background image

GEOLOGICA CARPATHICA

, AUGUST 2019, 70, 4, 355–369

doi: 10.2478/geoca-2019-0020

www.geologicacarpathica.com

The calcareous nannofossils and magnetostratigraphic 

results from the Upper Tithonian–Berriasian  

of Feodosiya region (Eastern Crimea)

VLADIMIR ARKADIEV

1, 

, MARINA LESCANO

2

, ANDREA CONCHEYRO

2

,  

ANDREY GUZHIKOV

3

 and EVGENY BARABOSHKIN

4

1

Saint Petersburg State University, University Embankment 7/9, 199034 Saint Petersburg, Russia; 

arkadievvv@mail.ru

2

Instituto de Estudios Andinos Don Pablo Groeber, Conicet-Universidad de Buenos Aires, 1428, Buenos Aires, Argentina;  

andrea@gl.fcen.uba.ar

3

Saratov State University, Astrahanskaya Street 83, 410012 Saratov, Russia; aguzhikov@yandex.ru

4

Moscow State University, Leninskie Gory Street 1,119991 Moscow, Russia; ejbaraboshkin@mail.ru

(Manuscript received March 27, 2019; accepted in revised form June 17, 2019)

Abstract: This article is concerned with nannofossil study of Tithonian–Berriasian sediments of Eastern Crimea.  

The NJT 16, NJT 17a, NJT 17b, NKT, and NK 1 nannofossil zones were determined. The occurrence of Nannoconus 

kamptneri minor, one of the potential marker-types of the Tithonian–Berriasian boundary (the base of the NKT Zone)  

of the Tethyan sequence in the Feodosiyan section is assigned here to the Pseudosubplanites grandis ammonite Subzone 

and the magnetic Chron M18n. The base of the NKT Zone is closer to the Grandis Subzone base than to the base of  

the Jacobi Subzone. Contradictions in the interpretation of magnetic chrons obtained by the present authors (Arkadiev et al. 

2018) and by Bakhmutov et al. (2018) might be caused by mistakes admitted in the latter work on the compiled section.

Keywords: calcareous nannofossils, magnetostratigraphy, Tithonian, Berriasian, Eastern Crimea.

Introduction

The section of the Tithonian–Berriasian boundary sediments 

located in the Feodosiya area, Eastern Crimea, has been attrac-

ting the attention of researchers for over 100 years. The study 

of the Feodosiyan section began in the XIX century (Sokolov 

1886; Retowski 1893) and has been reviewed in a monograph 

(Arkadiev et al. 2012). Guzhikov et al. (2012) first provided  

a description of the compiled Upper Tithonian–Lower Berria-

sian section situated at the southern edge of the town of Feo-

dosiya within the area of Dvuyakornaya Bay Saint Ilya Cape, 

and Feodosiisky Cape. Later, Arkadiev et al. (2018) and Bara-

boshkin et al. (2016a) detailed the structure of the section, sum-

marized and analysed data on bio- and magnetostratigraphic 

stratification of the section, and provided zonal schemes on 

ammonites, calpionellids, foraminifera, ostracods, dinocysts, 

and trace fossils. The section covers an interval from the Upper 

Tithonian (Microcanthum and Andreaei ammonite Zones) to 

the Lower Berriasian (Jacobi Zone), where corresponding of 

the magnetic chrons from M20n to M17r inclusively were 

 determined. The thickness of the sediments between the upper-

most findings of Upper Tithonian ammonites and lowest fin-

dings of Berriasian ammonites is at least 100 metres. There-

fore, the boundary between the Jurassic and Cretaceous was 

assumed by the authors to be the base of the Berriasella jacobi 

ammonite Zone but it has not been accurately positioned in  

the section. Higher levels of the Berriasian section (Occitanica 

and  Boissieri Zones) were studied within the Zavodskaya 

 Balka quarry in the Feodosiya area (Arkadiev et al. 2015, 

2017, 2018; Savelieva et al. 2017; Baraboshkin et al. 2017, 

2019). There, on the basis of bio- and magnetostratigraphic 

data the boundary between the Berriasian and Valanginian was 

first justified. 

Previously, the authors of this paper have not studied calca-

reous nannofossils in the Feodosiyan section.

To recent times, the data on the distribution of calcareous 

nannofossils in the Tithonian–Berriasian of Mountain Crimea 

has been quite poor. Matveyev, in his studies of the Tithonian–

Berriasian in Eastern Crimea (Matveyev 2009, 2010), inclu-

ding the sections of the Thonas River and Feodosiya, mentioned 

a pretty poor collection of nannofossils from those sites.  

He assigned the Tithonian/Berriasian boundary to the first 

appearance datums (FADs) of Nannoconus steinmannii stein­

mannii,  N. steinmannii minor and N. dolomiticus, although  

the former subspecies was found in the Tithonian as well 

(Matveyev 2009). According to the widely accepted concepts, 

Nannoconus steinmannii Kamptner is a species determining 

the Jurassic–Cretaceous boundary (see Casellato 2010; 

Wimbledon et al. 2011). Stoykova et al. (2018a, b), however, 

provided calibrated ammonite and calcareous nannofossil 

documentation from Bulgaria, showing that Nannoconus 

steinmannii minor appeared above the bases of the Berriasella 

jacobi Zone and Calpionella alpina Subzone, and Nannoconus 

steinmannii steinmannii appeared even very up-section; the 

lat ter bioevent correlates with the Calpionella elliptica Sub-

zone and the M17r magnetic Chron. Actually, the calcareous 

background image

356

ARKADIEV, LESCANO, CONCHEYRO, GUZHIKOV and BARABOSHKIN

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

nannofossil event which is closer to the base of the Calpionella 

alpina Subzone, namely to the base of the Berriasian, is 

Nannoconus wintereri first occurrence. This bioevent shows 

relatively short vertical dispersal in many sections, such as  

the Bosso Valley, Font de St Bertrand, Lókút, Nutzhof, Puerto 

Escaño (Casellato 2010; Grabowski et al. 2017; Svobodová & 

Košťák 2016; Stoykova et al. 2018a, b). 

Based on this data and taking into consideration the infor-

mation on the distribution of foraminifera and palynomorphs 

within the section of the Thonas River, Dorotyak et al. (2009) 

determined the boundary between Tithonian and Berriasian 

from the occurrence of the assemblage of foraminifera Proto­

peneroplis ultragranulatusSiphoninella antique, calcareous 

nannofossil assemblage of Crepidolithus crassus (Deflandre), 

Nannoconus dolomiticus Cita, as well as Nannoconus stein­

mannii  Kamptner and Lithraphidites carniolensis, and the 

dinocyst species Pseudoceratium pelliferum (Pp.). In the boun-

dary interval of the Thonas River section, there is a suggestion 

to distinguish a Zeugrhabdotus embergeri Zone in the Upper 

Tithonian and a Lithraphidites carniolensis Zone in the Lower 

Berriasian at the base of which a “bloom” of nannoconids was 

observed (Dorotyak et al. 2009). Unfortunately, calcareous 

nannofossils were not figured in that article.

Recently, a team of European researches published indepen-

dent bio- and magnetostratigraphic data and interpretation that 

they obtained in studying the Jacobi Zone of the Feodosiyan 

section (Bakhmutov et al. 2018), which significantly differs 

from our outcomes made earlier (Arkadiev et al. 2018; 

Guzhikov et al. 2012;). Discussion of these contradictions 

along with presentation of new data on calcareous nannofos-

sils is the purpose of this article.  

Geological setting

The compiled Feodosiyan section comprises several inde-

pendent sections (outcrops 2901, 2922-2924, 3112, 3113, 

2456, 2927, 2920, and 2921) of the Dvuyakornaya Formation 

exposed as coastal cliffs at the Black Sea beach in the 

Feodosiisky Cape, Saint Ilya Cape, and in Dvuyakornaya Bay, 

at the southern edge of the Feodosiya town (Fig. 1) (see 

Guzhikov et al. 2012; Arkadiev et al. 2018). The section rep-

resents calciturbidites, debrites and pelagic deposits from the 

deeper part of a distally steepened ramp (Guzhikov et al. 2012; 

Baraboshkin et al. 2016b) of about 400 m total thickness.  

