background image

GEOLOGICA CARPATHICA

, DECEMBER 2019, 70, 6, 512–530

doi: 10.2478/geoca-2019-0030

www.geologicacarpathica.com

Exhumation history of the Variscan suture:  

Constrains on the detrital zircon geochronology  

from Carboniferous–Permian sandstones  

(Northern Gemericum; Western Carpathians)

ANNA VOZÁROVÁ

1, 

, KATARÍNA ŠARINOVÁ

1

, DUŠAN LAURINC

2

, ELENA LEPEKHINA

3

,  

JOZEF VOZÁR

4

, NICKOLAY RODIONOV

3

 and PAVEL LVOV

3

1

Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy and Petrology, Mlynská dolina, Ilkovičova 6, 

842 15 Bratislava, Slovakia; 

 

anna.vozarova@uniba.sk, katarina.sarinova@uniba.sk 

2

State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04, Bratislva 11, Slovakia; dusan.laurinc@geology.sk 

3

Centre of Isotopic Research, A.P. Karpinsky Russian Geological Research Institute (FGBU «VSEGEI»), Sredny prospekt 74,  

199 106 St.-Petersburg, Russia; Nickolay_Rodionov@vsegei.ru, Elena_Lepekhina@vsegei.ru, Pavel_Lvov@vsegei.ru 

4

Earth Science Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, P. O. BOX 106, 840 05 Bratislava, Slovakia; jozef.vozar@savba.sk

(Manuscript received June 19, 2019; accepted in revised form October 25, 2019)

Abstract: The Late Paleozoic sedimentary basins in the Northern Gemericum evolved gradually in time and space  

within the collisional tectonic regime of the Western Carpathian Variscan orogenic belt. The detrital zircon age spectra, 

obtained from the Mississippian, Pennsylvanian and Permian metasediments, have distinctive age distribution patterns 

that reflect the tectonic setting of the host sediments. An expressive unimodal zircon distribution, with an age peak at  

352 Ma, is shown by the basal Mississippian metasediments. These represent a relic of the convergent trench-slope  

sedimentary basin fill. In comparison, the Pennsylvanian detrital zircon populations display distinct multimodal distri-

butions, with the main age peaks at 351, 450, 565 Ma and smaller peaks at ~2.0 and ~2.7 Ga. This is consistent with 

derivation of clastic detritus from the collisional suture into the foreland basin. Similarly, the Permian sedimentary  

formations exhibit the multimodal distribution of zircon ages, with main peaks at 300, 355 and 475 Ma. The main difference, 

in comparison with the Pennsylvanian detrital zircon assemblages, is the sporadic occurrence of the Kasimovian– 

Asselian (306–294 Ma), as well as the Artinskian–Kungurian (280–276 Ma) igneous zircons. The youngest magmatic 

zircon ages nearly correspond to the syn-sedimentary volcanic activity with the depositional age of the Permian host 

sediments and clearly indicate the extensional, rift-related setting.

Keywords: detrital zircon, U–Pb SHRIMP dating, provenance, tectonic setting.

Introduction

The kinematic evolution of the Western Carpathian orogenic 

system was created during both Variscan and Alpine orogeny. 

Fragments of newly formed Variscan crust were incorporated 

into the Alpine Western Carpathian units, which documents 

the repeating subduction/collision and transform fault pro-

cesses. The Variscan crust was gradually amalgamated due to 

crustal thickening during Devonian/Mississippian collision 

events. The Tournaisian/Visean deep-water turbidite trough in 

the Northern Gemericum, originated in a convergent embay-

ment and was continued as a Pennsylvanian peripheral basin. 

The Upper Pennsylvanian/Permian post-collisional evolution 

of the Western Carpathian realm continued by development of 

transtension/transpression and rift-related continental sedimen-

tary basins.

Fragments of the Late Paleozoic sedimentary basin fillings 

are only preserved inside of the internal structural zone of  

the Alpine Western Carpathian orogeny. They became a part  

of the principal crustal-scale Alpine units of the Central and 

Inner Western Carpathians. These are arranged in an order 

from N to S and from bottom to top in the Tatricum, Vepori-

cum, Northern and Southern Gemericum and several cover 

nappe systems (Fatricum, Hronicum, Bôrka Nappe as a part of 

Meliaticum, Turnaicum and Silicicum) (Biely et al. 1996a, b; 

Plašienka et al. 1997; Rakús et al. 1998; Plašienka 2018 and 

references therein).

Relics of the Carboniferous–Permian sedimentary sequences 

are present in the relatively wide range of sedimentary envi-

ronments, evolving from deep-water through shallow-marine 

to paralic and continental. Within the framework of the whole 

Western Carpathian belt, the remnants of sedimentary rocks 

from this wide succession of sedimentary environments, and 

moreover in direct temporal sequence, are preserved only in 

the Northern Gemeric Unit (NGU; Fig. 1),. Petrofacial ana-

lysis of the Carboniferous–Permian sediments (Vozárová  

1998 a, b), supplemented by the detrital zircon geochronology, 

directly reflects the process of tectono–thermal evolution and 

exhumation of the Variscan collision suture in the Western 

Carpathians. The U–Pb age dating of detrital zircons from this 

background image

513

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

area was completed for the first time by Vozárová et al. (2013). 

From the NGU Carboniferous–Permian sediments, 172 zircon 

ages were obtained, with a relatively wide age variance, ran-

ging from 260 to 2700 Ma. Their mutual proportions were 

gradually changing, depending on the lithostratigraphy and 

time-scale, from the oldest to the youngest sediments. To this 

data set 126 new zircon data have been added with the inten-

tion of obtaining more detail background for interpretation.

Geological setting of the NGU  

Carboniferous–Permian sedimentary sequences

The NGU zone contains relics of the Variscan collision 

suture, characterized by thrust wedges of the two pre-Carbo-

niferous terranes, the medium/high-grade gneiss–amphibolite 

Klátov Complex and the low-grade Rakovec Complex, and 

relics of the Mississippian syn-orogenic deep-water turbidite 

sequence. Pennsylvanian shallow-marine to paralic and Per-

mian continental sedimentary basins postpone the main colli-

sional events (e.g., Bajaník et al. 1983; Spišiak et al. 1985; 

Vozárová & Vozár 1988; Hovorka et al. 1988; Németh  

2002; Németh et al. 2004; Ivan 2009; Radvanec et al. 2017). 

Defor mational and metamorphic events recorded in both pre- 

Carboniferous terranes occurred in the Late Devonian– 

Mississippian, which is documented by their reworked rock 

fragments within the overstepping Pennsylvanian conglome-

rates (Krist 1954; Vozárová 1973, 2001) and by several geo-

chronological data (Vozárová et al. 2005, 2013; Putiš et al. 

2008, 2009a). Those terranes experienced Alpine reworking 

(Dallmeyer et al. 1996, 2005; Lexa et al. 2003; Vozárová et al. 

2005, 2014; Putiš et al. 2009b).

Mississippian: The Mississippian formations have been pre-

served as tectonic relics at the W-SW and E-SE boundary of 

the NGU. These suffered a significant shortening as a result of 

Alpine thrusting of the NGU on the underlying Southern 

Veporicum in the footwall along the Lubeník–Margecany Line 

(LML; Andrusov 1959) (Fig. 1). Equally, the tectonic contact 

of the NGU with the Southern Gemericum is represented by 

the Hrádok–Železník Line (HZL) in the hanging wall (defined 

by Abonyi 1971), which continues into a system of thrust 

faults to the east (Fig. 1). The Mississippian turbidite wedges, 

supposedly derived from the Variscan suture, were interpreted 

as the fill of an intrasuture remnant ocean basin (Vozárová & 

Vozár 1988) or foredeep basin (Neubauer & Vozárová 1990; 

Ebner et al. 2008). In spite of orogenic/metamorphic reduction 

the present thickness of the Mississippian formations is esti-

mated >1000 m (Vozárová 1996). A completely different 

 opinion on the genesis of the Mississippian rock sequence  

was given by Novotná et al. (2015). The authors interpreted 

Fig. 1. Geological sketch of the Northern Gemericum (modified according to Biely et al. 1996 and Bajaník et al. 1984a), showing localities of 

the studied detrital zircon samples. Abbreviations: LML — Lubenik–Margecany Line; HZL — Hrádok–Železník Line.

background image

514

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

the basal part of the Ochtiná Group (the Hrádok Fm. according 

to the lithostratigraphic classification by Vozárová 1996,  

Fig. 2) as a tectonic melange formed during the Cretaceous 

collision at the boundary of two major crustal nappes, the 

Gemericum and Veporicum. It is, however, necessary to empha-

size that the Mississippian succession represents a sedi mentary 

formation with typical features of deep-water turbidite sedi-

mentation, but certainly strongly tectonically reworked during 

the Cretaceous orogenic processes.

The whole Mississippian sequence was deformed in the P–T 

conditions of greenschist facies. Fine-grained muscovite from 

the Hrádok Formation reflects the complex Alpine overprint 

Fig. 2. Schematic lithostratigraphic columns of the Carboniferous–Permian sedimentary formations in the Northern Gemericum (modified after 

Bajaník et al. 1981; Vozárová 1996 and Vozárová et al. 2015) with sample locations. a — W and SW part; — N part; c — E and SE part.

background image

515

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

(

40

Ar/

39

Ar — 87 Ma at the rim to 142 Ma in the core, Vozárová 

et al. 2005; 

40

Ar/

39

Ar — 84 Ma, Putiš et al. 2009b). The Missis-

sippian volcano-sedimentary sequence, defined by Vozárová 

(1996) as the Ochtiná Group (Fig. 2), is represented by the 

deep-water turbidite sediments in its lower part (the Hrádok 

and  Črmeľ  formations)  and  shallow-water,  shaly-carbonate 

sediments in its upper part (Lubeník Formation, inclusive 

Bankov Beds).

The Hrádok Formation (Fm.) consists of a dark-grey and 

black clastic turbidite sequence, metaparaconglomerates, meta-

sandstones, and metapelites, interlayered with metabasalts, 

metamicrodolerites and basic metavolcaniclastics. Sporadic 

lydites and siliceous metapelites were found only in thin  layers 

and lenses. Slabs of ultramafic rocks (oceanic crust fragments) 

represented by antigorite serpentinites and tremolite-talc schists 

and scarce amphibolites as well as actinolite green-schists  

are integral part of this deep-water turbidite slope/rise 

sequence. A monotonous complex of dark-grey and black 

metapelites, overlying the relatively coarser-grained basal part 

of the Hrádok Fm., yielded a microflora indicating the Upper 

Turnaisian–Visean age (Bajaník & Planderová 1985).

The  Mississippian  sequence  of  the  Črmeľ  Fm.  (Fig.  2c) 

 represents a distal turbidite complex consisting of alternating 

metapelites, fine-grained metasandstones, basic to interme-

diate metavolcanics and its metavolcaniclastics, subsidiary 

carbonates and lydites (Bajaník et al. 1984a; Grecula 1998). 

Small amounts of acid volcanoclastic detritus are unevenly 

dispersed in its basal part. The Tournaisian–Visean age of  

the Črmeľ Fm. was indicated by microflora assemblages by 

Snopková in Bajaník et al. (1984b).

The overall upward-shallowing Mississippian sequence is 

interpreted as a reflection of progressive basin filling. The youn-

gest Mississippian sedimentary rocks (Lubeník Fm.; Vozárová 

1996; Fig. 2) are represented by the Upper Visean–Serpu-

khovian black shales and bioclastic carbonates, well documen-

ted by fauna, mainly in the western part of their occurrences 

(Bouček & Přibyl 1960; Kozur et al. 1976; Zágoršek & Macko 

1994; Mamet & Mišík 2003).

Pennsylvanian: The Pennsylvanian transgressive sequence 

rests unconformably on the two NGU pre-Carboniferous com-

plexes (Klátov and Rakovec) and, also, on the Mississippian 

succession in the E-SE realm of NGU (Fig. 2) and fix up  

the Variscan thrust/nappe structure. The Upper Bashkirian–

Moscovian sequence started after a break of sedimentation, 

with boulder to coarse-grained delta-fan conglomerates 

 

(the  Rudňany  Fm.,  Fig.  2).  They  contain  a  detritus  derived 

from both pre-Carboniferous complexes (Klátov and Rako-

vec), as well as, from the Mississippian sedimentary rocks 

(Krist 1954; Vozárová 1973; Vozárová & Vozár 1988). 

 How ever, sporadic “exotic rocks”, which do not occur on  

the NGU surface today, were found. They include pebbles of 

plagio granites, granitoides, orthogneisses and metaquartzites 

(Vozárová 1973, 2001). Black shales and mica-rich grey sand-

stone intercalations are normal members of the fining upward 

Rudňany Fm. They contain Pennsylvanian macroflora remains 

which were determined by Němejc (1947). The 370—380 Ma 

40

Ar/

39

Ar cooling age data of white mica from metasandstones 

and gneiss pebble indicate a first step of the Variscan colli-

sional suturing in the NGU zone (Vozárová et al. 2005). After 

initial rapid sedimentation the littoral to shallow-neritic lime-

stones were associated with grey and black shales. This silici-

clastic–carbonate lithofacies correspond to the basal part of 

the Zlatník Fm., which the Moscovian age is indicated by rich 

trilobite (Rakusz 1932; Bouček & Přibyl 1960) and conodont 

fauna (Kozur & Mock 1977).

The upper part of the Zlatník Fm. comprises fine-grained 

clastic metasediments associated with basalts and their volca-

niclastics. Poor microfloral assemblages proved the Pennsyl-

vanian age, but not an accurate division. This succession was 

formerly defined as the Zlatník Fm. (ZF) by Bajaník et al. 

(1981). However, Ivan (1997) and Ivan & Méres (2012) sepa-

rated this complex of basic metavolcanics and metavolcani-

clastics, associated with small amounts of fine-grained 

metasediments from the ZF. The authors defined this new 

lithostratigraphic unit as the Zlatník Group. This strongly con-

tradicts the priority rule of the stratigraphic code (Michalík et 

al. 2007). If we assume that this set of basic volcanic lies in  

the tectonic position on the basal sediments of the ZF strata, 

then it should be included in the pre-Carboni ferous NGU 

basement, most likely in the Rakovec Complex. This would 

also be indicated by the detected zircon ages from the ZF basic 

metavolcaniclastic, aged from 478 to 521 Ma (only four zircon 

grains, Vozárová unpublished data), as well as 388–382 Ma 

magmatic age from metabasalts (Putiš et al. 2009a). However, 

such a low number of zircon data does not entitle us to con-

sider such an interpretation.

Termination of the Pennsylvanian peripheral basin is ref-

lected by the paralic sequence of the Hámor Fm. (Fig. 2). It is 

characterized by distinct cyclical coarsening-upward shaly–

sandy–conglomeratic sediments, an absence of synsedimen-

tary volcanism and a local occurrence of ribbed coal seam. 

Poor microflora assemblages proved uppermost Moscovian 

age (Planderová & Vozárová 1980).

Permian: Continental Permian red-beds unconformably 

overlapped slightly deformed relics of the Moscovian periph-

eral basin filling, as well as two pre-Carboniferous NGU crys-

talline complexes and the Mississippian sequences (Fig. 2). 

Prevalent clastic sediments derived from the collision belt are 

associated with andesite/basalt–rhyolite volcanism (Rojkovič 

& Vozár 1972; Václav & Vozárová 1978; Bajaník et al. 1981, 

1983; Novotný & Miháľ 1987; Rojkovič & Miháľ 1991 and 

references therein). The basal part (Knola Fm.) contains 

mostly poorly sorted polymictic conglomerates and breccias 

of extremely variable thickness, with pebble material reflec-

ting the composition of the direct underlier (fossil mudflows 

relieved by alluvial, mainly stream channels, Vozárová 1996, 

1998b). The polyphase volcanic activity manifested large 

sedi mentary cycles. Sediments are characterized by a low 

degree of maturity and mixture of volcanic and non-volcanic 

detritus. The most striking features are the fining-upward allu-

vial cycles, with channel lag, point-bar and floodplain facies, 

alternating with playa at the topmost part of the large cycles. 

background image

516

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

The existing monazite and U–Pb SHRIMP zircon ages yield 

Cisuralian ages (Kungurian) for both, the acid and basic volca-

nic  members  (278  Ma  —  monazite,  Rojkovič  &  Konečný 

2005; 272–275 Ma — U–Pb zircon ages, Vozárová et al. 2012). 

