background image

GEOLOGICA CARPATHICA

, AUGUST 2019, 70, 4, 325–354

doi: 10.2478/geoca-2019-0019

www.geologicacarpathica.com

Integrated bio- and cyclostratigraphy of Middle Triassic 

(Anisian) ramp deposits, NW Bulgaria

GEORGE AJDANLIJSKY

1

, ANDRÉ STRASSER

2

 and ANNETTE E. GÖTZ

3, 

1

University of Mining and Geology “St. Ivan Rilski”, Department of Geology and Geoinformatics, Sofia 1700, Bulgaria; g.ajdanlijsky@mgu.bg

2

University of Fribourg, Department of Geosciences, Geology–Paleontology, 1700 Fribourg, Switzerland; andreas.strasser@unifr.ch

3

University of Portsmouth, School of Earth and Environmental Sciences, Portsmouth PO1 3QL, United Kingdom;  

 

annette.goetz@port.ac.uk

(Manuscript received March 18, 2019; accepted in revised form June 27, 2019)

Abstract: A cyclostratigraphic interpretation of peritidal to shallow-marine ramp deposits of the early Middle Triassic 

(Anisian) Opletnya Member exposed in outcrops along the Iskar River gorge, NW Bulgaria, is presented. Based on facies 

trends and bounding surfaces, depositional sequences of several orders can be identified. New biostratigraphic data  

provide a time frame of the studied succession with placement of the boundaries of the Anisian substages and show that 

the Aegean (early Anisian) substage lasted about 1.6 Myr. In the corresponding interval in the two studied sections,  

80 elementary sequences are counted. Five elementary sequences compose a small-scale sequence. The prominent cyclic 

pattern of the Opletnya Member can thus be interpreted in terms of Milankovitch cyclicity: elementary sequences repre-

sent the precession (20-kyr) cycle and small-scale sequences the short eccentricity (100-kyr) cycle in the Milankovitch 

frequency band. Medium-scale sequences are defined based on lithology but only in two cases can be attributed to  

the long eccentricity cycle of 405 kyr. The transgressive-regressive facies trends within the sequences of all scales imply 

that they were controlled by sea-level changes, and that these were in tune with the climate changes induced by the orbital 

cycles. However, the complexity of facies and sedimentary structures seen in the Opletnya Member also implies that 

additional factors such as lateral migration of sediment bodies across the ramp were active. In addition, three major  

sequence boundaries have been identified in the studied sections, which can be correlated with the boundaries Ol4, An1, 

and An2 of the Tethyan realm.

Keywords: Sedimentary cycles, palynology, conodonts, Triassic, Western Balkanides, NW Bulgaria. 

Introduction

The Anisian is a crucial time interval in Earth’s history to 

 understand carbonate platform reorganization in the aftermath 

of the most severe extinction event at the end of the Permian 

(e.g., Benton 2015) and the incipient break-up of the super-

continent Pangaea (Stampfli et al. 2013), the northwestern 

Tethyan realm being best suited to study the comeback of shal-

low-marine environments at the beginning of the Mesozoic 

(e.g., Feist-Burkhardt et al. 2008; Stefani et al. 2010; Haas et 

al. 2012; Escudero-Mozo et al. 2015; Matysik 2016; Chatalov 

2018). 

Since the first detailed descriptions in the late 19

th

 century 

by Toula (1878), Middle Triassic carbonate successions of  

the Western Balkanides have been studied to define lithostrati-

graphic units and detect facies types (Tronkov 1960, 1968, 

1973, 1976, 1981, 1992; Tronkov et al. 1965; Chemberski et 

al.  1974;  Assereto  &  Čatalov  1983;  Assereto  et  al.  1983; 

Chatalov 1997; Benatov & Chatalov 2000; Chatalov et al. 

2001). Microfossils and invertebrate groups have been used 

(Tronkov 1968, 1976; 1983, 1995; Budurov & Stefanov 1972; 

Budurov 1980; Budurov & Trifonova 1995; Benatov 2000, 

2001) to compare and correlate these deposits referred to as 

“Balkanide type” (Ganev 1974; Chatalov 1980, 1991; Zagor-

chev & Budurov 2009) lithologically and stratigraphically 

with the “Germano-type” Muschelkalk successions of the 

Germanic Basin, showing striking facies similarities (Chatalov 

1991). However, up to date the lack of a robust biostratigraphic 

framework hampers a precise age control of these deposits and 

hence regional correlation with Middle Triassic ramp systems 

of the northwestern Tethyan (e.g., Michalík et al. 1992; Haas 

et al. 1995; Philip et al. 1996; Török 1998; Götz et al. 2003; 

Rychliński  &  Szulc  2005;  Götz  &  Török  2008)  and  Peri-

Tethyan, i.e. Germanic realms (e.g., Götz 1996; Szulc 2000; 

Pöppelreiter 2002; Borkhataria et al. 2006; Matysik 2016). 

The challenge of a high-resolution correlation of Anisian 

Muschelkalk ramp cycles across the Tethyan shelf and the 

Peri-Tethyan basin was outlined by Götz & Török (2018).

Recent studies revisited the excellent outcrops along the 

Iskar River gorge (Fig. 1), focusing on the continental–marine 

transition and ramp initialization (Ajdanlijsky et al. 2018), and 

on the overall facies development of the ramp system 

(Chatalov 2013, 2018). The onset of the Anisian ramp system, 

after continental sedimentation in the Early Triassic, features  

a pronounced cyclic character of peritidal and shallow-marine 

carbonates (Chatalov 2000), and different hierarchical scales 

can be defined for the Early to early Middle Triassic interval. 

A major sequence boundary occurs at the base of the Middle 

Triassic Iskar Carbonate Group (Ajdanlijsky et al. 2018).  

A mid-Anisian maximum-flooding zone is inferred from  

background image

326

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

the litho- and biofacies of the so-called “Terebratula Beds” 

(Chatalov 2013), and a long-term, second-order sea-level rise 

is interpreted from the Olenekian onwards, followed by a mid- 

Anisian to early Carnian sea-level fall again creating a major 

sequence boundary (Chatalov 2018). 

The present study yields new biostratigraphic data provi-

ding a refined age control. Palynofacies analysis is used to 

decipher short- and long-term sea-level fluctuations by chan-

ges of terrigenous input, preservation and sorting of phytoclasts, 

and prominent phytoplankton (acritarch) peaks indi 

cating 

major flooding phases. Combined with the detailed analysis of 

lithology and sedimentary structures, this allows a robust 

sequence- and cyclostratigraphic interpretation to be proposed. 

Geological setting

The study area, located approximately 35 km north of Sofia, 

is part of the Western Balkanides, i.e. the Western Balkan 

Tectonic Zone (Ivanov 1998) of the Alpine orogenic belt. Its 

pre-Mesozoic basement includes high-grade metamorphosed 

lower Paleozoic sedimentary and igneous rocks and upper 

Paleozoic sedimentary, igneous and volcanic rocks (Yanev 2000). 

The overlying Triassic succession forms the base of the Meso-

zoic cover and is subdivided into three units: the Petrohan Terri-

genous Group (Tronkov 1981) consisting predominantly of 

fluvial deposits; the Iskar Carbonate Group (Tronkov 1981) 

composed of shallow-marine carbonates and mixed siliciclas-

tic–carbonate rocks; and the Moesian Group (Chemberski et 

al. 1974) represented by siliciclastic–carbonate and carbonate 

rocks (Fig. 2). The Iskar River gorge exposes an excellent con-

tinuous succession of the marine Iskar Carbonate Group with 

a maximum thickness of about 480 m (Chatalov 2013). The lower 

part of the group is assigned to the Anisian stage (Fig. 3).