The bed dips vary from north-east to north-west with dip 

angles basically varying from 20° to 40°.   

Compilation of such a complex section covering the Upper 

Tithonian–Lower Berriasian (Jacobi Zone) interval was 

 

 

a challenging task considering the numerous disjunctive dislo-

cations, gaps in exposure and absence of lithological markers 

which might be traced from outcrop to outcrop. The base of 

the package of Feodosiyan Marls, with more or less lateral 

continuity, looks like a lucky exception. Guzhikov et al. (2012) 

assumed that the upper beds in sections of the Dvuyakornaya 

Bay (outcrop 2924) and Feodosiisky Cape (outcrop 2921) 

were an analogue of the thick (1.5–3.0 m) conglomerate-type 

limestone channel turbidite at the base of the Cape Saint Ilya 

section (outcrop 2456). Inconsistency of such assumptions 

becomes clearly understandable when one observes the sec-

tions at a distance from the sea. The results of revision of the 

section we made in 2016 indicated that beds of conglome rate-

type limestones in outcrops 2924 and 2921 that looked like  

a three-metre bed of similar limestone in the Cape Saint Ilya 

Fig. 1. Sketch map of the Tithonian–Berriasian studied sections 

in Eastern Crimea. GPS coordinates of the localities — outcrop 

2456: 45°00’41.7” N, 35°25’17.0” E; outcrops 2920–2921: 

45°01’16.0” N, 35°24’54.0” E; outcrop 2927: 45°00’37.7” N, 

35°25’11.2 E; outcrop 3058: 45°01’49.1” N, 35°20’59.5” E; 

 outcrop 2901: 45°00’03.6” N, 35°23’20.9” E; outcrop 2922: 

45°00’14.1” N, 35°23’08.6” E.

background image

357

CALCAREOUS NANNOFOSSILS FROM THE FEODOSIYA REGION (EASTERN CRIMEA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

section should actually be regarded as older and younger beds, 

respectively (Arkadiev et al. 2018). These limestones are 

channel turbidites in origin and, therefore, their thickness is 

not consistent. At the present time, it became evident that the 

Feodosiyan Upper Tithonian–Lower Berriasian compiled sec-

tion includes three stratigraphic gaps of undetermined thick-

nesses (Fig. 2). Some indirect data (including magnetic 

sus ceptibility) allow us to assume that these gaps hardly 

exceed the first tens of metres.  

The Zavodskaya Balka quarry on the outskirts of Feodosiya 

Town has provided outcrops of the well-developed Sul-

tanovskaya Formation, basically represented by grey pelagic 

mudstones (Baraboshkin et al. 2019) of about 100 m thickness 

with Berriasian ammonites of the Occitanica and Boissieri 

Zones (outcrops 2900, 2925, 3031, 3032, 3058, and 3092). 

Calcareous nannofossils from this part of the section have 

been studied for the first time ever.

Material and methods

Samples to conduct bio- and magnetostratigraphic studies 

on the “sample to sample” system were taken in the process of 

field research. A total of 43 samples from the four Crimean 

sections were examined for calcareous nannofossils, 38 of 

them being fossiliferous. 

Smear slides were prepared following the smear slide tech-

nique (Edwards 1963) and the slides were fixed with UV 

 curing Norland Optical Adhesive. Systematic determinations 

and photographs were established by a standard LEICA DMLP 

petrographic microscope with 1000× magnification under 

polarized light. The fossiliferous samples are housed in the 

Department of Geological Sciences, University of Buenos 

Aires, under the acronym BACF-NP 4147-4189.

Calcareous nannofossil bioevents and zonation

The recorded assemblages of calcareous nannofossils from 

Eastern Crimea are diverse enough and are represented by 67 

Tethyan species. The full list of the nannofossils recovered is 

provided in Table 1. Estimation of the nannofossil total abun-

dance has been recorded as follow (Table 2): VA (very abun-

dant): ≥15 specimens per field of view; A (abundant): 5–15 

specimens per field of view; C (common): 1–5 specimens per 

field of view; F (few): 1 specimen every 1–10 fields of view; 

R (rare): 1 specimen every 11–100 fields of view.

The nannofossil species from the Crimean sections are illus-

trated in Figs. 3–5. The Crimean nannofossils assemblages 

show low abundance, moderate state of preservation and are 

mainly dominated by abundant Watznaueria fossacincta 

 

(Fig. 4G), W. britannica (Fig. 4C), W. barnesiae (Fig. 4E), and 

Cyclagelosphaera sp. 

A specific horizon contains some Early Jurassic species such 

as Parhabdolithus robustus (Fig. 5A, B) and Crepidolithus sp. 

(Fig. 5C, D), which were reworked from older strata. 

Bralower et al. (1989) proposed a calcareous nannofossil 

zonation for the Jurassic and Cretaceous based on southern 

European land sections and sites from the western North 

Atlantic Ocean (Fig. 6). In particular, the NJK Zone straddled 

the Tithonian–Berriasian boundary. The NJK Zone is divided 

into four subzones (NJK-A, NJK-D, NJK-C, and NJK-D), 

their lower boundaries being marked at the FADs of Helenea 

chiastia, Umbria granulosa granulosa, Rotelapillus laffittei

and  Nannoconus steinmannii, respectively. These authors 

placed the base of the Berriasian in the middle of the NJK-C 

Subzone, which coincides with the base of M18 magnetic 

Chron, the base of the Berriasella jacobi ammonoid Zone, and 

the base of the Calpionella alpina Subzone. Besides, Bralower 

et al. (1989) correlated their zones with other bioevents such 

as the FADs of Rhagodiscus asper and Nannoconus 

wintereri.

More recently, Casellato (2010) proposed a new calcareous 

nannofossil biostratigraphic scheme for the Tithonian–Early 

Berriasian established for the Southern Alps in Northern Italy. 

She defined the NJT 16, NJT 17, and NKT Zones on the basis 

of FADs of Helenea chiastia, Nannoconus globulus minor, 

and Nannoconus steinmannii minor, respectively, and placed 

the base of the Berriasian at the base of NKT Zone (the FAD 

of N. steinmannii minor). In the Crimean sections, five mar-

kers of calcareous nannofossils were determined like in other 

Tethyan sections (see Bralower et al. 1989; Casellato 2010). 

These bioevents have defined the studied interval as Early 

Tithonian to Berriasian in age. In particular, the NJT 16-17, 

NKT, and NK-1 Tethyan Zones have been determined (Fig. 2).

The FO of Helenea chiastia (sample 2901-19, Fig. 4S) has 

been assumed as the first recorded event (Bralower at el. 1989; 

Casellato 2010); it defines the base of NJT 16a, which is cor-

related with the top of the Lower Tithonian. No ammonites 

typical for Early Tithonian were detected in this part of the 

section.

Up-section, the FO of Hexalithus strictus (sample 3112-3, 

Fig. 3F) has been used to determine the NJT 17a Subzone 

(middle part). In the Feodosiyan section, it correlates directly 

with the ammonite Berriasella chomeracensis, the latter being 

characteristic for the Lower Berriasian. Findings of the Upper 

Tithonian ammonites Paraulacosphinctes transitoriusP. cf. 

senoides were recorded approximately 110 m down-section. It 

is likely that the base of the NJT 17a Subzone is located down 

the section, within the Upper Tithonian, as well as in the 

Kopanista section (Stoykova et al. 2018a). 

The FO of Nannoconus wintereri (sample 2456-31, 

 

Fig. 5O, P), is a bioevent that determines the base of the NJT 

17b Subzone (Casellato 2010). N. wintereri was detected in 

the section definitely higher than the Lower Berriasian 

 

finds of Pseudosubplanites cf. lorioli  and  Delphinella cf. 

obtusenodosa

The FO of Nannoconus kamptneri minor (sample 2456-51) 

(Fig.  5Q, R)  defines  the  base  of  the  NKT  Zone  which  is 

assigned to the Berriasian.  A number of researches considered 

this event to be a reliable marker of the Tithonian–Berriasian 

boundary (Michalík & Reháková 2011; Wimbledon et al. 

background image

358

ARKADIEV, LESCANO, CONCHEYRO, GUZHIKOV and BARABOSHKIN

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Fig. 2. 

