background image

GEOLOGICA CARPATHICA

, OCTOBER 2019, 70, 5, 405–417

doi: 10.2478/geoca-2019-0023

www.geologicacarpathica.com

Biostratigraphic constraints for a Lutetian age of  

the Harrersdorf Unit (Rhenodanubian Zone): Implication 

for basement structure of the northern Vienna Basin (Austria)

MATTHIAS KRANNER

1, 

, MATHIAS HARZHAUSER

1

, FRED RÖGL

1

,  

STJEPAN ĆORIĆ

2

 and PHILIPP STRAUSS

3

1

Geological–Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria;  

 

matthias.kranner@nhm-wien.ac.at, mathias.harzhauser@nhm-wien.ac.at, roegl.fred@aon.at

2

Geological Survey of Austria, Neulinggasse 38, 1030 Vienna, Austria; stjepan.coric@geologie.ac.at

3

OMV Exploration & Production GmbH, Trabrennstraße 6-8, 1020 Vienna, Austria; philipp.strauss@omv.com

(Manuscript received October 17, 2018; accepted in revised form June 26, 2019)

Abstract: The formations underlying the Neogene infill of the Vienna Basin are still poorly documented. Until now 

correlation of subsurface lithostratigraphic units with those of the Rhenodanubian nappe system and the Magura  

nappe system, outcropping at the basin margins, has been based on extrapolations. A recent drilling campaign in  

the Bernhardsthal oil field of the northern Vienna Basin in Austria reached the pre-Neogene basement and provided  

cuttings for biostratigraphic and paleoecological analyses. Based on these data, acquired by using detailed micro- and 

nanno-paleontological analyses, a Lutetian age (middle Eocene) and a bathyal depositional environment for the Flysch of 

the Harrersdorf Unit was documented. The lithological similarity of the drilling with the Steinberg Flysch Formation  

of the Greifenstein Nappe and its Lutetian age suggests, that the middle Eocene part of the Harrersdorf Unit represents  

a continuation of the Greifenstein Nappe of the Rhenodanubian Flysch, rather than a frontal part of the Rača Nappe of  

the Magura Flysch as previously thought.

Keywords: Eocene, Vienna Basin, Rhenodanubian Flysch, Harrersdorf Unit, biostratigraphy.

Introduction

During recent hydrocarbon prospection in the northern Vienna 

Basin, the Austrian oil company OMV drilled explorative 

boreholes in the Bernhardsthal oilfield in NW Austria close to 

the Czech border (Fig. 1) (see Harzhauser et al. 2018a for  

a geological overview and description of the Neogene depo-

sits). Wessely et al. (1993) interpreted the pre-Neogene base-

ment of the Bernhardsthal oilfield as Cretaceous to Eocene 

flysch. This interpretation was based solely on unpublished 

internal reports of the OMV and by extrapolation of drilling 

data from the Steinberg area. Within the current drilling cam-

paign, the Bernhardsthal 11 borehole (Be 11) reached these 

pre-Neogene units, which have not been described so far in 

terms of biostratigraphy. 

Neogene deposits are documented in the Bernhardsthal 11 

borehole down to ~2745 m (own data). Deep-water deposits of 

the  lower  Miocene  Lužice  Formation  (Kováč  et  al.  2004) 

 represent these basal Neogene units. Below this level, down to 

3140 m, the pelitic facies of the Lužice Formation is replaced 

by an about 400-m-thick succession of flysch-type deposits of 

grey to dark grey marly shales alternating with glauconitic 

sandstone. The first thin sections were produced already 

during the drilling campaign and pointed to the presence of 

pre-Neogene foraminifera, but a more precise age assignment 

was impossible at the time. Therefore, OMV initiated 

detailed paleontological analyses of the microfauna and  

the calcareous nannoplankton to clarify the age and deposi-

tional setting of this enigmatic interval. 

Geographical and geological setting

The Bernhardsthal 11 borehole (48°41’18.45” N, 16°50’ 

53.25” E) is situated in the northern Vienna Basin, which is  

an about 200 km long and 55 km widerhomboid pull-apart 

basin (Royden 1985; Wessely 1988, 2006), covering large 

parts of eastern Austria and extending into the Czech Republic 

in the North and Slovakia in the East (see Kováč et al. 2004 

and Wessely 2006 for description). Due to complex fault 

 systems, the basin was internally subdivided into a series of 

horst and graben systems (Kröll & Wessely 1993; Vass 2002). 

Due to these structural elements, its Neogene basin-fill is  

an impor tant target for hydrocarbon exploration (Hamilton  

et al. 1999). One of the major oil and gas fields in the Vienna 

Basin is the Bernhardsthal oil field in NE Austria close to  

the Czech Republic border (Harzhauser et al. 2018a).

Within the Bernhardsthal oil field, the Miocene basin fill is 

in the direct vicinity and sphere of influence of the Steinberg 

fault (Fig. 1), roughly striking in a SSW–NNE direction  

with the Bernhardsthal field in the NNW. Due to their eco-

nomic importance, numerous boreholes have penetrated 

 

the Neogene deposits (Kröll & Wessely 1993; Harzhauser et 

al. 2018a).

background image

406

KRANNER, HARZHAUSER, RÖGL, ĆORIĆ and STRAUSS

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

Material and methods

Sixteen cutting samples from the Bernhardsthal Be 11 core 

interval from 2745 to 3140 m were analysed (see Fig. 2 for 

sample position). The sedimentological analysis is based on 

on-site logging, visual analysis of core samples and cuttings. 

Core samples and cuttings from the core interval above  

2745 m contained early Miocene microfaunas (Harzhauser et 

al. 2018b) and are not discussed here. Cuttings were taken and 

cleaned on-site. To widen the sampling interval of the cuttings, 

four consecutive cutting samples with a standard sample 

 distance of 2.5 m were washed and sieved together (e.g. 

2747.5, 2750, 2752.5, 2755 m). Each sample was treated with 

diluted H

2

O

2

 (12 %) for several hours and washed afterwards 

with tap water and sieved through a set of standard sieves.  

The samples were dried at 40 °C and then split with a micro-

splitter (as described in Rupp 1986). The specimens were 

picked and counted for size fractions 500–250 µm, 

 

250–125 µm and 125–63 µm. For identification of forami-

nifers several different publications were used (e.g., Papp et al. 

1973; Loeblich & Tappan 1987; Cicha et al. 1998; Rögl & 

Spezzaferii 2003; Bubík & Kaminski 2004; Bindiu-Haitonic 

et al. 2017).

In addition, cutting samples from 2855 m, 2930 m, 2945 m, 

3040 m, 3070 m and 3100 m were analysed for calcareous 

nannoplankton, following standard preparation methods as 

described in Perch-Nielsen (1985). The standard nannoplank-

ton zonation of Martini (1971) was used for biostratigraphic 

attribution of investigated material. All samples are barren of 

macrofossils. SEM (scanning electron microscope) micro-

graphs were taken at the Natural History Museum Vienna.  

All illustrated foraminifers are stored in the micropaleonto-

logical collection of the Natural History Museum Vienna; 

 nannoplankton samples are stored in the Geological Survey, 

Vienna. Lists of all recorded calcareous nannoplankton and 

fora miniferal taxa are given in Tables 1 and 2, including authors 

and years of description. To warrant readability, authors and 

years of descriptions are not repeated in the following text. 

Sedimentological data were logged on-site during drilling 

by OMV. In addition, wire-log data were provided by 

 

OMV  for  analysis  (GR = natural  gamma  radiation,  RES = 

resistivity). 

Fig. 1. A — Geographical and geological 

 setting of the study area at the Austrian–Czech 

boundary;  B — position of the Be 11 bore-

hole;  C — Subsurface distribution of the 

Rhenodanubian and Magura flysch units in 

the northern Vienna Basin, compiled from 

Rammel (1989) and Wessely et al. (1993). 