The last volcanic phase was linked with extension at the Per-

mian–Triassic boundary, connected with the beginning of  

the  Alpine  orogenic  cycle  (257.2 ± 3.0  and  255.6 ± 3.7  Ma  

Re–Os molybdenite ages, Kohút et al. 2013; 251 ± 4 Ma U–Pb 

zircon ages, Vozárová et al. 2015).

The NGU Permian–Triassic volcanic event seems to be 

approximately coeval with the sedimentation of the Novoveská 

Huta Fm. evaporite member that is correlated with the Zech-

stein (Continental Stage) based on S and O isotopes (Kantor  

et al. in Vozárová 1997). The polymictic conglomerates  

(the Strážany Beds; Miháľ in Rojkovič & Miháľ 1991) that 

underlie this evaporate lithofacies, contain fragments of volca-

nics, which were redeposited from the Cisuralian volcanic 

suite. On the account of that, the stratigraphic gap from the 

mid-Guadalupian to the Lopingian, is supposed to be trust-

worthy (Vozárová et al. 2015) (Fig. 2c).

Analytical methods

The rock-forming minerals were studied by an electron 

microprobe (CAMECA SX-100, in the laboratory of the Geo-

logical Survey of Slovak Republic, Bratislava). Zircons have 

been extracted from the rocks by standard grinding, heavy 

liquid and magnetic separation analytical techniques. The inter-

nal structure of individual zircon crystals was examined  

with cathodoluminescence (CL) imaging by SEM (CamScan 

M2500 Oxford Instruments). In situ U–Pb analyses were per-

formed using a Sensitive High-Resolution Ion Microprobe 

(SHRIMP-II) at the Centre of Isotopic Research (CIR) in  

A.P. Karpinsky Russian Geological Institute (VSEGEI), by 

applying a secondary electron multiplier in peak-jumping 

mode, based on the procedure described by Williams (1998). 

Primary beam size allowed for the analysis an area of ca. 

25×20 µm. CL, BSE and optical (transmitted light) imaging 

was applied to reveal the internal and surface features that 

were used to choose the position of analytical spots on the 

mostly homogeneous inclusion-free parts of individual zircon 

grains. The 80 µm wide ion source slit, in combination with  

a 100 µm multiplier slit, allowed for the mass-resolution  

M/∆ M ≥ 5000  (1%  valley);  hence,  all  the  possible  isobaric 

interferences were resolved. The following ion species were 

measured in the sequence: 

196

(Zr

2

O) – 

204

Pb – background  

(ca. 

204.5

AMU) – 

206

Pb – 

207

Pb – 

208

Pb – 

238

U – 

248

ThO – 

254

UO. At least 

4 mass-spectrums were acquired for each analysis. Zircon 

Temora-1 (Black et al. 2003) was measured as the main refe-

rence material (RM): one analysis per every four analyses  

of unknowns to obtain their U/Pb ratios. Zircon 91500 

(Wiedenbeck et al. 1995) was used as a concentration RM. 

The obtained results were processed by the SQUID v1.12 

(Ludwig 2005) and ISOPLOT/Ex 3.75 (Ludwig 2012) soft-

ware, with decay constants recommended by Steiger & Jäger 

(1977), including modern corrections, e.g. Hiess et.al (2012). 

Common lead correction was done on the basis of the mea-

sured 

204

Pb/

206

Pb ratio. The ages given in this text, if not addi-

tionally specified, are 

207

Pb/

206

Pb for zircon older than 1.0 Ga, 

and 

206

Pb/

238

U for those younger than 1.0 Ga. The degree of 

discordance was calculated according to the following for-

mula:  % D =100 * (Age

207/206

/Age

206/238

−1).  The  uncertainties 

are quoted at standard deviation level (1s, i.e. 68.3 % confi-

dence) for individual points and at 2 s level in the Concordia 

diagram, for the Concordia ages or any previously published 

ages discussed in the text. Age distributions of detrital zircons 

are displayed as Kernel Density Estimates (Vermeesch 2012). 

Only  analyses  that  produced  concordant  ages  within  10 % 

(−10 < % D < +10)  were  used.  The  time-scale  calibration  of  

the International Chronostratigraphic Chart (2018-8) was used 

to compare geochronological data from detrital zircons with 

fossil-bearing sedimentary units and tectono–thermal events.

Results

Sample characteristics

Seven samples have been processed for zircon dating from 

the Carboniferous–Permian sandstones of the NGU succes-

sion (Figs. 1, 2). From one previously dated sample an addi-

tional zircon dating was made (LA-66; Vozárová et al. 2013).

Hrádok Fm.: The sample GZ-28 was collected from 

 

the upper part of the Hrádok Fm., SE from the Sušanský vrch 

elevation, along a forest road cut, 421 m above sea level (GPS 

coordinates: 48°35.504’N, 20°03.076’E). This metasandstone 

displays a strong foliation, with indication of crenulation 

cleavage in places. Primary mineral composition was consi-

derably changed due to a strong Alpine deformation and 

recrystallization. Quartz and detrital micas are the most fre-

quently preserved detrital grains. Primary clayey matrix and 

feldspar clasts were recrystallized and became a fine-grained 

aggregate  of  “pseudomatrix”  (ca.  40 %  of  the  whole  rock). 

This consists of quartz+muscovite±paragonite and graphite.

Rudňany Fm.: Two cobbles from the basal part of the Rud-

ňany Fm. were gathered for zircon dating. The sample GZ-36A 

was collected from the forest slope cliff east of the Košická 

Belá Village, 478 m above sea level (GPS coordinates: 

48°48.443’N, 21°07.083’E). This is represented by the meta-

quartzite with non-uniform granoblastic texture and relics of 

primary roundness on the surface of selected quartz grains. 

Besides  quartz  grains  (ca.  98 %)  scarce  fragments  of  acid 

 felsites and quartzose phyllites were recognized. Zircon, rutile 

and tourmaline are common heavy minerals.

The cobble GZ-55 was taken from the forest cliff SE of  

the Poráč Village, 650 m above sea level (GPS coordinates: 

48°52.220’N, 20°42.531’E). It represents biotite–plagioclase 

orthogneiss with a lepidogranoblastic texture that is characte-

rized by alternating light and dark bands differing in mineral 

composition. The light bands contain mainly quartz and pla-

gioclase and only sporadic orthoclase. Plagioclases express  

background image

517

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

an oligoclase composition range (Or =1 %, Ab =75 %, An = 24 %; 

average from five analysis) (Supplement, Table S1). K-feldspar 

is perthitic with microcline twinning in places. The darker 

bands consist of biotite associated with small amounts of 

 garnet (Prp = 9 %, Sps = 5 %, Alm = 71 %, Grs =15 %; average 

from three analyses). The minerals are oriented parallel to 

schistosity. This gneissic rock was affected by powerful 

 secondary alteration, manifested by a sericitization of feld-

spars and a total chloritization of biotite and partially of gar-

net. Accessory apatite and zircon are present.

The sample GZ-35 represents the composition of sandstones 

from the upper part of the Rudňany Fm. It was collected along 

the small gorge at the E edge of the Košická Belá Village,  

413 m above sea level (GPS coordinates: 48°48.317’N, 

21°06.913’E). This coarse-grained sandstone is strongly folia-

ted, with individual greater clasts deformed along the foliation 

planes. Quartz, detrital micas and lithic fragments of different 

phyllites, mica schists and volcanics are the prevalent primary 

association. Feldspars are present sporadically. Recrystallized 

“pseudomatrix” is characterized by preferred orientation of 

quartz–sericite aggregates, which most probably also involved 

a part of the lithic fragment detritus.

Hámor Fm.: Two samples have been collected from the 

Hámor Fm. The sample GZ-27 comes from western edge of 

the Poproč Village, 555 m above sea level (GPS coordinates: 

48°35.082’N, 20°01.950’E). As a consequence of a strong 

Alpine deformation in the shear-zone along the LML (Fig. 1), 

the metasandstone is strongly recrystallized and foliated.  

The dominant part of the mineral composition is formed by 

undulatory quartz grains, which have undergone a dynamic 

recrystallization. Other immature detrital grains (supposed 

feldspars or volcanic and lithic fragments) are completely 

recrystallized  into  strongly  preferred,  fine-grained  quartz + 

sericite ± graphite aggregates. Detrital mica is distinguishable.

The sample 29-LA was collected along a regional road cut  

1 km SW from the Margecany Village, 343 m above sea level 

(GPS coordinates: 48°53.208’N, 21°00.339’E). Prevalent quartz 

grains (73 %), associated with plagioclase (7 %), K-feldspar 

(4 %),  detrital  mica  (4 %)  and  lithic  fragments  (12 %)  are 

characteristic for the mineral composition of this quarzolithic 

metasandstone. Various types of phyllites, fine-grained sand-

stone, lydite, acid volcanics and sporadically crystalline 

schists have been identified among the lithic fragments.  

The studied metasandstone is characterized by a massive, 

partly foliated blastopsammitic texture. Dominant are the clas-

tic grains displaying a variable degree of pressure solution and 

a fine-grained recrystallized matrix (on average 20 %), con-

sisting of quartz+sericite±chlorite, with preferred orientation.

Petrova Hora Fm.: The sample 74-LA was taken from  

the eastern occurrences of the Petrova Hora Fm., 1.2 km W 

from the Jaklovce Village, 361 m above sea level (GPS coor-

dinates: 48°52.131’N, 20°58.670’E). This sandstone displays 

red-violet colour and immature mineral and textural composi-

tion, typical for “red-beds” facies. Among detrital grains the 

quartz (55 %), plagioclase (8 %), K-feldspar (4 %), volcanic 

and  lithic  fragments  (16 %)  and  detrital  micas  (17 %)  were 

recognized.  Relatively  rich  matrix  (27 %)  contains  quartz, 

sericite and abundant hematite pigment.

Novoveská Huta Fm.: No new sample was collected from 

the Novoveská Huta Fm. The original sample LA-66, pub-

lished in the article Vozárová et al. (2013) has been supple-

mented by new 10 measurements that were once again 

recalculated together with the older age data.

Zircon dating

Mississippian population

The detrital zircon age data were acquired from the sample 

GZ-28, which was collected from the upper part of the Hrádok 

Formation (Fig. 2). Comparison with the previously published 

sample LA-81 (Vozárová et al. 2013), which was located in the 

basal part of the Hrádok Formation, established the occurrence 

of the Early Ordovician/Late Cambrian detrital zircon ages in 

the range from 482 ± 5 to 509 ± 6 Ma (Fig. 3). All of them show 

characteristic features of a magmatic origin, with the 

232

Th/

238

ratio values between 0.29 and 0.39 and oscillation growth 

 zoning (Fig. 3c; Supplement, Table S2). One exception is rep-

resented by spot 12, which gave the 499 ± 4 Ma age (Fig. 4). 

That was indicated by the narrow rim that mantled the oscilla-

tory zoned and corroded zircon core. The main characteristics 

of spot 12 are low 

232

Th/

238

U ratio value (0.09) and texture 

indicating a local recrystallization.

The second group of detrital zircons is determined by the 

Visean and Famennian ages. Two of them, 330 ± 2 and 367 ± 4 Ma 

old, show the typical features of magmatic origin with fine 

oscillation growth zoning and characteristic 

232

Th/

238

U ratios 

of 0.40 and 0.95, respectively. Two other zircon grains display 

the age of 340 ± 2 and 368 ± 2 and low 

232

Th/

238

U ratios of 0.02 

and 0.04, respectively (Fig. 3c). Both zircons are preserved as 

the homogeneous inherited cores, which were mantled by  

the fine-oscillation growth zoned rims.

The last group of detrital zircon ages belongs to the Pre-

cambrian. One spot is 566 ± 6 Ma old (Ediacaran) and other 

one 2045 ± 27 Ma old (Orosirian). Further three zircon grains 

are ranging from 2694 ±13 to 2760 ± 8 Ma (Neoarchean).

Thus, the studied detrital zircon age distribution, shown by 

the Probability Density Plot (PDP), identify the main peak at 

the 340, 483 Ma and further smaller peaks at 568 and 2696 Ma 

(Fig. 3b).

Pennsylvanian population

Rudňany Formation — basal part

The sample GZ-36A represents metaquartzite, indicating 

the detrital origin of the all analysed zircon grains. From the 

investigated detrital zircon set, Phanerozoic age was found in 

only  one  zircon  grain,  which  corresponds  to  the  537± 6  Ma 

(lowermost Cambrian, Fortunian Stage) (Supplement, Table 

S2). All others zircon data confirm the Precambrian with 

background image

518

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

dominance of the Paleoproterozoic, ranging from 1888 ± 28 to 

2136 ±13  Ma  (7  grains)  and  the  Neoarchean,  ranging  from 

2514 ± 24 to 2770 ±11 Ma (7 grains). The last two zircon grains 

gave  the  2834 ± 20  and  2941± 22  Ma  ages  that  document 

Mesoarchean. Correspondingly, the remarkable age peaks on 

the PDP are at 2028 and 2688 Ma age and smaller peaks at 537 

and 576 Ma (Fig. 5). Evidently, the majority of the analysed 

zircon grains show a typical feature of magmatic origin, 

reflected by the 

232

Th/

238

U ratio values within the range of 

0.27–1.95 (Fig. 3c). This is also documented by the fine growth 

oscillatory zonation. However, within the Paleozoic and 

Archean zircons later recrystallization can be observed, which 

has led to a gradual fading of original growth zoning. This 

could be correlated with Pb loss, probably caused by a later 

metamorphic recrystallization (Fig. 4). Among the studied 

detrital zircon assemblage only one grain 2007±18 Ma is cha-

racterized by a very low 

232

Th/

238

U ratio value (0.08) and 

homogeneous internal texture, suggesting thus a metamorphic 

origin (Fig. 3c; Supplement, Table S2).

The sample GZ-55, represented by the orthogneiss cobble, 

displayed a further unique zircon population (Supplement, 

Table S2). The Concordia diagram clearly shows the bimodal 

distribution of the age data, corresponding to the Middle/

Upper Devonian and Cambrian, respectively (Fig. 5). Cam-

brian ages, ranging from 510 ±1.5 to 534 ± 2.5 Ma are domi-

nant. The 

206

Pb/

238

U Concordia age, calculated from the three 

concordant spots, gave 508.8 ± 4.3 Ma (Fig. 5). All of the ana-

lysed grains show the 

323

Th/

238

U ratio values in the range of 

0.20–0.39, indicating origin from acid magmatic rocks (Fig. 3c). 

Relics of the fine oscillatory growth zoning is currently 

observed, with some traces of recrystallization (enclaves of 

convolute or patchy textures). A further two zircon grains pro-

duced younger ages, 504.4 ±1.6 Ma and 491.6 ± 3.8, and are 

characterized by relatively lower 

232

Th/

238

U ratio values, 0.08 

and 0.10, respectively (Fig. 3c). This strongly indicates a late 

magmatic or metamorphic recrystallization. It is necessary  

to emphasize that all studied zircon grains are mantled by  

the narrow light rims. Two of these rims, those that could be 

Fig. 3. a — Selected sector of the Concordia from the sample GZ-28 (Hrádok Fm.) relevant to the most prominent cluster for age spectrum 

from 750 to 350 Ma. b — Corresponding PDP of detrital zircon ages. c — Th/U ratios of detrital zircons from the NGU Carboniferous–Permian 

metasediments vs. time scale.

background image

519

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

measured,  were  analysed  and  gave  ages  of  385.7±6.3  and 

386.7±4.9 Ma that are almost equal within the error (Fig. 4). 

The relatively low 

232

Th/

238

U ratio values, 0.06 and 0.01, 

respectively, indicate metamorphic recrystallization.

Rudňany Formation — upper part

This is represented by a detrital zircon population from  

the sandstone samples GZ-35. The comparable detrital zircon 

Fig. 4. Selected CL images of detrital zircons from the studied samples.

background image

520

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

groups are represented by the Tournaisian–Famennian ages, 

ranging  from  350.8 ± 5.2  to  363.9 ± 5.4  Ma.  The 

206

Pb/

238

Concordia age, calculated from the six concordant spots, gave 

355.9 ± 4.3 Ma, which is well indicated by 356 Ma peak on  

the PDP diagram (Fig. 6). The 

232

Th/

238

U ratios of less than 1, 

ranging between 0.30 and 0.84, as well as a growth zoning 

indicate their derivation from an acid magmatic source  

(Fig. 3c). The older Phanerozoic detrital zircons are 384.1± 5.5 

and 497.1±7.7 aged, with 

232

Th/

238

U ratio values of 0.35 and 

0.27, respectively (Supplement, Table S2).

