization. Optical microscopy, electron microprobe analysis, and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to correlate the mineralogy with the degree of rock alteration. The sulfides and silicates in the metalultramafic rocks host rare, that platinum-group elements (PGE) were also leached and mobilized from the metalultramafic rocks. LA-ICP-MS scans show that the sulfarsenides in the metalultramafic rocks host submicrometer inclusions of PGE minerals but the hydrothermal Ni–Co sulfarsenides contain much less PGE’s. These observations document the limited mobility of the PGE’s. Changes in the sulfide mineralogy as a function of degree of alteration suggest that the fluids brought Fe and S, and probably a substantial amount of As whereas the metalultramafic rocks supplied Ni, Co, PGE, and perhaps also some As.

Keywords: hydrothermal processes, metal release, platinum-group elements, geochemistry, sulfides, sulfarsenides, Dobšiná

Introduction

Hydrothermal processes are the most effective concentrators of ore metals and metalloids. As a result of these processes, ore bodies of relatively small size, not exceeding several km³, are formed. The conditions of the formation of such hydrothermal deposits are difficult to reconstruct due to the extraordinary complexity of the hydrothermal systems that created them. Moreover, hydrothermal system dimensions exceed the ore mineralization size several fold (Reimann et al. 2016) and are as a rule inactive – fossil at the time of investigation. Therefore, many aspects of the genesis of hydrothermal mineralization are still debated, such as the problem of the source of metals. There are, though, some hydrothermal mineralizations that are uniquely suited to provide clues in this matter. The Ni–Co deposit in the neighborhood of the small town of Dobšiná in eastern Slovakia is one of such mineralizations.

The region around the Dobšiná town is a geological knot where several superunits of the Western Carpathians meet. One of them, the Paleozoic Gemeric Superunit, belongs to the most important metallogenic provinces of the Western Carpathians. It hosts genetically variable ore deposits, with the dominant siderite–sulfide and gold–stibnite–quartz vein-type deposits (Grecula et al. 1995). Veins of both types are present in the vicinity of the Dobšiná town, but only some of siderite–sulfide veins are rich in Ni–Co arsenides and represent well-known specific type of Cu–Ni–Co mineralization (Dobšiná/Dobschau type; Schneiderhöhn 1944) intensively mined in the 19th century.

The sources of elements in these hydrothermal bodies are largely unknown. For the Ni–Co mineralization, hydrothermal-metasomatic alteration of serpentinites (so-called listvenitization) were seen as the source rocks for Ni and Co (Hovorka & Ivan 1981a; Ivan 1985). Similarly, serpentinites are seen as the source of these elements in larger hydrothermal Ni–Co deposits, such as Bou Azzer (Leblanc & Fisher 1990; Tourneur et al. 2021). The source of As, however, is less certain, although also sought in the serpentinites (Tourneur et al. 2021). The primary source of Ni, perhaps also Co, can be assigned to silicates (mostly olivine) or magmatic sulfides. Both of these mineral groups usually vanish during serpentinization and subsequent hydrothermal alteration. Mobility of Ni, Co, and other elements may be documented by the composition of newly formed spinels (Fanlo et al. 2015).

A product of metasomatic alteration of mafic and ultramafic rocks are listvenites (Rose et al. 1837), usually composed of...
quartz, Ca–Fe–Mg carbonates, fuchsite (Cr-muscovite), and less abundant sulfides, arsenides, magnetite, serpentine, t alc, chlorite, and relics of chromite (Fryer et al. 1979; Kerrich & Fyfe 1981; Halls & Zhao 1995; Pirajno 2013). Listvenites can be economically important since they are associated with lode Au–Ag-mineralization but also with Au–Sb, Co–Ni, or Sb–Cu mineralizations (Šostarič et al. 2011; Zoheir & Lehmann 2011). For Au-rich systems, Zoheir & Lehmann (2011) suggested that CO₂–CH₄-rich fluids caused extensive carbonation and drop of oxygen fugacity, which then destabilized and remobilized sulfides and gold. Relics of chromite, partially altered to magnetite, have been identified as the source of PGE remobilized during the metasomatic reactions in listvenites (González-Jiménez et al. 2010; Holwell et al. 2017; Beinlich et al. 2020). Metamorphic devolatilization/dehydration reactions which involve production of carbonates and mica, deposition of gold and sulfides are most effective in mafic-ultramafic host rocks (Phillips & Powell 2010; Pirajno 2015).

In this work, we searched for geochemical and geological criteria to identify the sources of the elements in the Ni–Co mineralizations near Dobšiná. Detailed mineralogical and geochemical investigation of the opaque minerals in the listvenites that are spatially associated with the ores discerned similarities among the ores and listvenites. Identification and chemical analyses of opaque minerals by the means of optical microscopy, electron microprobe, and laser-ablation inductively coupled plasma mass spectrometry, allow to correlate mineralogy with the degree of rock alteration. Variations in mineralogy, including the mineralogy of PGE-containing minerals, points at sources of the elements and processes that remobilized them.

Geological settings

Regional and local geology

The Gemic Superunit is a polymetamorphic terrain that presented a significant conundrum to many geologists in the past and in the present. Two different concepts of the geological structure and evolution were presented by Bajaník et al. (1983) and Grecula et al. (2011). The first concept considers the Gemic Superunit as a product of episodic sedimentation, igneous activity and intervening hiatuses, followed by multiple metamorphic events. The second concept emphasizes the nappe structure, with the nappes being detached and stacked already during the Variscan shortening. This nappe structure was reworked and consists of several nappes, detached and stacked onto each other in times from the Variscan orogeny until the peak of the Alpine orogeny (Cretaceous) and then modified by younger faults. The entire superunit is characteristic by significant tectonic shortening and reduction. The nappes correspond to the separate lithotectonic units. The preserved record (age, lithology, magmatic and metamorphic activity) reflects the Variscan geodynamic evolution from an accretion orogen in Upper Cambrium–Ordovician, to continental rifting in Lower Devonian, ocean opening in Upper Devonian, collision and subduction in Lower Carboniferous, and post-collision stabilization of the orogen, with hints of a transition into extension regime in Upper Carboniferous to Permian (Ivan & Měřes 2012; Ivan 2019; Vozárová et al. 2021, and references therein). Apart from the lower-crustal rocks in the Klátov Group (Klátov Gr.), all lithotectonic units originated in the upper-crustal conditions and did not undergo, as a whole, metamorphism that would exceed low-grade conditions. Almost all these lithotectonic units can be found in the vicinity of Dobšiná and they all host siderite–sulfide vein mineralization. Yet, the veins with rich Ni–Co mineralization are located only in the rocks of the Klátov Group or their immediate vicinity.