Materials and methods

Two key sections (Lakatnik and Sfrazen) of the Mogila 

Formation as part of the Iskar Carbonate Group (Figs. 2, 3) 

were logged in great detail. The Sfrazen section, representing 

the formation’s type section, is situated north of Sfrazen ham-

let, 1.5 km west of the village of Opletnya. The Lakatnik sec-

tion is located directly north of the Lakatnik railway station, 

about 3 km west of the Sfrazen hamlet. Both sections offer 

excellent lateral and almost continuous vertical exposures of 

the Mogila Formation. The detailed bed-by-bed documenta-

tion includes lithology, fossil content, and sedimentary struc-

tures. The microfacies and the textures (Dunham classification) 

were determined on the outcrop with a hand lens and in  

52 thin-sections. In the Sfrazen section, the overlying Babino 

Formation and lowermost Milanovo Formation were logged in 

order to obtain additional biostratigraphic tie points. Samples 

for biostratigraphic analysis of palynomorphs and conodonts, 

and for palynofacies analysis were taken from all three forma-

tions and different lithologies. In both sections, a small-scale 

cycle within the lower Mogila Formation (Opletnya Member) 

was sampled for high-resolution palynofacies analysis. 

Fig. 1. Excellent outcrops along the Iskar River gorge expose the Iskar Carbonate Group overlying the Petrohan Terrigenous Group (PTG).  

The Opletnya Member is ca. 135 m thick.

background image

327

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Palynological samples were prepared using standard pro-

cessing techniques (Wood et al. 1996), including HCl (33 %) 

and HF (73 %) treatment for dissolution of carbonates and 

silicates, and saturated ZnCl

2

 solution (D ≈ 2.2 g/ml) for den-

sity separation. Residues were sieved at 15 µm mesh size and 

mounted in Eukitt, a commercial, resin-based mounting 

medium. Palynological slides were analyzed on a Leica 

DM2000 microscope. Formic acid (10 %) was used for 

extraction of conodont elements from bioclastic grainstones. 

After sieving the residue, conodont elements were picked and 

transferred to microcells for identification using a Leica M80 

stereomicroscope. 

Biostratigraphy

Early biostratigraphic studies on the Bulgarian Triassic  

used conodonts to establish a zonation scheme applicable for 

Fig. 2. Study area and location of studied sections north of Sofia in the Balkan Zone, NW Bulgaria (modified from Ajdanlijsky et al. 2018).  

L: Lakatnik section (43°05’22” N, 23°23’34” E); S: Sfrazen section (43°06’04” N, 23°25’27” E).

background image

328

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Fig. 3. Stratigraphy of the Triassic sequence exposed in outcrops of the Iskar River gorge, NW Bulgaria, with range of the studied sections 

shown in Figures 7, 10, 11, 12, 13, and 14. The placement of the Olenekian–Anisian boundary and the Anisian substage boundaries is based on 

new biostratigraphic data (Ajdanlijsky et al. 2018; this study). Acritarch peaks occur in the lower Opletnya Member (1), lower Lakatnik 

Member (2), and Zimevitsa Member (3), indicating major flooding events. Abbreviations: Fm. = Formation, Mb. = Member; PA I = palynoas-

semblage I (Aegean), PA II = palynoassemblage II (Bithynian–Pelsonian), PA III = palynoassemblage III (Illyrian).

background image

329

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

the marine parts of the succession (Budurov & Stefanov 1972, 

1973, 1975; Budurov 1976, 1980). They were later accompa-

nied by analyses of benthic foraminiferal assemblages, firstly 

to erect a refined zonation scheme including standard cono-

dont and foraminifera zones (Budurov & Trifonova 1984, 

1995; Budurov et al. 1995), and secondly to provide a tenta-

tive correlation with the Tethyan ammonite zones. Studies by 

Tronkov (1960, 1968, 1981, 1983) focused on invertebrate 

groups, mainly bivalves and brachiopods, and also used rare 

ammonoid findings (Tronkov 1976) to overcome the limited 

correlation of the Bulgarian Triassic with the Triassic of  

the Tethyan and Peri-Tethyan realms. Later, Benatov (1998) 

established regional bivalve and brachiopod zones for the 

Middle Triassic in order to correlate them with the existing 

zonation schemes. Consequently, these zones were used for 

dating and regional correlation (Benatov et al. 1999; Benatov 

2000, 2001). However, the facies-dependent occurrence of 

bivalves and brachiopods and their generally low time resolu-

tion hampers precise dating and correlation at regional and 

over-regional scales. Furthermore, conodont assemblages 

obtained from olistoliths (Budurov 1976) without reference 

sections, the noticeable conodont provincialism (Budurov & 

Petrunova 2000) and Peri-Tethyan endemism (Chen et al. 

2019), and ultimately the huge recent progress in Triassic 

conodont research applying multi-element taxonomy and 

revised, lineage-based zonation schemes (e.g., Chen et al. 

2015, 2019), demonstrate the urgent need of a revision of  

the existing conodont stratigraphy of Bulgaria. 

Previous palynological investigations in the Triassic of 

Bulgaria have been limited to a few attempts to date forma-

tions (Kalvacheva & Čatalov 1974; Čatalov & Visscher 1990; 

Petrunova 1992a, b, 1999, 2000; Budurov et al. 1997). How-

ever, recent palynological studies on continental and marine 

deposits of the Early–Middle Triassic transition interval 

exposed in outcrops along the Iskar River gorge (Ajdanlijsky 

et al. 2018) show the huge potential to establish a high-resolu-

tion palynostratigraphy. So far, the Olenekian–Anisian boun-

dary was palynologically identified in the uppermost fluvial 

Petrohan Terrigenous Group, differing from previous interpre-

tations, which placed this boundary at different positions in 

the Mogila Formation of the overlying Iskar Carbonate Group 

(Tronkov 1983; Chatalov 2018). In the present study, the focus 

is on palynomorphs to further develop Triassic palynostrati-

graphy. Additionally, conodonts are used to refine the existing 

Anisian stratigraphy of NW Bulgaria. 

Palynological key taxa allow dividing the Anisian succes-

sion into three palynoassemblages (Fig. 3). Assemblage I 

identified in the lower Mogila Formation is characterized by 

Anisian index taxa including Cristianisporites triangulatus, 

Illinites kosankeiIllinites chitonoidesStellapollenites thier­

gartiiTsugaepollenites oriens, and Triadispora crassa. Early 

Triassic elements such as Densoisporites nejburgii and 

Voltziaceaesporites heteromorphus are still present, indicating 

an early Anisian (Aegean) age (Heunisch 1999, 2019). Assem-

blage II is composed of Anisian taxa as listed above, with the 

last appearance of Cristianisporites triangulatus and Illinites 

kosankei in the uppermost Babino Formation, indicating  

a Bithynian–Pelsonian age. Assemblage III of the basal 

Milanovo Formation is characterized by Illinites chitonoides

Stellapollenites thiergartii,  Tsugaepollenites oriens,  Tria­

dispora crassa, and the first appearance of Kraeuselisporites 

wargensis, indicating a late Anisian (Illyrian) age (Kustatscher 

& Roghi 2006). 

In the Sfrazen section, the occurrence of conodonts (N. ger­

manica / N. kockeli) in the upper Mogila Formation and the 

Babino Formation enables the placement of the Bithynian/

Pelsonian boundary (Götz et al. 2019) in the lowermost 

Zimevitsa Member of the Babino Formation. The identifica-

tion of Pelsonian elements such as Paragondolella bulgarica 

(Chen et al. 2015), accompanied by findings of crinoid colum-

nal segments of Holocrinus dubius, an index species of the 

Pelsonian  (Hagdorn  &  Głuchowski  1993;  Głuchowski  & 

Salamon 2005; Niedźwiedzki & Salamon 2006), in bioclastic 

grainstones of the Zimevitsa Member, support this age 

assignment.