Compiled 

Tithonia

n–Berriasian

 section 

of 

Eastern 

Crimea 

and 

its 

bio-stratigraphic 

and 

magnetostratigraphic 

zonation. 

Legend: 

— 

clay

, 2 

— 

aleuroli

te, 

— 

calcareous 

sandstone, 

— 

con

-

glomerate, 

— 

limestone, 

— 

marlstone, 

7 — 

siderite 

lenses, 

— 

ammon

ites, 

9 — 

not 

observed, 

10–12 

— 

geomagnetic 

polarity: 

10 

— 

normal, 

11 

— 

reverse, 

12 

— anomalous. 

13 — 

missing 

data, 

14 — F

ADs.

background image

359

CALCAREOUS NANNOFOSSILS FROM THE FEODOSIYA REGION (EASTERN CRIMEA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Section 

1

2

3

4

Axopodorhabdus cylindratus (Noël, 1965) Wind and Wise in Wise and Wind, 1977

X

Biscutum sp. 

X

Bukrylithus ambiguus Black, 1971

X

Conusphaera mexicana Trejo, 1969

X

X

X

X

Cretarhabdus madingleyensis (Black, 1971) Crux, 1989

X

X

Crepidolithus sp.

X

X

Cruciellipsis cuvillieri (Manivit, 1966) Thierstein, 1971

X

Cyclagelosphaera argoensis Bown, 1992

X

Cyclagelosphaera brezae Applegate & Bergen, 1988

X

X

X

10 Cyclagelosphaera deflandrei (Manivit, 1966) Roth, 1973

X

X

11 Cyclagelosphaera lacuna Varol & Girgis 1994

X

X

X

12 Cyclagelosphaera margerelii Noël, 1965

X

X

X

X

13 Diazomatolithus galicianus de Kaenel & Bergen, 1996

X

14 Diazomatolithus lehmanii Noël, 1965

X

X

X

X

15 Eiffellithus primus Applegate & Bergen, 1988

X

16 Ethmorhabdus gallicus Noël, 1965

X

X

X

17 Ethmorhabdus hauterivianus (Black, 1971) Applegate et al. in Covington & Wise, 1987

X

18 Hayesites irregularis (Thierstein in Roth & Thierstein, 1972) Applegate et al. in Covington & Wise, 1987

X

19 Helenea chiastia Worsley, 1971

X

X

20 Helenea quadrata (Worsley, 1971) Rutledge & Bown in Bown et al., 1998

X

X

21 Helenea staurolithina Worsley, 1971

X

X

X

X

22 Hexalithus noeliae Loeblich & Tappan, 1966

X

23 Hexalithus strictus Bergen, 1994

X

X

24 Lithraphidites carniolensis Deflandre, 1963

X

25 Manivitella pemmatoidea (Deflandre in Manivit, 1965) Thierstein, 1971

X

X

26 Micrantholithus hoschulzii (Reinhardt, 1966) Thierstein, 1971

X

27 Micrantholithus obtusus Stradner, 1963

X

28 Micrantholithus parvistellatus Varol 1991

X

29 Micrantholithus sp.

X

30 Nannoconus compressus Bralower & Thierstein in Bralower et al., 1989

X

X

31 Nannoconus globulus subsp. globulus Brönnimann, 1955

X

32 Nannoconus globulus subsp. minor (Brönnimann, 1955) Bralower in Bralower et al., 1989

X

X

X

33 Nannoconus kamptneri subsp. kamptneri Brönnimann, 1955

X

34 Nannoconus kamptneri subsp. minor (Brönnimann, 1955) Bralower in Bralower et al., 1989

X

X

X

35 Nannoconus sp.

X

X

X

36 Nannoconus steinmannii subsp. minor (Kamptner, 1931) Deres and Achéritéguy, 1980

X

X

37 Nannoconus steinmannii subsp. steinmannii Kamptner, 1932

X

X

38 Nannoconus wintereri Bralower & Thierstein, in Bralower et al. 1989

X

X

X

39 Parhabdolithus robustus Noël, 1965

X

X

40 Percivalia fenestrata (Worsley, 1971) Wise, 1983

X

41 Polycostella beckmannii Thierstein, 1971

X

X

42 Polycostella senaria Thierstein, 1971

X

X

43 Polycostella sp.

X

44 Retecapsa angustiforata Black, 1971

X

45 Retecapsa crenulata (Bramlette & Martini, 1964) Grün in Grün and Allemann, 1975

X

46 Retecapsa octofenestrata (Bralower in Bralower et al., 1989) Bown in Bown & Cooper, 1998

X

47 Retecapsa schizobrachiata (Gartner, 1968) Grün in Grün and Allemann, 1975

X

48 Retecapsa surirella (Deflandre & Fert, 1954) Grün in Grün and Allemann, 1975

X

49 Rhagodiscus adinfinitus Bown, 2005

X

50 Rhagodiscus asper (Stradner, 1963) Reinhardt, 1967

X

51 Speetonia colligata Black, 1971

X

52 Staurolithites sp.

X

53 Tubodiscus verenae Thierstein, 1973

X

54 Umbria granulosa Bralower & Thierstein in Bralower et al., 1989

X

55 Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968

X

X

X

X

56 Watznaueria biporta Bukry, 1969

X

57 Watznaueria britannica (Stradner, 1963) Reinhardt, 1964

X

X

X

X

58 Watznaueria communis Reinhardt, 1964

X

X

X

X

59 Watznaueria fossacincta (Black, 1971) Bown in Bown & Cooper, 1989

X

X

X

60 Watznaueria manivitiae Bukry, 1973

X

X

X

X

61 Watznaueria ovata Bukry, 1969

X

62 Zeugrhabdotus diplogrammus (Deflandre in Deflandre & Fert, 1954) Burnett in Gale et al., 1996

X

63 Zeugrhabdotus embergeri (Noël, 1959) Perch-Nielsen, 1984

X

X

X

X

64 Zeugrhabdotus erectus (Deflandre in Deflandre & Fert, 1954) Reinhardt, 1965

X

X

X

65 Zeugrhabdotus fissus Grün & Zweili, 1980

X

66 Zeugrhabdotus sp.

X

X

67 Tegumentum sp.

X

Table 1:  List of recorded calcareous nannofossil species of Eastern Crimea.

background image

360

ARKADIEV, LESCANO, CONCHEYRO, GUZHIKOV and BARABOSHKIN

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Section 4

Ethmor

habdus gallicus

Nannoconus sp. W

atznaueria manivitiae

Staur

olithites sp.

Micrantholithus hoschulzii Conusphaera mexicana Cyclagelosphaera br

ezae

Cyclagelosphaera mar

ger

elii

W

atznaueria barnesiae

Diazomatolithus lehmanii Rhagodiscus asper Nannoconus kamptneri subsp. minor  Nannoconus kamptneri subsp. kamptneri  Nannoconus globulus subsp. minor W

atznaueria britannica

Hexalithus strictus Polycostella senaria Nannoconus steinmannii subsp. steinmannii Zeugr

habdotus ember

geri

Helenea chiastia  W

atznaueria communis

Per

civalia fenestrata 

Retecapsa angustiforata Micrantholithus sp. Micrantholithus parvistellatus Zeugr

habdotus sp.

Biscutum sp.  Cr

epidolithus sp.

Nannoconus winter

eri

Eiffellithus primus Cruciellipsis cuvillieri Lithraphidites carniolensis Nannoconus globulus subsp. globulus Nannoconus steinmannii subsp. minor Cyclagelosphaera deflandr

ei

Polycostella sp. Micrantholithus obtusus Polycostella beckmannii W

atznaueria fossacincta 

Umbria granulosa Retecapsa surir

ella

W

atznaueria biporta

Zeugr

habdotus diplogrammus

Rhagodiscus adinfinitus Helenea staur

olithina

Zeugr

habdotus er

ectus

Speetonia colligata Diazomatolithus galicianus Ethmor

habdus hauterivianus

Tubodiscus ver

enae

Cocosfera Helenea quadrata Retecapsa cr

enulata

Hayesites irr

egularis

Cyclagelosphaera lacuna Bukrylithus ambiguus Manivitella pemmatoidea Axopodor

habdus cylindratus

Retecapsa octofenestrata Retecapsa schizobrachiata Nannoconus compr

essus

Tegumentum sp.