The location of Be 11 is shown in the red 

insert. Note that the boundary between Grei-

fenstein und Rača Nappe nappes as proposed 

by Wessely et al. (1993) is hypothetical and 

the Harrersdorf Unit might rather represent  

a continuation of the Greifenstein Nappe.

background image

407

PALEOGENE BIOSTRATIGRAPHY OF THE HARRERSDORF UNIT (VIENNA BASIN)

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

Results

Lithology and wire-log pattern

Grey to dark grey marly shales, intercalated by thin glauco-

nitic sandstone layers characterize the studied part of the Be 11 

core (2745–3140 m) (Fig. 2). This lithological alternation is 

expressed in wire-logs by serrated shale-line intervals alterna-

ting with cylinder-shaped or funnel shaped sand bodies (e.g. 

2990–3120 m, 3000–3025 m). No trends or cyclicities can be 

seen and a spectral analysis failed to detect any significant 

periods. The wire-log patterns differ considerably from those 

of the overlying Miocene deposits, which display a strikingly 

cyclic succession of bell-shaped intervals (Fig. 3). 

Micropaleontological data

Calcareous nannoplankton: The samples yield a mode-

rately diverse assemblage of 51 taxa; individual samples con-

tained 11 to 23 taxa (Table 1; Fig. 4A–R). The Neogene is 

represented by typical lower Miocene taxa (4 in total) Helico­

sphaera ampliaperta, Helicosphaera carteri, Helicosphaera 

scissura and Reticulofenestra excavata. Paleogene nanno-

fossils are represented by 37 and Cretaceaous by 5 taxa 

(Arkhangelskiella cymbiformis, Cribrosphaerella ehrenbergii, 

Micula staurophora, Prediscosphaera cretacea, Watznaueria 

barnesiae) whereas 5 taxa have long stratigraphical ranges 

(Braarudosphaera bigelowii, Coccolithus pelagicus, Cycli­

cargolithus floridanus, Reticulofenestra minuta, Sphenolithus 

moriformis).

Coccolithus formosus  (Fig. 4D),  Coccolithus pelagicus 

(Fig. 4E),  Reticulofenestra dictyoda and Cyclicargolithus 

 floridanus (Fig. 4F–G) occur in all samples. Nannotetrina 

alata (Fig. 4Q–R), Discoaster distinctus (Fig. 4P), Chiasmo­

lithus solitus, Reticulofenestra umbilicus, Lophodolithus 

nascens and Sphenolithus spiniger are present taxa as well. 

Other species, documented from the lowermost sample 

 

(3100 m) to the top sample (2885 m) are Sphenolithus mori­

formis (Fig. 4M), Chiasmolithus grandisZygrhablithus biju­

gatusChiasmolithus oamaruensis and Discoaster kuepperi

Foraminifera:  The core interval 2745–3140 m provided 

only moderately to poorly preserved foraminifers. In total,  

42 foraminiferal taxa have been identified (Table 2, Figs. 5A–L, 

6A–L, 7A–L). The maximum diversity ranges around 21–15 

taxa in samples 2922.5–2930 m, 2935–2940 m and 2957.5–

2965 m; all other samples display a very low diversity ranging 

from 3 to 10 taxa. Planktic foraminifera are more frequent and 

represented by small sized specimens of Subbotina eocaena 

(Fig. 5D–G), Igorina salisburgensis (Fig. 5C), Igorina broe­

dermanni  (Fig. 5B),  Acarinina bullbrooki (Fig. 5A),  Turbo­

rotalia frontosa (Fig. 5L),  Pseudohastigerina wilcoxensis 

(Fig. 5H),  Globorotaloides eovariabilis  (Fig. 5J),  Para sub­

botina inaequispira (Fig. 5K) and Pseudohastigerina  sp.  

(Fig. 5I). The most abundant benthic taxa are Glomospira 

charoides  (Fig. 6D–E),  Glomospira gordialis  (Fig. 6F), 

Ammodiscus peruvianus (Fig. 6B), Ammodiscus tenuissimus

Ammodiscus cretaceous  (Fig. 6C),  Lituotuba lituiformis  

(Fig. 6A),  Psammosphaera irregularis  (Fig. 6G–H), Karre­

rulina conversa (Fig. 6J), Bathysiphon saidi and Bathysiphon 

sp. and are accompanied by Melonis pompilioides (Fig. 7C–D), 

Cibicides westi (Fig. 7G), Cibicidoides sp. (Fig. 7F), Pullenia 

sp. (Fig. 7I), Anomalinoides sp. (Fig. 7H), Rhabdammina sp. 

(Fig. 7J),  Psammosiphonella sp. (Fig. 7K) and Caucasina 

 coprolithoides (Fig. 6K).

Discussion

Biostratigraphy and paleoecology

Calcareous nannoplankton: Assemblages are characte-

rized by the high number of species which display a strati-

graphic overlap during the middle Eocene. Nannotetrina alata 

and Discoaster distinctus are restricted to the Lutetian and are 

Fig. 2. The Eocene part of Be 11 with sample positions. The occurrences of important foraminiferal taxa (A) and calcareous nannoplankton 

taxa (B) correlated with the lithological log.

background image

408

KRANNER, HARZHAUSER, RÖGL, ĆORIĆ and STRAUSS

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

typical for the standard Calcareous Nannoplankton Zone 

NP15 (Martini 1971). Lophodolithus nascens appears already 

during the Selandian Zone NP6 and has its last occurrence 

during the Lutetian Zone NP15 (Perch-Nielsen 1985) and 

Sphenolithus spiniger ranges from the latest Ypresian 

 

NP14 zone to the Bartonian Zone NP17 (Perch-Nielsen  

1985; Fornaciari et al. 2010). Similarly, the occurrence of 

Chiasmolithus solitus, ranging from the Thanetian Zone  

NP9 to the Lutetian Zone NP16 (Perch-Nielsen 1985; Vanden-

berghe et al. 2012), does not contradict a Lutetian age 

(Bramlette & Sullivan 1961).

At first sight, a Priabonian age might be assumed based  

on the occurrences of Chiasmolithus oamaruensis (2855, 

3040, 3100 m depth), Isthmolithus recurvus (3040 m depth), 

Species

2855

2930

2945

3040

3070

3100

Arkhangelskiella cymbiformis Vekshina, 1959

1

0

0

0

0

0

Blackites sp.

0

0

0

0

0

1

Braarudosphaera bigelowii (Gran & Braarud 1935) Deflandre, 1947

1

0

0

0

0

0

Campylosphaera dela (Bramlette & Sullivan, 1961) Hay & Mohler, 1967

0

0

0

0

0

1

Chiasmolithus grandis (Bramlette & Riedel, 1954) Radomski, 1968

0

1

0

1

1

1

Chiasmolithus oamaruensis (Deflandre, 1954) Hay et al., 1966

1

0

0

1

0

1

Chiasmolithus solitus (Bramlette and Sullivan, 1961) Locker, 1968

1

0

0

0

0

1

Chiasmolithus sp.