Next part of the GZ-35 detrital zircon set is formed by the 

Precambrian population. From those two zircon grains yielded 

Cryogenian,  671.7± 9.7  and  724.0 ±12  ages. The  other  grain 

gave 781.0 ±13 Ma of Tonian age. Among these, only 671.7 Ma 

zircon exhibits the 

232

Th/

238

U ratio higher than 1 (1.95), what 

reveals a basic magmatic source (Fig. 3c). A further five zircon 

grains belong to the Mesoproterozoic (2028.0 ± 8 Ma), the Neo-

archean  (2619.5 ± 8.3  and  2665.7± 9.7  Ma)  and  the  Meso-

archean  (2998.0 ±16  Ma).  Based  on  the 

232

Th/

238

U ratios,  

the majority of these zircons demonstrate acid magmatic 

sources. The only exception is the zircon grain 2028 Ma old 

with 0.01 

232

Th/

238

U ratio value, presumably indicating a meta-

morphic source (Supplement, Table S2).

Thus, the whole Rudňany Fm. zircon assemblage (samples 

GZ-35 + GZ-36A + GZ-55) indicate the following four age peaks 

on the PDP diagram: 356, 518, 2028 and 2688 Ma (Fig. 6.).

Hámor Formation

Two samples have been collected from the Hámor For-

mation; sample 29-LA from the eastern and sample GZ-27 

from the western part of the NGU surface occurrences  

(Figs. 1, 2).

Sample 29-LA: The youngest detrital zircon ages vary from 

346.2 ± 5.8 to 383.0 ± 6.3 Ma (Fig. 7). Fine oscillation growth 

zoning, as well as 

232

Th/

238

U ratio values between 0.29 and 0.38 

indicate derivation from an acid magmatic source (Fig. 3c; Sup-

plement, Table S2). The Middle Ordovician magmatic source 

is documented by two grains, 464.7±7.5 and 453.0 ±7.6 Ma 

old (

232

Th/

238

U ratios 0.36 and 055). Besides, the 475.7± 8 Ma 

homogeneous metamorphic rim (

232

Th/

238

U  ratio = 0.02),  

the mantled old core 1269.0 ±7.1 was observed (Supplement, 

Table  S2).  One  solitary  detrital  zircon  grain  of  496.8 ± 8.1 

(Furongian) was found. A frequent set of detrital zircons ran-

ges from 544.7± 8.8 Ma to 622.0 ±14 Ma. The Concordia age, 

calculated from seven concordant data yielded 595.0 ±12 Ma, 

which clearly represents the Ediacaran Period. Three further 

zircon  grains  in  the  age  of  724.0 ±13,  843.0 ±17  and  

878.0 ±14  Ma  correspond  to  the  Tonian.  The  oldest  zircons 

detected  are  2095.0 ±13  and  2195.0 ±10  Ma  old.  In  general,  

the distribution of detrital zircons ages is well presented on  

the PDP with the main peaks at 468, 561 and 596 Ma and 

small peak at ~2.1 Ga (Fig. 7).

The majority of the studied detrital zircons demonstrate  

the 

232

Th/

238

U ratio values less than 1, thus indicating acid 

magmatic sources (Fig. 3c). Some Ediacaran zircons show 

232

Th/

238

U ratio values in the range of 1.04–2.07, which could 

specify an intermediate and/or mafic magmatic source 

(Supplement, Table S2).

Sample  GZ-27: Compared to the sample 29-LA, the age 

spectrum of detrital zircons begins at the Moscovian, which is 

denoted by the two grains of 308 ± 2 and 309 ± 2 Ma old (Fig. 7). 

Both display by their oscillatory growth zoning and 

232

Th/

238

ratio values of 0.85 and 0.28, respectively. One zircon grain 

Fig. 5. a  —  Concordia  plot  of  zircons  from  the  Rudňany  Fm. 

metaquartzite cobble (GZ-36A). b — Corresponding PDP. c — Con-

cordia plot of zircons from the Rudňany Fm. gneiss cobble (GZ-55), 

with indication of the Concordia age.

background image

521

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

revealed  the  460 ± 5  Ma  age  (Middle  Ordovician),  characte-

rized by growth zoning and a relatively high 

232

Th/

238

U ratio 

value, equalling to 1.66 (Fig. 3c). The next group of zircons is 

signified  by  three  Cambrian  grains,  aged  from  497± 4  to 

522 ± 9 Ma. All display the growth zoned internal texture and 

232

Th/

238

U ratio values in the range of 0.61–1.22, which indi-

cate derivation from an acid/intermediate magmatic source 

(Fig. 3c; Supplement, Table S2). The whole age spectrum of 

detrital zircon ages is clearly visible on the PDP, especially  

the peaks at 309 and 502 Ma, and two sub-peaks at 578 and 

2450 Ma (Fig. 7). 

More than half the studied detrital zircon grains proved 

Precambrian ages (Supplement, Table S1). From these, one 

grain  is  identical  with  Ediacaran,  of  the  577± 6  Ma  aged.  

A further nine zircon grains are scattered from 2066 to  

2936 Ma. Three of them express the Paleoproterozoic, ranging 

from 2066 ± 38 to 2451±13 Ma and additional two Neoarchean 

of 2552 ±15 and 2681±15 Ma. The oldest group of detrital zir-

cons  belong  to  the  Mesoarchean  with  ages  of  2709 ±15, 

2832 ± 26 and 2936 ±13 Ma (Supplement, Table S1).

Permian population

Petrova Hora Formation

The cluster of detrital zircon data from the sample 74-LA 

yielded concordant ages, mainly between 298 and 493 Ma 

(Fig. 8; Supplement, Table S2). The youngest detrital zircon gave 

the age of 298.4 ± 5.7 and 303.4 ± 6.8 Ma, both almost within 

the analytical errors. They display a fine-oscillation growth 

zoning and 0.34 and 0.30 

232

Th/

238

U ratio values, compatible 

with an acid magmatic source (Fig. 3c). The 300.8 ± 8.1 Ma 

Concordia age has been provided from these two data. How-

ever, among the studied detrital zircon set, Late Devonian–

Mississippian ages, ranging from 346.4 ± 6.6 to 379.4 ±7.2 Ma 

are prevalent, with 

232

Th/

238

U ratios from 0.14 to 0.69.  

The Concordia age, calculated from four concordant spots, 

gave 353.4 ± 6.5 Ma (Fig. 8). Rare Silurian ages were deter-

mined for two grains. The first grain documents a magmatic 

event  at  434 ± 8  Ma  with 

232

Th/

238

U ratio value of 0.40.  

The second grain corresponds to the 433 ± 9 Ma of the Middle 

Fig. 6. Concordia plot of detrital zircons from the upper part of the Rudňany Fm. (GZ-35). a — all detrital zircon ages. b — Selected sector for 

age spectrum from 340 to 380 Ma, showing the Concordia age of prominent detrital zircon population. c — Corresponding PDP. d — PDP 

diagram for the all dated zircons from the Rudňany Fm. (GZ-35, GZ-36A, GZ-55).

background image

522

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Silurian metamorphic event and has a characteristic low 

232

Th/

238

U  ratio  value  (= 0.01).  Three  detrital  zircon  grains 

gave the Middle-Upper Ordovician age, whereas one grain 

presented age of 448.9 ± 8.4 Ma with a relatively low 

232

Th/

238

ratio value (= 0.09). Nevertheless, this grain shows a growth 

zoning even in internal texture, though slightly deformed.  

The other two grains (455.8±9.1 and 464.0±8.7 Ma) display 

characteristic features of magmatic origin, meaning oscilla-

tory growth zoning and 

232

Th/

238

U ratio values of 0.52 and 

0.66, respectively (Fig. 3c). Only one zircon grain gave 

Fig. 7. a — Concordia plots of detrital zircons from the Hámor Fm., sample GZ-27b — Corresponding PDP. c — Concordia plot for all dated 

detrital zircon ages from the sample 29-LAd — Selected sector for age spectrum from 300 to 900 Ma, with indication of the Concordia age.  

e — Corresponding PDP diagram of all dated zircons from the sample 29-LAf — PDP diagram of detrital zircon ages from the samples GZ-27 

and 29-LA.

background image

523

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Furongian  age  of  493.1± 9.4  Ma.  Four  other  detrital  zircon 

grains presented the Precambrian ages, while three of them 

yielded  Tonian–Stenian  of  901.0 ±16,  923.0 ±17  and  

1201.0 ± 31 Ma and the other one a Paleoproterozoic age of 

2222.0 ±12 Ma (Supplement, Table S2).

Thus, the main peak at 350 Ma, accompanied by two sub-

peaks at 301 and 456 Ma are emphasized on the PDP diagram 

(Fig. 8).

Novoveská Huta Formation

A detrital zircon analysis from sample LA-66 was first pub-

lished in the article Vozárová et al. (2013). At present the set of 

measurements has been completed by the additional data and 

recalculated. Detrital zircon ages show a relatively good con-

cordance, 30 analysed concordant spots out of 33 (Supplement, 

Table S2). The Concordia ages, calculated from the cluster 

along the Concordia curve, show 294.2 ± 6.9 Ma (from seven 

spots), 363.5 ± 4.5 (from ten spots) and 488.9 ± 8.2 Ma (from 

five spots) (Fig. 9). The youngest detrital zircon ages are ran-

ging from 275.8±5.9 to 305.9±6.1 Ma. The magmatic origin  

of this population is confirmed by the 

232

Th/

238

U ratio values 

ranging from 0.24 to 0.61 and a characteristic oscillatory 

growth zoning. Upper Devonian to Mississippian ages ranging 

from 352.7 ± 6.6 to 379.3 ±7.4 Ma are dominant. The majority 

of this detrital zircons group is of magmatic origin, docu-

mented by 

232

Th/

238

U ratios in the range of 0.10 –1.12, as well 

as an oscillatory growth zoning. The only exception is spot 24, 

determined on the rim of xenocrystic core, with 0.02 value of 

232

Th/

238

U ratio, indicating the Mississippian/Famennian 

 metamorphic event (356.8 ± 6.7 Ma). Similarly, two spots in 

the  age  of  471.3 ± 9.7  and  480.8 ± 9  Ma  (Lower  Ordovician) 

were determined within the rims that mantled the strong 

resorbed xenocrystic cores, with 

232

Th/

238

U ratio of 0.08 and 

0.02, respectively. Another three detrital zircon grains, ranging 

from  513.0 ±10  to  495.3 ± 9.3  Ma  ages  (Upper  Cambrian), 

show the oscillatory zoned internal texture and 

232

Th/

238

ratios between 0.21– 0.53 that confirm presumably acid mag-

matic sources. Precambrian detrital zircons are scarcely pre-

sented in the studied sample (5 grains). One of these, with  

the age of 588.0 ±12 Ma belongs to the Ediacaran, another one 

of 1502.2 ± 9.8 Ma to the Calymmian, and the last four zircons 

are Paleoproterozoic–Neoarchean of 2314.0 ± 22, 2653.2 ± 4.2, 

2697.3 ± 9.9 and 2725.0 ±15 Ma.

Whole zircon age spectrum from the sample LA-66 is 

 characterized on the PDP diagram by the dominant peak at 

364 Ma, and smaller peaks at 301, 494 and 2655 Ma are 

revealed (Fig. 9).

Discussion

The age distributions from previous (Vozárová et al. 2013) 

and recent detrital zircon data are displayed as Kernel Density 

Estimates (Fig. 10). The whole set of measurements of the 

Mississippian Hrádok Fm. show the noticeable unimodal dis-

tribution with peak at 352 Ma (Fig. 10). The substantial part of 

the whole studied detrital zircon population was derived from 

magmatic sources, which is indicated by higher Th/U ratios, 

ranging from 0.3 to >1. Only three analysed spots in the age of 

340 ± 2,  356 ±7  and  368 ± 4  Ma,  from  the  whole  Famennian/

Tournaisian zircon assemblage, have typical features of meta-

morphic origin, with low Th/U ratio values (0.02–0.04) and  

a weak or absent growth zoning. These spots represent meta-

morphic cores that are thinly rimmed by magmatic zircons, 

Fig. 8. a — Concordia plot for all detrital zircons from the Petrova 

Hora Fm., sample 74-LAb — Selected Concordia for age spectrum 

from 260 to 540 Ma, with indication of the Concordia ages.  

c — Corresponding PDP.

background image

524

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

indicating a reworking during later stages of the Variscan mag-

matic cycle. Two metamorphic rims aged of 356 Ma and  

565 Ma were found around the older detrital magmatic zircons 

(2.43 Ga and 2.66 Ga, respectively). This clearly documents 

the repeated recycling of the old zircon derived from the Paleo-

proterozoic/Neoarchean crust surpassing a strong Neopro-

terozoic and Variscan metamorphic overprint.

Detrital zircon age spectra reflect the tectonic setting of  

the basin in which the studied sediments were deposited and 

thus represent major phases of crust formation (Condie et al. 

2009; Hawkesworth et al. 2010; Cawood et al. 2012). Large 

volumes of magma are generated in convergent plate margin 

settings. Convergent margin basins have a high proportion of 

detrital  igneous  zircons  (generally  greater  than  50 %)  with 

unimodal distribution. The crystallization ages are close to  

the age of host sediments (Cawood et al. 2012). In fact,  

the 370–344 Ma zircon ages include approximately 75 % from 

the whole zircon age data of the Hrádok Fm. and the 352 Ma 

peak age is nearly corresponding to its depositional age 

(Tournaisian–Visean microfloral assemblages documented by 

Bajaník & Planderová 1985).

Basins that contain a large number of igneous zircons with 

ages close to the time of sediment accumulation reflect the 

set ting of the magmatic activity (e.g., forearc, trench, and 

backarc basins on convergent plate margins) (Dickinson & 

Gehrels 2009; Condie et al. 2009; Cawood et al. 2012).  

The presence of zircon grains with ages approximating to the 

time of accumulation of the host sediments is likely to reflect 

the proximity of the basin to a plate margin (Hawkesworth et 

al. 2010). The NGU Mississippian metasedimentary rocks 

have a unimodal detrital zircon population, which is similar to 

the depositional age of the Hrádok Fm. The latter sedimentary 

record shows the detrital zircons clustering within the 352 Ma 

peak that indicates the main crystallization age of magmatites 

in the supposed source area. Thus, this unimodal igneous zir-

con detritus reflects an extensive clastic input from a supposed 

magmatic arc into the deep-slope Hrádok Fm. basin, situated 

along an active margin, what is consistent with a convergent 

margin setting.

Completely different detrital zircon distributions are dis-

played on the KDE plot from the Pennsylvanian Rudňany and 

Hámor  formations. The  basal  Rudňany  Fm.  shows  a  multi-

modal distribution, with the peaks at 357, 520, 667, 2021 and 

2696 Ma (Fig. 10a). Similarly, detrital zircon populations from 

the Hámor Fm. display main peaks at 335, 453 and 577 Ma on 

the KDE plot (Fig. 10a). These patterns reflect the variable 

amount of zircon detritus derived from the Tournaisian/

Famennian syn-collisional magmatism, as well as older ages, 

reflecting units incorporated in the Variscan orogenic belt.  

A relatively higher presence of the Cambrian–Ordovician and 

the Ediacaran–Cryogenian zircon ages and increasing number 

of the Paleoproterozoic–Neoarchean zircon grains are cha-

racteristic. These detrital zircon age spectra correspond to  

an inconstant and mixed source area that is characteristic for 

the collisional belt provenance (Dickinson & Gehrels 2009 

and references therein). Based on Cawood et al.’s (2012) sedi-

mentary basins classification these originated in connection 

with continental collision, such as foreland basins (collisional 

basin type). While between the Pennsylvanian detrital zircon 

populations the igneous zircon grains are predominant, some 

of them indicate derivation from the metamorphic sources. 