3058-51

R R

R C C A C C

R F C

R

C

R C

R

R

R R

F R C R

3058-45

R

A A R F

R

R R

R

R R

R A F R

R

R

R F R R R

3058-35

C C F

F

R

C

R

R R

3058-25

F R F F

E C

R

F R

F R

R R R

R

C

F R

R

R R

3031-19

C C C C R

F

F R

R

R

R

R C

R R R R R

3031-12

C C

C

C A R C C R

R

C R R R

R C

R

R

R R R C

R

R R

R R R R R R

2925-33

R

R

C C C A F F F

C

C F C

R F

F

C C C C R R

2925-23-22

R

A A R

R C

C

C

R

A R C

2925-14

C C

R

C A C R

R C C

R R C

R C F R R R R R R R

3092-6

F F C C A F F F C E C F C F F F F R

3092-1

F C C F C R F A C F F F R F F R

Section 3

Cyclagelosphaera mar

ger

elii

Nannoconus kamptneri subsp. minor 

W

atznaueria barnesiae

W

atznaueria manivitiae

Nannoconus winter

eri

W

atznaueria communis

Zeugr

habdotus ember

geri

Diazomatolithus lehmanii

W

atznaueria britannica

Conusphaera mexicana

Nannoconus globulus subsp. minor

Nannoconus sp.

Cyclagelosphaera lacuna

Nannoconus steinmannii subsp. minor

Cr

epidolithus sp.

Zeugr

habdotus sp.

Helenea staur

olithina

Nannoconus steinmannii subsp. steinmannii

2921-13

C C C

C C

R

2921-7

F C C C C C R

C R

R R

R R

F

2921-1

2920-1

C A C C A C

F

2920-10

C C A A R A R R C R R F

Section 2

Helenea quadrata

Helenea staur

olithina

Diazomatolithus lehmanii

Cr

etar

habdus madingleyensis

Par

habdolithus r

obustus

Cyclagelosphaera mar

ger

elii

W

atznaueria barnesiae

W

atznaueria fossacincta 

Coccospher

e

W

atznaueria britannica

W

atznaueria ovata

Zeugr

habdotus fissus

Zeugr

habdotus er

ectus

Ethmor

habdus gallicus

W

atznaueria manivitiae

Cyclagelosphaera br

ezae

Zeugr

habdotus ember

geri

Nannoconus winter

eri

Nannoconus globulus subsp. minor

W

atznaueria communis

Conusphaera mexicana

Nannoconus sp.

Nannoconus kamptneri subsp. minor 

2456-51

C A A

R C C C C

C

2456-41

C A F

F

F F F

C

3056-31

C A A

C

R C C C C C

2456-23

A A F F F

C C F

2456-12

C C R R R VAVA C R C R R R R

2456-1

2927-2

Section 1

Cyclagelosphaera deflandr

ei

Zeugr

habdotus ember

geri 

W

atznaueria fossacincta 

W

atznaueria britannica

Cyclagelosphaera mar

ger

elii

W

atznaueria barnesiae

W

atznaueria communis

W

atznaueria manivitiae

Helenea chiastia 

Manivitella pemmatoidea

Coccospher

e

Cr

etar

habdus madingleyensis

Ethmor

habdus gallicus

Polycostella beckmannii

Conusphaera mexicana

Diazomatolithus lehmanii

Cyclagelosphaera lacuna

Zeugr

habdotus er

ectus

Nannoconus compr

essus

Polycostella senaria

Par

habdolithus r

obustus

Hexalithus noeliae

Cyclagelosphaera br

ezae

Helenea staur

olithina

Hexalithus strictus

Cyclagelosphaera ar

goensis

3112-3

R C C A A R C

C

R R

R R R

3113-3

F C F C C C R

R

F R

R

F

R R

2922-32C

C C C C C C R

R

2923-13

2923-8

R C R C A R

A A

2923-3

2901-94

F C C C C R

E R

R

R

2901-87

C R C C

R

R

R

2901-82

A F

A R

C C

2901-77

A

A R R

A A R

2901-72

A F C A

F

C R

F

F

2901-65

C

C C R

C R R

R

2901-61

C F C C

R C

R R R

2901-59

C R C C

2901-53

R R C C C A

C R R R R

2901-46

R

C R C C

R

2901-36

C F F C

F

R R

2901-19

R C R C C R R R R R R

2901-5

R R F R

2901-1

R F C F F F

Table 2: Semi-quantitative estimation of nannofossil’ abundance in the studied samples.

background image

361

CALCAREOUS NANNOFOSSILS FROM THE FEODOSIYA REGION (EASTERN CRIMEA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

2011). However, this is significantly higher than the base of 

the Calpionella alpina Subzone, which is currently accepted 

as the marker of the Tithonian–Berriasian (Wimbledon 2017; 

Svobodová et al. 2019).

The FO of Nannoconus steinmannii steinmannii (sample 

2921-7, Fig. 5G, H) is a major event that defines the base of 

NK-1 Zone in the Berriasian. Ammonites Delphinella  cf. 

tresannensis and Berriasella subcallisto that characterize the 

Grandis Subzone were determined at this level of the section. 

At the top of the Zavodskaya Balka section, at the level of 

sample 3058-25, the last occurrences of Polycostella senaria, 

P. beckmanii, and Nannoconus wintereri were fixed, which, 

together with the ammonite Berriasella callisto, has proved 

Berriasian age. 

Discussion

It is remarkable that the FO of the subspecies Nannoconus 

kamptneri minor is assigned to beds characterized by ammo-

nites of the Grandis Subzone (sample 2456-51) and corre-

sponds to the top M18n magnetic Chron. It is about 80 m 

above the level of the Tithonian–Berriasian boundary deter-

mined on the basis of ammonites. According to Bakhmutov et 

al. (2018), N. kamptneri minor occurs approximately in the 

middle of the M19n.2n magnetic Subchron, and N. stein­

mannii steinmannii and N. kamptneri kamptneri — at the level 

of M18r magnetic Chron. If we consider the boundaries estab-

lished by magnetostratigraphic data to be isochronous, then 

with respect to them, the boundaries established by nanofos-

sils seem to be diachronous. This is confirmed by the analysis 

of numerous publications. Wimbledon et al. (2011) stated that 

the base of the NKT Zone is assigned to the top M19n mag-

netic Chron. In the Le Chouet section (France), the FADs of 

Nannoconus steinmannii minor and N. kamptneri minor corre-

spond to the top M19n magnetic Chron (Wimbledon et al. 

2013). A similar relationship has been observed in the section 

Barlya in the West Balkan Mts, Bulgaria (Lakova et al. 2017). 

In the Southern Alps, Casellato in Channell et al. (2010) deter-

mined the lower boundary of the Berriasian based on the FAD 

of Nannoconus steinmannii minor which is correlated with the 

M18r magnetic Chron. However, in the Torre de’ Busi section, 

the base of the NKT Zone corresponds to the top M19n Chron, 

and in the Colme di Vignola section — to the top M18n Chron. 

In the Puerto Escaño section (Southern Spain), the boundary 

between the ammonite Durangites and Jacobi Zones has been 

assigned to the base of the M19n Chron, while the base of the 

NKT Zone has been traced at the top of the M19n Chron 

(Svobodová & Košťák 2016). In the Western Carpathians, the 

FAD of N. steinmannii minor has been fixed in the middle part 

of the M19n Chron (Michalík et al. 2016; Elbra et al. 2018) 

which is slightly above the Tithonian–Berriasian boundary 

level determined from calpionellids. In Hungary, in the Lόkút 

section, the base of the NKT Zone has been determined at  

the top M19n2n Subchron (Grabowski et al. 2017). Thus,  

the position of the base of the NKT Zone varies from the top 

M19n Chron to the top M18n Chron. Therefore, the FAD of 

Nannoconus steinmannii minor could hardly be accepted as 

one of major markers of the Jurassic/Cretaceous boundary. 