0

0

1

0

0

0

Coccolithus formosus (Kamptner, 1963) Wise, 1973

1

1

1

1

1

1

Coccolithus pelagicus (Wallich 1877) Schiller, 1930

1

1

1

1

1

1

Cribrocentrum erbae Fornaciari, Agnini, Catanzariti and Rio in Fornaciari et al. 2010

0

0

0

1

0

0

Cribrosphaerella ehrenbergii (Arkhangelsky, 1912) Deflandre in Piveteau, 1952

1

0

0

0

0

0

Cyclagelosphaera margerelii Noël, 1965

0

1

0

0

0

0

Cyclicargolithus floridanus (Roth & Hay, in Hay et al., 1967) Bukry, 1971

1

1

1

1

1

1

Dictyococcites hesslandii Haq 1971 1

0

0

0

1

1

0

Discoaster barbadiensis Tan, 1927

0

0

0

0

0

1

Discoaster deflandrei Bramlette & Riedel, 1954

0

0

0

1

0

0

Discoaster distinctus Martini, 1958

0

0

0

0

1

0

Discoaster kuepperi Stradner, 1959

1

0

1

0

0

1

Discoaster lodoensis Bramlette & Riedel, 1954

1

0

1

0

0

1

Helicosphaera ampliaperta Bramlette and Wilcoxon, 1967

1

0

0

0

0

0

Helicosphaera bramlettei (Müller, 1970) Jafar & Martini, 1975

0

0

0

0

1

1

Helicosphaera euphratis Haq, 1966

1

0

0

1

0

0

Helicosphaera seminulum Bramlette & Sullivan, 1961

0

0

0

0

0

1

Isthmolithus recurvus Deflandre in Deflandre and Fert, 1954

0

0

0

1

0

0

Lophodolithus mochlophorus Deflandre in Deflandre & Fert, 1954

0

0

0

1

0

1

Lophodolithus nascens Bramlette & Sullivan, 1961

0

1

0

0

0

0

Micrantholithus sp.

0

0

0

1

0

1

Micula staurophora (Gardet, 1955) Stradner, 1963

1

0

0

0

0

0

Nannotetrina alata (Martini, in Martini & Stradner 1960) Haq and Lohmann, 1976

0

0

1

0

0

0

Neochiastozygus sp.

1

0

0

0

0

0

Pontosphaera exilis (Bramlette & Sullivan, 1961) Romein, 1979

0

1

0

1

0

0

Pontosphaera sp.

1

0

0

0

0

0

Reticulofenestra dictyoda (Deflandre in Deflandre & Fert, 1954) Stradner in Stradner & Edwards, 1968

1

1

1

1

1

1

Reticulofenestra hillae Bukry & Percival, 1971

0

1

0

1

0

0

Reticulofenestra minuta Roth, 1970

0

0

0

1

0

0

Reticulofenestra sp.

0

0

0

0

0

1

Reticulofenestra umbilicus (Levin, 1965) Martini & Ritzkowski, 1968

0

0

1

1

1

0

Sphenolithus dissimilis Bukry and Percival, 1971

0

1

0

0

0

0

Sphenolithus editus Perch-Nielsen in Perch-Nielsen et al., 1978

0

0

1

1

0

0

Sphenolithus moriformis (Brönnimann & Stradner, 1960) Bramlette & Wilcoxon, 1967

1

1

0

1

1

1

Sphenolithus radians Deflandre in Grassé, 1952

1

1

1

0

0

0

Sphenolithus spiniger Bukry, 1971

1

0

0

1

0

1

Thoracosphaera saxea Stradner, 1961

0

0

0

0

1

0

Toweius callosus Perch-Nielsen, 1971

0

0

1

0

0

0

Toweius rotundus Perch-Nielsen in Perch-Nielsen et al., 1978

0

0

0

1

0

0

Toweius sp.

1

0

0

0

0

0

Tribrachiatus orthostylus Shamrai, 1963

0

0

0

0

0

1

Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968

1

0

0

1

0

0

Watznaueria fossacincta (Black, 1971) Bown in Bown & Cooper, 1989

0

0

1

0

0

0

Zygrhablithus bijugatus (Deflandre in Deflandre and Fert, 1954) Deflandre, 1959

1

0

1

1

1

0

Table 1: Calcareous Nannoplankton taxa from the Be 11 borehole (1/0 = presence/absence).

background image

409

PALEOGENE BIOSTRATIGRAPHY OF THE HARRERSDORF UNIT (VIENNA BASIN)

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

Reticulofenestra. umbilicus (2945, 3040, 3070 m depth) and 

Cribrocentrum erbae (3040 m depth) (Perch-Nielsen 1985; 

Vandenberghe et al. 2012). These Priabonian taxa, however, 

are scarce and are contrasted by a large number of nanno-

plankton specimens of Lutetian age. Moreover, a Priabonian 

age would be in conflict with the foraminiferal data (see 

below). Therefore, several cuttings from the overlying 

Miocene deposits have been checked for Priabonian species, 

which indeed were frequently found (Harzhauser et al. 2018b). 

This suggests major reworking of upper Eocene nannoplank-

ton during the Miocene. Consequently, the scarce Priabonian 

taxa are interpreted as borehole contamination due to downfall 

during the drilling process.

Aside from Priabonian contamination, the assemblages also 

yield Cretaceous and lower Eocene nannoplankton. Reworking 

of Mesozoic nannoplankton (especially from Upper Cretaceous 

units) is documented throughout the core interval by the 

occurrence of species, such as Arkhangelskiella cymbiformis

Cribrosphaerella ehrenbergii,  Cyclagelosphaera margerelii

Micula staurophoraWatznaueria barnesiae and Watznaueria 

fossacincta (e.g., Bown & Cooper 1998; Lees & Bown 2005). 

Similarly, lower Eocene strata became eroded, as indicated by 

the occurrence of Discoaster kuepperiDiscoaster lodoensis

Toweius rotundus and  Sphenolithus editus (Perch-Nielsen 

1985; Vandenberghe et al. 2012). The uppermost samples from 

2855 and 2930 m contain scarce Helicosphaera ampliaperta 

Species

2747.5 – 2755

2782.5 – 2790

2817

2845 – 2850

2852.5 – 2860

2887.5 – 2895

2905 – 2910

2922.5 – 2930

2935 – 2940

2957.5 – 2965

2992.5 – 3000

3075.5 – 3035

3050 – 3055

3062.5 – 3070

3097.5 – 3105

3132.5 – 3140

Acarinina bullbrooki (Bolli, 1957)

0

0

0

0

0

0

0

1

1

1

0

0

1

0

1

0

Ammobaculites sp.

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

Ammodiscus cretaceus (Reuss, 1845) 

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

Ammodiscus peruvianus (Berry, 1928)

0

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

Ammodiscus tenuissimus Grzybowski, 1898

0

0

0

1

1

0

1

0

0

0

0

0

0

1

1

0

Anomalinoides sp.

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Bathysiphon saidi (Anan, 1994)

0

0

1

0

0

1

1

1

1

1

0

0

0

1

1

1

Bathysiphon sp. 1

0

0

0

1

0

0

0

0

1

0

1

1

0

1

1

1

Bathysiphon sp. 2

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Caucasina coprolithoides (Andreae, 1884)

0

1

1

0

0

0

0

1

1

0

0

0

0

0

0

0

Cibicides westi (Howe, 1939)

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

Cibicidoides pseudoungerianus (d'Orgigny, 1846)

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

Cibicidoides sp.

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

Cibicidoides ungerianus (d'Orgigny, 1846)

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

Dentalina sp.

1

0

0

0

1

0

0

1

1

1

0

0

0

0

0

0

Globocassidulina oblonga (Reuss, 1850)

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Globorotaloides eovariabilis Huber & Pearson, 2006

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Glomospira charoides (Jones and Parker, 1860)

0

0

0

0

0

0

0

0

1

1

1

0

1

1

1

1

Glomospira gordialis (Jones and Parker, 1860)

0

0

0

0

0

0

0

1

0

1

1

0

1

0

1

1

Gonatosphaera inflata Bermúdez, 1949

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Gyroidinoides sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

Haplophragmoides walteri (Grzybowski, 1898)

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Heterolepa dutemplei (d'Orbigny, 1846)

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Hormosina veloscoensis (Cushman, 1926)

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

Igorina broedermanni (Cushman & Bermúdez, 1949)

0

0

0

0

0

0

0

1

1

1

0

0

1

0

1

0

Igorina salisburgensis (Gohrbandt, 1967)

0

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

Karrerulina conversa (Grzybowski, 1901)

0

0

0

0

1

0

1

0

1

1

0

1

0

0

1

1

Lenticulina cf. inornata (d'Orbigny, 1846)

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

0

Lituotuba lituiformis (Brady, 1879)

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

Melonis pompilioides (Fichtel & Moll, 1798)

0

0

0

0

1

0

0

0

1

1

0

0

1

0

0

0

Parasubbotina inaequispira (Subbotina, 1953)

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

Pleurostomella alazanensis Cushman, 1925

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Psammosiphonella sp.