The Klátov Group (Hovorka et al. 1990) is made of medium- to high-grade metamorphic rocks which experienced multiple events of retrograde metamorphism. Two main types of rock complexes can be distinguished within this group, namely (1) amphibolite and (2) gneiss–migmatite. The amphibolite complex is represented by fine- to medium-grained, monotonous amphibolites, locally also banded rocks with bands of leptynite. There may be rare relics of two-pyroxene granulites and granulite-facies metacarbonates. The gneiss–migmatite complex is dominated by amphibolite gneisses, augen gneisses to migmatised metagabbros, pyroxenites, two-pyroxene granulites, metaultramafic rocks, and retrogressively modified eclogites (Faryad et al. 2020). Thin veins of pegmatites are common. The age of migmatitization is Upper Devonian (383±3 Ma), the age of the igneous protolith is Lower Ordovician (482±9 Ma; Putiš et al. 2009). The Klátov Group was originally made of basic intrusive rocks, basic and ultrabasic rocks of subducted oceanic crust, metamorphosed and migmatized during the Devonian rifting (Ivan 2016). During exhumation and subsequent evolution, the group was affected by retrograde metamorphism in amphibolite-, blue-schist-, prehnite–pumpellyite- and green-schist facies as well as tectonic reworking.

Our field observations show that the rocks of the Klátov Group around Dobšiná form a tabular body with lateral extent of ~3×4 km, thickness not more than 200 m, slightly dipping to south, fragmented by N–S faults into several pieces and found at its W margin only as isolated fragments (Figs. 1, 2). The footwall is made of basic intrusive rocks, basic and ultrabasic rocks of subducted oceanic crust, metamorphosed and migmatised during the Devonian rifting (Ivan 2016). During exhumation and subsequent evolution, the group was affected by retrograde metamorphism in amphibolite- , blue-schist-, prehnite–pumpellyite-, and green-schist facies as well as tectonic reworking.

The southvergent thrusting of the Klátov Group body was accompanied by formation of steep shear faults with intensive mylonitization (Rozložník 1965). Gneisses and migmatitized gneisses, which contain primary graphite, were modified to black ultramylonites composed of chlorite, graphite, tourmaline, rutile, quartz, and ililite. The thrusting plane itself is locally occupied by lenticular bodies of serpentinites with
thickness of several tens of meters. Owing to their low yield strength, these rocks were pressed into some fault zones and form vein-like bodies (Hovorka & Ivan 1985).

The veins with Ni–Co ore mineralization are mostly located in the steep faults in the N and S flanks of the Klátov Group body. They are parallel to the thrusting plane with the metaultrabasic rocks, less commonly, they are located near the thrusting plane (Grecula et al. 1995 and references therein).

At the northern flank, the veins have variable thickness (0.1 to 2 m), are hosted in gneisses and migmatitized gneisses, especially in the black mylonites in these rocks. In amphibolites, the veins are thinner. The veins at the southern flanks are hosted in strongly altered rocks – gneisses, amphibolites, or metaultrabasic rocks. The veins are much thinner (0.1 to 0.5 m) and with smaller extent.

The veins are made of carbonates (Fe-dolomite, ankerite, siderite), quartz, Ni–Co–Fe sulfarsenides (gersdorffite, arsenopyrite). In the higher portions of the veins, Ni–Co minerals become less common and sulfides are represented by chalcopyrite and tetrahedrite. The veins at the southern flank of the Klátov Group body have higher Ni/Co ratios than those at the northern flank. Mineralogy of the Ni–Co veins from

Fig. 1. Geological map of the vicinity of the Dobšiná township (modified after Hovorka & Ivan 1985, Ivan & Mérès 2009, based on earlier maps of Rozložník 1956 and Bajaník et al. 1984). Explanations: 1 – amphibolites; 2 – gneisses and migmatitized gneisses; 3 – antigorite serpentinites and their hydrothermally altered equivalents (listvenites) (1–3 Klátov Gr.; Ordovician/Devonian); 4 – rhyolite metavolcaniclastics (4 Gelnica Gr.; Ordovician); 5 – metabasalts; 6 – chlorite-sericite phyllites; 7 – redeposited basaltic metatuffs intercalated by metabasalt bodies (5–7 Rakovec Gr.; Devonian); 8 – Zlatník Gr. (Upper Devonian/Lower Carboniferous); 9 – shales, black shales, sandstones; 10 – conglomerates; 11 – limestones partly metamorphically replaced by siderite (9–11 Rudňany Fm.; Upper Carboniferous); 12 – metamorphosed conglomerates; 13 – strongly mylonitized conglomerates; 14 – metamorphosed sandstones and shales (12–14 Krompachy Gr.; Permian); 15 – metamorphosed conglomerates (Gočaltovo Gr.; Permian; 1–15 Gemeric Megaunit); 16 – metamorphosed conglomerates (Jasov Fm.; Permian); 17 – metabasalts; 18 – sericite phyllites, black phyllites and metamorphosed sandstones with enclaves metamorphosed red radiolarites; 19 – lizardite-chlorite serpentinite; 20 – acid metavolcanite; 21 – sericite phyllites with mostly marble enclaves; 22 – chlorite-sericite phyllites with marble intercalations; 23 – greenish and red sericite phyllites (16–23 Bôrka Nappe; Upper Triassic–Upper Jurassic(?); Meliatic Megaunit); 24 – Gutenstein-type dolomites; Middle Triassic; Silicic Megaunit); 25 – debris; 26 – faults, thrusts. The red dashed line shows the approximate position of the cross section in Figure 2. The red dots show the sampling location. Please note: Most of the data included in this publication were obtained from subsurface samples.
Dobšiná was studied in detail by Halahyjová-Andrusovová (1961), Kiefer et al. (2017), and Števko & Sejkora (2020). Geochronological (Re–Os) data document the Cretaceous age of the mineralization (Kiefer et al. 2020; Majzlan et al. 2022), in agreement with the age of the youngest metamorphic event and tectonic activity in this area (Lexa et al. 2003) but are in conflict with metallogenetic concepts of Radvanec & Grecula (2016). The mineralization is accompanied by strong hydrothermal-metasomatic overprint of the host rocks. In this process of listvenitization, the amphibolites and gneisses were transformed into chlorite–quartz–carbonate, illite–quartz–carbonate, and illite–carbonate rocks. Locally, the gneisses underwent also intensive silicification.