These are grouped into several time sections: Upper Devonian–

Mississippian in the range of 387–353 Ma, Lower and Upper 

Fig. 9a — Concordia plot of detrital zircons from the Novoveská 

Huta Fm., sample LA-66 (old and new data together; old data taken 

from Vozárová et al. 2013). b — Selected Concordia for age spec-

trum from 250 to 650 Ma, with indication of the Concordia ages.  

c — Corresponding PDP.

background image

525

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Ordovician aged from 476 to 451 Ma and Silurian, aged of 440 

and 426 Ma (present paper and Vozárová et al. 2013).

The next group of selected detrital zircons was collected 

from the Permian red-beds, at the Petrova Hora and Novoveská 

Huta formations. Both formations reveal nearly similar age 

peaks on the KDE plot, in the range of Lower/Middle 

Ordovician (486 vs. 460 Ma) and Mississippian (356 vs.  

350 Ma) (Fig. 10). Among detrital zircons the occurrences of 

the Gzhelian–Asselian igneous zircons in the range from 

306 ± 6  to  296 ± 6  Ma  are  exceptional.  A  small  number  of  

Fig. 10. a — Kernel Density Estimation for the entire detrital zircon populations, with discordant filter of 10 %. b — Kernel Density Estimation 

for the whole studied Carboniferous–Permian detrital zircon population with the corresponding PDP diagram. Note: In the diagrams have been 

used all measurements, taken from the present data and the paper Vozárová et al. 2013.

background image

526

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

the  Artinskian–Kungurian  ages,  ranging  from  281± 6  to  

276 ± 6  Ma  were  identified  within  the  Novoveská  Huta  Fm. 

zircon population. They represented reworked zircon grains 

from the syn-sedimentary volcanic events. In general, the dis-

tribution of detrital zircons within both Permian formations 

reproduce the post-collisional tectonic setting (extensional 

basins in the sense of Cawood et al. 2012). Small number of 

zircon ages close to the depositional age of the Permian sedi-

mentary formations (Artinskian–Kungurian) reflect a rift- 

related magmatic activity.

The presented detrital zircon ages, with the main peaks at 

300, 355, 455, 492, 562 and ~ 2.0 and ~ 2.7 Ga on the KDE 

plot (Fig. 10b), specify generally, the provenance of the NGU 

Carboniferous–Permian sediments from the Western Car pa-

thian Crystalline Basement (WCCB) crust and the pre-Carbo-

niferous complexes of the Northern Gemericum Basement.  

As the latter complexes consist mainly of the zircon poor 

rocks (metabasalt, amphibolite, metagabbro, serpentinite, 

phyl lite), the studied detrital zircon population largely reflect 

derivation from the WCCB crust. This contradicts the petro-

facial analysis of the lithic fragments within the NGU 

Carboniferous–Permian sediments, containing detritus from 

the NGU pre-Carboniferous complexes predominantly 

(Vozárová 1973, 1996, 1998 a, b; Vozárová & Vozár 1988 and 

references therein).

The large number of magmatic zircon data, ranging from 

370 to 340 Ma, were published from the Tatricum and 

Veporicum granitoids, which document the evidence of suc-

cessive I- to S-type granitic magmatism (Bibikova et al. 1988; 

Kráľ et al. 1997; Poller & Todt 2000; Poller et al. 2000; Putiš 

et al. 2003; Poller et al. 2005; Kohút et al. 2009; Burda et al. 

2011, 2013; Broska et al. 2013; Gawęda et al. 2016). This time 

interval includes pre-plate and late-orogenic/anatectic events 

of magmatic activities of the Variscan orogeny. Second impor-

tant tectono–thermal events, which have been ascertained in 

the NGU Carboniferous–Permian zircon assemblages are con-

centrated in the Cambrian–Ordovician time interval that is 

well documented by detrital zircon ages, ranging from 520 to 

453 Ma. This time span fits into the magmatic zircon ages 

from the Layered Amphibolite Complex (LAC) and different 

orthogneisses in the WCCB (Putiš et al. 2001, 2003, 2008, 

2009a; Gaab et al. 2005, 2006). The Cambrian magmatic zir-

con ages (Supplement, Table S1; Fig. 5) were also ascertained 

in the biotite–plagioclase orthogneiss cobble from the Penn-

sylvanian Rudňany Fm., with expressive metamorphic over-

print at 386 Ma in the zircon rims (present paper). This cobble 

could be derived from the NGU Klátov Complex, in which 

biotite–plagioclase gneisses are associated with the prevalent 

amphibolites (Bajaník & Hovorka 1981; Hovorka et al. 1990; 

Faryad 1986, 1990; Radvanec 1994). The oldest K/Ar radio-

metric data from the amphibolites gave 324–281 Ma meta-

morphic age (Kantor et al. 1981). The newest zircon data 

yielded the magmatic Concordia age at 482 ± 9 Ma with indi-

cation of remelting at 383 ± 3 Ma (Putiš et al. 2009a).

In the studied detrital zircon population, metamorphic zir-

cons are scarce and had been noticed either as the rim around 

the older magmatic cores or as the individual detrital grains. 

They are concentrated into three-time intervals: i) Upper 

Devo nian/Mississippian in the range of 387–353 Ma; ii) Lower 

Ordovician in the range of 476–469 Ma; iii) Upper Ordovician–

Silurian in the range of 451–426 Ma (present paper and 

Vozárová et al. 2013). Devonian–Mississippian metamorphic/

anatectic ages were described by U–Pb zircon data from  

the WCCB different orthogneisses, migmatites, metagabbro 

dolerites, layered amphibolites and leucosome layers in LAC, 

metatonalites, as well as from metagabbro of the NGU zone 

(Poller et al. 2000; Poller & Todt 2000; Putiš et al. 2003, 2008, 

2009a; Gaab et al. 2005) and CHIME monazite ages from 

WCCB gneisses and micaschists (Janák et al. 2004). These 

metamorphic ages are mainly Variscan. A rare 430 Ma meta-

morphic age was described from the leucotonalite of LAC 

complex (Putiš et al. 2008).

Generally, the Precambrian zircon ages are presented in  

the  very  variable  amounts  (from  8 %  to  ~30 %).  They  are 

 relatively frequent in sedimentary formations deposited after 

the  sedimentation  break  (Rudňany,  Hámor  and  Novoveská 

Huta formations). Paleoproterozoic (Orosirian/Rhyacian) and 

Neoarchean ages of 2.0 Ga and 2.5–2.7 Ga respectively pre-

dominate among the Precambrian zircons. This population is 

well documented in the cobble from the Rudňany Fm. con-

glomerates (sample GZ-36A) with the main age peaks at 2028 

and 2688 Ma and smaller peaks with Lower Cambrian/Late 

Neoproterozoic ages at 537 and 576 Ma (Fig. 5). As the youn-

gest zircons are Lower Cambrian, the supposed age of this 

quartzite rock could be Upper Cambrian/Ordovician which 

corresponds well with the “Armorican Quartzite” lithofacies 

(Henderson et al. 2016; Fernández-Suárez et al. 2002; Linneman 

et al. 2004, 2014). In general, the Precambrian detrital zircon 

population from the NGU Carboniferous–Permian sedimen-

tary rocks are concordant with the Smrečinka Fm. detrital zir-

con population, from the basal part of the Rakovec Group, 

which is a part of the NGU Variscan basement (Vozárová et al. 

2019). This dispersal of detrital zircon ages suggests a linkage 

with Armorican terranes, which are characterized by deriva-

tion from the Cadomian arc that resides on the periphery of  

the West African Craton of North Gondwana. Reworking of 

the Eburnian crust (1.8–2.1 Ga) is characteristic. But, the recy-

cling of the small number of Tonian–Stenian (0.8–1.0 Ga) and 

Grenvillean ages (1.2–1.5 Ga) were ascertained in detrital zir-

cons from the NGU Permian sequences. This zircon popu-

lation is not characteristic for the Armorican/West African 

Craton provenance (e.g., Linnemann et al. 2007; Abati et al. 

2012; Gärtner et al. 2013, 2016; Henderson et al. 2016). 

Nevertheless, a small number of Mesoproterozoic ages were 

also described from the Armorican Quartzites of the Canta-

brian Zone of NW Iberia (Fernández-Suárez et al. 2002; 

Guttiérrez-Alonso et al. 2007), as well as from the Ordovician 

sandstones of Corsica (Avigad et al. 2018). Perhaps, the pre-

sence of Mesoproterozoic zircons in the NGU Pennsylvanian–

Permian sequence, at least in small proportions, indicates  

a possible presence of the pre-Neoproterozoic crustal vestiges 

that were accreted within the Western Carpathian Variscan 

background image

527

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

orogenic domain. Another possibility is the derivation from 

the Southern Gemericum basement, in which Tonian–Stenian 

zircon ages are relatively common, but the Grenvillean-aged 

zircons are absent or their presence is negligible (Vozárová et 

al. 2012, 2017). Equally, the presence of the Variscan mag-

matic zircons is the considerable difference between the NGU 

Carboniferous–Permian and SGU Permian detrital zircon 

 populations. While in the NGU Carboniferous–Permian sedi-

ments these igneous zircons occur continuously in all forma-

tions, in the SGU Permian they are present only in the upper 

lithostratigraphic unit (Štítnik Fm.; Vozárová et al. 2012). But 

that would presume the large transform emplacement of the 

SGU basement, in which it was incorporated into the Variscan 

collisional belt in the Permian.

Conclusion

The detrital zircon age patterns of the Carboniferous–

Permian sedimentary basins in the Northern Gemericum were 

controlled by tectonic settings, connected with the gradual 

closing of the Variscan collisional suture.

The Mississippian detrital zircon population is characte-

rized by its unimodal distribution, with a sharp age peak at  

352 Ma. Among those, the dominant portion is represented by 

detrital zircons of igneous origin, with ages close to the depo-

sitional age of the host sediments, which is consistent with  

a convergent plate margin setting. The Mississippian basin 

reflects derivation from a magmatic arc that was nearly coeval 

with accumulation of the sediments. 

The Pennsylvanian detrital zircon population is distinctive 

because of the multimodal distribution and increased amount 

of Neoproterozoic and Neoarchean ages. This pattern reflects 

the variable amount of zircon detritus from syn-collisional 

magmatism (peaks at 335 and 357 Ma) and the pre-existing 

magmatic rocks associated with opening of the Rakovec sedi-

mentary trough (from 453 to 520 Ma), as well as a band of 

older ages (577–667 Ma and 2021–2696 Ma, respectively), 

reflecting the units caught in the Variscan orogenic belt.  

The Pennsylvanian basin was formed during continental colli-

sion, in the foreland setting.

Basically, the same trend in the distribution of detrital 

 zircons was also found in the Permian sediments. The only 

difference is the presence of younger magmatic ages, from 

Kasimovian/Gzhelian to Asselian (306–294 Ma) and Artin-

skian–Kungurian (280–276 Ma). This pattern reflects a post- 

collisional, extensional type of sedimentary basin. Zircons 

with ages close to the depositional age of the Permian forma-

tions reflect rift-related magmatic activity.

Acknowledgements: The financial support of the Slovak 

 Research and Development Agency (projects ID: APVV-

0546- 11 and APVV-0146-16) and of the Scientific Grant 

Agency of the Ministry of Education of the Slovak Republic 

and the Slovak Academy of Sciences (project VEGA 

2/0006/19) is gratefully appreciated. The authors would like  

to thank U. Klötzli and Z. Németh for constructive reviews 

and for their helpful and critical comments which led to signi-

ficant improvement of an earlier versions of the manuscript.

References

Abati J., Aghzer A.M., Gerdes A. & Ennih N. 2012: Insights on the 

crustal evolution of the West African Craton from Hf isotopes in 

detrital zircons from Anti-Atlas belt. Precambrian Res. 212–213, 

263–274.

Abonyi A. 1971: Stratigraphic and tectonic evolution of the Gemeric 

Carboniferous west from the Štítnik Fault. Geol. Práce, Spr. 57, 

339–348 (in Slovak).

Andrusov D. 1959:  Geology of the Czechoslovak Western Carpa-

thians, 2

nd

 part. VEDA Publishing House, Bratislava, 1–376  

(in Slovak).

Avigad D., Rossi Ph., Gerdes A. & Abdo A. 2018: Cadomian metase-

diments and Ordovician sandstones from Corsica: detrital zircon 

U–Pb–Hf constraints on their provenance and paleogeography. 

Int. J. Earth Sci. (Geol. Rundsch.) 107, 2803–2818. https://doi.

org/10.1007/s00531-018-1629-3

Bajaník Š. & Hovorka D. 1981: The amphibolite facies metabasites of 

the Rakovec Group of Gemericum (West Carpathians). Geol. 

Zborn. Geol. Carpath. 32, 6, 679–705.

Bajaník Š., Vozárová A. & Reichwalder P. 1981: Lithostratigraphic 

classification of Rakovec Group and Late Paleozoic sediments 

in the Spišsko-gemerské rudohorie Mts. Geol. Práce, Spr. 75, 

27–56 (in Slovak).

Bajaník Š., Hanzel V., Ivanička J., Mello J., Pristaš J., Reichwalder P., 

Snopko L, Vozár J. & Vozárová A. 1983: Explanation to geolo-

gical map of the Slovenské rudohorie Mts. – eastern part. D. Štúr 

Inst. Geol. Publ. House, Bratislava, 3–223 (in Slovak with 

 English  summary).

Bajaník Š., Ivanička J., Mello J., Pristaš J., Reichwalder P., Snopko L., 

Vozár J. & Vozárová A. 1984a: Geological map of the Slovenské 

rudohorie  Mts.  –  eastern  part,  1:50  000.  D. Štúr Inst. Geol.

Bratislava.

Bajaník Š., Vozárová A., Snopková P. & Straka P. 1984b: Lithostrati-

graphy  of  the  Črmeľ  Group.  Manuscript No. 58729, Archives  

D. Š. Inst. Geology, Bratislava, 1–90 (in Slovak).

Bajaník Š. & Planderová E. 1985: Stratigraphic position of the lower 

part of the Ochtiná Formation (between Magnezitovce and 

 Magura).  Geol. Práce, Spr

. 82, 67–76 (in Slovak).

Bibikova E.V., Cambel B., Korikovsky S.P., Broska I., Gracheva T.V., 

Makarov V.A. & Arakeliants M.M. 1988: U–Pb and K–Ar iso-

topic dating of Sinec (Rimavica granites) (Kohút zone of Vepo-

rides). Geol. Zborn. Geol. Carpath. 39,147–157.

Biely A., Bezák V., Elečko M., Gross P., Kaličiak M., Konečný V., 

Lexa  J.,  Mello  J.,  Nemčok  J.,  Potfaj  M.,  Rakús  M.,  Vass  D., 

Vozár J. & Vozárová A. 1996a: Explanation to geological map of 

Slovakia, 1:500  000. Dionýz Štúr Publisher, Bratislava, 1–76.

Biely A., Bezák V., Elečko M., Gross P., Kaličiak M., Konečný V., 

Lexa  J.,  Mello  J.,  Nemčok  J.,  Potfaj  M.,  Rakús  M.,  Vass  D., 

Vozár J. & Vozárová A. 1996b: Geological map of Slovakia: 

Ministry Environm. Slovak Republic, Geol. Surv. Slovak 

 Republic, Bratislava.

Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., 

Korsch R.J. & Foudoulis C. 2003: TEMORA 1: a new zircon 

standard for Phanerozoic U–Pb geochronology. Chem.  Geol. 

200, 155–170. https://doi.org/10.1016/S0009-2451(03)00165-7

Bouček B. & Přibyl A. 1960: Revision der Trilobiten aus dem slowa-

kischen Oberkarbon. Geol. Práce,  Spr. 20, 5–50 (in Czech, 

 German  summary).

background image

528

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Broska  I.,  Petrík  I.,  Beʹeri-Shlevin Y.,  Majka  J.  &  Bezák V.  2013: 

Devonian/Mississippian I-type granitoids in the Western 

 Carpathians: A subduction-related hybrid magmatism. Lithos 

162–163, 27–36.

Burda  J.,  Gawęda A.  &  Klötzli  U.  2011:  Magma  hybridization  in  

the Western Tatra Mts. granitoid intrusion (S-Poland, Western 

Carpathians). Mineral. Petrol. 103, 1–4, 19–36.