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Psammosphaera irregularis (Grzybowski, 1896)

1

1

1

1

0

0

0

0

0

0

1

0

0

0

0

0

Pseudohastigerina sp.

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

Pseudohastigerina wilcoxensis (Cushman & Ponton, 1932)

0

0

0

0

0

1

0

1

1

0

0

0

0

1

1

0

Pullenia bulloides (d'Orbigny, 1826)

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

Pullenia sp.

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Rhabdammina sp.

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Subbotina eocaena (Guembel, 1868)

0

1

0

0

1

1

1

1

1

1

0

1

1

1

1

1

Tuborotalia frontosa (Subbotina, 1953)

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

0

Uvigerina eocaena Gümbel, 1868

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

Table 2: Foraminifera taxa from the Be 11 borehole (1/0 = presence/absence).

background image

410

KRANNER, HARZHAUSER, RÖGL, ĆORIĆ and STRAUSS

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

and  Sphenolithus dissimilis, which are lower Miocene taxa 

(Young 1998; Raffi et al. 2006; Bergen et al. 2017), indicating 

further downhole contamination from lower Miocene sedi-

ments (Harzhauser et al. 2018b).

Foraminifera: The foraminiferal assemblages from core 

interval 2745–3140 m contain mainly taxa, which are restricted 

to the Ypresian and Lutetian. Species, such as Igorina 

 salisburgensis,  Igorina broedermanni,  Acarinina bullbrooki

Turbo rotalia  frontosa,  Pseudohastigerina wilcoxensis and 

Parasubbotina inaequispira, characterize the plankton bio-

zones E7–E8 (Berggren & Pearson 2005; Berggren et al. 2006; 

Olsson & Hemleben 2006; Pearson et al. 2006). Strati gra-

phically wider ranges are covered by the planktic Subbotina 

eocaena (highest occurrence 2782.5–2790 m), which ranges 

from the Ypresian to the Chattian (Wade et al. 2018),  

the agglutinated foraminifer Psammosphaera irregularis 

(highest occurrence: cuttings 2747.5–2755 m), which ranges 

from the Cretaceous to the Priabonian (Kaminski & Gradstein 

2005; Kaminski & Ortiz 2014; Benedetti 2017) and by the 

planktic  Globorotaloides eovariabilis, which ranges from  

the Ypresian to the Chattian (Pearson & Wade 2009) or even  

to the Aquitanian (Coxall & Spezzaferri 2018). Therefore,  

the stratigraphic ranges of the foraminifera species display  

a distinct overlap during the Lutetian.

In terms of ecological requirements, the assemblage is typi-

cal for deep-water sedimentary successions as described by 

Golonka & Waśkowska (2012). Especially the high abundance 

of planktic and agglutinated foraminifera is a clear indicator 

for bathyal to lower bathyal water conditions (Armstrong & 

Brasier 2005). Additionally, the abundance of Psammosphaera 

irregularis,  Ammodiscus  and  Glomospira indicate upper to 

lower bathyal environments with reduced oxygen levels 

(Murray 1991, 2006; Kaminski & Gradstein 2005; Cimerman 

et al. 2006; Grunert et al. 2013; Kaminski & Ortiz 2014; 

Benedetti 2017). 

Correlation with Eocene subsurface units in the northern 

Vienna Basin

Based on data from internal OMV reports, Rammel (1989), 

Wessely et al. (1993) and Wessely (1993, 2006) extrapolated 

the distribution of subsurface units of the Rhenodanubian  

and Magura nappe systems in the northern Vienna Basin. 

According to these maps, borehole Be 11 is situated on the 

Harrersdorf unit, which is correlated by the above mentioned 

authors  with  the  Rača  nappe  of  the  Magura  nappe  system  

(Fig. 1). South of this unit, the Rhenodanubian nappe system 

is represented, especially by the Greifenstein Nappe, which 

stretches from the area of the Vienna Basin and the Korneuburg 

Basin in a NE direction up to the Steinberg region (Wessely 

1993, 2006). Numerous drillings around the Steinberg and 

along the Steinberg Fault reached this nappe and allowed  

a lithostratigraphic subdivision. The subsurface extension of 

the Greifenstein Nappe is unknown. Nevertheless, Hamilton  

et al. (1990) and Picha et al. (2006) assumed a separation from 

the Rača Nappe, which is part of the Magura Nappe System, 

by a thrust in the area of the northern Vienna Basin. On their 

subsurface map of the Vienna Basin, Wessely et al. (1993) 

placed the boundary between these nappes along a line run-

ning from north of the Steinberg in the east to the Mistelbach 

area in the west (Fig. 1). No seismic data or surveys on  

the structural geology, however, have been published so far to 

support this hypothesis. 

Greifenstein Nappe (Rhenodanubian nappe system):  

In its easternmost distribution area, the Rhenodanubian nappe 

system consists of the Greifenstein and Laab nappes (note that 

the “Kahlenberg nappe” was recognized as equivalent of the 

Greifenstein Nappe by Egger 2013). The sedimentary succes-

sion of the Greifenstein Nappe has been lithostratigraphically 

formalized as the Greifenstein Group by Egger (2013) with 

Fig. 3.  Wire-logs  (GR = natural  gamma  radiation,  RES = resistivity)  

of Be 11.

background image

411

PALEOGENE BIOSTRATIGRAPHY OF THE HARRERSDORF UNIT (VIENNA BASIN)

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

the Greifenstein Formation as the youngest unit. In surface 

outcrops, the Greifenstein Formation terminates within the 

Ypresian standard nannoplankton Zone NP13 (Egger 2013; 

Egger & Wessely 2014; Egger & Ćorić 2017). 

The assumed equivalents of the Greifenstein Nappe in the 

Steinberg area are united in the Zistersdorf Group, which 

 comprises the Upper Cretaceous Altlengbach Formation and 

the Paleogene Glauconitic Sandstone and the Steinberg-Flysch 

formations (Rammel 1989; Wessely 2006). The up to 

750-m-thick Glauconitic Sandstone formation (GSf) com-

prises several thick units of light grey to greenish grey glau-

conite-bearing sandstone, partly with nummulitids and polymict 

pebbles, subdivided by thinner intercalations of variegated 

shales and marly shales (Grill 1968; Hekel 1968). Rammel 

(1989) subdivided the GSf into three main sandstone-domi-

nated subunits separated by two pelite-dominated intercala-

tions. The correlation of these units with biostratigraphic data 

of Hekel (1968) revealed a Thanetian to Ypresian age for  

the GSf. Similarly, the analysis of the foraminiferal assem-

blages by Küpper (1961) pointed to a late Paleocene to early 

Eocene age. The depositional environment was interpreted by 

Rammel (1989) as deep sea fans system with numerous chan-

nels. A correlation of the GSf with the unit drilled in Be 11 

(2745–3140 m depth) can be excluded based on the biostrati-

graphic data and also by the wire-log pattern of the GFS, 

which is characterized by up to 200-m-thick, cylinder-shaped 

units (representing the sandstone packages).

The GSf is overlain by the Steinberg-Flysch formation 

(SFf), which comprises an up to 1500-m-thick succession of 

dark grey and greenish grey shales and marly shales with sub-

ordinate intercalations of thin layers of glauconitic sandstones 

(Grill 1968; Wessely 2006). According to the few available 

data, the basal parts of the SFf contain Ypresian foraminifera 

(Grill 1968), whereas the upper part ranges into the Lutetian 

(Hekel 1968; Rammel 1989). The depositional environment  

is interpreted as a distal deep-sea fan system (Wessely 2006). 