Sedimentology

In the studied area, the Anisian succession starts with the 

Svidol Formation that demonstrates a wide variety of silici-

clastic–terrigenous, siliciclastic–carbonate, and carbonate 

rocks (Ajdanlijsky et al. 2018), followed upwards by the 

mainly carbonate successions of the Mogila, Babino and 

Milanovo formations. 

Opletnya Member

In the Opletnya Member (lower part of the Mogila 

Formation), carbonates prevail while the mixed siliciclastic–

terrigenous and siliciclastic–carbonate rocks, presented mainly 

by thin beds, form only an insignificant part of the succession. 

Among the carbonates, where limestones prevail over dolo-

mitic limestones and dolomites, wacke- and packstones are 

more common than mud- and grainstones. 

Wackestones and mudstones

Wacke- and mudstones are medium- to thick-bedded 

 

(15–80 cm), rarely thin-bedded (5–8 cm), massive, laminated 

or nodular (Fig. 4b), commonly bioturbated (Figs. 4a, 5a), and 

contain benthic foraminifera and ostracods. The laminations 

are more often thick (3–4 mm) than thin (1–1.5 mm). In some 

cases, scale and intensity of the bioturbation allows for lateral 

correlation between sections. Pebble-sized intraclasts, mainly 

with lithologies similar to those of the hosting bed, occur very 

rarely. Solitary small fragments of gagate (jet) are observed in 

several levels (Zdravkov et al. 2019). Birdseyes and different 

degrees of dolomitization occur occasionally both in wacke-

stones and mudstones. These facies and sedimentary struc-

tures point to a peritidal to shallow-marine environment (e.g., 

Flügel 2004). 

background image

330

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Fig. 4. Limestone lithologies in the Opletnya Member (Mogila Formation): a — plan view of intensively bioturbated wackestone (pen for 

scale), Sfrazen section, 86.6 m, elementary sequence 44; b — nodular wacke- to mudstone from the lower part of the Opletnya Member, Sfrazen 

section, 53.2 m, elementary sequence 25; c — trough cross-bedded grainstone, uppermost part of the Opletnya Member, Lakatnik section, 

128.8 m, elementary sequence 67; d — cross-bedded packstone with prograding coset of small-scale planar cross-bedding (between arrows), 

angular and rounded intraclasts (surrounded) in lower part, and reactivation surface above. Lower part of highstand deposits, Sfrazen section, 

51.5 m, elementary sequence 25; e — massive packstone with rounded, pebble-sized intraclasts from the lowermost part of the Opletnya 

Member, Sfrazen section, 2.8 m, elementary sequence 2; f — transgressive package of bioclastic, horizontally laminated packstone partially 

(between white arrows) to almost completely (between black arrows) bioturbated, with isolated pebble-sized intraclasts (outlined) along  

a small-scale erosional surface (E2, dashed line). A similar erosional surface (E1), cutting into slightly bioturbated and dolomitic limestone, 

marks the base of an elementary sequence. Sfrazen section, 81.6 m, elementary sequence 41. The position in meters is given starting from  

the base of the Opletnya Member, the numbering of the elementary sequences is according to Fig. 7.

background image

331

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Synsedimentary deformation, some of it with sigmoidal 

geometry, is among the often observed features in wacke- and 

mudstones (Figs. 6a, 7), and beds with this texture are com-

mon in the lower part of the Opletnya Member. Its amplitude 

commonly is in the range of 5–15 cm, but in some beds may 

reach or even exceed 40 cm. Several internally deformed beds 

may be vertically stacked (Fig. 6b). The upper bounding sur-

face of the deformation structures may be flat but more often 

is slightly concave-up. These structures can be traced laterally 

over several tens of meters, whereby their amplitude gradually 

decreases and finally disappears (Fig. 6d). Small- and meso-

scale slump folding is another type of synsedimentary defor-

mation common in wacke- and mudstones, observed in almost 

the whole Opletnya Member. In some places, direct contact 

between sigmoidal and slump folding structures can be 

observed (Fig. 6c). The geometry of these structures varies 

Fig. 5. Dolomites in the Opletnya Member: a — dolo-wackestone with chaotic soft-sediment deformation and subsequent bioturbation, 

Lakatnik section, 82.90 m, elementary sequence 42; b — dome-shape stromatolite (below arrows), developed in the uppermost part of  

the fourth medium-scale sequence, Lakatnik section, 110.3 m, elementary sequence 60; c — symmetric small ripples of packstone (arrows), 

surrounded by mud- to wackstone in a dolomitized bed-set. Sfrazen section, 109.5 m, elementary sequence 60; d — tepee structure from the 

upper part of small-scale sequence 12, Sfrazen section, 49.1 m, elementary sequence 23; e — matrix-supported floatstone rich in pebble-sized, 

subrounded intraclasts, Sfrazen section, 49.3 m, elementary sequence 24; f — clast-supported lag deposit of conglomerate, Sfrazen section, 

same level as (e). The position in meters refers to the base of the Opletnya Member, the elementary and small-scale sequence numbering is 

according to Fig. 7.

background image

332

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

from quite symmetrical folding (Fig. 6f) to chaotic (Fig. 5a). 

Most commonly these slump folds have amplitudes in the 

range of 30 to 50 cm, but in some cases may exceed 2 m  

(Fig. 6e). These features are interpreted as having formed by 

sliding of soft but cohesive sediment, possibly by instabilities 

on channel margins (Hardie & Garrett 1977), or induced by 

the occasional impact of storm waves or earthquakes (seismi-

tes; Montenat et al. 2007).

Although wacke- and mudstones are common in the stu-

died sections, this lithology is dominant in the lower part  

of the Opletnya Member. Mudstones mark the deepest  

and/or most quiet sedimentary environments, with restricted 

water circulation. The intense bioturbation supports this 

interpretation. The nodularity often is connected with 

increased clay content as a result of increased terrigenous 

supply. 

Fig. 6. Synsedimentary deformations in the Opletnya Member: a — 40 cm thick bed with sigmoidal structure from the middle part of  

the medium-scale sequence, Lakatnik section, 15.3 m, elementary sequence 7; b — two stacked beds (between dashed lines and arrows)  

with sigmoidal structure and another one above them. Sfrazen section, 13.1 m, elementary sequence 6; c — wackestone bed with sigmoidal 

structure (between arrows) overlain by a mudstone bed (between dashed lines) with slumps, Sfrazen section, 24.1 m, elementary sequence 12; 

d — 12 cm thick bed with sigmoidal structure (between dashed lines) with concave top surface that pinches out laterally (arrow). Hammer for 

scale, Lakatnik section, 12.0 m, elementary sequence 6; e — about 2 m thick wacke- to mudstone bed with slumps (between arrows) in its lower 

part (hammer for scale), Sfrazen section, 28.2 m, elementary sequence 14; f — detail of the same level shown in (e). The position in meters is 

from the base of the Opletnya Member, the elementary sequence numbering is according to Fig. 7. 

background image

333

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Packstones, grainstones, rudstones, and floatstones

Bioclasts, mudstone lithoclasts, ooids as well as a high 

amount of peloids are the typical components of the pack- and 

grainstones. Rudstones and floatstones are very rare; they con-

tain pebble- to cobble-sized intraclasts, the roundness of which 

varies in a wide range. The intraclasts are either chaotically 

distributed (Fig. 4e), or they occur in the bottom set (Fig. 4f) 

or on the foreset surfaces of cross-beds (Fig. 4d). Lag deposits 

and imbrication structures are also observed. In some cases, 

the surfaces of the intraclasts are not sharp and show a gradual 

transition to the hosting material, which could be the result of 

re-sedimentation of semi-lithified material, or incipient disin-

tegration of the semi-consolidated beds (Fig. 4e). Some beds 

are strongly bioturbated (Fig. 4f) and may show overpacking 

due to early compaction. Partial dolomitization is more com-

mon in packstones than in grainstones.