Burda J, Gawęda A. & Klötzli U 2013: Geochronology and petroge-

nesis of granitoid rocks from the Goryczkowa Unit, Tatra Moun-

tains (Central Western Carpathians). Geol.  Carpath. 64, 6, 

419–435. https://doi.org/10.2478/geoca-2013-0029

Cawood P.A., Hawkesworth C.J. & Dhuime P. 2012: Detrital zircon 

record and tectonic setting. Geology 40, 875–878. https://doi.

org/10.1130/G32945.1

Condie K.C., Belousova E., Griffin W.L. & Sircombe K.N. 2009: 

Granitoid events in space and time: Constraints from igneous 

and detrital zircon age spectra. Gondwana Res. 15, 228–242. 

https://doi.org/10.1016/j.gr.2008.06.001

Dallmeyer R.D., Neubauer F., Handler R., Fritz H., Müller W.,  

Pana D. & Putiš M. 1996: Tectonothermal evolution of the inter-

nal Alps and Carpathians: Evidence from 

40

Ar/

39

Ar mineral and 

whole rock data. Eclogae Geol. Helv. 89, 203–227.

Dallmeyer R.D., Németh Z. & Putiš M. 2005: Regional tectono-

thermal events in Gemericum and adjacent units (Western Car-

pathians, Slovakia): Contribution by 

40

Ar/

39

Ar dating. Slovak 

Geol. Mag. 11, 2–3, 155–163.

Dickinson W.R. & Gehrels G.E. 2009: Use of U–Pb ages of detrital 

zircons to infer maximum depositional ages of strata: A test 

against a Colorado Plateau Mesozoic database: Earth Planet. 

Sci. Lett. 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013.

Ebner  F.,  Vozárová  A.,  Kovács  S.,  Kräutner  H.-G.,  Krstić  B.,  

Szederkényi T., Jamićić D., Balen D., Belak M. & Trajanova M. 

2008: Devonian-Carboniferous pre-flysch and flysch environ-

ments in the Circum Pannonian Region. Geol. Carpath. 59, 

159–195.

Faryad S.W. 1986: Metamorphic evolution of paragneisses from 

 Klátov region (Gemericum). Geol. Zborn. Geol. Carpath. 39, 6, 

729–749.

Faryad S.W. 1990: Gneiss–amphibolite complex of the Gemericum. 

Miner. Slov. 22, 303–318.

Fernández-Suárez J., Gutiérrez-Alonso G. & Jeffries T.E. 2002:  

The importance of along-margin terrane transport in northern 

Gondwana: insights from detrital zircon parentage in Neopro-

terozoic rocks from Iberia and Brittany. Earth Planet. Sci. Lett. 

204, 75–88.

Gaab A.S., Poller U., Janák M., Kohút M. & Todt W. 2005: Zircon 

U–Pb geochronology and isotopic characterization for the 

pre-Mesozoic basement of the Northern Veporic Unit (Central 

Western Carpathians, Slovakia). Schweiz. Mineral. Petrogr. Mitt

85, 69–88.

Gaab A.S., Janák M., Poller U. & Todt W. 2006: Alpine reworking of 

Ordovician protoliths in the Western Carpathians: geochrono-

logical  and  geochemical  data  on  the  Muráň  Gneiss  complex. 

Lithos 87, 261–275.

Gärtner A., Villeneuve M., Linnemann U., El Archi A. & Bellon H. 

2013: An exotic terrane of Laurussian affinity in the Maureta-

nides and Souttoufides (Moroccan Sahara). Gondwana Res. 24, 

687–699.

Gärtner A., Villeneuve M., Linnemann U., Gerdes A., Youbi N., 

 Guillou O. & Rjimati E.-C. 2016: History of the West African 

Neoproterozoic Ocean: key to the geotectonic history of circum- 

Atlantic Peri-Gondwana (Adrar Souttouf Massif, Moroccan 

 Sahara).  Gondwana Res. 29, 1, 220–233.

Gawęda  A.,  Burda  J.,  Klötzli  U.,  Golonka  J.  &  Szopa  K.  2016: 

 Episodic construction of the Tatra granitoid intrusion (Central 

Western Carpatians, Poland/Slovakia): consequences for the 

 geodynamics of Variscan collision and Rheic Ocean closure.  

Int. J. Earth Sci. (Geol. Rundsch.) 105, 1153–1174. https://doi.

org/10.1007/s00531-015-1239-2

Grecula M. 1998: Carboniferous of the Črmelicum terrane, Western 

Carpathians: relics of a fore-arc basin within Alpide Variscides. 

Miner. Slov. 30, 109–136.

Gutiérrez-Alonso G., Fernández-Suárez J., Guttiérrez-Marco J.C., 

Corfu J. & Suárez M. 2007: U–Pb depositional age for the upper 

Barrios Formation (Armorican Quartzite facies) in the Canta-

brian zone of Iberia: Implication for stratigraphic correlation and 

paleogeography. In: Linnemann U., Nance R.D., Kraft P. & 

 Zulauf G. (Eds.): The evolution of Rheic Ocean: From Avalo-

nian–Cadomian Active margin to Alleghenian–Variscan Colli-

sion. Geol. Soc. Am., Spec. Pap. 423, 287–296.

Hawkesworth C. J., Dhuime B., Pietranik A., Cawood P., Kemp T. & 

Storey C. 2010: The Generation and Evolution of the Continen-

tal Crust. J. Geol. Soc., London 167, 229–248. https://doi.org/ 

10.1144/0016-76492009-072

Henderson B.J., Collins W.J., Murphy J.B., Gutiérrez-Alonso G. & 

Hand M. 2016: Gondwanan basement terranes of the Variscan 

Appalachian orogen: Baltican, Saharan and West African haf-

nium isotopic fingerprints in Avalonia, Iberia and the Armorican 

Terranes. Tectonophysics 681, 278–304.

Hiess J., Condon DJ., McLean N. & Noble SR. 2012: 

238

U/

235

U sys-

tematics in terrestrial uranium-bearing minerals. Science 335, 

1610–1614.

Hovorka D., Ivan P., Jilemnická I. & Spišiak J. 1988: Petrology  

and geochemistry of metabasalts from Rakovec (Paleozoic of 

Gemeric Unit, Inner Western Carpathians). Geol. Zborn. Geol. 

Carpath. 39, 395–425.

Hovorka D., Ivan P. & Spišiak J. 1990: Lithology, Petrology, Meta-

morphism and Tectonic position of the Klátov Group (Paleozoic 

of the Gemer unit, Inner Western Carpathians). Acta Geol. 

 Geogr. Univ. Comenianae, Geol. 45, 45–68.

International Commission on Stratigraphy. International Chrono-

stratigraphic Chart v 2018/08. http://www.stratigraphy.org/

ICSchart/ChronostratChart 2018-08.pdf

Ivan P. 1997: Rakovec and Zlatník Formations: two different relics of 

the pre-Alpine back-arc basin crust in the Central Western 

 Carpathians. In: Grecula P., Hovorka D. & Putiš M. (Eds.): Geo-

logical Evolution of the Western Carpathians. Miner. Slov., 

Monograph, Bratislava, 281–288.

Ivan P. 2009: Early Palaeozoic basic volcanism of the Western Car-

pathians: geochemistry and geodynamic position. Acta Geol. 

Univ. Comenianae,  Monographic serie, Comenius University

Bratislava, 7–110 (in Slovak).

Ivan P. & Méres Š. 2012: The Zlatník Group – Variscan ophiolites on 

the northern border of the Gemeric Superunit (Western Carpa-

thians). 

Miner. Slov. 44, 39–56.

Janák M., Konečný P., Siman P. & Holický I. 2004: A metamorphic 

history from electron microprobe dating of monazite: Variscan 

evolution of The Tatra Mountains. Geolines 17, 47–48.

Kantor J., Bajaník Š. & Hurný J. 1981: Radiometric dating of meta-

morphites  of  amphibolite  facies  from  the  Rudňany  Deposits, 

Spišsko-gemerské rudohorie Mts. Geol. Zborn. Geol. Carpath. 

32, 335–344.

Kohút M., Uher P., Putiš M., Ondrejka M., Sergeev S., Larionov A. & 

Paderin I. 2009: SHRIMP U–Th–Pb zircon dating of the grani-

toid massifs in the Malé Karpaty Mountains (Western Carpa-

thians): evidence of Meso-Hercynian successive S- to I-type 

granitic magmatism. Geol. Carpath. 60, 5, 345–350.

Kohút M., Trubač J., Novotný L., Ackerman L., Demko R., Bartalský B. 

& Erban V. 2013: Geology and Re-Os molybdenite geochrono-

logy of the Kuríšková U–Mo deposit (Western Carpathians, 

 Slovakia).  J. Geosci. 58, 275–286. https://doi.org/10.3190/

jgeosci.150

background image

529

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Kozur H., Mock R. & Mostler H. 1976: Stratigraphische Neueinstu-

fung der Karbonatgesteine der unteren Schichtenfolgen von 

Ochtiná (Slovakei) in das oberste Vise-Serpukhovian (Namur A). 

Geol. Palaeont. Mitt. 6, l, 1–29.

Kozur H. & Mock R. 1977: Erster Nachweis von Conodonten im 

 Paleozoikum (Karbon) der Westkarpaten. Čas. pro miner. geol

22, 3, 299–305.

Kráľ  J.,  Hess  J.C.,  Kober  B.  &  Lippolt  H.J.  1997: 

207

Pb/

206

Pb and 

40

Ar/

39

Ar data from plutonic rocks of the Strážovské vrchy Mts. 

basement, Western Carpathians. In: Grecula P., Hovorka D. & 

Putiš M. (Eds.): Geological evolution of the Western Carpa-

thians. Mineralia Slovaca – Monograph, Bratislava, 253–260.

Krist E. 1954: Bindt–Rudňany conglomerates, Carboniferous of the 

northern part of the Slovenské Rudohorie Mts. Geol. Práce, 

Zošit 36, Dionýz Štúr Inst. Geology, Bratislava, 77–107 (in  

Slovak). 

Lexa O., Schulmann K. & Ježek J. 2003: Cretaceous collision and 

indentation in the West Carpathians: View based on structural 

analysis and numerical modelling. Tectonics 22, 6, 1066. https://

doi.org/10.1029/2002TC001472

Linnemann U., McNaughton N.J., Romer R.L., Gehmlich M., 

 

Drost K. & Tonk C. 2004: West African provenance for Saxo-

Thuringia (Bohemian Massif): did Armorica ever leave pre- 

Pangean Gondwana? U/Pb SHRIMP zircon evidence and Nd- 

isotopic record. Int. J. Earth Sci. (Geol. Rundsch.) 93, 683–705.

Linnemann U., Gerdes A., Drost K. & Buschmann B. 2007: The con-

tinuum between Cadomian orogenesis and opening of the Rheic 

Ocean: constraints of the LA-ICP-MS zircon dating and analy-

ses of plate-tectonic setting, Saxo–Thuringian zone, northeastern 

Bohemian Massif, Germany. Geol. Soc. Am. Spec. Pap. 423, 

61–96.

Linnemann U., Gerdes A., Hofmann M. & Marko L. 2014: The Cado-

mian Orogen: Neoproterozoic to Early Cambrian crustal growth 

and orogenic zoning along the periphery of the West African 

Craton – Constraints from U–Pb zircon ages and Hf isotopes 

(Schwarzburg Antiform, Germany). Precambrian Res. 244, 

236–278.

Ludwig  K.R.  2005:  SQUID  1.12 A  Userʼs  Manual. A  Geochrono-

logical Toolkit for Microsoft Excel. Berkeley Geochronology 

Centre Special Publication, 1–22. http://www.bgc.org/ 

klprogrammenu.html

Ludwig K.R. 2012: Userʼs Manual for Isoplot 3.75. A geochronolo-

gical Toolkit for Microsoft Excel. Berkeley Geochronology Cen-

tre Special Publication 5, 1–71. http://www.bgc.org/isoplot.html

Mamet B. & Mišík M. 2003: Marine Carboniferous algae from meta-

carbonates of Ochtiná Formation (Gemeric Unit, Western Car-

pathians). Geol. Carpath. 54, 3–8.

Michalík J. (Ed.) 2007: Stratigraphic manual. Slovak stratigraphic 

terminology, stratigraphic classification and method. VEDA

Slovak Academy of Sciences, Bratislava, 1–166 (in Slovak).

Němejc F. 1947 Contribution to knowledge of floral remnants and 

stratigraphical division of Permo-Carboniferous of Slovakia. 

Rozpravy II. Čes. Akad. Věd 56, 15, Praha, 1–34 (in Czech).

Németh Z. 2002: Variscan suture zone in Gemericum: Contribution to 

reconstruction of geodynamic evolution and metallogenic events 

of Inner Western Carpathians. Slovak Geol. Mag. 8, 247–257.

Németh Z., Procházka W., Radvanec M., Kováčik M., Madarás J., 

Koděra P. & Hraško Ľ. 2004: Magnesite and talc origin in the 

sequence of geodynamic events in Veporicum, Inner Western 

Carpathians. Acta Petrol. Sinica 20, 837–854.

Novotný  L.  &  Miháľ  F.  1987:  New  lithostratigraphic  units  of  the 

 Krompachy  Group.  Miner. Slov. 19, 97–113 (in Slovak).

Novotná N., Jeřábek P., Pitra P., Lexa O. & Racek M. 2015: Repeated 

slip along a major decoupling horizon between crustal scale 

nappes of the Central Western Carpathians documented in the 

Ochtiná tectonic mélange. Tectonophysics 646, 50–64.

Neubauer F. & Vozárová A. 1990: The Noetsch-Veitsch-Northgemer-

ic Zone of Alps and Carpathians: Correlation, paleogeography 

and  significance  for  Variscan  orogeny.  In:  Minaříková  D.  & 

 Lobitzer H. (Eds.): Thirty years of geological cooperation bet-

ween Austria and Czechoslovakia. Federal Geol. Surv., Vienna, 

167–171.

Planderová E.  & Vozárová A. 1982: Biostratigraphical correlation of 

the Late Paleozoic formations in the West Carpathians. In: Sassi 

F.P. (Ed.): Newsletter No. 4, IGCP Project No. 5, Padova, 67–71.

Plašienka D., Grecula P., Putiš M., Kováč M. & Hovorka D. 1997: 

Evolution and structure of the Western Carpathians: an over-

view. In: Grecula P., Hovorka D., Putiš M. (Eds.): Geological 

evolution of the Western Carpathians. Miner. Slov, Monograph

Bratislava, 1–24

Plašienka D. 2018: Continuity and episodicity in the early Alpine tec-

tonic evolution of the Western Carpathians: How large-scale 

processes are expressed by the orogenic architecture and rock 

record data. Tectonics 37, 2029–2079. https://doi.org/ 

10.1029/2017TC004779

Poller U. & Todt W. 2000: U–Pb single zircon data of granitoids from 

the High Tatra Mountains (Slovakia): implications for the geo-

dynamic evolution. Geol. Soc. Am. Spec. Pap. 350, 235–243.

Poller U., Janák M., Kohút M. & Todt W. 2000: Early Variscan mag-

matism in the Western Carpathians: U–Pb zircon data from gra-

nitoids and orthogneisses of the Tatra Mountains (Slovakia).  

Int. J. Earth Sci. (Geol. Rundsch.) 89, 2, 336–349. https://doi.

org/10.1007/s005310000082

Poller U., Kohút M., Anders B. & Todt W. 2005: Multistage geochro-

nological evolution of the Veľká Fatra Mts. – a combined TIMS 

and ion-microprobe study on zircons. Lithos 82, 113–124.

Putiš M., Kotov A.B., Korikovsky S.P., Salnikova E.B., Yakovleva 

S.Z., Berezhnaya N.G., Kovach V.P. & Plotkina J.V. 2001: U–Pb 

zircon ages of dioritic and trondhjemitic rocks from a layered 

amphibolitic complex crosscut by granite veins (Veporic base-

ment, Western Carpathians). Geol. Carpath. 52, 1, 49–60.

Putiš M., Kotov A. B., Petrík I., Korikovsky S. P., Madarás J., 

 Salnikova E.B., Yakovleva S.Z., Berezhnaya N.G., Plotkina 

Y.V., Kovach V.P., Lupták B. & Majdán M. 2003: Early– vs. Late 

orogenic granitoids relationships in the Variscan basement of  

the Western Carpathians. Geol. Carpath. 54, 163–174.