Consequently, the Be 11 record (2745–3140 m depth) is  

a time-equivalent of the SFf and has a similar lithology. 

North of the Steinberg, the up to 2500-m-thick Harrersdorf 

Unit (Wessely 2006) is either interpreted as the frontal part of 

the Rača Nappe in Austria (Hamilton et al. 1990) or as a con-

tinuation of the Greifenstein Nappe (Rammel 1989). Drillings, 

Fig. 4. Calcareous Nannoplankton from Be 11. A — Tribrachiatus orthostylus Shamrai, 1963 (3100 m); B — Reticulofenestra umbilicus 

(Levin, 1965) Martini & Ritzkowski, 1968 (3040 m); C — Chiasmolithus solitus (Bramlette & Sullivan, 1961) Locker, 1968 (3100 m);  

D — Coccolithus formosus (Kamptner, 1963) Wise, 1973 (3100 m); E — Coccolithus pelagicus (Wallich 1877) Schiller, 1930 (3040 m);  

F–G — Cyclicargolithus floridanus (Roth & Hay, in Hay et al., 1967) Bukry, 1971 (3040 m); H — Braarudosphaera bigelowii (Gran & 

Braarud, 1935) Deflandre, 1947 (2855 m); I — Isthmolithus recurvus Deflandre in Deflandre & Fert, 1954 (3040 m); J — Campylosphaera 

dela (Bramlette & Sullivan, 1961) Hay & Mohler, 1967 (3100 m); K — Helicosphaera ampliaperta Bramlette & Wilcoxon, 1967 (2855 m);  

L — Discoaster kuepperi Stradner, 1959 (2945 m); M — Sphenolithus moriformis (Brönnimann & Stradner, 1960) Bramlette & Wilcoxon, 

1967 (3100 m); N — Helicosphaera seminulum Bramlette & Sullivan, 1961 (3100 m); O — Micrantholithus flos Deflandre in Deflandre & 

Fert, 1954 (3040 m); P — Discoaster distinctus Martini, 1958 (3070 m); Q–R — Nannotetrina alata (Martini, in Martini & Stradner 1960) 

Haq and Lohmann, 1976 (2945 m); scale bar = 5 μm.

background image

412

KRANNER, HARZHAUSER, RÖGL, ĆORIĆ and STRAUSS

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

which reached the Harrersdorf Unit are Harrersdorf 1 (5136 m), 

Maustrenk Uet1a (6563 m), Linenberg 2 (4711 m) and  

St. Ulrich 290 (3000 m) (Fig. 1) (Wessely et al. 1993), but no 

sedimentological and paleontological data have been pub-

lished so far. Rammel (1989) documented a continuation of 

the GSf into the Harrersdorf Unit based on well-log correla-

tions of Harrersdorf 1 with drillings from the Steinberg area. 

This suggests a close relation of the Harrersdorf Unit with  

the Zistersdorf Group of the Greifenstein Nappe. 

Rača Nappe (Magura nappe system): In its south-western 

most distribution area, the Magura nappe system is divided 

into the Rača, Bystrica and Biele Karpaty nappes (Picha et al. 

2006). Of these, only the Rača Nappe stretches in the south 

into the Austrian part of the Vienna Basin (Wessely et al. 1993; 

Wessely 2006). Although the tectonic affiliation of the 

Harrersdorf  Unit  with  the  Rača  Nappe  remains  ambiguous,  

the lithostratigraphic correlation between the Greifenstein and 

Rača nappes is roughly established. Eliáš et al. 1990; Adamová 

& Schnabel (1999) and Picha et al. (2006) provided detailed 

summaries of the geology and lithostratigraphy of the Rača 

Nappe in the Western Carpathian Flysch belt (see Picha et al. 

2006, fig. 17 for a scheme of the Rača Nappe). The mostly 

Paleocene Soláň Formation yields the oldest post Cretaceous 

deposits. This nearly 3000-m-thick formation comprises 

Fig. 5. Planktic Eocene foraminifera from Be 11. A — Acarinina bullbrooki (Bolli, 1957) (2935–2940 m); B — Igorina broedermanni 

(Cushman & Bermúdez, 1949) (2935–2940 m); C — Igorina salisburgensis (Gohrbandt, 1967) (2935–2940 m); D–G — Subbotina eocaena 

(Guembel, 1868) (2935–2940 m) (3062.5–3070); H — Pseudohastigerina wilcoxensis (Cushman & Ponton, 1932) (2935–2940 m);  

I — Pseudohastigerina sp. (2935–2940 m); J — Globorotaloides eovariabilis Huber & Pearson, 2006 (2922.5–2930 m); K — Parasubbotina 

inaequispira (Subbotina, 1953) (3062.5–3070 m); L — Turborotalia frontosa (Subbotina, 1953) (2935–2940 m); scale bar = 100 µm.

background image

413

PALEOGENE BIOSTRATIGRAPHY OF THE HARRERSDORF UNIT (VIENNA BASIN)

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

shales and sandstones with a general coarsening upward trend 

(Picha  et  al.  2006). According  to  Rammel  (1989),  the  Soláň 

Formation can be correlated with the Altlengbach Formation 

and Thanetian parts of the GSf of the Greifenstein Nappe. 

The Soláň Formation is overlain by the 300-m-thick Eocene 

Beloveža Formation, which comprises greenish grey to red-

dish shales with sandstone intercalations. Its stratigraphic 

interval is assumed to range from the Paleocene to middle 

Eocene (Picha et al. 2006), but seems to be mainly of Lutetian 

age  (see  Golonka  &  Waśkowska  2012  for  its  equivalent  in  

the Polish Flysch Carpathians). Rammel (1989) correlated  

this formation with the upper part of the GSf and assumed  

an Ypresian  age.  The  uppermost  unit  of  the  Rača  Nappe  is  

the 2500-m-thick Zlin Formation (including the underlying 

sandy Luhačovice Member) of the middle to late Eocene and 

early Oligocene age. The formation is dominated by sand-

stones and conglomerates, which formed as proximal parts of 

turbiditic fans and by calcareous shales (Picha et al. 2006). 

Tectonic affiliation: Rammel (1989) correlated the 

Steinberg-Flysch formation of the Greifenstein Nappe with 

the Zlin formation. The age of the Be 11 record (2745–3140 m 

depth) would allow a comparison of both formations. The peli-

tic lithology of Be 11, however, makes a direct correlation  

with the Zlin formation rather unlikely. Thus, leads to 

 

Fig. 6. Benthic Eocene foraminifera from Be 11. A — Lituotuba lituiformis (Brady, 1879) (2957.5–2965 m); B — Ammodiscus peruvianus 

(Berry, 1928) (3062.5–3070 m); C — Ammodiscus cretaceus (Reuss, 1845) (2817 m); D–E — Glomospira charoides (Jones and Parker, 1860) 

(2957.5–2965 m); F — Glomospira gordialis (Jones and Parker, 1860) (2957.5–2965 m); G — Psammosphaera irregularis (Grzybowski, 

1896) (2782.5–2790 m); H — Psammosphaera irregularis (Grzybowski, 1896) (2817 m); I — Pullenia bulloides (d’Orbigny, 1826) (2922.5–

2930 m); J — Karrerulina conversa (Grzybowski, 1901) (2922.5–2930 m); K — Caucasina coprolithoides (Andreae, 1884) (2817 m);  

L — Bulimina sp. (2782.5–2790 m); scale bar = 100 µm.

background image

414

KRANNER, HARZHAUSER, RÖGL, ĆORIĆ and STRAUSS

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

the assumption that the Lutetian units of Be 11 represent  

a continuation of the Steinberg Flysch formation in the 

Harrersdorf Unit. In consequence, this unit must be regarded 

as a continuation of the Greifenstein Nappe of the Rheno-

danubian nappe system rather than as part of the Rača Nappe 

of the Magura nappe system. Some paleontological similari-

ties of the Be 11 record can be stated with the middle Eocene 

Beloveža Formation from the Polish and Slovak part of the 

Rača Nappe as described by Golonka & Waśkowska (2012). 