Packstones, grainstones, and rudstones/floatstones com-

monly form massive beds. The most prominent sedimentary 

structure is the well-developed cross-bedding — low-angle, 

planar and trough type — commonly with thick lamination 

(Fig.  4c, d, f).  Small-scale cross-bedding  displays  both  wavy 

bedding (Fig. 5c) and current ripples (Fig. 4d). Reactivation 

surfaces are also common (Fig. 4d). The set thickness ranges 

between a few cm to a few tens of cm, while that of the cosets 

may reach several meters (Fig. 7). Such sediment bodies can 

form regionally traceable bed packages, which have been con-

sidered as stratigraphic markers (Tronkov 1968). The cross- 

bedding direction varies in a wide range — within one coset as 

well as along the same level in both sections (Fig. 7). 

The pack- and grainstone beds indicate an active hydrody-

namic sedimentary environment that led to the development 

and lateral migration of different types of bars and shoals.  

The variety of morphology, scale, and orientation of the cross- 

bedding, the reactivation and accretion surfaces, and the inter-

calation of these features indicate highly variable high-energy 

settings typical of shallow-water environments. The presence 

of intraclasts, some of them semi-lithified, implies an almost 

permanent subaqueous erosion by waves and currents. Wavy 

bedding and the variable orientation of the cross-beds suggest 

a tidal influence (e.g., Reineck & Singh 1975; Gonzales & 

Eberli 1997).  

Dolomites

The partially or completely dolomitized packstones, wacke-

stones, and mudstones have an uneven distribution in the stu-

died sections. They can be observed as thin to thick beds, but 

may also stack into packages with thicknesses of 2.65–2.80 m 

or even 3.25–3.55 m that intercalate with several very thin 

beds of mixed carbonate-terrigenous rocks (Fig. 7). In the 

middle and upper parts of the Opletnya Member, almost com-

pletely dolomitized sets of 9.50 to 14.80 m can be observed. 

Although massive and laminated structures are most common 

for these rocks, they also are associated with tepees and flat 

pebbles that form local lags (Fig. 5d). Nodular structures are 

also present. Lenses with chaotically oriented lithoclasts  

(Fig. 5e, f), some of them with imbrication structures, are com-

mon. In some beds, most often dolo-packstones and rare 

dolo-grainstones, different types of cross-bedding can be 

observed (Fig. 5c), and intraclasts may form short bands lying 

on the foreset lamina. Stromatolites with different morpholo-

gies, developed in dolomitized mud- and wackestone beds, are 

observed at several levels in the studied sections (Figs. 5b, 7). 

The dolomite-dominated intervals are interpreted as the shal-

lowest, high-salinity sedimentary environment in the Opletnya 

Member. Desiccation cracks and tepee structures mark epi-

sodes of subaerial exposure, indicating the establishment of 

tidal flats under a semi-arid climate. These climatic conditions 

are favorable for microbially-mediated dolomitizaton of 

microbial mats (e.g., Petrash et al. 2017) and/or early-diage-

netic reflux dolomitization (e.g., Adams et al. 2018). However, 

no detailed geochemical studies were preformed and the pos-

sibility of late-diagenetic dolomitization cannot be excluded 

either (e.g., Lukoczki et al. 2019). Storm events and/or strong 

tidal currents ripped up cohesive sediment, incipient hard-

grounds, or microbial mats to form flat-pebble conglomerates 

and lag deposits (e.g., Hardie & Ginsburg 1977; Hillgärtner et 

al. 2002).

Erosion surfaces

Other common features of the Opletnya Member are the 

erosional surfaces. Often they demonstrate channel morpho-

logy (Fig. 8a–c). In many cases, the flanks of these channels 

are very steep to almost vertical, indicating a relatively 

advanced degree of cohesion and early lithification of the 

sedi ment into which the channel was cut (Fig. 8b). The erosion 

surfaces either separate beds of different lithology (Fig. 8a, b 

and d), or they occur within a set of lithologically monotonous 

beds and are underlain by thin layers or lenses of mixed silici-

clastic–carbonate or fully siliciclastic material (Fig. 8c). 

Stacking of multiple erosional surfaces is documented at 

 several levels of the profile. The erosional depth varies 

between 5–15 cm and several tens of centimeters, but in some 

cases reaches even 60–80 cm (Figs. 7 and 8a). Lag deposits 

draping the erosional surfaces are observed in some cases. 

Firmgrounds and hardgrounds

Firm- and hardgrounds on top of dolomitic limestone and 

dolomite beds are also observed (Figs. 7 and 8d). They are 

irregular, with amplitudes of several centimeters. Borings 

belong to Balanoglossites and Trypanites, characteristic 

ichno taxa of Middle Triassic ramp settings (Knaust 1998, 

2007; Knaust et al. 2012; Chrząstek 2013).

Lakatnik Member

Limestones, thick-bedded pack- and grainstones, are also 

dominant in the Lakatnik Member (upper Mogila Formation). 

This member is furthermore characterized by levels rich in 

background image

334

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Fig. 7. Sequence- and cyclostratigraphic interpretation of the Opletnya Member (Mogila Formation) in the Lakatnik and Sfrazen sections:  

a — lowermost part of the Opletnya Member (including the Tenuis Bed); b — lower part of the Opletnya Member (including the Zitolub Bed); 

c — middle part of the Opletnya Member (including the Sfrazen Bed); d — upper part of the Opletnya Member (including the Sedmochislenitsi 

Bed and the prominent Anisian sequence boundary An1); e — uppermost part of the Opletnya Member (top Sedmochislenitsi Bed to the boun-

dary between the Opletnya and Lakatnik members). The maximum amplitude (A, in cm) is indicated for the prominent erosional surfaces.  

SB: sequence boundary; TS: transgressive surface; MFS: maximum-flooding surface.

a

background image

335

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Fig. 7. (continued) Sequence- and cyclostratigraphic interpretation of the Opletnya Member (Mogila Formation) in the Lakatnik and Sfrazen 

sections: a — lowermost part of the Opletnya Member (including the Tenuis Bed); b — lower part of the Opletnya Member (including  

the Zitolub Bed); c — middle part of the Opletnya Member (including the Sfrazen Bed); d — upper part of the Opletnya Member (including 

the Sedmochislenitsi Bed and the prominent Anisian sequence boundary An1); e — uppermost part of the Opletnya Member (top Sedmochislenitsi 

Bed to the boun dary between the Opletnya and Lakatnik members). The maximum amplitude (A, in cm) is indicated for the prominent 

 erosional surfaces. SB: sequence boundary; TS: transgressive surface; MFS: maximum-flooding surface.

b

background image

336

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

c

Fig. 7. (continued) Sequence- and cyclostratigraphic interpretation of the Opletnya Member (Mogila Formation) in the Lakatnik and Sfrazen 

sections: a — lowermost part of the Opletnya Member (including the Tenuis Bed); b — lower part of the Opletnya Member (including  

the Zitolub Bed); c — middle part of the Opletnya Member (including the Sfrazen Bed); d — upper part of the Opletnya Member (including 

the Sedmochislenitsi Bed and the prominent Anisian sequence boundary An1); e — uppermost part of the Opletnya Member (top Sedmochislenitsi 