Uppermost parts of the Ni–Co mineralization reached the overlying Lower Carboniferous rocks. Here, the metasomatic siderites (formed by replacement of the limestone protolith) contain accumulations or veinlets of Ni–Co minerals. Listvenitized metaultramafic rocks were found at places, likely dragged to their current position along the faults. The veins at the northern flank penetrate into the overlying Carboniferous sediments but once they do, they are devoid of Ni–Co minerals and contain instead only siderite, baryte, tetrahedrite, and cinnabar.

Serpentinites in the Gemeric and Meliatic superunits in Dobšiná

There are two distinct types of metaultramafic rocks in the vicinity of Dobšiná. They differ in their mineral composition and association to the large geological units of the Western Carpathians. The first type are antigoritic metaultramafic rocks of the Klátov Group of the Gemeric Superunit (Hovorka & Ivan 1981b). The Klátov Group metaultramafic rocks succumbed almost completely to intensive listvenitization, with the exception of small bodies and ultramafic balls enclosed in gneisses. A detailed petrographic description of these rocks and their alteration products can be found in the Results section of this publication.

Another metaultramafic body in Dobšiná, mined in the past in a quarry for asbestos (Fig. 1), will be referred to as the Meliatic serpentinites. These are Triassic chrysotile serpentinites (Hovorka et al. 1985) and they belong to the ophiolite-bearing polygenic mélange of the Meliatic Superunit. These rocks contain dispersed opaque phases (Rojkovič & Hovorka 1979) and host minor Ni–Co mineralization (Števko et al. 2013).

Samples and methods

A total of 21 samples of Klátov Group serpentinites and listvenites were collected in the vicinity of Dobšiná. Samples were found in the Tešnárky Valley, around the Gugel and Langenberg hills, and from the bore hole VD-20.

Another set of 5 samples comes from the historical collection of Dr. Halahyjová-Andrusovová. These samples were collected from the hydrothermal veins and present rich Ni–Co mineralization. They were used for a detailed mineralogical study by Kiefer et al. (2017) who also reported their localization.

Samples were prepared in the form of thin and polished sections and examined in transmitted and reflected polarized light. Sections with abundant opaque phases were selected for further analyses with electron microprobe (EMP) or laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS).

Electron microprobe

Textural and compositional relationships were further investigated by electron microprobe analyses using a JEOL JXA-8230. The operating conditions were set to an accelerating...
voltage of 20 kV, a beam current of 100 nA and a beam diameter between 1–5 µm. The wavelength-dispersive X-ray spectrometers were used to measure the elements and X-ray lines of Sb (Lα), S (Kα), As (Kα), Zn (Kα), Cr (Kα), Co (Kα), Cu (Kα), Ni (Kα), Fe (Kα), Au (Mα), Pd (Mα) as well as Te (Lα) and Ir (Mα) (for one measurement). To improve the count-rate statistics, the counting times were 600 s for Pt, Pd, and Ir, 200 s for Te and Au, and 40 s for the other elements. The standard specimens used for calibration were pure metal standards (100 %) for Pt, Pd, Ir, Au, Ni, and Co, stibnite for Sb, pyrite for Fe and S, arsenopyrite for As, chromite for Cr, sphalerite for Zn, andchalcopyrite for Cu. Peak overlap correction was used to avoid interference between the lines of Pt and Sb, Au and Pt, Fe and Pt, Co and Pd, S and Co, As and Ir, Cr and Ir, Cu and Ir as well as Cr and Au. The detection limits, calculated from the peak and background counts, the measurement time, the beam current, and the standard material concentration, are (in wt. %): 0.01 for Pt, S, Co, Fe, and Pd, 0.02 for Ni, Cr, and Cu, 0.03 for Sb and Ir, 0.04 for Zn, Au, and Te, and 0.05 for As.

Whole rock geochemistry

For trace-element geochemistry, 22 samples were ground, digested in aqua regia and analyzed by inductively coupled plasma mass spectrometry. Elements analyzed and detection limits (on weight basis) were: Cu (0.01 ppm), Zn (0.1 ppm), Ag (2 ppb), Ni (0.1 ppm), Co (0.1 ppm), Fe (0.01 %), As (0.1 ppm), Au (0.2 ppb), Bi (0.02 ppm), Cr (0.5 ppm), Ti (0.001 %), S (0.2 %), Te (0.02 ppm), Pd (10 ppb), and Pt (2 ppb). A few selected samples were additionally analyzed for all platinum-group elements by instrumental neutron-activation analysis. The elements analyzed and their detection limits were Ir 1 ppb, Os 10 ppb, Rh 5 ppb, Ru 50 ppb.

LA-ICP-MS

The determination of trace element analyses was performed using an Element XR (Thermo Scientific, Germany) fast-scanning sector field ICP-MS coupled to a femtosecond laser ablation (fs-LA) system (Solstice, Spectra-Physics, USA) at the Institute of Mineralogy, Leibniz University, Hannover, Germany. Laser operates in the deep UV at 194 nm that produces energy pulses of 70–90 mJ. Measurements were performed using a laser beam of 60 µm with a repetition rate of 18 Hz for standards and 40–60 µm spot size and repetition rate between 16–50 Hz for samples. Ablated particles were transported from the sample chamber by He carrier gas and mixed with Ar before entering the Element XR. A Jet sample cone and a skimmer X cone were used (material composed of Ni) in combination with a 1 mm copper ring (spacier). During tuning, the oxidation rate formation was limited to a ThO/Th value ≤0.5 %. The external reference standards were NIST SRM 610 (Jochum et al. 2011) and PGE-A (Gilbert et al. 2013). The Ni, Sb, Fe, and Cu concentrations of the minerals determined by EPMA were used as internal standards for quantification. Different elements were used as internal standards due to different sample matrix and sample heterogeneity. The PGE-A standard was used as quality control material. The reproducibility of the trace elements was better than 20 %. Data were reduced and drift corrected, using a Matlab-based SILS program (Guillon et al. 2008). Argide interference on the light PGE isotopes (198Ru, 195Ru, 196Rh, 198Pd, and 199Pd) and silver (107Ag) was corrected by measuring Co-rich pyrite, millerite (NiS), chalcopryite (CuFeS2), native Cu, CdS, and sphalerite (ZnS) reference materials. The argide interference level was determined by measuring of the pure metals and the obtained interference level was subtracted from the sample, to obtain the argide free sample concentration.