The integrated ammonite, calcareous nannofossil and mag-

netostratigraphic data obtained in studying the Feodosiyan 

sections may be applied to justify the boundary markers.  

The proximity of the base of the M18r Chron to the base of  

the Grandis Subzone in the Feodosiyan sections confirms the 

earlier declared opinion regarding the Tithonian–Berriasian 

boundary to be determined at the base of the ammonite 

Grandis Subzone (Arkadiev et al. 2018). In addition, the base 

of the NKT Zone is close to this level in the Feodosiyan  

section. The base of the Calpionella alpina Subzone in the 

Feodosiyan section is much lower (Platonov et al. 2014), but it 

is poorly defined due to the rarity of the finds and the poor 

preservation of the calpionellids.

Magnetostratigraphic interpretation

Petromagnetic and paleomagnetic data obtained indepen-

dently from the both research teams are well-harmonized.  

The data on anisotropy of magnetic susceptibility and the 

results of the component analysis are equal in the papers of 

Bakhmutov et al. (2018) and Guzhikov et al. (2012). Also,  

the mean directions of characteristic remanent magnetization 

(ChRM) across the section obtained by different researchers 

statistically coincide. The paleomagnetic column of the out-

crop at the boathouse [outcrop B in Bakhmutov et al. (2018) 

and outcrops 2920, 2921 in Arkadiev et al. (2018); Guzhikov 

et al. (2012)] is similar. The reverse polarity magnetic zone 

(R) at the top of the composite section has been interpreted as 

the M17r Chron by all authors (Fig. 7). 

However, the paleomagnetic column and results of magne-

topolar interpretations of the Cape Saint Ilya section vary and 

have been done by different researchers, as in the cases of out-

crops A and 1–6 (Bakhmutov et al. 2018) and outcrop 2456 

(Arkadiev et al. 2018; Guzhikov et al. 2012).

In our opinion, the outcrop A in Bakhmutov et al. (2018), 

namely the Feodosiyan Marls under the light tower, duplicates 

the outcrop B. We came to such a conclusion after we had 

restudied in detail the section structure in 2016. If our approach 

to comparison of the outcrops is meaningful, then the R-Zone 

[top part of the outcrop 4 in Bakhmutov et al. (2018)], which 

is the next reversal zone down-section, should rather be the 

M18r Chron, than the M19n.1r Subchron (“Brodno”) (Fig. 7). 

The analysis of magnetostratigraphic data along the entire 

composite Upper Tithonian–Lower Berriasian section (Arka-

diev et al. 2018; Guzhikov et al. 2012) confirms that this 

R-Zone cannot be the analogue of the M19n.1r Subchron. 

Admitting the contrary, it should be concluded that two under-

lying R-Zones assigned to beds hosting Neoperisphinctes cf. 

falloti and Paraulacosphinctes cf. transitorius should be inter-

preted as the M19r and M20r Chrons, respectively. However, 

such an interpretation is not applicable from the view point of 

the ammonite stratigraphy since predominantly the Early 

background image

362

ARKADIEV, LESCANO, CONCHEYRO, GUZHIKOV and BARABOSHKIN

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Fig. 3. Calcareous nannofossils from the Feodosiyan section. All photomicrographs under polarized light; scale bar = 2 μm. A — Micrantholithus 

obtusus Stradner (sample 2925-33); B–D — Micrantholithus parvistellatus Varol (sample 2925-14); E — Micrantholithus sp (sample 2925-

14); F — Hexalithus strictus Bergen (sample 3112-3). G–H — Hexalithus noeliae Loeblich & Tappan (sample 3113-3); I — Polycostella 

beckmannii Thierstein (sample 2901-53); J — Polycostella senaria Thierstein (sample 3092-6); K–L — Conusphaera mexicana Trejo (sample 

3058-51); M — Cyclagelosphaera lacuna Varol & Girgis (sample 2901-53); N — Cyclagelosphaera deflandrei (Manivit) Roth (sample 2901-1); 

O — Cyclagelosphaera margerelii Noël (sample 2921-7); P — Lithraphidites carniolensis Deflandre (sample 2925-14); Q — Diazomatolithus 

galicianus de Kaenel & Bergen (sample 3031-19); R — Diazomatolithus lehmanii Noël (sample 3031-12); S — Zeugrhabdotus diplogrammus 

(Deflandre in Deflandre & Fert) Burnett in Gale et al (sample 3031-12);  T — Zeugrhabdotus embergeri (Noël) Perch-Nielsen (sample 

3058-51).

background image

363

CALCAREOUS NANNOFOSSILS FROM THE FEODOSIYA REGION (EASTERN CRIMEA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Fig. 4. Calcareous nannofossils from the Feodosiyan section. All photomicrographs under polarized light; scale bar = 2 μm. A — Watznaueria 

communis Reinhardt (sample 3113-3); B — Watznaueria manivitiae Bukry (sample 2901-36); C — Watznaueria britannica (Stradner) Reinhardt 

(sample 2456-12); D — Watznaueria ovata Bukry (sample 2456-12); E — Watznaueria barnesiae (Black in Black & Barnes) Perch-Nielsen 

(sample 3112-3); F — Watznaueria biporta Bukry (sample 3031-12); G — Watznaueria fossacincta (Black) Bown in Bown & Cooper (sample 

2901-19); H — Speetonia colligata Black (sample 3058-35); I — Percivalia fenestrata (Worsley) Wise (sample 3092-6); J — Eiffellithus primus 

Applegate & Bergen (sample 3058-25); K — Retecapsa angustiforata Black (sample 2925-14); L — Retecapsa surirella (Deflandre & Fert) 

Grün in Grün and Allemann (sample 3058-45); M — Ethmorhabdus gallicus Noël (sample 2901-61); N — Axopodorhabdus cylindratus (Noël) 

Wind and Wise in Wise and Wind (sample 2901-36); O — Tubodiscus verenae Thierstein (sample 3031-19); P — Rhagodiscus asper (Stradner) 

Reinhardt (sample 3058-45); Q — Cruciellipsis cuvillieri (Manivit) Thierstein (sample 3058-45); R — Helenea quadrata (Worsley) Rutledge & 

Bown in Bown et al. (sample 3058-51); S — Helenea chiastia Worsley (sample 2901-19); T — Helenea staurolithina Worsley (sample 

3031-12).

background image

364

ARKADIEV, LESCANO, CONCHEYRO, GUZHIKOV and BARABOSHKIN

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Fig. 5. Calcareous nannofossils from the Feodosiyan section. All photomicrographs under polarized light; scale bar = 2 μm. A, B — Par­

habdolithus robustus Noël (sample 2901-94); C, D — Crepidolithus sp. (sample 2921-7); E, F — Nannoconus steinmannii subsp. minor 

(Kamptner) Deres and Achéritéguy (sample 2920-1); G, H — Nannoconus steinmannii subsp. steinmannii Kamptner (sample 2921-7);  

I, J — Nannoconus kamptneri subsp. kamptneri Brönnimann (sample 3092-6); K, L — Nannoconus compressus Bralower & Thierstein in 

Bralower et al. (sample 2901-61); M, N — Nannoconus globulus subsp. minor (Brönnimann) Bralower in Bralower et al. (sample 2925-33); 

O, P —Nannoconus wintereri Bralower & Thierstein, in Bralower et al. (sample 2456-31); Q –T — Nannoconus kamptneri subsp. minor 

Bralower (sample 2456-51).

background image

365

CALCAREOUS NANNOFOSSILS FROM THE FEODOSIYA REGION (EASTERN CRIMEA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Tithonian age of the M20r Chron is substantiated in the key 

sections of different regions (Grabowski et al. 2010; Houša et 

al. 1999; Lukeneder et al. 2010; Pruner et al. 2010), while the 

oldest sediments we have studied in the Feodosiyan sections 

have been assigned to the Upper Tithonian on the basis of 

ammonite finds (Arkadiev et al. 2018; Guzhikov et al. 2012).