Bed to the boun dary between the Opletnya and Lakatnik members). The maximum amplitude (A, in cm) is indicated for the prominent 

 erosional surfaces. SB: sequence boundary; TS: transgressive surface; MFS: maximum-flooding surface.

background image

337

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

d

Fig. 7. (continued) Sequence- and cyclostratigraphic interpretation of the Opletnya Member (Mogila Formation) in the Lakatnik and Sfrazen 

sections: a — lowermost part of the Opletnya Member (including the Tenuis Bed); b — lower part of the Opletnya Member (including  

the Zitolub Bed); c — middle part of the Opletnya Member (including the Sfrazen Bed); d — upper part of the Opletnya Member (including 

the Sedmochislenitsi Bed and the prominent Anisian sequence boundary An1); e — uppermost part of the Opletnya Member (top Sedmochislenitsi 

Bed to the boun dary between the Opletnya and Lakatnik members). The maximum amplitude (A, in cm) is indicated for the prominent 

 erosional surfaces. SB: sequence boundary; TS: transgressive surface; MFS: maximum-flooding surface.

background image

338

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

e

Fig. 7. (continued) Sequence- and cyclostratigraphic interpretation of the Opletnya Member (Mogila Formation) in the Lakatnik and Sfrazen 

sections: a — lowermost part of the Opletnya Member (including the Tenuis Bed); b — lower part of the Opletnya Member (including  

the Zitolub Bed); c — middle part of the Opletnya Member (including the Sfrazen Bed); d — upper part of the Opletnya Member (including 

the Sedmochislenitsi Bed and the prominent Anisian sequence boundary An1); e — uppermost part of the Opletnya Member (top Sedmochislenitsi 

Bed to the boun dary between the Opletnya and Lakatnik members). The maximum amplitude (A, in cm) is indicated for the prominent 

 erosional surfaces. SB: sequence boundary; TS: transgressive surface; MFS: maximum-flooding surface.

background image

339

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

crinoids. Lenses of dolomitic limestones and dolomites are 

intercalated. 

Babino Formation

The lower part of the Babino Formation (Zimevitsa 

Member) is dominated by nodular, clayey, rare massive and 

laminated, often bioturbated wacke- to mudstones (Fig. 9c) 

that alternate with mainly bioclastic, massive to cross-bedded 

packstones (Fig. 9a, b, d). Along the base of the unit, as well  

as in several distinct beds above, levels rich in brachiopods 

and  crinoids  are  observed  (Figs.  9b, d,  10).  The  volume  of 

mixed siliciclastic-carbonate rocks is minor. Synsedimentary 

deformation structures are common. At around 10 m from  

the base of the unit, an erosional, karstified surface with 

 

evidence for subaerial exposure is observed (Fig. 9a). 

 

The upper half of the Babino Formation (Zgorigrad Member) 

is formed by mainly nodular, thin- to medium-bedded wacke- 

and packstones that contain conodonts, bivalves, and 

brachiopods. 

The Babino Formation is covered by the massive to thick- 

bedded dolomites with crinoids of the Milanovo Formation. 

Sequence stratigraphy and cyclostratigraphy

Concepts

The sequence- and cyclostratigraphic interpretation and the 

correlation of the studied sections follow the concepts propo-

sed by Strasser et al. (1999). The sequence-stratigraphic nomen -

clature is that of Catuneanu et al. (2009), and this nomenclature 

is applied independent of the scale of the sequences (Posa-

mentier et al. 1992; Catuneanu 2019). Sequence boun daries 

(SB) are indicated by the shallowest facies and may in addi-

tion be expressed by an erosive surface if sea level dropped 

below the previously accumulated sediment. Transgressive 

sur faces (TS) may be erosive if there was ravinement, and in 

any case mark the beginning of a deepening-up facies trend 

(transgressive deposits). Maximum-flooding surfaces (MFS) 

are expressed by the deepest facies and display bioturbation or 

hardgrounds if sedimentation rate was reduced. Shallowing-up 

highstand deposits then lead to the following sequence 

boundary. 

Elementary sequences are the smallest units in which facies 

trends and sedimentary structures indicate a cycle of sea-level 

Fig. 8. Erosional surfaces in the Opletnya Member: a — two erosional surfaces (dashed lines), partly developed in dolomitized limestone,  

the lower one forming a channel over 50 cm deep that marks a sequence boundary, Lakatnik section, 9.2 m, elementary sequence 6; b — small-

scale channel with steep flanks (dashed line), filled by limestones developed in the uppermost part of dolomites. The channel is 12 cm deep, 

Lakatnik section, 14.2 m, elementary sequence 7; c — small-scale channel (hammer for scale) that laterally corresponds to a level with sig-

moidal synsedimentary deformation, Lakatnik section, 11.9 m, elementary sequence 6; d — hardground surface at the top of highstand dolo-

mitic limestones (black arrows), covered by bioclastic grainstones. The highstand deposits contain gagate intraclasts (above white arrows).  

The top of the bed appears broken, with reddish sediment infill, Sfrazen section, 25.4 m, elementary sequence 13. The position in meters refers 

to the base of the Opletnya Member, the elementary sequence numbering is according to Fig. 7.

background image

340

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

change. Small-scale sequences are composed of several (in 

many cases five) elementary sequences and generally display 

first a deepening then a shallowing trend, with the shallowest 

facies at the boundaries. Several (2 to 4 in the studied sections) 

small-scale sequences compose a medium-scale sequence, 

which again displays a general deepening-shallowing trend of 

facies evolution and the relatively shallowest facies at its 

boundaries. If several elementary sequences compose an inter-

val of shallowest or deepest facies, a sequence-boundary zone 

respectively a maximum-flooding zone is defined (Montañez 

& Osleger 1993). 

Small, meter-scale depositional units are often called 

“cycles” if they are stacked in the sedimentary record. Here 

we use the term “sequence” because this allows better defi-

ning the facies evolution within them and interpreting the sea-

level changes that caused it. If such sequences are bounded by 

prominent marine flooding surfaces, they can be compared to 

the “parasequences” of van Wagoner et al. (1990), although 

these were originally defined in siliciclastic systems. We use 

the term “cycle” for the cyclical or periodic processes that 

controlled the formation of the sequences.

If chronostratigraphic tie points allow estimating the dura-

tion of the studied sections, and if the hierarchical stacking of 

the depositional sequences reflects the ratios of orbital 

(Milankovitch) cyclicity, an interpretation of the evolution of 

the depositional environments can be proposed at a high time 

resolution: the elementary sequences would correspond to  

the 20-kyr precession cycle, the small-scale sequences to  

the 100-kyr short eccentricity cycle, and the medium-scale 

sequences to the 405-kyr long eccentricity cycle. These orbital 

cycles translated into sea-level cycles through complex atmo-

spheric and oceanic feed-back processes (Strasser 2018). How-

ever, autocyclic processes independent of orbital cycles may 

have been superimposed, making the interpretation more com-

plicated. Time-series analyses are commonly applied to demon-

strate the recording of orbital cyclicity (e.g., Hinnov 2013).  

In the present case, however, the complexity of the facies 

changes on the shallow ramp precludes such an approach. 

Elementary sequences 

In both studied sections of the Opletnya Member (lower part 

of the Mogila Formation), 69 elementary sequences were 

identified and correlated (Fig. 7). These are generally grouped 

by five to form 14 small-scale sequences. Two or four small-

scale sequences are bundled into 5 medium-scale sequences, 

Fig. 9. Lithology of the lower Zimevitsa Member (lower Babino Formation) in the Sfrazen section: a — highly irregular paleokarst surface 

(arrows) implying prolonged subaerial exposure, overlain by bioclastic limestone; b — low-angle cross-bedded limestone, transgressive depo-

sits of an elementary sequence; c — plan view of nodular wackestone from the middle part of an elementary sequence; d — crinoid columnal 

segment of Holocrinus dubius from transgressive deposits in the lower part of the Zimevitsa Member. All photos are from elementary sequence 6 

in Fig. 10.

background image

341

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

in which three parts can be recognized: transgressive, maxi-

mum-flooding, and highstand deposits. Elementary and small-

scale sequences are recognized also in the lowermost part of 

the Zimevitsa Member (lower part of the Babino Formation).