Results

Petrography of the Kláštor Group metataltramic rocks and their listvenitization products

The least altered metataltramic rocks are represented by antigorite serpentinites with typical arborescent texture, rarely with relics of the meshwork texture from the earlier lizardite–chrysotile serpentinitization event. The primary rocks were most likely mantle peridotites. The antigorite serpentinites are composed mostly of antigorite, with a lesser amount of magnetite, Mg-chlorite, and tremolite. Already before antigoritization, the euhedral magmatic Cr-spinel was replaced by magnetite or metamorphosed to chromite. The released Mg and Al were taken up by chlorite. The spinel grains were intensively crushed. Sulfide minerals are represented by pentlandite and millerite. Scarce carbonates replace antigorite but they are related to the younger alteration events. Rare metataltramic balls in gneisses were completely changed to talc and have a reaction rim (black wall) that consists of monomineral zones of tremolite, chlorite, sometimes also phlogopite.

Listvenitization of the antigorite serpentinite proceeded as a gradual loss of some minerals and their replacement by newly formed mineral assemblages. The final result is a sequence of metasomatic zones, separated from each other by relative sharp interfaces. An ideal sequence of such zones is displayed in Fig. 3 (Ivan 1985, 1987) and is essentially identical to the sequence determined as listvenite sites in the Ural Mountains (Sazonov 1975).

The first listvenitization stage was a response to influx of fluids with CO2 but with little Fe and generated the following metasomatic products: antigorite–talc–carbonate rocks → talc–carbonate rocks → chloride–quartz–carbonate rocks → fuchsite–quartz–carbonate rocks. In the antigorite–talc–carbonate rocks, talc and carbonates formed at the expense of antigorite and the proportions of all three minerals are roughly equal. These rocks are usually massive, the original arborescent texture is largely obliterated. The talc–carbonate rocks lost all antigorite and the proportions of talc and carbonates are roughly equal. Some of these rocks
are distinctly foliated. Listvenites sensu stricto include the chlorite–quartz–carbonate and fuchsite–quartz–carbonate rocks with pronounced foliation and predominance of carbonates over quartz. Chlorite and fuchsite represent only a few per cent of the samples. The only mineral of the primary igneous rocks that persisted in this stage of listvenitization is chromite (or the relics thereof). Already the initial carbonate replacement is accompanied by dissolution of the magnetite rims on chromite. Chlorite, formed during the intermediate listvenitization, is later replaced by talc and then by carbonates. Chlorite aggregates were stretched into minute lenses or veinlets, whereas chromite was crushed and replaced by other minerals. Fuchsite is usually the final replacement product of chlorite but chromite relics persist even this alteration. Chemical composition of the carbonates is variable. Fluids that brought no Ca caused precipitation of Fe-magnesite. In other cases, the carbonates are both Fe-magnesite and dolomite or only dolomite.

In the second stage of listvenitization, the fluids brought Fe and replaced the carbonates in the earlier listvenites (Fe-magnesite and dolomite) by siderite. The result are fuchsite–quartz–siderite listvenites with such predominance of siderite that these rocks were exploited as metasomatic Fe ores. Locally, especially near to siderite veins, listvenites were intensively silicified and altered to siderite–quartz rocks (Ivan 1985). Despite variable, medium to strong alteration, the protolith can be always tracked and identified by the relics of chromite in these rocks.

Chemical composition of the rocks also varied during listvenitization. The earliest products (antigorite–talc–carbonate and fuchsite–carbonate rocks) maintained the principal chemical features of the protolith (Ivan 1985), namely high MgO, Cr, Ni, and Co content, but with addition of CO2. In some of them, the MgO concentrations are diminished at the expense of CaO. The listvenites sensu stricto (chlorite–quartz–carbonate and fuchsite–quartz–carbonate rocks) have distinctly less Ni and Co, probably as a consequence of the replacement of the Mg-silicates by carbonates. Upon the replacement of siderite, the Ni and Co concentrations decrease once again. The concentration of Cr is slowly falling as the listvenitization proceeds and is related to the degree of dissolution of chromite. These concentrations, however, remain high and attest to the limited mobility of Cr during listvenitization (Ivan 1985).

The studied metaultramafic rocks are fine-grained and massive, sometimes foliated as the result of flattening and shearing. Mineralogical and chemical changes as a function of progressive listvenitization were described in detail above and are graphically summarized in Fig. 3.

Mineralogy of opaque phases

Chromite is a characteristic accessory mineral and was found in every sample used in this work in different proportions. There is a negative correlation between abundance of chromite and the alteration degree of listvenites. The more altered samples have in general less chromite, but exceptions from this trend are common. In the serpentinites, chromite is less altered and the chromite clusters are up to 2 cm in diameter. On the other hand, chromite in the listvenites shows sponge texture caused by the intensive metasomatic reactions. Sometimes chromite is overgrown by magnetite. Some listvenite samples contain zones with quartz, dolomite, illite, and abundant rutile.

The investigated antigorite serpentinites contain no sulfides or other ore minerals apart from chromite and magnetite. The listvenites contain abundant small (<100 µm) disseminated accumulations of opaque, sulfide–arsenide minerals (Figs. 4, 5). Overall, they are minor to trace constituents of these rocks. Their identification is challenging due to the size of the minerals and their complex intergrowths. Nevertheless, it was possible to identify pyrite, chalcopyrite, arsenopyrite, gersdorffite, skutterudite, pentlandite, siegenite, linnaeite, and millerite by reflected-light microscopy (Fig. 4).

The most common sulfides in the listvenites are millerite and siegenite, usually intergrown with each other (Figs. 4a, 5a) in anhedral grains. Gersdorffite and other sulfarsenides are usually found disseminated in the silicates of the listvenites or overgrowing sulfides (Fig. 5b). Pyrite occurs in almost all samples in different sizes and shapes (anhedral to euhedral).

Sulfides of Ni–Co–Fe show certain correlation with the degree of rock alteration. The more distal zones contain more millerite and siegenite than the proximal zones. Millerite and siegenite are found especially in the antigorite–talc–carbonate and talc–carbonate rocks. Pyrite is present in all listvenite samples, but its proportion increases toward the proximal zones. Here, pyrite is accompanied by minor amount of siegenite, but millerite is missing.

PGE minerals form tiny grains found in chlorite–quartz–carbonate, fuchsite–quartz–carbonate, and fuchsite–quartz rocks. They all belong to the listvenites with higher degree of metasomatic overprint. The minerals of PGE are spatially associated with sulfides (e.g., pyrite) but may be also enclosed in silicate matrix (e.g., fuchsite) with no opaque minerals.