The paleomagnetic section and petromagnetic diagrams 

(magnetic susceptibility) corresponding to the top of the out-

crop 2456 (Guzhikov et al. 2012) are well correlated with  

the data of the outcrops 5 and 6 and top of the outcrop 4 

(Bakhmutov et al. 2018) (Fig. 7). It is obvious that different 

authors studied the same interval of the section. 

The lower part of the outcrop 2456 (Guzhikov et al. 2012) 

and the outcrop 1 (Bakhmutov et al. 2018) are undoubtedly the 

same research subject because their bases represent a litholo-

gical benchmark — a 3 m-thick bed of conglomerate-type 

limestone (the base of the package 10 according to Guzhikov 

et al. (2012) that crops out in the area of Cape Saint Ilia 

approximately at sea level. Both groups of researchers regis-

tered there an alternated polarity as alternation of four inter-

vals of anomalous polarity (Guzhikov et al. 2012; Arkadiev et 

al. 2018) (Fig. 7). According to the data of Bakhmutov and his 

colleagues, a large number of bipolar intervals are obviously 

associated with a higher density of sampling in this part of  

the section: they sampled about 20 levels while we did only 7. 

The earlier assumption was that the zone of bipolar polarity is 

assigned to the bottom of the M18r Chron (Guzhikov et al. 

2012; Arkadiev et al. 2018) but, perhaps, it is more reasonable 

not to identify this magnetic zone with magnetic chrons in 

view of its anomalous character as was done by Bakhmutov et 

al. (2018).

Close to the boundary between the packages 10 and 11 

(Arkadiev et al. 2018), a gap in sampling, which we did not 

cover in our work, can really be available (Guzhikov et al. 

2012). Up to now, we have not managed to assess the thick-

ness of the gap, but we assume that it is not large. Moreover, 

we could not find the sediments near the Cape Saint Ilya 

[including areas where the outcrops 2 and 3 are situated, 

according to Bakhmutov et al. (2018)], which could be securely 

defined as those corresponding to the gap. In our opinion, the 

thickness of this gap mentioned by Bakhmutov et al. (2018) is 

significantly exaggerated, and the outcrops 2 and 3 may have 

the same beds multiplied more than once. We believe that 

whatever the case, this matter should be additionally studied.  

On the basis of the currently existing data, it is not incon-

ceivable that the interval covering outcrop 4, which does not 

have determinations of the magnetic polarity (Bakhmutov et 

al. 2018), corresponds to an extension of a reversed polarity 

zone. In all cases, it is premature to interpret the bottom part of 

outcrop 4 as an interval of normal (N) polarity (Bakhmutov et 

al. 2018).

New data on calcareous nannofossils herein presented have 

confirmed the eligibility of the explanation we outlined for 

contradictions between results of the magnetostratigraphic 

interpretation of our data, on one side, and those of Bakhmutov 

et al. (2018), on the other (Fig. 7).

Fig. 6. Calcareous nannofossil zonation of the Tithonian–Berriasian interval and main bio-events according to Bralower et al. (1989), Casellato 

(2010). Ammonite boundary of Tithonian–Berriasian and appearance of nannofossils in Feodosiya region.

background image

366

ARKADIEV, LESCANO, CONCHEYRO, GUZHIKOV and BARABOSHKIN

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

0

50 100

k [1E-5 SI]

C

B

(Arkadiev 

et al.,  2018)

(Bakhmutov et al., 2018)

Cape St. Iliya 

(Guzhikov et al., 2012)

Cape Feodosiisky

(Guzhikov et al., 2012)

M18r

M17r

M18n

 2456

2921

2920

2921

2920

 2456

Polarity

Member

Outcrops

Formation

Dvuyakornaya

10

11

12

M18r

M17r

M18n

Polarity

Member

10

11

12

?

2927

This paper

Nannofossil

events

N. steinmanni steinmanni

N. kamptneri

minor

scale [m]

scale [m]

0

5

10

C

B

A

6

5

4

3

2

1

scale [m]

- 2

- 1

- 3

Glushkov

 Cliff

Ili Burnu

?19n.1r

18r

18n

17r

?19n.1n

19n

N. kamptneri minor

N. steinmanni steinmanni

0

200 400 600

k [1E-6 SI]

Mayak  Formation

Dvuyakornaya

Formation

Fig. 7. Correlation of compiled magnetostratigraphic sections of Feodosiyan Lower Berriasian produced on the basis of our data (Guzhikov et 

al. 2012; Arkadiev et al. 2018) and data of Bakhumtov et al. (2018). 1 — interval with increased magnetic susceptibility; 2 — intervals mistak-

enly included in the composite section (Bakhmutov et al. 2018); 3 — true positions of outcrops B and C relative to outcrop A.

background image

367

CALCAREOUS NANNOFOSSILS FROM THE FEODOSIYA REGION (EASTERN CRIMEA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

The FAD of N.  kamptneri minor has been assigned by 

Bakhmutov et al. (2018) to the middle of the outcrop 2, which 

testifies in favour of our version about duplicating of the same 

intervals of the section. Presumably, the outcrops 2 and 3 

duplicate the outcrops 5 and 6, while we (in the outcrop 2456) 

and Bakhmutov et al. (2018) fixed approximately the same 

level of the FAD of N. kamptneri minor (Fig. 7).

According to the interpretation of Bakhmutov et al. (2018), 

the FADs of N. steinmannii steinmannii and N. kamptneri 

kamptneri were assigned to the M18r Chron. It contradicts to 

the data given by the same authors on the age dispersion of 

nannofossils associations (fig. 24 in Bakhmutov et al. 2018), 

according to which the FADs of these subspecies are assigned 

to base of the M17r Chron. This contradiction is cleaned away 

in our version, according to which the top of the Cape Saint 

Ilya section (outcrop A) duplicates the section near the boat-

house (base of the outcrop B) (Fig. 7).

 If one admits the rightness of our version, the FADs of 

 nannofossil taxa in the section on the data of Bakhmutov et al. 

(2018) is much better correlated with the new data about the 

age dispersion of FADs of nannofossils associations (fig. 24 in 

the paper of Bakhmutov et al. 2018) (Fig. 8).

The interval between the uppermost findings of Upper 

Tithonian ammonites and the lowest findings of Lower 

Berriasian ammonites is over 100 metres in the Dvuyakornaya 

Bay section, which extends downwards the Cape Saint Ilya 

section (Arkadiev et al. 2018). The target to justify more accu-

rately the level of the base of Jacobi Zone in the Feodosiyan 

section like in other sections of the Mountainous Crimea is 

quite challenging. The level of the Grandis Subzone base, 

which is close to the base of the NKT nannofossil Zone has 

been determined and traced much better. Unfortunately, we 

have not managed to distinguish the base of the magnetic 

M18r Chron. Most likely, this level is located in the sampling 

gap between the Dvuyakornaya Bay and Cape Saint Ilya sec-

tions (refer to fig. 20 in Arkadiev et al. 2018). It is not impro-

bable that the zone of mixed (unknown) polarity at the bottom 

of the Cape Saint Ilya section, which is allocated both by 

Guzhikov et al. (2012) and Bakhmutov et al. (2018) (Fig. 7), 

corresponds to the geomagnetic reversal epoch between the 

M19 and M18 Chrons. Whatever the case, the lowest boun-

dary of M18r is situated in the Feodosiyan section below the 

base of the Grandis Subzone and above the Jacobi Subzone 

bottom. If our assumptions regarding the small thickness of 

gaps in the composite section are correct, then the M18r bot-

tom in the section is likely close to the base of the Grandis 

Subzone.

Lithostratigraphic notes

In the top part of the Dvuyakornaya Formation (the package 

of Feodosiyan Marls), Bakhmutov et al. (2018) has introduced 

as a new formation, the so-called Mayak Formation. At first 

this name was proposed in abstracts of the meeting of the 

Berriasian Working Group held in Slovakia (Bakhmutov et al. 

2016). “Dvuyakornaya Formation” is a widely used and 

well-established name in literature. Initially, the formation 

was distinguished by Astakhova et al. (1984). The detailed 

lithological and paleontological description of the formation 

has been provided in our publications (Arkadiev et al. 2012, 

2018). In Bakhmutov et al. (2016), it is mentioned that the 

Feodosiyan Marls occur above the Dvuyakornaya Formation. 