Putiš M., Sergeev S., Ondrejka M., Larionov A., Siman P., Spišiak J., 

Uher P. & Paderin I. 2008: Cambrian–Ordovician metaigneous 

rocks associated with Cadomian fragments in the West-Carpa-

thian basement dated by SHRIMP on zircons: a record from the 

Gondwana active margin setting. Geol. Carpath. 59, 1, 3–18.

Putiš M., Ivan P., Kohút M., Spišiak J., Siman P., Radvanec M., Uher 

P., Sergeev S., Larionov A., Méreš Š., Demko R. & Ondrejka M. 

2009a: Meta-igneous rocks of the West-Carpathian basement, 

Slovakia: indicators of Early Paleozoic extension and shortening 

events. Bull. Soc. Géol. Fr. 180, 6, 461–471.

Putiš  M.,  Frank W.,  Plašienka  D.,  Siman  P.,  Sulák  M.  &  Biroň A. 

2009b: Progradation of the Alpidic Central Western Carpathians 

orogenic wedge related to two subductions: constrained by 

40

Ar/

39

Ar ages of white micas. Geodyn. Acta 22, 1–3, 31–56.

Radvanec M. 1994: Petrology of the Gemeric gneiss-amphibolite com-

plex, northern part of the Rudňany deposits. Part I: P–T–x condi-

tions and zonality of metamorphism. Miner. Slov. 26, 223–238.

Radvanec  M.,  Németh  Z.,  Kráľ  J.  &  Pramuka  S.  2017:  Variscan 

 dismembered metaophiolite suite fragments of Paleo-Tethys in 

Gemeric unit, Western Carpathians. Miner. Slov. 49, 1–48.

Rakusz Gy. 1932: Die oberkarbonischen Fosilien von Dobšiná und 

Nagyvisnyó. Geol. Hungarica, serie Paleont. 8, 1–219.

Rakús M., Potfaj M. & Vozárová A. 1998: Basic paleogeographic and 

paleotectonic units of the Western Carpathians. In: Rakús M. 

(Ed.): Geodynamic development of the Western Carpathians.  

D. Štúr Publ., Bratislava, 15–26.

background image

530

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Rojkovič I. & Konečný P. 2005: Th–U–Pb dating of monazite from 

the Cretaceous uranium vein mineralization in the Permian rocks 

of the Western Carpathians. GeolCarpath. 56, 493–502.

Rojkovič I. & Miháľ F. 1991: Geological structure and uranium mine-

ralization in Permian of the north-eastern part of the Slovenské 

Rudohorie Mts. Miner. Slov. 23, 123–132 (in Slovak with English 

summary).

Rojkovič I. & Vozár J. 1972: Contribution to the relationship of the 

Permian volcanism in the northern Gemerides and Choč Unit. 

Geol. Zborn. Geol. Carpath. 23, Bratislava, 87–98.

Spišiak J., Hovorka D. & Ivan P. 1985: Klátov Group the representa-

tive of the Paleozoic amphibolite facies metamorphites of the 

Inner Western Carpathians. Geol. Práce, Spr. 82, 205–220 (in 

Slovak with English summary).

Steiger R.H. & Jäger E. 1977: Subcommission on geochronology: 

Convention on the use of decay constants in geo- and cosmo-

chronology. Earth Planet. Sci. Lett. 36, 359–362.

Václav J. & Vozárová A. 1978: Characteristic of the Northern Geme-

ride Permian at Košická Belá. Záp. Karpaty, Sér. Min. Petr. Geo-

chem. Metalog. 5, 83–108 (in Slovak).

Vermeesch P. 2012: On the visualization detrital age distributions. 

Chem. Geol. 312–313, 190–194. https://doi.org/10.1016/ 

j.chemgeo.2012.04.021

Vozárová A. 1973: Pebble analysis of the late Paleozoic conglome-

rates in Spišsko-Gemerské rudohorie Mts. Geol. Zborn. Západné 

Karpaty 18, 7–98 (in Slovak).

Vozárová A. 1996: Tectono-sedimentary evolution of Late Paleozoic 

basins based on interpretation of lithostratigraphic data (Western 

Carpathians; Slovakia). Slovak Geol. Mag. 3–4, 251–271.

Vozárová A. 1997: Upper Permian-Lower Triassic evaporites in the 

Western Carpathians (Slovakia). Slovak Geol. Mag. 3, 223–230.

Vozárová A. 1998a: Late Hercynian development in the Central Wes-

tern Carpathians. In: Rakús M. (Ed.): Geodynamic development 

of the Western Carpathians. Geol. Surv. Slovak Rep., Dionýz Štúr 

Publishers, 41–46.

Vozárová A. 1998b: Late Hercynian development in the Inner Wes-

tern Carpathians. In: Rakús M. (Ed.): Geodynamic development 

of the Western Carpathians. Geol. Surv. Slovak Rep., Dionýz Štúr 

Publishers, 75–80.

Vozárová A. 2001: Plagiogranite pebbles in Westphalian conglome-

rates of the Northern Gemericum Unit: their characteristic and 

geotectonic significance (Western Carpathians). Krystalinikum 

27, 79–88.

Vozárová A. & Vozár J. 1988: Late Paleozoic in West Carpathians. 

Monogr., D. Štúr. Inst. Geol., Bratislava, 1–314.

Vozárová A.,  Frank  W.,  Kráľ  J.  &  Vozár  J.  2005: 

40

Ar/

39

Ar dating  

of detrital mica from the Upper Paleozoic sandstones in 

 

the Wes tern Carpathians (Slovakia). Geol. Carpath. 56, 6,  

463–472.

Vozárová A., Šarinová K., Rodionov N., Laurinc D., Paderin I., 

Sergeev S. & Lepekhina E. 2012: U–Pb ages of detrital zircons 

from Paleozoic metasandstones of the Gelnica Terrane (Southern 

Gemeric Unit, Western Carpathians, Slovakia): evidence for 

Avalonian–Amazonian provenance. Int. J. Earth Sci. (Geol. 

Rundsch.) 101, 919–936. https://doi.org/10.1007/s00531-011-

0705-8

Vozárová A., Laurinc D., Šarinová K., Larionov A., Presnyakov S., 

Rodionov N. & Paderin I. 2013: Pb ages of detrital zircons in 

relation to geodynamic evolution: Paleozoic of the Northern 

 Gemericum (Western Carpathians, Slovakia). J. Sediment. Res. 

83, 915–927. https://doi.org/10.2110/jsr.2013.66

Vozárová A., Presnyakov S., Šarinová K. & Šmelko M. 2015: First 

evidence for Permian-Triassic boundary volcanism in the Nor-

thern Gemericum: geochemistry and U-Pb zircon geochrono-

logy. Geol. Carpath. 66, 5, 375–391.

Vozárová A., Rodionov N., Šarinová K. & Presnyakov S. 2017: New 

zircon ages on the Cambrian–Ordovician volcanism of the 

Southern Gemericum basement (Western Carpathians, Slova-

kia): SHRIMP dating, geochemistry and provenance. Int. J. 

Earth Sci.  (Geol. Rundsch.) 106, 2147–2170. https://doi.

org/10.1007/s00531-016-1420-2

Vozárová A., Rodionov N. & Šarinová K. 2019: Recycling of Paleo-

proterozoic and Neoproterozoic crust recorded in Lower Paleo-

zoic metasandstones (Western Carpathians, Slovakia): evidence 

from detrital zircons. Geol. Carpath. 70, 298–310.

Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., 

von Quadt A., Roddick J.C. & Spiegel W. 1995: Three natural 

zircon standards for U–Th–Pb, Lu–Hf, trace element and REE 

analyses. Geostand. Newslett. 19, 1–23.

Williams I.S. 1998: U–Th–Pb geochronology by ion microprobe.  

In: McKissen M.A., Shanks III W.C. & Ridley W.S. (Eds.):  

Applications of microanalytical techniques to understanding 

mineralizing processes. Rev. Econ. Geol. 7, 1–35.

Zágoršek K. & Macko A. 1994: Carboniferous Bryozoa from the 

 Jedlovec quarry in Ochtiná Formation (Gemericum, Western 

Carpathians): Miner. Slov. 26, 5, 335–346.

background image

i

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Plagioclase

Garnet

No

16 / 1

17 / 1

19 / 1

21 / 1

23 / 1

No.

18 / 1

20 / 1

22 / 1

Sample

GZ-55

GZ-55

GZ-55

GZ-55

GZ-55

Sample

GZ-55

GZ-55

GZ-55

Mineral

pl

pl

pl

pl

pl

Mineral

grt

grt

grt

Ana No.

an1

an2

an4

an6

an8

Ana No.

an3

an5

an7

SiO2

62.94

62.86

63.63

62.16

62.57

SiO2

38.06

37.80

37.79

Al2O3

23.54

22.63

22.24

23.10

23.36

TiO2

0.01

0.00

0.00

FeO

0.05

0.00

0.01

0.02

0.00

Al2O3

21.11

21.11

21.04

CaO

5.33

4.72

4.34

5.32

5.17

Cr2O3

0.03

0.01

0.01

Na2O

8.41

8.84

8.96

8.21

8.44

MgO

2.20

2.15

2.16

K2O

0.18

0.08

0.22

0.20

0.06

FeO

31.63

32.22

32.48

SrO

0.05

0.04

0.00

0.05

0.03

MnO

1.98

2.15

2.43

Total

100.50

99.17

99.41

99.06

99.63

CaO

6.38

5.61

5.22

apfu (8 oxygen)

Na2O

0.04

0.00

0.03

Si

2.774

2.803

2.827

2.778

2.778

Total

101.43

101.06

101.16

Al

1.223

1.189

1.165

1.217

1.222

apfu (8 cations)

Fe

0.002

0.000

0.000

0.001

0.000

Si

3.007

3.004

3.003

Ca

0.252

0.225

0.206

0.255

0.246

Tetr. Al

0.000

0.000

0.000

Sr

0.001

0.001

0.000

0.001

0.001

sum T

3.007

3.004

3.003

Na

0.719

0.764

0.772

0.711

0.727

Fe3+

0.033

0.021

0.029

K

0.010

0.005

0.012

0.012

0.003

Oct. Al

1.965

1.978

1.971

SUM

4.980

4.987

4.983

4.975

4.977

Cr

0.002

0.001

0.001

endmembers (%)

Ti

0.000

0.000

0.000

Or

1.05

0.48

1.26

1.18

0.34

sum X

2.000

2.000

2.000

Ab

73.29

76.84

77.91

72.75

74.47

Fe2+

2.056

2.119

2.129

An

25.66

22.69

20.84

26.06

25.19

Ca

0.540

0.478

0.444

Mg

0.259

0.255

0.256

Mn

0.132

0.145

0.164

Na

0.006

0.000

0.004

sum Y

2.993

2.996

2.997

endmembers (%)
Prp

8.67

8.50

8.55

Sps

4.43

4.83

5.48

Alm

68.81

70.72

71.13

Adr

1.64

1.07

1.45

Grs

16.44

14.87

13.40

Table S1: Microprobe analyses of plagioclases and garnets from the sample GZ-55.

Supplement

background image

ii

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Hrádok Fm.

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th/

238

U

ppm

206

Pb*

(1)

206

Pb/

238

U

Age

±1s

err

(1)

207

Pb/

206

Pb

Age

±1s

err

%

Discordant

(1)

238

U/

206

Pb

*

±%

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

*

/

235

U ±%

(1)

206

Pb

*

/

238

U ±%

err

corr

GZ-28.1.1

0.46

130

120

0.95

6.6

367

4

297

130

−19 

17.08

1.2

0.0523

5.7

0.42

5.8

0.0585

1.2

0.207

GZ-28.2.1

0.24

76

51

0.69

25.2

2087

19

2045

27

−2 

2.61

1.1

0.1262

1.6

6.65

1.9

0.3822

1.1

0.561

GZ-28.3.1

0.00

238

82

0.36

16.4

496

4

555

48

12 

12.50

0.9

0.0587

2.2

0.65

2.4

0.0800

0.9

0.363

GZ-28.4.1

0.34

173

49

0.29

11.6

482

5

444

84

−8 

12.89

1.0

0.0558

3.8

0.60

3.9

0.0776

1.0

0.253

GZ-28.5.1

0.45

123

5

0.04

6.2

368

4

256

131

−31 

17.00

1.2

0.0513

5.7

0.42

5.8

0.0588

1.2

0.206

GZ-28.6.1

0.53

150

42

0.29

10.4

498

5

474

117

−5 

12.45

1.0

0.0566

5.3

0.63

5.4

0.0803

1.0

0.193

GZ-28.7.1

0.21

795

13

0.02

37.0

340

2

332

55

−2 

18.48

0.7

0.0531

2.4

0.40

2.5

0.0541

0.7

0.262

GZ-28.8.1

0.28

706

273

0.40

32.0

330

2

308

62

−7 

19.02

0.8

0.0525

2.7

0.38

2.8

0.0526

0.8

0.272

GZ-28.9.1

0.56

120

80

0.68

9.5

566

6

483

122

−15 

10.89

1.1

0.0568

5.5

0.72

5.6

0.0918

1.1

0.193

GZ-28.10.1

0.17

227

65

0.30

15.5

492

4

403

54

−18 

12.61

0.9

0.0548

2.4

0.60

2.6

0.0793

0.9

0.347

GZ-28.11.1

0.16

315

99

0.32

21.1

483

4

527

52

12.86

0.8

0.0579

2.4

0.62

2.5

0.0778

0.8

0.325

GZ-28.12.1

0.66

194

16

0.09

13.5

499

4

354

124

−29 

12.42

0.9

0.0536

5.5

0.59

5.6

0.0805

0.9

0.159

GZ-28.13.1

0.60

87

33

0.39

6.2

509

6

439

143

−14 

12.18

1.2

0.0557

6.4

0.63

6.5

0.0821

1.2

0.178

GZ-28.14.1

0.05

212

270

1.31

93.9

2678

15

2760

8

1.94

0.7

0.1921

0.5

13.64

0.8

0.5151

0.7

0.801

GZ-28.15.1

0.11

200

94

0.49

90.1

2717

16

2694

13

−1 

1.91

0.7

0.1846

0.8

13.34

1.0

0.5243

0.7

0.687

GZ-28.16.1

-0.01

616

831

1.39

273.5

2685

14

2695

7

1.94

0.6

0.1847

0.4

13.15

0.8

0.5165

0.6

0.843

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.4 % (not included in above errors but required when comparing data from different mounts).

(1) Common Pb corrected using measured 

204

Pb.

Table S2: New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken from 

Vozárová et al. 2013, are shaded.

background image

iii

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Table S2 (continued): New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken 

from Vozárová et al. 2013, are shaded.

Rudňany Fm.