Sulfarsenides of the gersdorffite–cobaltite series are restricted to the most proximal alteration zones and in the hydrothermal veins themselves. They were found in the chlorite–quartz–carbonate and fuchsite–quartz–carbonate rocks.

Chemical composition of the opaque minerals – electron microprobe

Pyrite, chalcopyrite, and tetrahedrite

Pyrite in the listvenites shows stoichiometric compositions with low amounts of As, Ni, and Co with a mean formula Fe0.99Co0.01Ni0.03S2.00. Higher Ni, Co, and Cu concentrations are restricted to irregular patches in larger pyrite crystals. The Ni-richest composition can be expressed by the formula Fe0.85Ni0.18S2.96. Arsenic is slightly enriched in rims, but the concentrations are low (<1 wt.%).

Chalcopyrite is found either intergrown with Fe–Ni sulfides or as large anhedral masses together with tetrahedrite.
The aggregates of chalcopyrite and tetrahedrite usually overgrow Ni–Co sulfarsenides. The mean composition of chalcopyrite is Cu_{0.99}Fe_{1.00}S_{2.01} and the only trace elements are Sb and As (up to 0.07 and 0.09 wt.%%) in assemblages with tetrahedrite and Ni (up to 0.08 wt.%%) in assemblages with the Fe–Ni sulfides.

Siegenite, millerite, and pentlandite

Siegenite and millerite usually occur together (Figs. 4a, 5a). Millerite is chemically homogeneous (Table 1), with minor Fe (up to 1.05 wt.%), Co (0.16), and As (0.14). The composition of siegenite is more variable, with a tendency to be As-richer and Spoorer than the nominal formula, with the mean formula Ni_{2.13}Fe_{0.11}Co_{0.65}Cu_{0.01}S_{3.91}.

Pentlandite is only a minor phase with the mean stoichiometry Ni_{4.32}Fe_{4.43}S_{8.18} displaying a Fe:Ni-ratio of (almost) 1:1 and a sulfur content, which is greater than the stoichiometric amount. However, there are also some compositions with Ni:Fe ratios of almost 2:1. Apart of traces of Zn, Co, and Cu, pentlandite contains up to 0.99 wt.% Pt in spot analyses.

Fig. 3. Idealized profile of alterations of the antigorite serpentinites. Samples used in this study are assigned to the mineral assemblages in the alteration zones and listed on the top of the profile. Features related to the occurrence of sulfide minerals or PGE are marked by the colored circles. Each sample that contained such minerals or PGE concentrations is represented by one circle; for that reason, there may be more than one circle of a certain color in one column. Explanation: A = antigorite-serpentinites, B = antigorite–talc–carbonate rocks, C = talc–carbonate rocks, D = chlorite–quartz–carbonate rocks, E = fuchsite–quartz–carbonate rocks, F = fuchsite–quartz rocks, G = carbonates with ore minerals.

Fig. 4. Reflected light (RL) and back-scattered electron (BSE) images of opaque phases in listvenites. a — Sulfide mineralization, represented by millerite and siegenite, in fuchsite–chlorite–quartz–siderite listvenite with relics of chromite crystals (RL, sample FD-122); b — Chalcopyrite lamellae in pentlandite (RL, FD-505); c — Millerite lamellae in siegenite (BSE, FD-503); d — Chromite relics together with sulfarsenide mineralization (gersdorffite–cobaltite, FD-503); e — Chromite relics together with siegenite (FD-157).
An interesting feature of the sulfides are the exsolution textures found in the anhedral sulfide grains (Figs. 4b, c, 5c). More often are these textures formed by lamellae of millerite in siegenite, less common are lamellae of chalcopyrite in pentlandite.

Sulfarsenides and arsenides

Arsenopyrite is a minor phase and only occurs as disseminated crystals in siderite–ankerite–quartz veins together with gersdorffite. The mineral chemistry of arsenopyrite is relatively constant and approaches the mean stoichiometry of Fe_{1.01}Co_{0.03}As_{0.97}S_{0.99}.

Members of the gersdorffite–cobaltite solid solution (Table 1) usually occur as small disseminated crystals in the listvenite samples. They are found either together with arsenopyrite or as veinlets or are intergrown with pyrite, millerite, and siegenite (Fig. 5b). The compositions of gersdorffite–cobaltite vary from almost end member gersdorffite Ni_{0.94}Co_{0.08}Fe_{0.02}As_{0.93}S_{1.02} to solid solution compositions like Ni_{0.55}Co_{0.46}Fe_{0.04}As_{0.94}S_{1.01} to nearly pure cobaltite Co_{0.88}Fe_{0.08}Ni_{0.07}As_{0.97}S_{0.99}.

Platinum-group minerals (PGM)

Visible minerals with platinum-group elements (PGE) as their essential components are rare and usually very small (from slightly less than a μm to a few μm; Fig. 5c–f). Their small size precluded observation of their optical properties in reflected polarized light. It also posed a problem for the EMP analyses because the excitation volume involved certainly a portion of the neighboring phases. The PGM’s are intergrown with base-metal sulfides or found in the listvenite matrix.

In general, the PGM’s are rich in platinum and it is difficult to assign them to a mineral. One grain (sample FD-140) that could have been assigned to a known mineral (Fig. 5c, Table 2) had the composition (Pt_{0.76}Ni_{0.10}Fe_{0.10}Cr_{0.03})As_{0.97}S_{1.00} corresponding to cooperite. Two tiny grains (around 1 μm) enclosed in fuchsite (sample FD-517) gave mixed analyses of PGE’s, As, S, and the elements expected in fuchsite. If the elements believed to belong to the surroundings are ignored, the stoichiometry corresponds roughly to sperrylite (nominally PtAs_{2}) with a minor Pd and S content. The other compositions measured probably represent mixed analyses due to the minute size of the inclusions. Sample FD-138 contained a Pt–Pd–Ir–Te-rich inclusion in pyrite (Fig. 5d, Table 2). Sample FD-122 had a few grains of a Pt–Au–Cr-alloy (Fig. 5e) with a compositional range Pt 28.76–29.42 wt. %, S 0.15–0.17 wt. %, Cr 3.28–3.47 wt. %, Au 66.08–66.34 wt. %, and Fe 0.87–1.18 wt. % (Table 2).