However, Astakhova et al. (1984, p. 62) considered the 

Feodosiyan Marls as the facial analogue of the clays and lime-

stones of the Dvuyakornaya and base of the Sultanovskaya 

formations. In our opinion, changing the name and volume of 

the existing formation is not reasonable. It will just lead to 

some additional complications in the matter of formation stra-

tification of the Upper Jurassic–Lower Cretaceous interval of 

Mountainous Crimea. 

Conclusion

 New data about calcareous nannofossils from the Feodo-

siyan section significantly enlarges its characteristics and 

highlights this section as one of the best in terms of degree of 

description of details of the Jurassic–Cretaceous boundary 

interval for the Tethys. The base of the NKT Zone and likely 

Fig. 8. Correlation of first occurrences of calcareous nannofossils 

(FO) in the Lower Berriasian Feodosiyan section (this paper) with 

data of Bakhmutov et al. and FAD range in different regions (refers to 

fig. 24, Bakhmutov et al. 2018).

background image

368

ARKADIEV, LESCANO, CONCHEYRO, GUZHIKOV and BARABOSHKIN

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

the lower boundary of the M18r magnetic chron are close to 

the base of the ammonite Grandis Subone, which allows high-

lighting of the base of the Grandis Subzone as the Tithonian/

Berriasian (Jurassic/Cretaceous) boundary rather than the base 

of the Jacobi Zone/Subzone. 

Acknowledgements: The authors thank Valentina Koval for 

help in translating the paper into English. We are very grateful 

to K. Stoykova and I. Lakova (Geological Institute, Bulgarian 

Academy of Sciences) for linguistic proofreading and very 

constructive comments, which greatly improved the text of  

the manuscript.

References

Arkadiev V.V., Bogdanova T.N., Guzhikov A.Yu., Lobacheva S.V., 

Myshkina N.V., Platonov E.S., Savelyeva Yu.N., Shurekova O.V. 

& Yanin B.T. 2012: Berriasian stage of the Mountainous Crimea. 

LEMA Publishing House, Saint Petersburg, 1–472 (in Russian).

Arkadiev V.V., Guzhikov A.Yu, Savelieva Yu.N., Feodorova A.A., 

Shurekova O.V., Bagaeva M.I., Grishchenko V.A. & Manikin A.G. 

2015: New Data on Bio- and Magnetostratigraphy of the Upper 

Berriasian Zavodskaya Balka section (Eastern Crimea, Feodo-

siya). Bull. Saint Petersbur

g St. Univ., Geology 7, 4, 4–36 (in 

Russian).

Arkadiev V.V., Grishchenko V.A., Guzhikov A.Yu., Manikin A.G., 

Savelieva Yu.N., Feodorova A.A. & Shurekova O.V. 2017: 

 Ammonites and Magnetostratigraphy of the Berriasian–Valan-

ginian Boundary Deposits from Eastern Crimea. Geol. Carpath. 

68, 6, 505–516.

Arkadiev V., Guzhikov A., Baraboshkin E., Savelieva Ju., Feodorova A., 

Shurekova O., Platonov E. & Manikin A. 2018: Biostratigraphy 

and Magnetostratigraphy of the Upper Tithonian–Berriasian of 

the Crimean Mountains. Cretaceous Res. 87, 5–41.

Astakhova T.V., Gorak S.V., Kraeva E.Y., Kulichenko V.G., Permya-

kov V.V., Plotnikova L.F., Semenenko V.N., Barchenko O.I., 

Blagodarov M.I., Bugaets A.T., Bondarenko V.G., Borisenko 

L.S., Vanina M.V., Vdovenko M.V., Voronov M.A., Gorbach 

L.P., Grigoriev A.V., Gurevich K.Y., Dulub V.G., Isagulova E.Z., 

Korbut Y.B., Kotlyar O.E., Konenkova D.I., Makarenko D.E., 

Menkes M.A., Nerodenko V.M., Novik N.N., Naga V.I., Plakhot-

nogo L.G., Pyatkova D.M., Romanov L.F., Savron E.B. Slyusar 

B.S., Sulimov I.N., Teslenko Y.V., Fedorov P.V., Tsegelnyk P.D. 

& Yanovskaya G.G. 1984: Geology of Shelf of the UkrSSR. 

Stratigraphy (Shelf and Black Sea Coast). Naukova Dumka, 

Kiev, 1–184 (in Russian).

Bakhmutov V.G., Casellato C.E., Halásová E., Ivanova D.K., 

 Reháková D. & Wimbledon W.A.P. 2016: Bio- and Magnetostra-

tigraphy of the Upper Tithonian–Lower Berriasian in Southern 

Ukraine. XIIth Jurassica Conference. In: Michalík J. & Fekete 

K. (Eds.): Workshop of the ICS Berriasian Group and IGCP 632. 

Field Trip Guide and Abstracts Book. Earth Science Institute, 

Slovak Academy of Sciences, Bratislava, 97–100. 

Bakhmutov V.G., Halásová E., Ivanova D.K., Jόzsa S., Reháková D. 

& Wimbledon W.A.P. 2018: Biostratigraphy and magnetostrati-

graphy of the uppermost Tithonian–Lower Berriasian in the 

Theo dosia area of Crimea (Southern Ukraine). Geol. Quarterly 

62, 2, 197–236. 

Baraboshkin E.Yu., Arkadiev V.V. & Kopayevich L.F. 2016a: Refe-

rence sections of the Cretaceous System of the Mountainous 

Crimea. Guidebook of the Field Excursions of the 8th All-Rus-

sian meeting, September 26–October 3, 2016. ChernomorPress 

Publishing House, Simferopol, 1–90 (in Russian).

Baraboshkin E.Yu., Baraboshkin E.E., Yanin B.T. & Piskunov V.K. 

2016b: Tithonian–Berriasian deep-water ichnoassemblages of 

Feodosiya (Republic of Crimea). In: E.Yu. Baraboshkin (Ed.): 

The Cretaceous System of Russia and Neighbouring Countries: 

Problems of Stratigraphy and Paleogeography. Materials of the 

VII All-Russian Conference, September 26–October 3, 2016, 

Republic of Crimea. Chernomorpress Publishing House, Sim-

feropol, 45–48 (in Russian).

Baraboshkin E.Yu., Guzhikov A., Arkadiev V. & Baraboshkin E.E. 

2017: New Data on the Berriasian Stage of the Crimea. In: 10

th

 

International Symposium on the Cretaceous. Vienna, August 

21–26, 2017. Abstracts. Berichte der Geol. Bundes anst. 120, 23. 

Baraboshkin E.Yu., Arkadiev V.V., Guzhikov A.Yu. & Baraboshkin 

E.E. 2019: Tirnovella occitanica Zone of the Berriassian in Feo-

dosiya region (Eastern Crimea). Moscow University Geology 

Bull. 1, 25–35 (in Russian).

Bralower T.J., Monechi S. & Thierstein H.R. 1989: Calcareous Nan-

nofossil Zonation of the Jurassic–Cretaceous Boundary Interval 

and Correlation with the Geomagnetic Polarity Timescale.  Mar. 

Micropaleont. 14, 153–235.

Casellato C.E. 2010: Calcareous Nannofossil Biostratigraphy of  Upper 

Callovian–Lower Berriasian from the Southern Alps, North Italy. 

Rivista Italiana di Paleontologia e Stratigrafia 116, 357–404.

Channell J.E.T., Casellato C.E., Muttoni G. & Erba E. 2010: 

 Magnetostratigraphy, Nannofossil Stratigraphy and Apparent Polar 

Wander for Adria–Africa in the Jurassic–Cretaceous Boundary 

Interval. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 51–75.

Dorotyak Yu.B., Matveyev A.V. & Schevchuk Ye.A. 2009:  Micro-

paleontologic characteristic of the boundary Jurassic–Creta-

ceous deposits of the Mountain Crimea by foraminifers, calca-

reous nannoplankton, dinocysts, spores, and pollen. In: Fossil 

flora and fauna of Ukraine: paleoecological and stratigraphic 

aspects. Proceedings of the Institute of Geological Sciences of 

the National Academy of Sciences of Ukraine, Kiev, 108–117  

(in Ukrainian with an English abstract).