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th

/

238

U

ppm

206

Pb*

(1)

206

Pb/

238

U

Age

(1)

207

Pb/

206

Pb

Age

%

Discordant

(1)

238

U/

206

Pb

*

±%

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

*

/

235

U ±%

(1)

206

Pb

*

/

238

U ±%

err

corr

GZ-35_1.1 

0.00

59

45

0.79

6.57

781.00

±13  

832.00

±54  

7.76

1.8

0.0668

2.6

1.19

3.2

0.1288

1.8

0.564

GZ-35_2.1 

0.11

309

136

0.45

14.90

350.80

±5,2

354.00

±40  

17.88

1.5

0.0536

1.8

0.41

2.3

0.0559

1.5

0.653

GZ-35_3.1 

0.08

284

101

0.37

13.80

355.30

±5,3

364.00

±44  

17.65

1.5

0.0538

2.0

0.42

2.5

0.0567

1.5

0.619

GZ-35_4.1 

0.11

266

161

0.63

13.00

357.30

±5,4

371.00

±42  

17.55

1.5

0.0540

1.9

0.42

2.4

0.0570

1.5

0.635

GZ-35_5.1 

0.17

603

174

0.30

29.40

355.10

±5,2

347.00

±32  

−2 

17.66

1.5

0.0534

1.4

0.42

2.1

0.0566

1.5

0.725

GZ-35_6.1 

0.10

250

472

1.95

23.60

671.70

±9,7

637.00

±30  

−5 

9.11

1.5

0.0609

1.4

0.92

2.1

0.1098

1.5

0.736

GZ-35_7.1 

0.15

141

115

0.84

6.88

354.20

±5,6

340.00

±66  

−4 

17.70

1.6

0.0533

2.9

0.42

3.3

0.0565

1.6

0.482

GZ-35_8.1 

0.07

365

3

0.01

104.00

1849.00

±24  

2027.90

±8,2

10 

3.01

1.5

0.1249

0.5

5.72

1.6

0.3322

1.5

0.955

GZ-35_9.1 

0.06

446

169

0.39

200.00

2709.00

±33  

2681.00

±15  

−1 

1.91

1.5

0.1831

0.9

13.19

1.7

0.5224

1.5

0.856

GZ-35_10.1 

0.24

75

52

0.71

7.71

724.00

±12  

698.00

±68  

−4 

8.41

1.7

0.0627

3.2

1.03

3.6

0.1189

1.7

0.467

GZ-35_11.1 

0.01

249

252

1.04

130.00

3052.00

±37  

2998.00

±16  

−2 

1.65

1.5

0.2224

1.0

18.57

1.8

0.6056

1.5

0.835

GZ-35_12.1 

0.11

355

252

0.73

17.70

363.90

±5,4

330.00

±38  

−9 

17.22

1.5

0.0530

1.7

0.42

2.3

0.0581

1.5

0.672

GZ-35_13.1 

0.06

175

54

0.32

74.60

2598.00

±32  

2619.50

±8,3

2.01

1.5

0.1764

0.5

12.07

1.6

0.4963

1.5

0.949

GZ-35_14.1 

0.03

761

224

0.30

237.00

1991.00

±25  

2665.70

±9,7

34 

2.76

1.5

0.1814

0.6

9.05

1.6

0.3618

1.5

0.927

GZ-35_15.1 

0.04

724

248

0.35

38.20

384.10

±5,5

399.00

±24  

16.29

1.5

0.0547

1.1

0.46

1.8

0.0614

1.5

0.805

GZ-35_16.1 

0.26

166

44

0.27

11.50

497.10

±7,7

433.00

±64  

−13 

12.47

1.6

0.0555

2.9

0.61

3.3

0.0802

1.6

0.493

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.51 %

(1) Common Pb corrected using measured 

204

Pb.

background image

iv

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Table S2 (continued): New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken 

from Vozárová et al. 2013, are shaded.

Rudňany Fm. – metasandstone pebble

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th/

238

U

ppm

206

Pb*

(1)

206

Pb/

238

U

Age

±1s

err

(1)

207

Pb/

206

Pb

Age

±1s

err

%

Discordant

(1)

238

U/

206

Pb

*

±%

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

*

/

235

U ±%

(1)

206

Pb

*

/

238

U ±%

err

corr

GZ-36A.1.1

0.06

233

92

0.41

96.1

2529

16

2561

11

2.08

0.8

0.1703

0.7

11.28

1.0

0.4805

0.8

0.757

GZ-36A.2.1

0.13

66

27

0.43

20.8

2022

21

2034

31

2.71

1.2

0.1254

1.8

6.37

2.2

0.3684

1.2

0.563

GZ-36A.3.1

0.08

62

23

0.38

31.8

3000

36

2941

22

−2 

1.69

1.5

0.2147

1.4

17.54

2.0

0.5925

1.5

0.735

GZ-36A.4.1

0.19

201

16

0.08

62.8

1996

14

2007

18

2.75

0.8

0.1235

1.0

6.18

1.3

0.3629

0.8

0.615

GZ-36A.5.1

0.37

66

36

0.56

22.2

2119

23

2060

32

−3 

2.57

1.3

0.1272

1.8

6.83

2.2

0.3891

1.3

0.573

GZ-36A.6.1

0.15

294

120

0.42

90.3

1965

13

2025

14

2.80

0.8

0.1248

0.8

6.13

1.1

0.3564

0.8

0.708

GZ-36A.7.1

0.03

402

236

0.61

181.4

2720

14

2706

7

−1 

1.90

0.6

0.1858

0.4

13.45

0.8

0.5250

0.6

0.832

GZ-36A.8.1

0.12

85

17

0.21

28.0

2082

22

2013

35

−3 

2.62

1.3

0.1239

2.0

6.51

2.3

0.3811

1.3

0.537

GZ-36A.9.1

0.46

157

214

1.41

12.7

576

5

569

83

−1 

10.70

1.0

0.0591

3.8

0.76

3.9

0.0934

1.0

0.245

GZ-36A.10.1

0.14

144

88

0.63

41.8

1874

13

1882

28

2.96

0.8

0.1151

1.5

5.36

1.7

0.3375

0.8

0.464

GZ-36A.11.1

0.12

194

56

0.30

87.6

2718

16

2706

10

1.91

0.7

0.1859

0.6

13.44

0.9

0.5244

0.7

0.747

GZ-36A.12.1

0.27

105

74

0.73

7.9

537

6

489

92

−9 

11.50

1.1

0.0569

4.2

0.68

4.3

0.0869

1.1

0.249

GZ-36A.13.1

0.07

316

55

0.18

141.5

2700

14

2737

14

1.92

0.6

0.1894

0.8

13.58

1.0

0.5201

0.6

0.591

GZ-36A.14.1

0.04

170

207

1.25

73.6

2626

17

2770

11

1.99

0.8

0.1932

0.7

13.39

1.0

0.5027

0.8

0.765

GZ-36A.15.1

0.06

214

92

0.44

72.2

2134

12

2136

13

2.55

0.7

0.1328

0.8

7.19

1.0

0.3923

0.7

0.659

GZ-36A.16.1

-0.01

626

106

0.17

280.4

2705

13

2688

5

−1 

1.92

0.6

0.1838

0.3

13.21

0.7

0.5213

0.6

0.891

GZ-36A.17.1

0.12

210

70

0.34

87.3

2543

14

2514

24

−1 

2.07

0.7

0.1657

1.4

11.05

1.6

0.4837

0.7

0.426

GZ-36A.18.1

-0.01

836

164

0.20

361.7

2630

19

2834

20

1.99

0.9

0.2010

1.2

13.96

1.5

0.5037

0.9

0.592

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.4 % (not included in above errors but required when comparing data from different mounts).

(1) Common Pb corrected using measured 

204

Pb.

background image

v

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Table S2 (continued): New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken 

from Vozárová et al. 2013, are shaded.

Rudňany Fm. – gneiss pebble

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th/

238

U

ppm

206

Pb*

(1)

206

Pb/

238

U

Age

(1)

207

Pb/

206

Pb

Age

%

Discordant

(1)

238

U/

206

Pb

*

±%

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

*

/

235

U ±%

(1)

206

Pb

*

/

238

U

±%

err

corr

GZ55_1.1 

0.23

383

89

0.24

28.50

534.20

±2,5

552.00

±37

3

11.57

0.49

0.0586

1.70

0.70

1.80

0.0864

0.49

0.276

GZ55_1.2 

1.48

68

4

0.06

3.65

385.70

±6,3

530.00

±400

37

16.21

1.70

0.0580

18.00

0.49

18.00

0.0617

1.70

0.093

GZ55_2.1 

0.25

271

26

0.10

18.50

491.60

±3,8

456.00

±46

−7

12.62

0.80

0.0561

2.10

0.61

2.20

0.0792

0.80

0.358

GZ55_3.1 

0.12

710

137

0.20

50.70

513.70

±1,9

517.00

±43

1

12.06

0.38

0.0577

2.00

0.66

2.00

0.0829

0.38

0.191

GZ55_4.1 

0.17

460

87

0.20

33.30

521.00

±2,3

486.00

±36

−7

11.88

0.47

0.0569

1.60

0.66

1.70

0.0842

0.47

0.278

GZ55_5.1 

0.08

1332

346

0.27

94.20

509.60

±1,5

512.00

±18

0

12.16

0.31

0.0575

0.80

0.65

0.86

0.0823

0.31

0.358

GZ55_6.1 

0.12

1084

81

0.08

75.90

504.40

±1,6

510.00

±20

1

12.29

0.33

0.0575

0.92

0.65

0.98

0.0814

0.33

0.339

GZ55_6.2 

0.77

71

0

0.01

3.82

386.70

±4,9

464.00

±130

20

16.17

1.30

0.0563

5.80

0.48

5.90

0.0618

1.30

0.221

GZ55_7.1 

0.03

1840

695

0.39

132.00

518.00

±1,4

538.00

±13

4

11.95

0.28

0.0582

0.60

0.67

0.66

0.0837

0.28

0.424

GZ55_8.1 

0.08

1352

442

0.34

98.30

523.40

±2,3

516.00

±19

−1

11.82

0.46

0.0576

0.87

0.67

0.99

0.0846

0.46

0.467

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.36 % (not included in above errors but required when comparing data from different mounts).

(1) Common Pb corrected using measured 

204

Pb.

background image

vi

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Table S2 (continued): New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken from Vozárová et 

al. 2013, are shaded.

Hámor Fm. 

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th/

238

U ppm

206

Pb*

(1)

206

Pb/

238

U

Age

(2)

206

Pb/

238

U

Age

(3)

206

Pb/

238

U

Age

(1)

207

Pb/

206

Pb

Age

%

Discordant

Total

238

U/

206

Pb ±%

Total

207

Pb/

206

Pb ±%

(1)

238

U/

206

Pb

*

±%

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

*

/

235

U ±%

(1)

206

Pb

*

/

238

U ±%

err

corr

29LA.1.1  0.23

308

337

1.13

24.0

558.4 ±9,2

559.2 ±9,4

560.0

±11  

516

±36

−8

11.03 1.70

0.0595 1.20

11.05

1.70

0.0577

1.60

0.72

2.40

0.0905

1.70 0.727

29LA.2.1  0.26

508

187

0.38

24.1

346.2 ±5,8

346.8 ±5,9

346.3 6.30

287

±49

−17

18.08 1.70

0.0542 1.50

18.13

1.70

0.0520

2.20

0.40

2.80

0.0552

1.70 0.625

29LA.3.1  0.26

667

161

0.25

46.0

496.8 ±8,1

497.9 ±8,3

497.6 ±8,5

421

±37

−15

12.45 1.70

0.0573 0.99

12.48

1.70

0.0552

1.60

0.61

2.40

0.0801

1.70 0.719

29LA.4.1  0.23

914

228

0.26

44.2

352.0 ±5,8

352.9 ±5,9

352.9 ±6,1

265

±32

−25

17.78 1.70

0.0534 1.10

17.82

1.70

0.0515

1.40

0.40

2.20

0.0561

1.70 0.775

29LA.5.1  0.92

109

45

0.43

13.2

843.0

±17  

847.0

±18  

851.0 ±18  

721

±66

−14

7.09

2.10

0.0711 1.50

7.15

2.10

0.0634

3.10

1.22

3.80

0.1397

2.10 0.570

29LA.6.1  0.14 1500 792

0.55

96.5

464.7 ±7,5

465.3 ±7,6

466.6 ±8,2

423

±18

−9

13.36 1.70

0.0565 0.60

13.38

1.70

0.0553

0.81

0.57

1.90

0.0747

1.70 0.899

29LA.7.1  0.47

220

112

0.52

18.4

595.1 ± 9,9

597.0

±10  

599.0

±11  

513

±48

−14

10.29 1.70

0.0614 1.30

10.34

1.70

0.0576

2.20

0.77

2.80

0.0967

1.70 0.624

29LA.8.1  1.07

156

90

0.60

13.3

607.0

±10  

611.0

±11  

613.0

±11  

410

±84

−32

10.02 1.80

0.0638 1.50

10.13

1.80

0.0549

3.80

0.75

4.20

0.0987

1.80 0.427

29LA.9.1  0.10

346

121

0.36

21.7

453.0 ±7,6

452.6 ±7,7

454.3 ±8,1

481

±43

6

13.72 1.70

0.0576 1.60

13.74

1.70

0.0567

2.00

0.57

2.60

0.0728

1.70 0.665

29LA.10.1  0.21

866

374

0.45

67.7

560.3

±9  

560.4 ±9,2

559.5 ±9,7

556

±22

−1

10.99 1.70

0.0604 0.82

11.01

1.70

0.0587

1.00

0.74

2.00

0.0908

1.70 0.856

29LA.11.1  0.15

746

366

0.51

56.6

544.7 ±8,8

545.0

±9  

544.6 ±9,5

531

±24

−2

11.32 1.70

0.0593 0.91

11.34

1.70

0.0580

1.10

0.71

2.00

0.0882

1.70 0.839

29LA.12.1  0.84

80

58

0.75

6.5

577.0

±11  

581.0

±11  

576.0 ±12  

397

±120

−31

10.58 1.90

0.0615 2.60

10.67

1.90

0.0546

5.10

0.71

5.50

0.0937

1.90 0.353

29LA.13.1  0.09

862

545

0.65

73.2

607.0

±10  

607.0

±10  

607.0

±11  

622

±20

3

10.12 1.70

0.0612 0.79

10.13

1.70

0.0605

0.91

0.82

2.00

0.0987

1.70 0.887

29LA.14.1  0.28

173

175

1.04

52.1

1 928.0 ±29  

1 904.0 ±33  

1 925.0 ±34  

2 095

±13

9

2.86

1.80

0.1322 0.66

2.87

1.80

0.1298

0.76

6.24

1.90

0.3486

1.80 0.917

29LA.15.1  0.31

334

104

0.32

42.0

878.0

±14  

878.0

±15  

879.0 ±15  

891

±33

1

6.83

1.70

0.0713 0.99

6.85

1.70

0.0687

1.60

1.38

2.40

0.1460

1.70 0.729

29LA.16.1  1.14

60

17

0.29

10.8

1 203.0 ±21  

1 201.0 ±22  

1 210.0 ±22  

1 269

±71

5

4.81

1.90

0.0926 2.30

4.87

1.90

0.0830

3.60

2.35

4.10

0.2052

1.90 0.469

29LA.16.2  0.19 1286

28

0.02

84.7

475.2 ±7,9

475.7

±8  

475.8 ±7,9

441

±21

−7

13.05 1.70

0.0572 0.76

13.07

1.70

0.0557

0.94

0.59

2.00

0.0765

1.70 0.878

29LA.17.1  0.61

45

45

1.04

3.9

622.0

±14  

622.0

±14  

633.0 ±17  

600

±130

−3

9.82

2.30

0.0649 3.30

9.88

2.30

0.0599

6.00

0.84

6.40

0.1012

2.30 0.357

29LA.18.1  0.19

870

313

0.37

45.8

383.0

6.30

383.7 ±6,4

383.9 ±6,7

316

±34

−17

16.31 1.70

0.0543 1.00

16.34

1.70

0.0527

1.50

0.45

2.30

0.0612

1.70 0.745

29LA.18.2  0.78

167

48

0.29

8.4

365.0

6.60

366.6 ±6,6

364.6

±7  

206

±120

−44

17.03 1.80

0.0566 2.50

17.17

1.90

0.0502

5.10

0.40

5.40

0.0583

1.90 0.342

29LA.19.1  0.07

234

139

0.62

74.3

2 030.0 ±30  

2 002.0 ±34  

2 032.0 ±32  

2 195

±10

8

2.70

1.70

0.1380 0.55

2.70

1.70

0.1374

0.58

7.01

1.80

0.3702

1.70 0.948

29LA.20.1  0.03 1065 861

0.84

87.5

588.7 ±9,4

588.4 ±9,6

590.0

±11  

606

±17

3

10.45 1.70

0.0603 0.71

10.46

1.70

0.0601

0.80

0.79

1.90

0.0956

1.70 0.903

29LA.21.1  0.11

843 1686

2.07

67.2

571.4 ±9,2

571.8 ±9,4

580.0 ±14  

549

±23

−4

10.78 1.70

0.0594 0.83

10.79

1.70

0.0585

1.10

0.75

2.00

0.0927

1.70 0.847

29LA.22.1  0.56

272

187

0.71

22.4

586.0

±10  

588.0

±11  

591.0 ±12  

472

±55

−19

10.45 1.90

0.0611 1.40

10.51

1.90

0.0565

2.50

0.74

3.10

0.0951

1.90 0.600

29LA.23.1  0.50

210

81

0.40

21.5

724.0

±13  

725.0

±13  

710.0 ±14  

676

±47

−7

8.37

1.90

0.0662 1.40

8.42

1.90

0.0621

2.20

1.02

2.90

0.1188

1.90 0.648

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

(1) Common Pb corrected using measured 

204

Pb.