PGE concentration in nominally PGE-free sulfides

Beside the PGM’s in the listvenites, it is possible to detect PGE’s in the nominally PGE-free sulfides and sulfarsenides of the listvenite samples and in the hydrothermal Ni–Co–As mineralization in the ore veins from Dobšiná (Table 3). Among the PGE’s, only Pt and sometimes Pd were detectable in our samples, despite long counting times and high sample currents used. The average concentration of Pt in the opaque minerals of the listvenite is 0.06 wt. % (n=52). There are differences
Table 1: Representative analyses of sulfides and sulfarsenides from the Dobšiná listvenite in wt. %.

<table>
<thead>
<tr>
<th></th>
<th>millerite</th>
<th>siegenite</th>
<th>pentlandite</th>
<th>pyrite</th>
<th>arsenopyrite</th>
<th>gersdorffite–cobaltite solid solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
<td>0.22</td>
</tr>
<tr>
<td>S</td>
<td>35.54</td>
<td>41.62</td>
<td>33.97</td>
<td>53.29</td>
<td>19.08</td>
<td>19.51</td>
</tr>
<tr>
<td>As</td>
<td><0.05</td>
<td>1.13</td>
<td><0.05</td>
<td>0.07</td>
<td>44.87</td>
<td>44.64</td>
</tr>
<tr>
<td>Co</td>
<td>0.13</td>
<td>15.13</td>
<td>0.53</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Cu</td>
<td><0.02</td>
<td>0.72</td>
<td><0.02</td>
<td>0.59</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Ni</td>
<td>63.70</td>
<td>35.14</td>
<td>32.85</td>
<td>0.46</td>
<td><0.02</td>
<td>32.92</td>
</tr>
<tr>
<td>Fe</td>
<td>0.69</td>
<td>5.57</td>
<td>32.07</td>
<td>45.56</td>
<td>35.05</td>
<td>0.75</td>
</tr>
<tr>
<td>Total</td>
<td>100.07</td>
<td>99.32</td>
<td>99.38</td>
<td>100.02</td>
<td>99.00</td>
<td>100.71</td>
</tr>
</tbody>
</table>

Table 2: Electron microprobe analyses of the PGE-bearing phases from the listvenites in Dobšiná in wt. %.

<table>
<thead>
<tr>
<th>phase</th>
<th>Pt–Ir–Pd–Te phase</th>
<th>cooperite</th>
<th>Pt–Au alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample figure</td>
<td>FD-138</td>
<td>FD-505</td>
<td>FD-122</td>
</tr>
<tr>
<td>Sb</td>
<td>0.52</td>
<td><0.03</td>
<td><0.03</td>
</tr>
<tr>
<td>Pt</td>
<td>6.16</td>
<td>76.58</td>
<td>28.98</td>
</tr>
<tr>
<td>S</td>
<td>42.42</td>
<td>16.38</td>
<td>0.17</td>
</tr>
<tr>
<td>As</td>
<td>2.91</td>
<td>1.66</td>
<td><0.05</td>
</tr>
<tr>
<td>Zn</td>
<td><0.04</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>Cu</td>
<td><0.02</td>
<td>0.83</td>
<td>3.41</td>
</tr>
<tr>
<td>Co</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Cu</td>
<td><0.02</td>
<td>0.08</td>
<td><0.02</td>
</tr>
<tr>
<td>Au</td>
<td>0.10</td>
<td><0.04</td>
<td>66.18</td>
</tr>
<tr>
<td>Ni</td>
<td>0.49</td>
<td>2.88</td>
<td><0.02</td>
</tr>
<tr>
<td>Fe</td>
<td>34.97</td>
<td>1.93</td>
<td>1.02</td>
</tr>
<tr>
<td>Te</td>
<td>4.36</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>Pd</td>
<td>5.84</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Ir</td>
<td>2.56</td>
<td><0.03</td>
<td><0.03</td>
</tr>
<tr>
<td>Total</td>
<td>100.33</td>
<td>100.36</td>
<td>99.78</td>
</tr>
</tbody>
</table>

The Pt concentration averages to 6 ppb, that of Pd to 16 ppb. The Pt concentration in pyrite and siegenite is particularly high, even though inspection in microscope did not lead to identification of any Pt phases (only tiny sperrylite inclusions were found). Samples FD-511 and FD-138 also contained measurable Ir (5 and 3 ppb, respectively). Osmium, Rh, and Ru were always below detection limits, although we have to notice that the detection limit for Ru (50 ppb) was much higher than for the other platinum-group elements.

There is no clear pattern of enrichment or depletion of PGE throughout the metasomatic assemblages in the listvenites. Some of the samples show elevated PGE content (defined here as >9 ppb Pt or >9 ppb Pd; Fig. 3) but it is not clear to what extent are such variations caused by nugget effects. Even the lowest antigorite serpentinites contain 5 ppb Pt, only slightly below the average of all analytical data (6 ppb).

PGE+Au concentrations in selected minerals – LA-ICP-MS

Pyrite, gersdorffite–krutovite aggregates, and chromite were analyzed for their PGE content using LA-ICP-MS. The results are summarized in Fig. 7 that shows the average concentrations of the PGE’s in each profile. An example of a LA-ICP-MS profile is shown in Fig. 7f. The large signal variations in the LA-ICP-MS profiles suggest that the detected concentrations are related mostly to sub-µm inclusions.

For the listvenites, the sample FD-138 from a fuchsite–quartz–carbonate rock and FD-140 from a chlorite–quartz–carbonate rock were selected for the measurements (Fig. 7c,d). The PGE concentrations are higher in pyrite than in siegenite. Pyrite crystals (FD-138) contain on average 2100 ppb Pt, 2700 ppb Pd, 1100 ppb Ir, and 1000 ppb Ru. Striking is the very low Au concentration (average 30 ppb). In siegenite, there are only a few measurable spots with Pd, Pt, Au, and Os. The maximum concentrations in pyrite and siegenite are much higher than the averages given above, but the ablation profiles show that the maxima are limited to small spots in the minerals.

Gersdorffite in the listvenites (Fig. 7d) has even more PGE’s, with averages of 16,000 ppb Ru, 11,900 ppb Pd, 2600 ppb Rh, but little Pt (140 ppb). Gold is also higher than in pyrite or siegenite, on average 3800 ppb.