The elementary sequences, the smallest cyclic units docu-

mented, are defined by their bounding surfaces, composition, 

facies trends, and sedimentary structures that indicate a cycle 

of sea-level change. The base of each elementary sequence is 

marked by the shallowest facies, and/or by a laterally traceable 

erosional surface. Most of the elementary sequences can be 

subdivided into three parts — a lower part that represents the 

transgressive stage, a middle part containing the maximum- 

flooding surface, and an upper part representing the highstand 

stage. The facies composition and thickness of these parts 

 varies depending on the position of the elementary sequence 

within the small-scale and especially the medium-scale 

sequence it belongs to (Strasser et al. 1999).

In the lower (transgressive) part of a medium-scale se quence, 

the sequence boundary and the transgressive surface of the ele-

mentary sequences are very close to each other or even amal-

gamated because lowstand deposits are very thin or not 

recorded due to limited accommodation on the shallow ramp 

(Fig. 11). Intraclasts, lithologically identical to the rocks 

immediately below the erosional surface, indicate reworking 

during transgression of previously cemented sediment. 

Massive or cross-bedded pack- and grainstones represent 

Fig. 10. Cyclostratigraphic interpretation of the lower Babino Formation (Zimevitsa Member), Sfrazen section. The legend is according to Fig. 7.

background image

342

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

shallow bars or shoals that formed during transgression, and 

they may form 30–50 % of the volume of the elementary 

sequences. The maximum-flooding surface marks the top of 

these beds or can be identified above by the deepest facies 

and/or intense bioturbation. In the early highstand part of these 

elementary sequences, massive, laminated or nodular, often 

bioturbated wacke- and mudstones dominate. The amount of 

terrigenous components increases and forms thin beds of 

marls or of mixed siliciclastic-carbonate sediment. In some 

cases, the uppermost, late highstand part is dolomitic lime-

stone or (rarely) dolomite (Fig. 11). In other cases, the late 

highstand is formed by marly wacke- and mudstone beds.

In the studied sections, the average thickness of the elemen-

tary sequences from the transgressive part of the medium-scale 

sequences is in range of 2.1–2.2 m. The thickest elementary 

sequences (3.9 to 4.25 m) are measured in the lowermost and 

uppermost medium-scale sequences of the Opletnya Member 

(Fig. 7). A gradual but steady decreasing in the average thick-

ness (from 2.3 to 1.5 m) of the elementary sequences is 

observed in the transgressive part of the first four medium- 

scale sequences. 

In the maximum-flooding to early highstand parts of the 

medium-scale sequences, the elementary sequences are domi-

nated by wacke- and mudstones while pack- and grainstones 

occur in lesser amounts (Fig. 12). Once again, the pack- and 

grainstone beds occupy mainly the base of these units and 

rarely occupy the whole transgressive part, where the amount 

of the wacke- and mudstone gradually increases. Intraclasts 

are rare and small in size. The transgressive surface of these 

elementary sequences can be very close to the sequence 

boundary or coincides with it. However, at the top of elemen-

tary sequence 7 in the Sfrazen section, the lower erosion sur-

face is interpreted as the sequence boundary, while the second 

erosion surface represents the transgressive (ravinement) sur-

face. Thus, a thin lowstand deposit is present. The maximum- 

flooding surface is associated with increasing intensity of 

bioturbation and, in some cases, synsedimentary deformation. 

The highstand interval, dominated by massive or laminated 

mud- and wackestones, forms 70–80 % of the elementary 

sequences. Dolomitization of their uppermost part is rare. 

However, sediment containing terrigenous siliciclastics forms 

thicker and laterally traceable units.

In the highstand parts of the medium-scale sequences,  

the transgressive deposits of the elementary sequences are 

repre sented by pack- and grainstones, and/or by mixed silici-

clastic–carbonate or even claystone beds (Fig. 13). Dolomite 

and dolomitic limestones are common. The sequence boun-

dary is represented by desiccation cracks, tepee structures, or 

an erosional surface. The transgressive surface, where it can 

be identified, is above the sequence boundary, making room 

for thin lowstand deposits. The maximum-flooding surface 

cannot always be recognized. Wacke- and mudstones domi-

nate the upper part of the units. In many of these elementary 

sequences, almost the whole volume is represented by dolo-

mite or partially dolomitized limestones.

The average thickness of the elementary sequences within 

the highstand parts of medium-scale sequences is around 2.05 m. 

This value decreases in the lower (early) stage of the highstand 

part to 1.3–1.5 m, while in the upper (late) part it increases to 

1.8–1.9 m. 

Fig. 11. Elementary sequences from the transgressive part of the lowermost medium-scale sequences of the Opletnya Member. Note that SB 

and TS are amalgamated and represent a ravinement surface. Elementary and small-scale sequence numbering and legend as in Fig. 7.

background image

343

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

In the Lakatnik Member, it is not possible to clearly define 

elementary sequences. In the lowermost part of the Zimevitsa 

Member (Babino Formation), the elementary sequences are 

less complex than those in the Opletnya Member. Their base is 

marked by a transgressive surface (Fig. 10). Erosional sur-

faces are rare. The sequence boundaries generally are not 

developed (elementary sequences defined by transgressive 

surfaces; Strasser et al. 1999), with the exception of the ones 

at the base of elementary sequences 2 and 6. The transgressive 

part is presented by massive, laminated to low-angle cross-bed-

ded bio- and lithoclastic pack- to grainstones (Fig. 9b). Terri-

genous fines increase from the maximum-flooding surface 

into the highstand part of the units, where massive, laminated 

and nodular wacke- and mudstones predominate (Fig. 9c). 

Bioturbation is very common. The average thickness of the 

ele mentary sequences is similar to that in the Opletnya 

Member and is in the range of 2–2.2 m. 

Small-scale sequences

Within the Opletnya Member, the elementary sequences, 

grouped into sets of five, form a succession of 14 small-scale 

sequences (Fig. 7). Their base very often is marked by a pro-

nounced erosional surface and/or a lag of intraclasts. The mea-

sured erosional amplitude of these surfaces ranges from a few 

centimeters to decimeters and, in individual cases such as  

at the limit between small-scale sequences 12 and 13 in the 

Sfrazen section, may reach more than 70 cm (Figs. 7d and 13). 

Stacking of several erosional surfaces within one elementary 

sequence situated at the base of the small-scale sequences is 

also common (Figs. 4f, 8a). Similar erosional stacking can be 

observed along the boundary between the first two elementary 

sequences in the second small-scale sequence (Fig. 8b). 

From the base upwards, the small-scale sequences display 

first a deepening then a shallowing trend. The boundary 

between them is always marked by the shallowest facies. Most 

commonly, their lower part is dominated by limestones and/or 

partially dolomitized limestones — litho- and bioclastic or 

ooid-dominated pack- and/or grainstones (Figs. 4e, f, 7, 8a). 

Massive, planar and trough cross-bedding with lags of intra-

clasts is common (Fig. 4c). Reactivation and lateral accretion 

surfaces are observed. Different types of small-scale cross-bed-

ding, indicating wave or current hydrodynamic regimes, are 

also typical for this part. The paleotransport directions vary in 

a wide range and in one and the same elementary sequence 

almost opposite directions can be observed (elementary 

sequences 21, 22, and 31 in Fig. 7b, c). 