(2) Common Pb corrected by assuming 

206

Pb/

238

U–

207

Pb/

235

U age-concordance

(3) Common Pb corrected by assuming 

206

Pb/

238

U–

208

Pb/

232

Th age-concordance

background image

vii

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Table S2 (continued): New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken 

from Vozárová et al. 2013, are shaded.

Hámor Fm. 

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th/

238

U

ppm

206

Pb*

(1)

206

Pb/

238

U

Age

±1s

err

(1)

207

Pb/

206

Pb

Age

±1s

err

%

Discordant

(1)

238

U/

206

Pb

*

±%

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

/

235

U

±%

(1)

206

Pb

*

/

238

U

±%

err

corr

GZ-27.1.1

1.00

96

113

1.22

7.0

522

9

667

207

28 

11.85

1.8

0.0618

9.7

0.72

9.8

0.0844

1.8

0.180

GZ-27.2.1

0.20

74

125

1.74

24.4

2077

20

2107

29

2.63

1.1

0.1307

1.7

6.85

2.0

0.3801

1.1

0.558

GZ-27.3.1

-0.11

137

133

1.00

58.7

2608

22

2832

26

2.01

1.0

0.2007

1.6

13.80

1.9

0.4987

1.0

0.550

GZ-27.4.1

0.06

112

96

0.88

54.4

2886

23

2936

13

1.77

1.0

0.2140

0.8

16.66

1.3

0.5647

1.0

0.770

GZ-27.5.1

-0.01

228

57

0.26

80.9

2232

15

2396

32

2.42

0.8

0.1544

1.9

8.81

2.1

0.4138

0.8

0.392

GZ-27.6.1

0.27

49

38

0.82

16.1

2101

24

2066

38

−2 

2.59

1.4

0.1276

2.2

6.78

2.6

0.3854

1.4

0.532

GZ-27.7.1

0.03

437

126

0.30

172.2

2435

14

2552

15

2.18

0.7

0.1694

0.9

10.72

1.1

0.4589

0.7

0.609

GZ-27.8.1

0.03

1318

191

0.15

494.1

2334

12

2451

6

2.29

0.6

0.1596

0.4

9.60

0.7

0.4363

0.6

0.869

GZ-27.9.1

0.09

1501

408

0.28

63.4

309

2

278

46

−10 

20.36

0.7

0.0518

2.0

0.35

2.1

0.0491

0.7

0.343

GZ-27.10.1

0.00

542

285

0.54

237.3

2654

14

2681

15

1.96

0.7

0.1831

0.9

12.86

1.1

0.5094

0.7

0.589

GZ-27.11.1

0.15

428

252

0.61

29.5

497

4

433

52

−13 

12.47

0.8

0.0555

2.3

0.61

2.4

0.0802

0.8

0.319

GZ-27.12.1

0.15

126

104

0.85

10.2

577

6

587

78

10.68

1.1

0.0595

3.6

0.77

3.8

0.0936

1.1

0.296

GZ-27.13.1

0.02

1146

943

0.85

48.2

308

2

236

34

−23 

20.44

0.7

0.0509

1.5

0.34

1.6

0.0489

0.7

0.410

GZ-27.14.1

0.07

101

45

0.46

45.0

2689

21

2709

15

1.93

1.0

0.1862

0.9

13.29

1.3

0.5177

1.0

0.718

GZ-27.15.1

0.32

134

215

1.66

8.5

460

5

476

124

13.50

1.2

0.0566

5.6

0.58

5.7

0.0740

1.2

0.204

GZ-27.16.1

0.09

605

538

0.92

42.3

504

3

467

35

−7 

12.30

0.7

0.0564

1.6

0.63

1.7

0.0813

0.7

0.394

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.4 % (not included in above errors but required when comparing data from different mounts).

(1) Common Pb corrected using measured 

204

Pb.

background image

viii

VOZÁROVÁ, ŠARINOVÁ, LAURINC, LEPEKHINA, VOZÁR, RODIONOV and LVOV

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Table S2 (continued): New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken from Vozárová 

et al. 2013, are shaded.

Petrova Hora Fm. 

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th/

238

U ppm

206

Pb*

(1)

206

Pb/

238

U

Age

(2)

206

Pb/

238

U

Age

(1)

207

Pb/

206

Pb

Age

%

Discordant

Total

238

U/

206

Pb ±%

Total

207

Pb/

206

Pb ±%

(1)

238

U

206

Pb

*

±%

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

*

/

235

U ±%

(1)

206

Pb

*

/

238

U ±%

err

corr

74LA_1.1 

0.00

139

67

0.49

50.6

2270.0

±45  

2280.0

±55  

2222

±12

−2

2.37

2.30

0.1396

0.71

2.37

2.3

0.1396

0.71

8.12

2.40

0.4220

2.30 0.956

74LA_2.1 

0.06

708

65

0.09

43.9

448.9

±8,4

449.0

±8,5

437

±23

−3

13.86

1.90

0.0561

0.93

13.87

1.9

0.0556

1.00

0.55

2.20

0.0721

1.90 0.885

74LA_3.1 

0.09

646

379

0.61

32.7

368.1

±6,9

368.1

±7  

365

±31

−1

17.00

1.90

0.0546

1.10

17.02

1.9

0.0539

1.40

0.44

2.40

0.0588

1.90 0.818

74LA_4.1 

0.00

421

163

0.40

54.3

901.0

±16  

902.0

±17  

885

±16

−2

6.67

1.90

0.0685

0.77

6.67

1.9

0.0685

0.77

1.42

2.10

0.1500

1.90 0.929

74LA_5.1 

0.12

2422

858

0.37

116.0

350.3

±6,5

350.5

±6,6

327

±23

−7

17.89

1.90

0.0540

0.90

17.91

1.9

0.0530

1.00

0.41

2.20

0.0558

1.90 0.881

74LA_6.1 

0.24

500

68

0.14

24.2

352.5

±6,7

352.5

±6,8

356

±43

1

17.75

1.90

0.0556

1.40

17.79

2.0

0.0536

1.90

0.42

2.70

0.0562

2.00 0.713

74LA_7.1 

0.05

214

99

0.48

14.6

493.1

±9,4

493.2

±9,6

489

±37

−1

12.57

2.00

0.0573

1.60

12.58

2.0

0.0569

1.70

0.62

2.60

0.0795

2.00 0.766

74LA_8.1 

0.51

15

6

0.42

2.6

1201.0

±31  

1200.0

±33  

1215

±140

1

4.86

2.80

0.0850

5.70

4.88

2.8

0.0807

7.00

2.28

7.60

0.2048

2.80 0.376

74LA_9.1 

0.58

129

1

0.01

7.8

433.2

±8,6

433.5

±8,7

408

±83

−6

14.30

2.00

0.0596

2.10

14.39

2.0

0.0549

3.70

0.53

4.20

0.0695

2.00 0.486

74LA_10.1  0.07

427

143

0.34

17.4

298.4

±5,7

298.4

±5,8

291

±45

−2

21.09

2.00

0.0527

1.70

21.11

2.0

0.0521

2.00

0.34

2.80

0.0474

2.00 0.708

74LA_11.1  0.12

611

389

0.66

39.2

464.0

±8,7

464.2

±8,8

452

±29

−3

13.38

1.90

0.0570

1.10

13.40

1.9

0.0560

1.30

0.58

2.30

0.0746

1.90 0.824

74LA_12.1  0.21

125

63

0.52

7.9

455.8

±9,1

455.8

±9,3

459

±65

1

13.62

2.10

0.0578

2.50

13.65

2.1

0.0562

2.90

0.57

3.60

0.0733

2.10 0.578

74LA_13.1  0.11

512

147

0.30

21.2

303.4

±5,8

303.4

±5,9

301

±40

−1

20.73

2.00

0.0533

1.60

20.75

2.0

0.0524

1.80

0.35

2.60

0.0482

2.00 0.744

74LA_14.1  0.02

587

228

0.40

35.1

433.9

±8,2

434.2

±8,3

408

±28

−6

14.36

1.90

0.0551

1.20

14.36

1.9

0.0549

1.20

0.53

2.30

0.0696

1.90 0.845

74LA_15.1  0.37

116

121

1.08

15.4

923.0

±17  

924.0

±18  

910

±44

−1

6.47

2.00

0.0725

1.60

6.49

2.0

0.0694

2.20

1.47

3.00

0.1540

2.00 0.686

74LA_16.1  0.11

653

433

0.69

31.0

346.4

±6,6

346.5

±6,6

345

±32

0

18.09

1.90

0.0543

1.30

18.11

1.9

0.0534

1.40

0.41

2.40

0.0552

1.90 0.808

74LA_17.1  0.09

597

172

0.30

31.1

379.4

±7,2

379.4

±7,2

382

±38

1

16.48

1.90

0.0550

1.50

16.49

1.9

0.0543

1.70

0.45

2.60

0.0606

1.90 0.751

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.5 % (not included in above errors but required when comparing data from different mounts).

(1) Common Pb corrected using measured 

204

Pb.

(2) Common Pb corrected by assuming 

206

Pb/

238

U–

207

Pb/

235

U age-concordance

background image

ix

ZIRCON GEOCHRONOLOGY FROM CARBONIFEROUS–PERMIAN SANDSTONES (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 6, 512–530

Table S2 (continued): New U–Pb (SHRIMP) detrital zircon age data from the Carboniferous–Permian sedimentary formations of the Northern Gemericum. Note: the old zircon age data from the sample LA-66, taken 

from Vozárová et al. 2013, are shaded.

Novoveská Huta Fm. – new and older, recalculated, published data (gray)

 Spot

%

206

Pb

c

ppm

U

ppm

Th

232

Th/

238

U

ppm

206

Pb*

(1)

206

Pb/

238

U

Age

(1)

207

Pb/

206

Pb

Age

%

Discordant

(1)

207

Pb

*

/

206

Pb

*

±%

(1)

207

Pb

*

/

235

U

±%

(1)

206

Pb

*

/

238

U

±%

err

corr

66LA_1.1 

0.28

526

178

0.35

22.0

305.9

±6,1

251.0

±63  

−18

0.0512

2.70

0.34

3.4

0.0486

2.0

0.595

66LA_2.1 

0.04

798

186

0.24

32.8

301.1

±5,9

279.0

±40  

−7

0.0518

1.80

0.34

2.7

0.0478

2.0

0.754

66LA_3.1 

0.69

339

186

0.57

13.0

279.5

±5,8

128.0

±140  

−54

0.0486

5.80

0.30

6.2

0.0443

2.1

0.340

66LA_4.1 

0.11

348

173

0.51

13.3

280.6

±5,9

285.0

±77  

2

0.0520

3.40

0.32

4.0

0.0445

2.2

0.540

66LA_5.1 

0.74

174

17

0.10

8.7

361.1

±7,7

230.0

±140  

−36

0.0508

5.90

0.40

6.3

0.0576

2.2

0.348

66LA_6.1 

0.08

478

194

0.42

24.0

366.0

±7,4

320.0

±52  

−13

0.0528

2.30

0.43

3.1

0.0584

2.1

0.670

66LA_7.1 

0.09

1865

447

0.25

97.2

379.3

±7,4

394.0

±26  

4

0.0546

1.20

0.46

2.3

0.0606

2.0

0.866

66LA_8.1 

0.09

450

315

0.72

36.9

588.0

±12  

541.0

±36  

−8

0.0583

1.60

0.77

2.6

0.0955

2.0

0.784

66LA_9.1 

0.00

646

295

0.47

26.5

301.1

±6,1

304.0

±41  

1

0.0524

1.80

0.35

2.7

0.0478

2.1

0.750

66LA_10.1 

− 

610

136

0.23

312.0

3012.0

±49  

2725.0

±15  

−10

0.1881

0.91

15.44

2.2

0.5950

2.1

0.914

66LA_11.1 

0.01

261

68

0.27

120.0

2760.0

±52  

2697.3

± 9,9

−2

0.1849

0.60

13.62

2.4

0.5340

2.3

0.969

66LA_12.1 

0.06

180

106

0.61

60.4

2130.0

±39  

2314.0

±22  

9

0.1472

1.30

7.95

2.5

0.3916

2.1

0.859

66LA_13.1 

0.37

435

58

0.14

27.6

458.0

±9,2

457.0

±78  

0

0.0561

3.50

0.57

4.1

0.0736

2.1

0.509

66LA_14.1 

0.36

612

235

0.40

24.8

296.1

±6  

160.0

±100  

−46

0.0492

4.30

0.32

4.8

0.0470

2.1

0.431

66LA_15.1 

0.21

461

135

0.30

19.0

301.9

±6,2

254.0

±92  

−16

0.0513

4.00

0.34

4.5

0.0480

2.1

0.466

66LA_16.1 

0.00

227

115

0.52

9.2

295.3

±6,3

240.0

±88  

−19

0.0510

3.80

0.33

4.4

0.0469

2.2

0.496

66LA_17.1 

0.06

554

343

0.64

28.1

369.8

±7,4

377.0

±57  

2

0.0541

2.60

0.44

3.3

0.0590

2.1

0.630

66LA_17.2 

− 

835

225

0.28

42.8

374.3

±8,4

419.0

±50  

12

0.0552

2.20

0.46

3.2

0.0598

2.3

0.718

66LA_18.1 

− 

217

235

1.12

10.8

363.7

±7,9

411.0

±69  

13

0.0550

3.10

0.44

3.8

0.0580

2.2

0.587

66LA_19.1 

0.18

616

237

0.40

31.1

367.3

±7,5

413.0

±56  

13

0.0550

2.50

0.45

3.3

0.0586

2.1

0.638

66LA_20.1 

0.23

614

45

0.08

40.1

471.3

±9,7

480.0

46.00

2

0.0567

2.10

0.59

3.0

0.0759

2.1

0.716

66LA_21.1 

0.50

378

186

0.51

18.5

356.1

±7,8

382.0

±100  

7

0.0543

4.60

0.43

5.2

0.0568

2.2

0.435

66LA_22.1 

0.16

596

350

0.61

22.4

275.8

±5,9

227.0

±80  

−18

0.0507

3.50

0.31

4.1

0.0437

2.2

0.536

66LA_24.1 

0.06

1696

32

0.02

83.0

356.8

±6,7

346.0

±21  

−3

0.0534

0.91

0.42

2.1

0.0569

1.9

0.903

66LA_25.1 

0.25

121

72

0.62

38.6

2023.0

±35  

2090.0

±15  

3

0.1294

0.86

6.58

2.2

0.3686

2.0

0.921

66LA_26.1 

0.03

806

561

0.72

38.9

352.7

±6,6

335.0

±28  

−5

0.0532

1.20

0.41

2.3

0.0562

1.9

0.846

66LA_27.1 

0.00

443

332

0.77

21.9

360.2

±6,9

333.0

±36  

−7

0.0531

1.60

0.42

2.5

0.0575

2.0

0.778

66LA_28.1 

0.12

424

9

0.02

28.3

480.8

±9  

452.0

±36  

−6

0.0560

1.60

0.60

2.5

0.0774

2.0

0.773

66LA_29.1 

0.16

110

56

0.53

7.8

513.0

±10  

474.0

±66  

−7

0.0566

3.00

0.65

3.6

0.0828

2.1

0.572

66LA_30.1 

0.27

400

80

0.21

27.5

495.3

±9,3

473.0

±42  

−4

0.0565

1.90

0.62

2.7

0.0799

2.0

0.718

66LA_31.1 

0.04

713

170

0.25

156.0

1462.0

±25  

1502.2

±9,8

3

0.0937

0.52

3.29

2.0

0.2546

1.9

0.966

66LA_32.1 

0.02

681

710

1.08

290.0

2598.0

±48  

2653.2

±4,2

2

0.1800

0.25

12.32

2.3

0.4960

2.2

0.994

66LA_33.1 

0.02

561

143

0.26

38.3

493.6

±9,2

485.0

±26  

−2

0.0568

1.20

0.62

2.3

0.0796

1.9

0.854

Errors are 1-sigma; Pb

c

 and Pb* indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.64 %

(1) Common Pb corrected using measured 

204

Pb.