The measured chromite grains in the sample FD-522 (antigorite–talc–carbonate listvenite; Fig. 7e) show elevated Pd concentrations, with an average of 3300 ppb. Low concent-

Bulk concentrations of PGE in the studied rocks

The studied listvenites contain a few of the PGE’s in measurable concentrations, especially Pt and Pd (Fig. 6, Table 5).
trations of Ir and Ru, just above the detection limits, were found in a few spots. Although the LA-ICP-MS profiles show clear variations in concentration, the variations are not quite so abrupt but much more homogeneous compared to the sulfides and sulfarsenides.

Gersdorffite in the hydrothermal veins has much less PGE’s than the disseminated opaque phases in the listvenites (Fig. 7a, b). The average concentrations in the sample 119c are 700 ppb Ru, 100 ppb Pd, and less of the other elements. In the sample 12a, the concentrations are about one order of magnitude lower, but still dominated by Ru, with less Pd and other elements. In small spots along the measured profiles, much higher concentrations were encountered (Fig. 7f).

Discussion

Ultramafic rocks affected by hydrothermal systems and altered to listvenites serve as a source of metallic elements for ore deposits. Examples are the long-known listvenites of the Southern Ural Mts where the Au deposits with Ni–Co sulfarsenides are associated with listvenites (Belogub et al. 2017). Listvenites were postulated as the source of gold also in the Au deposits in ultramafic rocks with variable degree of listvenitization (Pipino 1980; Buisson & Leblanc 1987; Buckman & Ashley 2010; Zohir & Lehmann 2011; Helmy & Zohir 2015). Listvenites were also the source of Ni and Co at the Nelson deposit in New Zealand (Grapes & Challis 1999), but these authors identified a granite intrusion as the source of As.

Mineralogy of opaque phases in the Klátov Group and Meliatic metaultramafic rocks

There is a significant difference in the mineralogy of opaque phases between the Meliatic and Klátov Group serpentinites and listvenites. The Meliatic serpentinites in Dobšiná contain awaruite and heazlewoodite, with rare millerite and
Pentlandite (Kantor 1955). This author reported that awaruite forms lamellae-similar aggregates and speculated that awaruite formed as a pseudomorph after an older, cubic mineral. Heazlewoodite occasionally develops a thin rim of submicrometer large grains that could be millerite but was not identified with certainty.

Awaruite and heazlewoodite are long known as witnesses of very low \(O_2\) fugacity during serpentinization (Ramdohr 1967; Kanehira et al. 1975). They do not occur in unaltered peridotites but are common, even though minor, constituent of serpentinites. Less common are native copper (Kanehira et al. 1975) or native nickel (Dekov 2006). Extremely reducing conditions, characteristic for serpentinization, go hand in hand with very low silica activity, generating the typical mineral content of the serpentinites (Frost & Beard 2007).

Preservation of awaruite and heazlewoodite in the Meliatic serpentinites excludes hydrothermal overprint and mobilization of Ni, Co, and other metals. They remained locked in the insoluble alloys. Similar, highly reducing assemblages of alloys and PGE minerals were reported from a body of Meliatic metapyroxenites in Jasov (Radvanec & Uber 2016), but only in the form of awaruite grains armored as inclusions in their silicate host.

The listvenites of the Klátov Group serpentinites, on the other hand, contain abundant sulfides and sulfarsenides in small amounts. In their early work, Hovorka & Ivan (1981a) observed millerite and pentlandite. In our work, we expanded these observations and attempted to correlate the opaque minerals with the alteration degree of the rocks.

There is a link between the mineralogy and alteration of the rocks. The arsenides and sulfarsenides are restricted to the immediate vicinity of the veins. Sulfides with higher metal/sulfur ratio, such as pyrite, are common, but their abundance drops as the alteration weakens, i.e., in the direction away from the veins. The concentrations of PGE’s are higher in the listvenites than in the hydrothermal veins. These observations could be explained by leaching of Ni, Co, and PGE’s from the Klátov Group serpentinites.

Sources of arsenic and sulfur for the hydrothermal Ni-Co mineralization

The possibilities of the source of arsenic are (i) sedimentary and metamorphic country rocks in the rock complexes near the ore veins, (ii) crystallization products of sulfide and

Table 5: Whole rock Pd and Pt concentrations of the listvenite samples from Dobšiná. All data in ppb.

<table>
<thead>
<tr>
<th>sample</th>
<th>Pd</th>
<th>Pt</th>
<th>Au</th>
<th>sample</th>
<th>Pd</th>
<th>Pt</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD-122</td>
<td><10</td>
<td>2</td>
<td>2.0</td>
<td>FD-503</td>
<td><10</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-126</td>
<td><10</td>
<td>4</td>
<td>1.6</td>
<td>FD-504</td>
<td><10</td>
<td>4</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-132</td>
<td><10</td>
<td>5</td>
<td>0.6</td>
<td>FD-505</td>
<td><10</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-136</td>
<td><10</td>
<td>2</td>
<td>0.2</td>
<td>FD-509</td>
<td>28</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-138</td>
<td><10</td>
<td>11</td>
<td><0.2</td>
<td>FD-511</td>
<td>273</td>
<td>15</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-140</td>
<td><10</td>
<td>9</td>
<td><0.2</td>
<td>FD-512</td>
<td><10</td>
<td>3</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-146</td>
<td>38</td>
<td>10</td>
<td><0.2</td>
<td>FD-514</td>
<td><10</td>
<td>2</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-147</td>
<td><10</td>
<td>5</td>
<td><0.2</td>
<td>FD-516</td>
<td><10</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-148</td>
<td><10</td>
<td>5</td>
<td><0.2</td>
<td>FD-520</td>
<td><10</td>
<td>6</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-157</td>
<td><10</td>
<td>3</td>
<td><0.2</td>
<td>FD-522</td>
<td>12</td>
<td>4</td>
<td><0.2</td>
</tr>
<tr>
<td>FD-502</td>
<td><10</td>
<td><2</td>
<td><0.2</td>
<td>FD-537</td>
<td><10</td>
<td>18</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Fig. 7. a–e — LA-ICP-MS data on concentrations of PGE+Au in various minerals in the listvenite samples from Dobšiná. Vertical scales for the diagrams a–e are identical; f — LA-ICP-MS measurement profile on the mass 106 (palladium) in the sample 119, showing that the high concentrations are restricted to a few peaks in the data, corresponding to submicrometric inclusions of Pd-containing minerals in the sample.
arsenide melts in the ultramafic protoliths, or (iii) mantle metasomatism of the rocks.