Upsection, the thickness of the pack- and grainstones in  

the small-scale sequences decreases and the amount of 

 wackestone beds increases, marking a deepening facies trend. 

The amount of nodular and finely laminated beds increases. 

Also, a gradual increase in frequency and intensity of biotur-

bations is observed (Figs. 4a, 5a). The evidences for erosional 

processes gradually decrease. Firm- and hardground surfaces 

are developed (Figs. 7, 8d). 

The turn-around to a shallowing facies trend is marked by 

the gradual increase of the amount of terrigenous material and 

dolomite, of the frequency of erosional features, and of syn-

sedimentary deformations (for example small-scale sequences 

2, 5, 6, 8 and 12 in Fig. 7). In many cases, the amount of pack-

stone beds also increases. At such turning points, in the lower 

part of the Opletnya Member, the maximum bed thickness  

(40 cm) with sigmoidal structures is recorded. Commonly,  

the shallowing-upwards trend is accompanied by an increase 

in erosional and synsedimentary deformation structures, for ming 

in some places a stacked pattern (Fig. 6e, f; Fig. 7b: elementary 

Fig. 12. Elementary sequences in the maximum-flooding zone of the lowermost medium-scale sequence of the Opletnya Member. Elementary 

and small-scale sequence numbering and legend as in Fig. 7.

background image

344

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

sequence 25). Laterally, the intensity of these features may 

change rapidly: while in one section they are quite prominent, 

in the other they are attenuated (e.g., elementary sequences 14, 

15, and 30 in Fig. 7a, b, c). In dolomite-dominated small-scale 

sequences, different types of lag deposits (Fig. 5e, f) are com-

monly associated with tepees (Fig. 5d) and desiccation cracks. 

In this shallowing part, the finely laminated and nodular struc-

tures still dominate (Fig. 4b), but small-scale cross-bedding 

also is common (Figs. 4d, 5c). 

The pattern described above varies within the studied sec-

tions. For example, bioclastic to intraclastic packstones may 

predominate almost entirely in one small-scale sequence  

(Fig. 7c: small-scale sequence 7) while in other cases (Fig. 7c, d: 

small-scale sequences 9 and 12) the dolomitic lithology is 

more prominent. 

The thickness of the small-scale sequences within the Oplet-

nya Member varies in the range of 6.7–14.4 m (average 9.6 m). 

Only in small-scale sequences 3, 5, and 13, the thickness is 

over  11  m  (Fig.  7a, b, d, e).  Depending  on  to  which  part  of  

a medium-scale sequence the small-scale sequences belong to, 

a persistent trend in the thickness of the elementary sequences 

is observed. For example, within the transgressive part of the 

medium-scale sequences, the small-scale sequences demon-

strate a symmetrical pattern with the thinnest elementary 

sequences in the middle (Fig. 7). Around the maximum-floo-

ding and early highstand part of the medium-scale sequences, 

the thickness of the elementary sequences within the small-

scale sequences decreases, while in their late highstand parts 

of the medium-scale sequences the small-scale sequences 

contain thicker elementary sequences in their upper part (for 

example small-scale sequence 8; Fig. 7c). 

One small-scale sequence, bounded by erosional surfaces, 

was identified in the lowermost Babino Formation (Zimevitsa 

Member). The thickness of the elementary sequences within it 

decreases upwards from 3.3 m to 1.15 m (Fig. 10). The total 

thickness of this small-scale sequence is 11.65 m.

Medium-scale sequences

In both studied sections of the Opletnya Member, five 

medium- scale sequences have been identified, each subdi-

vided into three parts — transgressive, maximum-flooding, 

and highstand deposits. The number of small-scale sequences 

within them, however, is not equal and varies from two to four 

(Fig. 7).

In all cases, the base of a medium-scale sequence is a promi-

nent, laterally correlatable erosional surface. In the lowermost 

part, lithoclastic, bioclastic and/or ooid-dominated medium- 

scale transgressive deposits predominate. The small-scale 

sequences within this lower part are also developed mainly in 

transgressive facies, where limestones, often cross-bedded, 

predominate but dolomitic limestones are also present. 

Fig. 13. Elementary sequences from the highstand part of the fourth medium-scale sequence of the Opletnya Member. Elementary and small-

scale sequence numbering and legend as in Fig. 7.

background image

345

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Intraclasts are also common and occupy the foreset laminae in 

cross-bedded structures but also form isolated lags. In almost 

all medium-scale sequences, the measured paleotransport 

indicators (planar and trough cross-bedding, reactivation and 

accretion surfaces) show a unidirectional pattern (towards  

the north-northeast; Fig. 7). Only in one case, at the base of  

the uppermost (fifth) medium-scale sequence, there are indi-

cations about short-term (and probably local) south-south-

westward directions.  

In the upper parts of the transgressive intervals of the medium- 

scale sequences, the amount of wacke- to mudstone beds and 

of beds with nodular structure and bioturbation increases. This 

trend reaches its maximum in the maximum-flooding zone.  

At the same time, an increase of the intensity and the scale of 

synsedimentary deformations is observed. Firm- and hard-

ground development is also documented. From here upwards, 

medium-scale sequences commonly display an increasing 

diversification of the sedimentary paleotransport directions, 

and in many cases almost opposite directions can be observed 

in one and the same stratigraphic level. 

In the highstand part of the medium-scale sequences, there 

commonly is an increase in the amount of dolomite and eva-

porites. Desiccation cracks and tepee structure are also com-

mon. The amount and the size of the intraclasts increases as 

well. Their roundness varies in a wide range, both vertically in 

a section and laterally. Occasionally, rudstone fills small-scale 

channels.  

In the studied sections, the first medium-scale sequence is 

well defined and includes small-scale sequences 1 to 4, and 

elementary sequences 1 to 20. Small-scale sequences 5 and 6 

compose a second medium-scale sequence. The thick high- 

energy deposits in small-scale sequences 7 and 8 then suggest 

the transgressive part of a third medium-scale sequence. Its 

top is difficult to place, but the relatively thin and complex 

elementary sequence 50 with an erosion surface at its base 

(Fig. 7d) may be interpreted as the limit to a fourth medium- 

scale sequence. This fourth sequence comprises small-scale 

sequences 11 and 12, and its top is defined by the prominent 

erosion surface An1. The top of the fifth medium-scale 

sequence cannot be defined in the studied sections and may be 

within the Lakatnik Member.

Cyclostratigraphic interpretation

The newly obtained biostratigraphical data (Ajdanlijsky et 

al. 2018; this study) allow estimating the time range of the 

sedi 

mentary cycles documented in the studied sections. 

 

It mostly concerns the boundaries of the Aegean substage in 

the study area. Its base is defined in the uppermost part of  

the fluvial succession of the Petrohan Terrigenous Group, just 

below the base of the Svidol Formation by palynological data 

(Ajdanlijsky et al. 2018). The top of the substage is located in 

the uppermost part of the Opletnya Member of the Mogila 

Formation, as inferred from the last appearance of early 

Anisian palynomorphs (Fig. 3). The upper boundary of the 

Aegean is situated at the top of elementary sequence 60 of 

small-scale sequence 12 (Fig. 7d). The total number of ele-

mentary sequences recognized for the Aegean substage 

(Ajdanlijsky et al. 2018; this study) is 80 (1 in the uppermost 

Petrohan Terrigenous Group, 19 in the Svidol Formation, 60 in 

the Opletnya Member). Erosion certainly occurred at the 

boundaries of some elementary sequences as indicated by  

the irregular surfaces and the reworking (Fig. 7), but the regu-

lar stacking pattern does not suggest that entire sequences are 

missing.