Most of the genera and five species (Ammodiscus tenuisimus, 

A. peruvianus, Glomospira charoides, H Haplophragmoides 

walteri, Karrerulina conversa) described by Golonka & 

Waśkowska  (2012)  also  appear  in  Be 11.  Both  assemblages 

indicate identical bathyal depositional environments (Murray 

1991, 2006; Kaminski & Gradstein 2005). These biotic simi-

larities, however, are rather an expression of similar age and 

near-identical paleoecological conditions and are not a strong 

support to affiliate the Harrersdorf Unit with the Rača Nappe.

A relationship with the Waschberg–Ždánice Unit is unlikely 

due to the geographical distance of the surface distribution of 

the  Waschberg–Ždánice  Unit  outcrops  (see  maps  in  Grill 

1968; Schnabel 2002). Subsurface data revealed the presence 

of  the  isolated  Waschberg–Ždánice  Unit  below  the  Flysch 

nappes as seen along the escarpment Steinberg fault (Wessely 

et al. 1993). Within the Waschberg–Ždánice Unit Paleocene 

and Eocene formations, such as the Paleocene glauconitic  

and marly sands of the Bruderndorf beds, the lower Eocene 

Waschberg-Limestone, the ferruginous middle Eocene 

Fig. 7. Benthic Eocene foraminifera from Be 11. A–B — Lenticulina cf. inornata (2922.5–2930 m); C–D — Melonis pompilioides Römer, 

1838 (3032–3140 m), (2957.5–2965 m); E — Heterolepa dutemplei (d’Orbigny, 1846) (2782.5–2790 m); F — Cibicidoides sp. (3062.5– 

3070 m); G — Cibicides westi (Howe, 1939) (3032–3140 m); H — Anomalinoides sp. (2922.5–2930 m); I — Pullenia sp. (2957.5–2965 m); 

J — Rhabdammina sp. (2922.5–2930 m); K — Psammosiphonella sp. (2922.5–2930 m); scale bar = 100 µm.

background image

415

PALEOGENE BIOSTRATIGRAPHY OF THE HARRERSDORF UNIT (VIENNA BASIN)

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

sandstones of the Haidhof beds and the glauconitic and calca-

reous sand of the upper Eocene Reingrub Formation have 

been documented (Krhovsky et al. 2001). Larger foraminifera 

from Eocene units, studied by Torres-Silva & Gebhardt (2015), 

confirmed the occurrence of Ypresian to basal Lutetian, 

Bartonian and Priabonian assemblages, which point to a depo-

sitional environment in the inner to middle shelf between 70 to 

200 m water depth (Torres-Silva & Gebhardt 2015). Deeper 

marine offshore facies, comparable to Be11, is confined to 

small occurrences of Lutetian marls (Egger et al. 2007) and 

Priabonian Globigerina marls (Grill 1968; Wessely 2006). 

None of these lithological units can be directly correlated with 

the shales of Be 11, either because of their completely dif-

ferent litho-facies and/or because of their different age.  

The Lutetian marls of Niederhollabrunn, described by Egger 

et al. (2007), would be the most similar unit in the surface 

Waschberg–Ždánice Unit, but they do not represent a turbi-

ditic depositional system. Finally, a flysch cover of subsurface 

Waschberg–Ždánice Unit units must be expected in the study 

area.

Conclusions

The Be 11 borehole in the northern part of the Vienna Basin 

reached the pre-Neogene units at a depth of about 2745 m, 

indicated by a strong change in wire log patterns from highly 

cyclic bell-shaped Neogene GR and RES logs to a succession 

of cylinder- and funnel-shaped wire-log patterns, lacking any 

cyclicity. In addition, the predominant lithology changes from 

silty-sandy clays to marly shales. The drilled virtual thickness 

of the pre-Neogene unit attains nearly 400 m. 

The shales and glauconitic sandstones lack any macrofauna 

and the microfauna is moderately to poorly preserved and of 

low diversity. Both, foraminifers and calcareous nannoplank-

ton are clearly indicative for an Eocene age. The nanno-

plankton assemblage yields two distinct species (N. alata and 

D. distinctus) which have not been found in the Miocene sam-

ples of the borehole and therefore represent autochthonous 

species which allow a correlation with the Lutetian standard 

nannoplankton Zone NP15 spanning over an interval from 

43.6 to 47.4 Ma. Nannoplankton assemblages representing 

reworked taxa were found throughout the succession that indi-

cates reworking of older strata during the middle Eocene and 

downfall during drilling resulting in borehole contamination. 

Similarly, a large part of the foraminifera indicate a Lutetian 

age and are representative for the plankton biozones E7–E8 as 

defined by Berggren & Pearson (2005), spanning an interval 

from 45.8–50.4 Ma. Therefore, the stratigraphic overlap of 

these biozones allows a restriction of the depositional time of 

the turbidites of the Harrersdorf Unit to an interval ranging 

from 45.8–47.4 Ma.

The Flysch of the Harrersdorf Unit was variously inter-

preted as the front of the Rača Nappe of the Magura Flysch 

(Wessely et al. 1993; Hamilton et al. 1999) or as continuation 

of the Rhenodanubian Greifenstein Nappe (Rammel 1989). 

Our results might support the latter interpretation as the lower 

Eocene Glauconitic Sandstone formation can be traced from 

the Greifenstein Nappe in the Steinberg area up to the 

Harrersdorf Unit (Rammel 1989) and due to the lithological 

similarities of the Be 11 record with that of the coeval Steinberg 

Flysch formation. Nevertheless, an unambiguous correlation 

is missing, as the Lutetian age of the Steinberg Flysch forma-

tion contrasts with the Ypresian age of the uppermost parts  

of the Greifenstein Formation in the surface distribution of  

the Greifenstein Nappe. 

Acknowledgements: We thank Godfrid Wessely (Vienna) for 

support and discussions on subsurface geology of the northern 

Vienna Basin. We also thank Patrick Grunert (University of 

Cologne, Germany) for taxonomic discussions and comments 

on an early draft of this paper. Iris Feichtinger (NHMW) 

 greatly helped during sample preparation. Many thanks to  

the OMV Exploration & Production working group and espe-

cially to Wolfgang Hujer for their cooperation and open-minded 

policy. This project was financed by the OMV. Finally we 

want to thank an anonymous reviewer and Lilian Švábenická 

(Czech Geological Survey) for professional and helpful remarks 

to improve this work. Special thanks also to reviewer Hans 

Egger (Geological Survey, Austria) for his help and recom-

mendations of literature concerning the geological setting.

References

Adamová M. & Schnabel G.W. 1999: Comparison of the East Alpine 

and West Carpathian Flysch Zone - A Geochemical Approach. 

Abh. Geol. Bundesanst. 56, 567–584.

Armstrong H.A. & Brasier M.D. 2005: Foraminifera. Microfossils, 

Second Edition, Blackwell Publishing, Cornwall, 1–304.

Benedetti A. 2017: Eocene/Oligocene deep-water agglutinated fora-

minifers (DWAF) assemblages from the Madonie Mountains 

(Sicily, Southern Italy). Palaeontologia Electronica 20.1.4A, 

1–66.

Berggren W.A. & Pearson P.N. 2005: A revised tropical to subtropical 

Paleogene planktonic foraminiferal zonation. The Journal of 

Foraminiferal Research 35, 4, 279–298. 