Sedimentary rocks in the area of Dobšiná include black shales of Carboniferous age with tens of ppm of arsenic. Furthermore, there is widespread, low-grade sulfidic impregnation of the gneisses in the rock complex that hosts the veins, probably related to the retrograde, Alpine metamorphism of the gneisses in the prehnite–pumpellyite facies. These rock types could have supplied arsenic as well as sulfur into hydrothermal fluids.

Ultramafic rocks are rarely the hosts of arsenides (Ishimaru & Arai 2008) or arsenic in the oxidized, pentavalent form (Hattori et al. 2002). The highest arsenic concentrations in such rocks are restricted to specific type of orthomagmatic deposits, one of the best examples being Norilsk in Russia (Spiridonov et al. 2015). Here, one of the principal ore minerals is sperrylite (PtAs). It is assumed that the ultrabasics rocks were enriched in As and S by contamination with crustal material. In addition to the silicate melt, they also contained immiscible droplets of sulfide or perhaps arsenide melts (Piña et al. 2015, 2021). The arsenide melt has higher distribution coefficients for the PGE's than the sulfide melt and concentrates strongly the PGE's. Experimental studies on model systems confirm the observation that the Pt–Pd arsenides and antimonides crystallize at “the last dregs of crystallization” (Liu & Brenan 2015).

Arsenic, along with antimony, are relatively rapidly removed by the action of fluids from the mantle wedges during subduction; the removal from the subducting plates is somewhat slower (Hattori et al. 2002). Such fluids could have been generated during Jurassic–Cretaceous subduction and closure of the Meliata Ocean. They could have contributed to the arsenic budget of the Ni–Co veins in Dobšiná.

In a recent work, Gonzáles-Jiménez et al. (2021) investigated in detail serpentinites of the La Cabaña area in Chile. They linked precipitation of early Ni sulfides and arsenides with influx of S–As–Sb-bearing fluids during antigoritization in the subduction channel. According to this work, the trace element signature can distinguish opaque phases related to serpentinization and the orthomagmatic opaque phases. Those related to serpentinization are lower in precious metals and higher in As, Sb, Te, Bi, and Pb.

There are multiple possible sources of arsenic and other elements for the Ni–Co ores in Dobšiná. Sedimentary and metamorphic host rocks could have supplied substantial fraction of arsenic and sulfur into the hydrothermal fluids. We cannot exclude but also cannot confirm that the serpentinites themselves supplied at least some arsenic. Textural evidence shows that the sulfides are earlier than the Ni–Co sulfarsenides (Fig. 5b) and some of the sulfides may have formed during the period of antigoritization.

Bulk PGE+Au concentrations in the rocks

There are differences in the bulk concentrations of PGE+Au, when comparing the studied listvenites with other serpentinite bodies from the Western Carpathians (Fig. 6). Even though are these serpentinites of various ages and tectonic positions and the number of the available analyses is low, some trends can be discerned.

The geochemical link between the Klátov Group serpentinites and the Ni–Co mineralization is strengthened by the elevated PGE and low Au concentrations in the opaque minerals. Gold was intensively leached during listvenitization. The bulk analyses show 30–40 ppb gold in the early stages of listvenitization, dropping down to 10 ppb in the final stages (Ivan 1987). The measured Au concentrations (LA-ICP-MS) in pyrite and sperrylite (from the listvenites) and gersdorffite (from ore veins) are orders of magnitude lower than those of Pd or Ru (Fig. 7). Extractions of PGE’s and Au from serpentinites were also documented at the Co–Ni Bou-Azzer deposit (Morocco) (Leblanc & Fischer 1990; Tourneur et al. 2021). Many features of this large deposits are also shared by the Ni–Co mineralization in Dobšiná. Certain analogy can be also found in the mobilization and occurrence of Pd which forms a separate Bleïda deposit (within the Bou-Azzer camp; El Ghorfi et al. 2006).

These observations suggest that gold was intensively leached from the listvenites, whereas Pt, Pd, and other PGE’s were not. Such behavior can be explained by much higher affinity of the PGE’s for arsenides and sulfides than in the case of gold. Platinum, for example, forms a number of sulfide and arsenide minerals, such as cooperite found in this work or sperrylite assumed in this work. Gold does not have such a tendency and is carried further by the fluids, but the PGE’s are captured by the sulfides and sulfarsenides in the listvenites.

Conclusions

Our results show that the metaultramafic rocks were the source of Ni and Co. The mineralogy of these elements is changing as a function of alteration degree. In the distal zones, sulfides of Ni and Co are found, whereas the proximal zones contain Ni–Co sulfarsenides. Platinum-group elements were also leached and mobilized from the metaultramafic rocks but probably only over short distances. Their overall concentration was not affected; in the proximal zones, PGE’s may have been deposited by the fluids in the form of separate minerals, albeit only as tiny grains. The LA-ICP-MS scans suggest that the sulfarsenides hosted in the metaultramafic rocks host abundant submicro-meter inclusions of PGE minerals.

The hydrothermal Ni–Co ores, on the other hand, contain much less PGE’s than minerals with similar chemistry and crystal structure found in the listvenites. The sulfide mineralogy in the proximal alteration zones (pyrite, gersdorffsite) suggests that the fluids brought Fe, S, and likely also substantial portion of As. We found no clear evidence that the metaultramafic rocks themselves could have been a substantial source of arsenic. An alternative
explanation, that the fluids leached As from the metaultramafic rocks almost completely and afterwards caused deposition of disseminated gersdorffite in the listvenites, is feasible but not proven. Other possible, local sources of arsenic could have been the Carboniferous black shales or gneisses with low-grade, disseminated sulfidic impregnations.

Mineralogy of the opaque phases in the Klátov Group metaultramafic rocks and the Meliatic serpentinites is completely different. Meliatic serpentinites, even though they host small hydrothermal veinlets with Ni–Co mineralization, were not altered and did not contribute material for the Ni–Co veins in Dobšiná.

Acknowledgements: This work was financially supported by a Deutsche Forschungsgemeinschaft grant KL 2131/2-1. We would like to thank Peter Kodéra for editorial handling and Martin Števko and an anonymous reviewer for their helpful comments, which helped to improve the manuscript.

References

Liu Y. & Brenan J. 2015: Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO₂–fS₀ conditions. Geochimica et Cosmochimica Acta 159, 139–161. https://doi.org/10.1016/j.geoca.2015.03.021

Electronic supplementary material is available online: Supplement S1 (EPMA analyses) at http://geologicacarpathica.com/data/files-supplements/GC-74-2-Kiefer_Suppl_S1.xlsx