Edwards A. 1963: A preparation technique for calcareous nanno-

plankton. Micropaleontology 9, 103–104. 

Elbra T., Bubík M., Reháková D., Schnabl P., Čížková K., Pruner P., 

Kdýr Š., Svobodová A. & Švábenická L. 2018: Magneto- and 

biostratigraphy across the Jurassic–Cretaceous Boundary in the 

Kurovice section, Western Carpathians, Czech Republic. Creta­

ceous Res. 89, 211–223. 

Grabowski J., Haas J., Márton E. & Pszczółkowski A. 2010: Magne-

to- and biostratigraphy of the Jurassic/Cretaceous boundary in 

the Lókút section (Transdanubian range, Hungary). Stud. Geo­

phys. Geod. 54, 1–26.

Grabowski  J.,  Haas  J.,  Stoykova  K.,  Wierzbowski  H.,  Brański  P. 

2017:  Environmental Changes around the Jurassic/Cretaceous 

Transition: New Nannofossil, Chemostratigraphic and Stable 

Isotope  Data  from  the  Lόkút  Section  (Transdanubian  Range, 

Hungary). Sediment. Geol. 360, 54–72.

Guzhikov A.Yu., Arkad’ev V.V., Baraboshkin E.Yu., Bagaeva M.I., 

 Piskunov V.K., Rud’ko S.V., Perminov V.A. & Manikin A.G. 2012: 

New sedimentological, bio-, and magnetostratigraphic data on the 

Jurassic–Cretaceous boundary interval of Eastern Crimea (Feodo-

siya). Stratigraphy and Geological Correlation 20, 3, 261–294.

Houša V., Krs M., Krsová M., Man O., Pruner P. & Venhodová D. 

1999: High-resolution magnetostratigraphy and micropaleon  to-

logy across the J/K boundary strata at Brodno near Žilina, wes-

tern Slovakia: summary results. Cretaceous Res. 20, 699–717.

Lakova I., Grabowski J., Stoykova K., Petrova S., Reháková D., 

 Sobień K. & Schnabl P. 2017: Direct correlation of Tithonian/

Berriasian boundary calpionellid and calcareous nannofossil 

events in the frame of magnetostratigraphy: new results from the 

West Balkan Mts, Bulgaria, and review of existing data. Geol. 

Balcanica 46, 2, 47–56.

background image

369

CALCAREOUS NANNOFOSSILS FROM THE FEODOSIYA REGION (EASTERN CRIMEA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 355–369

Lukeneder A., Halásová E., Kroh A., Mayrhofer S., Pruner P., 

 Reháková D., Schnabl P., Sprovieri M. & Wagreich M. 2010: 

High resolution stratigraphy of the Jurassic–Cretaceous boun-

dary interval in the Gresten Klippenbelt (Austria). Geol. Carpath. 

61, 4, 365–381.

Matveyev A.V. 2009: Tithonian Calcareous Nannoplankton of the 

Eastern Crimea. In: Fossil flora and fauna of Ukraine: paleo-

ecological and stratigraphic aspects. Proceedings of the Institute 

of Geological Sciences of the National Academy of Sciences  

of Ukraine, Kiev, 104–107 (in Ukrainian with an English 

 abstract). 

Matveyev A.V. 2010: Lower Berriasian Calcareous Nannoplankton of 

Mountainous Crimea. In: Cretaceous System of Russian and 

FSU. Materials of the V All-Russian Meeting. 23–28 August 

2010, Ulyanovsk. Ulyanovsk State University Press, 251–256 

(in Russian).

Michalík J. & Reháková D. 2011: Possible Markers of the Jurassic/

Cretaceous Boundary in the Mediterranean Tethys: a Review 

and a State of Art. Geoscience Frontiers 2, 475–490.

Michalík J., Reháková D., Grabowski J., Lintnerová O., Svobodová A., 

Schlögl J., Sobień K. & Schnabl P. 2016: Stratigraphy, plankton 

communites, and magnetic proxies at the Jurassic/Cretaceous 

boundary in the Pieniny Klippen Belt (Western Carpathians, 

 Slovakia).  Geol. Carpath. 67, 4, 303–328.

Platonov E., Lakova I., Petrova S.  & Arkadiev V. 2014: Tithonian and 

Lower Berriasian calpionellid against ammonite biostratigraphy 

of the Dvuyakornaya Formation in eastern Crimea. Geol. Balca­

nica 43, 1–3, 63–76.

Pruner P., Houša V., Olóriz F., Košťák M., Krs M., Man O., Schnabl P., 

Venhodová D., Tavera J.M. & Mazuch M. 2010: High-resolution 

magnetostratigraphy and biostratigraphic zonation of the Juras-

sic/Cretaceous boundary strata in the Puerto Escaño section 

(Southern Spain). Cretaceous Res. 31, 192–206.

Retowski O. 1893: Die tithonischen Ablagerungen von Theodosia. 

Bull. Soc. Natur. Mosc. N. sér. 7, 2–3, 206–301.

Savelieva Yu.N., Shurekova O.V., Feodorova A.A., Arkadiev V.V., 

Grishchenko V.A., Guzhikov A.Yu. & Manikin A.G. 2017: 

 Microbiostratigraphy of the Berriasian–Valanginian boundary in 

Eastern Crimea: foraminifers, ostracods, organic-walled dinofla-

gellate cysts. Geol. Carpath. 68, 6, 517–529.

Sokolov V.D1886: Materials on Geology of Crimea. Crimea Titho-

nian. Bull. of Moscow Soc. Devotees Nat. Sci., Anthropology and 

Ethnography XIV, 1–43 (in Russian).

Stoykova K., Idakieva V., Ivanov M. & Reháková D. 2018a: Calcareous 

nannofossil and ammonite integrated biostratigraphy across the 

Jurassic–Cretaceous boundary strata of the Kopanitsa composite 

section (West Srednogorie Unit, Southwest Bulgaria). Geol. 

Carpath. 69, 2, 199-217.

Stoykova K., Michalík J., Petrova S., Reháková D., Idakieva V., 

 Ivanov M. & Andreeva P. 2018b: Correlation of the Jurassic/

Cretaceous boundary sequences in the sections of West Sredno-

gorie, Bulgaria, based on micro- and macrofossil data and sea 

level changes.  

Review of the Bulgarian Geological Society 79, 3, 

103–104.

Svobodová A.  &  Košťák  M.  2016:  Calcareous  nannofossils  of  the 

Jurassic/Cretaceous boundary strata in the Puerto Escaño Sec-

tion (Southern Spain) — biostratigraphy and paleoecology. 

Geol. Carpath. 67, 3, 223–238.

Svobodová A., Švábenická L., Reháková D., Svobodová M., Skupien P., 

Elbra T. & Schnabl P. 2019: The Jurassic/Cretaceous boundary 

and high resolution biostratigraphy of the pelagic sequences of 

the Kurovice section (Outer Western Carpathians, the northern 

Tethyan margin). Geol. Carpath. 70, 2, 153–182.

Wimbledon W.A.P. 2017: Developments with fixing a Tithonian/Ber-

riasian (J/K) boundary. Volumina Jurassica XV, 181–186.

Wimbledon W.A.P., Casellato C.E., Reháková D., Bulot L.C., Erba E., 

Gardin S., Verreussel R.M., Munsterman D.K. & Hunt C.O. 

2011: Fixing a Basal Berriasian and Jurassic–Cretaceous (J–K) 

Boundary — is there perhaps some light at the end of the tunnel? 

Rivista Italiana di Paleontologia e Stratigrafia 117, 295–307. 

Wimbledon W.A.P., Reháková D., Pszczółkowski A., Casellato C.E., 

Halásová  E.,  Frau  C.,  Bulot  L.G.,  Grabowski  J.,  Sobień  K., 

 Pruner P., Schnabl P. & Čížková K. 2013: An Account of the 

Bio- and Magnetostratigraphy of the Upper Tithonian–Lower 

Berriasian Interval at Le Chouet, Drôme (SE France). Geol. 

 Carpath. 64, 6, 437–460.