Berggren W.A., Olsson R.K. & Premoli Silva I. 2006: Taxonomy, bio-

stratigraphy and phylogenetic affinities of Eocene Astrorotalia, 

Igorina,  Planorotalites, and Problematica (Praemurica

lozanoi). In: Pearson P.N., Olsson K.O., Huber B.T, 

 

Hem leben C. & Berggren W.E. (Eds.): Atlas of Eocene Plank-

tonic Foraminifera. Cushman Foundation Special Publication 

41, 377–400.

Bergen J.A., de Kaenel E., Blair S.A., Boesiger T.M. & Browning E. 

2017: Oligocene-Pliocene taxonomy and stratigraphy of the 

 genus Sphenolithus in the circum North Atlantic Basin: Gulf of 

Mexico and ODP Leg 154. Journal of Nannoplankton Research 

37, 77–112.

Bindiu–Haitonic R., Niculici S., Filipescu S., Bălc R. & Aroldi C. 

2017: Biostratigraphy and palaeoenvironments of the Eocene 

deep-water deposits of the Tarcău Nappe (Eastern Carpathians, 

Romania) based on agglutinated foraminifera and calcareous 

nannofossil assemblages. In: Kaminski M.A. & Alegret L. 

(Eds.): Proceedings of the Ninth International Workshop on Ag­

glutinated Foraminifera Grzybowski Foundation Special Publi­

cation 22, 17–37.

background image

416

KRANNER, HARZHAUSER, RÖGL, ĆORIĆ and STRAUSS

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

Bown P.R. & Cooper M.K.E. 1998: Jurassic. In: Bown P.R. (Ed.): 

Calcareous nannofossil biostratigraphy. British Micro­

palaeontological Society Publication SeriesChapman & Hall

34–85.

Bramlette M.N. & Sullivan F.R. 1961: Coccolithophorids and related 

nannoplankton of the Early Tertiary in California. Micropaleon­

tology 7, 129–188.

Bubík M. & Kaminski M.A. (Eds.). 2004: Proceedings of the Sixth 

International Workshop on Agglutinated Foraminifera. Grzy­

bowski Foundation Special Publication 8, 1–486.

Cicha I., Rögl F., Rupp C. & Čtyroký J. 1998: Oligocene–Miocene 

foraminifera of the Central Paratethys. Abhandlungen der 

sencken bergischen naturforschenden Gesellschaft 549, 1–325.

Cimerman F., Jelen B. & Skaberne D. 2006: Late Eocene benthic 

 foraminiferal fauna from clastic sequence of the Socka–Dobrna 

area and its chronostratigraphic importance (Slovenia). Geologija 

49, 7–44. 

Coxall H.K. & Spezzaferri S. 2018: Taxonomy, biostratigraphy, and 

phylogeny of Oligocene Catapsydrax, Globorotaloides, and 

Protentelloides. In: Wade B.S., Olsson R.K., Pearson P.N., 

 Huber B.T. & Berggren W.A. (Eds.): Atlas of Oligocene Plank-

tonic Foraminifera. Cushman Foundation for Foraminiferal 

 Research Special Publication 46, 79–125.

Egger H. 2013: Zur Lithostratigrafie der Laab-Decke im Rhenodanu-

bischen Deckensystem des Wienerwaldes. Arbeitstagung der 

Geologischen Bundesanstalt, 1–20.

Egger H. & Wessely G. 2014: Wienerwald. Sammlung geologischer 

Führer 59, 3, 1–202.

Egger H. & Ćorić S. (Eds.) 2017: Erläuterungen zur Geologischen 

Karte der Republik Österreich 1:50,000 Blatt 56 St.Pölten. 

 Geologische Bundesanstalt, Wien, 1–168.

Egger H., Rögl F. & Stradner H. 2007: Kalkiges Nannoplankton und 

Foraminiferen aus der Chiasmolithus gigas-Subzone (Mittel-

eozän) von Niederhollabrunn (Waschbergzone, Niederösterreich). 

Jahrb. Geol. Bundesanst. 147, 379–386.

Eliáš M., Schnabel W. & Stránik Z. 1990: Comparison of the Flysch 

Zone of the Eastern Alps and the Western Carpathians based on 

recent  observations.  In:  Minaříková  D.  &  Lobitzer  H.  (Eds.): 

Thirty years of geological cooperation between Austria and 

Czechoslovakia. Federal Geological Survey, Vienna & Geolo­

gical Survey, Prague, 37–45.

Fornaciari E., Agnini C., Catanzariti R., Rio D., Bolla E.M. & 

 Valvasoni E. 2010: Mid-Latitude calcareous nannofossil biostra-

tigraphy and biochronology across the middle to late Eocene 

transition. Stratigraphy 7, 229–264.

Golonka J. & Waśkowska A. 2012: The Beloveža Formation of the 

Rača  Unit  in  the  Beskid  Niski  Mts.  (Magura  Nappe,  Polish 

 Flysch Carpathians) and adjacent parts of Slovakia and their 

equivalents in the west ern part of the Magura Nappe; remarks 

on  the  Beloveža  Formation–Hieroglyphic  Beds  controversy. 

Geol. Quarterly 1, 56, 821–832. 

Grill R. 1968: Erläuterungen zur geologischen Karte des nordöstli-

chen  Weinviertels  und  zu  Blatt  Gänserndorf.  Flyschausläufer, 

Waschbergzone mit angrenzenden Teilen der flachlagernden 

Molasse, Korneuburger Becken, Inneralpines Wiener Becken 

nördlich der Donau. Geologische Bundesanstalt, Wien, 1–155.

Grunert  P.,  Hinsch  R.,  Sachsenhofer  R.F.,  Bechtel  A.,  Ćorić  S., 

 Harzhauser M., Piller W.E. & Sperl H. 2013: Early Burdigalian 

infill of the Puchkirchen Trough (North Alpine Foreland Basin, 

Central Paratethys): Facies development and sequence strati-

graphy. Mar. Petrol. Geol. 39, 164–186.

Hamilton W., Jiřiček R. & Wessely G. 1990: The Alpine–Carpathian 

floor of the Vienna Basin in Austria and ČSSR. In: Minaříková 

D. & Lobitzer H. (Eds.): Thirty years of geological cooperation 

between Austria and Czechoslovakia. Federal Geological Sur­

vey, Vienna & Geological Survey, Prague, 46–56.

Hamilton W., Wagner L. & Wessely G. 1999: Oil and Gas in Austria. 

Mitt. Österr. Geol. Ges. 82, 235–262.

Harzhauser M., Grunert P., Mandic O., Lukeneder P., García Gallardo 

Á., Neubauer T.A., Carnevale G., Landau B.M., Sauer R., 

Strauss P. 2018a: Middle and Late Badenian palaeoenviron-

ments in the northern Vienna Basin and their potential link to the 

Badenian Salinity Crisis. Geol. Carpath. 69, 129–168. 

Harzhauser M., Kranner M., Mandic O., Rögl F., Ćorić S., Grunert P. 

& Strauss P. 2018b: Miocene stratigraphy of the borehole Bern-

hardsthal 11 (northern Vienna Basin). Internal OMV report 

 (unpublished)1–16.

Hekel H. 1968: Nannoplanktonhorizonte und tektonische Strukturen 

in der Flyschzone nördlich von Wien (Bisambergzug). Jahrb. 

Geol. Bundesanst. 111, 293–338. 

Kaminski M.A. & Gradstein F.M. 2005: Atlas of Paleogene cosmo-

politan deep-water agglutinated foraminifera. Grzybowski Foun­

dation Special Publication 10, 1–547.

Kaminski M.A. & Ortiz S. 2014: The Eocene-Oligocene turnover of 

Deep-Water Agglutinated Foraminifera at ODP Site 647,  Southern 

Labrador Sea (North Atlantic). Micropaleontology 60, 53–66.

Kováč  M.,  Baráth  I.,  Harzhauser  M.,  Hlavatý  I.  &  Hudáčková  N. 

2004: Miocene depositional systems and sequence stratigraphy 

of the Vienna Basin. Courier des Forschungs­Instituts Sencken­

berg 246, 187–212.

Krhovsky J., Rögl F. & Hamrsmid B. 2001: Stratigraphic correlation 

of the Late Eocene to Early Miocene of the Waschberg Unit 

(Lower Austria) with the Zdanice and Pouzdrany Units (South 

Moravia). In: Piller W.E. & Rasser M.W. (Eds.): Paleogene of 

the Eastern Alps. Österreichische Akademie der Wissenschaften

Vienna, 225–254.

Kröll A.  &  Wessely  G.  1993:  Strukturkarte  —  Basis  der  tertiären 

Beckenfüllung 1:200.000. Erläuterung zu den Karten über den 

Untergrund des Wiener Beckens und der angrenzenden Gebiete. 

Geologische Bundesanstalt, Wien.

Küpper I. 1961: Alttertiäre Foraminiferenfaunen in Flyschgesteinen 

aus dem Untergrund des nördlichen Inneralpinen Wiener 

 Beckens  (Österreich).  Jahrb. Geol. Bundesanst. 104, 239–271.

Lees J.A. & Bown P.R. 2005: Upper Cretaceous calcareous nannofos-

sil biostratigraphy, ODP Leg 198 (Shatsky Rise, Northwest 

 Pacific  Ocean).  Proceedings of the Ocean Drilling Program. 

 Scientific  Results 198, 1–60.

Loeblich A.R. & Tappan L. 1987: Foraminiferal genera and their 

 classification.  Van Nostrand Reinhold Company Inc., New York, 

2 vols, 847 plates, 1–970.

Martini E. 1971: Standard Tertiary and Quaternary calcareous nanno-

plankton zonation. Proceedings of the II Planktonic Conference. 

Ed. Tecnoscienza, Roma, 739–785. 

Murray J.W. 1991: Ecology and Palaeoecology of Benthic Forami-

nifera. Longman Scientific & Technical, Harlow, Essex, 1–397.

Murray J.W. 2006: Ecology and Applications of Benthic Forami-

nifera. Cambridge University Press, Cambridge, 1–426.

Olsson R.K. & Hemleben C. 2006: Taxonomy, biostratigraphy, and 

phylogeny of Eocene Globanomalina, Planoglobanomalina n. gen 

and  Pseudohastigerina. In: Pearson P.N., Olsson K.O., Huber 

B.T, Hemleben C. & Berggren W.E. (Eds.): Atlas of Eocene 

Planktonic Foraminifera. Cushman Foundation Special Publica­

tion 41, 413–432.

Papp A., Rögl F. & Seneš J. 1973: Chronostratigraphie und Neostra-

totypen: Miozän der zentralen Paratethys. M2 Ottnangien: Die 

Innviertler,  Salgótarjáner,  Bántapusztaer  Schichtengruppe  und 

die Rzehakia Formation. Verlag der Slowakischen Akademie der 

Wissenschaften, 1–841.

Pearson P.N. & Wade B.S. 2009: Taxonomy and stable isotope paleo-

ecology of well-preserved planktonic foraminifera from the 

 uppermost Oligocene of Trinidad. Journal of Foraminiferal 

 Research 39, 191–217.

background image

417

PALEOGENE BIOSTRATIGRAPHY OF THE HARRERSDORF UNIT (VIENNA BASIN)

GEOLOGICA CARPATHICA

, 2019, 70, 5, 405–417

Pearson P.N., Olsson R.K., Huber B.T., Hemleben C. & Berggren 

W.A. 2006: Atlas of Eocene Planktonic Foraminifera. Cushman 

Foundation Special Publication 41, 1–513.

Perch-Nielsen K. 1985: Cenozoic calcareous nannofossils. In: Bolli 

H.M., Saunders J.B. & Perch-Nielsen K. (Eds.): Plankton stra-

tigraphy. Cambridge University Press, Cambridge, 427–555.

Picha F.J., Stráník Z. & Krejčí O. 2006: Geology and hydrocarbon 

resources of the Outer Western Carpathians and their foreland, 

Czech Republic. In: Golonka J. & Picha F.J. (Eds.): The Car-

pathians and their foreland: Geology and hydrocarbon resources. 

AAPG Memoir 84, 49–175.

Raffi I., Backman J., Fornaciari E., Palike H., Rio D., Lourens L.J. & 

Hilgen F.J. 2006: A review of calcareous nannofossil astrobio-

chronology encompassing the past 25 million years. Quaternary 

Science Reviews 25, 3113–3137.

Rammel M. 1989: Zur Kenntnis der Flyschzone im Untergrund des 

Wiener Beckens. Die Glaukonitsandsteinseries. Unpublished 

PhD Thesis, University of Vienna, Vienna, 1–149.

Royden L.H. 1985: The Vienna basin: a thin skinned pull apart basin. 

In: Biddle K. T. & Christie-Blick N. (Eds.): Strike-slip deforma-

tion, basin formation and sedimentation. SEPM Special Publica­

tion 37, 319–339.

Rögl F. & Spezzaferri S. 2003: Foraminiferal paleoecology and bio-

stratigraphy of the Mühlbach section (Gaindorf Formation, 

Lower Badenian), Lower Austria. Ann. Naturhist. Mus. Wien, 

104A, 23–75.

Rupp C. 1986: Paläoökologie der Foraminiferen in der Sandschaler-

zone  (Badenien,  Miozän)  des  Wiener  Beckens.  Beiträge zur 

Paläontologie von Österreich 12, 1–180. 

Schnabel W. 2002 (Ed.): Geologische Karte von Niederösterreich 

1:200.000.  Legende  und  kurze  Erläuterung.  Geologische 

Bundes anstalt, Wien.

Torres-Silva A.I. & Gebhardt H. 2015: Eocene Larger Benthic 

 

Foraminifera (Nummulitids, Orthophragminids) Waschberg–

Ždánice  Unit,  Lower  Austria.  Jahrb. Geol. Bundesanst. 155, 

109–120.

Vandenberghe N., Hilgen F.J. & Speijer R.P. 2012: The Paleogene 

Period. In: Gradstein F.M., Ogg J.G., Schmitz M.D. & 

 

Ogg G.M. (Eds.): The Geologic Time Scale 2012, 2. Elsevier

855–921.

Vass D. 2002: Lithostratigraphy of Western Carpathians: Neogene 

and Buda Paleogene [Litostratigrafia Západných Karpát: neogén 

a budínsky paleogén]. Štátny geologický ústav Dionýza Štúra

Bratislava, 1–204.

Wade B.S., Olsson R.K., Pearson P.N., Huber B.T. & Berggren W.A. 

2018: Atlas of Oligocene Planktonic Foraminifera. Cushman 

Foundation for Foraminiferal Research Special Publication 46, 

1–524.

Wessely G. 1988: Structure and Development of the Vienna Basin in 

Austria. In: Royden L.H. & Horvath F. (Eds.): The Pannonian 

System. A study in basin evolution. Amer. Assoc. Petrol. Geol. 

Mem. 45, 333–346.

Wessely G. 1993: Der Untergrund des Wiener Beckens. In: Brix F. & 

Schultz O. (Eds.): Erdöl und Erdgas in Österreich. Naturhis­

torisches Museum, Wien, 249–280.

Wessely G. 2006: Niederösterreich. Geologie der Österreichischen 

Bundesländer. Geologische Bundesanstalt Wien, Wien, 1–416.

Wessely G., Kröll A., Jiříček R. & Němec F. 1993: Wiener Becken 

und  angrenzende  Gebiete.  Geologische  Einheiten  des  präneo-

genen Beckenuntergrundes. Geologische Bundesanstalt Wien

Wien, 1 map.

Young J.R. 1998: Neogene. In: Bown P.R. (Ed.): Calcareous Nanno-

fossil Biostratigraphy. British Micropalaeontological Society 

Publications Series, Chapman & Hall, London, 225–265.