Comparing this result to the new Triassic chart by Haq (2018) 

that proposes a duration of about 1.7 Myr for the Aegean,  

the average time duration of a single elementary sequence 

would be approximately 21.25 kyr. However, according to 

Ogg et al. (2016), the Aegean had a duration of 1.5 Myr, sug-

gesting a duration of 18.75 kyr per elementary sequence. In 

the Middle Triassic, the periodicities of the orbital precession 

cycle had peaks at ca. 18 and 22 kyr (Berger et al. 1989), with 

an average of 20 kyr (Hinnov 2018). This is close to the esti-

mated duration of the elementary sequences recorded in the 

Opletnya Member, which are consequently interpreted as 

being related to the precession cycle. The fact that 5 elemen-

tary cycles compose a small-scale sequence suggests that 

these were controlled by the short eccentricity cycle of 100 kyr 

(Hinnov 2018).

In the studied sections, the medium-scale sequences have 

been defined based on their lithology. The first one is well 

defined with 4 small-scale (100-kyr) and 20 elementary 

 (20-kyr) sequences. Medium-scale sequences are in many 

cases induced by the long eccentricity cycle of 405 kyr (e.g., 

Strasser et al. 2000; Boulila et al. 2008). However, the inter-

pretation of the other medium-scale sequences, comprising 

two or four small-scale sequences, is less clear: they may have 

resulted from a combination of allocyclic and autocyclic pro-

cesses, obscuring a clear signal of the long eccentricity cycle. 

The transgressive-regressive facies trends within the sequen-

ces of all scales imply that these were — at least partly — con-

trolled by sea-level changes. Furthermore, the stacking of 

these sequences reflecting the hierarchy and durations of  

the orbital (Milankovitch) cycles suggests that the sea-level 

changes were in tune with the climate changes induced by  

the orbital cycles (e.g., Strasser 2018). However, the comple-

xity of facies and sedimentary structures seen in the Opletnya 

Member also implies that additional factors such as lateral 

migration of sediment bodies were active.

Palynofacies

Concept

The term palynofacies was first introduced by Combaz in 

1964 to describe the total acid-resistant organic matter content 

of sedimentary rocks within a specific depositional environ-

ment (Combaz 1964, 1980). Later, Tyson (1993, 1995) defined 

palynofacies analysis as a methodology involving the iden-

tification of individual  palynomorphs, plant debris, and 

background image

346

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

amorphous components, their absolute and relative propor-

tions, size spectra, and preservation states. 

A number of sedimentary organic matter classifications and 

parameters are used in palynofacies analysis, reviewed in 

Tyson (1987, 1993, 1995). In this study, sedimentary organic 

matter is divided into a marine (autochthonous) fraction 

including marine phytoplankton and foraminiferal test linings, 

and a continental (allochthonous) fraction composed of pollen 

grains, spores, and phytoclasts (Rameil et al. 2000). The here 

used palynofacies parameters to decipher transgressive-re-

gressive trends within the studied succession are: (1) the ratio 

of continental to marine constituents (CONT/MAR); (2) the ratio 

of opaque to translucent phytoclasts (OP/TR); (3) the phyto-

clast particle size and shape (equidimensional to blade-shaped; 

ED/BS); and (4) the relative proportion and species diversity 

of marine phytoplankton. 

Palynofacies analysis

Within the studied Anisian succession, long-term transgres-

sive–regressive trends are clearly documented in the CONT/

MAR ratio and phytoplankton abundance with three distinct 

acritarch events (Fig. 3). A first marine pulse during the early 

Anisian (Aegean) was recognized by an acritarch peak in  

the lowermost Opletnya Member (basal part of the Mogila 

Formation) below the Tenuis Bed (Ajdanlijsky et al. 2018), 

characterized by a low-diversity marine invertebrate fauna 

(Tronkov 1968). A second acritarch peak occurs in the upper 

part of the Mogila Formation (base of the Lakatnik Member). 

The third acritarch peak in the Zimevitsa Member (lower part 

of the Babino Formation) is the most prominent signal accom-

panied by the highest diversity of marine invertebrates, inclu-

ding brachiopods and crinoids.

Short-term changes of sea level are documented in the chan-

ges of sedimentary organic matter content within sedimentary 

sequences: changes of terrestrial input, preservation and sor-

ting of phytoclasts, and prominent phytoplankton peaks indi-

cating major flooding phases. In the Lakatnik section (Fig. 14), 

a 4.5 m thick elementary sequence shows marine plankton 

percentages between 5.1 and 10.7 % in the basal grainstones 

(samples 1–3), the highest percentage occurring in the basal 

lithoclast bed. Translucent phytoclasts of different sizes and 

shapes are common. Upsection, a marked increase in phyto-

plankton is observed (samples 4, 5), with peak abundance 

(23.5 %) in sample 4, also characterized by the highest ratios 

of opaque to translucent (OP/TR) and equidimensional to 

blade-shaped (ED/BS) phytoclasts. High percentages of 

marine plankton and high OP/TR and ED/BS ratios continue 

in samples 6 and 7, while the uppermost part of the sequence 

(samples 8–9) shows low plankton percentages (3.6 to 6.5 %). 

Within the phytoplankton group, acritarchs are most abundant 

in samples 4 and 5, while prasinophytes are dominant in sam-

ples 8 and 9, and they are the only plankton group present in 

sample 10. Foraminiferal test linings are recorded in samples 

3, 4, 5 and 7. Bisaccate pollen grains are the dominant group 

within the terrestrial particles, and spores are rare. 

The basal grainstones (samples 1–3) are interpreted as trans-

gressive deposits, showing a high amount of “fresh” translu-

cent phytoclasts with a huge variety in sizes and shapes. A first 

plankton peak in the basal lithoclast bed marks the initial 

transgressive pulse. The sequence boundary might be directly 

overlain by the transgressive surface, which explains the lack 

of lowstand deposits. The level of sample 4 seems to indicate 

the maximum-flooding surface on top of the transgressive 

deposits with the most prominent plankton peak and the lowest 

ratio in continental to marine particles. Alternatively, the inter-

val including sample 4 and 5 can be interpreted as maximum- 

flooding zone since plankton percentages are the highest, 

accompanied by the lowest ratio of continental to marine par-

ticles and the highest amount of equidimensional, opaque phy-

toclasts. The interval spanning samples 6 and 7 is interpreted 

as early highstand deposits where the percentages of marine 

plankton and equidimensional, opaque phytoclasts are still 

high and foraminiferal test linings are present but the influx of 

terrestrial particles is increasing. The change from an acri-

tarch-dominated to a prasinophyte-dominated plankton assem-

blage recorded in the uppermost part of the succession 

(samples 8–10), as well as the switch to high terrestrial influx 

with blade-shaped and mixed opaque and translucent phyto-

clasts is interpreted as indicative of late highstand deposits. 

Prasinophytes are the only phytoplankton in sample 10, poin-

ting to a restricted shallow depositional environment, most pro-

bably lagoonal. However, from the palynofacies data it remains 

an open question whether the dolomitic limestones captured by 

sample 10 represent the latest highstand deposits or lowstand 

deposits with the respective sequence boundary placed bet-

ween sample 9 and 10, and the transgressive surface recorded 

by the lithoclasts at the base of the overlying grainstones.

The palynofacies analysis thus completes and refines the 

sequence- and cyclostratigraphic interpretation based on litho-

facies and sedimentary structures.

Discussion

Biostratigraphy, chronostratigraphy, and large-scale corre-

lations

The new biostratigraphic data obtained enable the discrimi-

nation of the Anisian substages and placement of their boun-

daries in the studied sections. The Aegean/Bithynian boundary 

is placed in the upper part of the Opletnya Member (lower 

Mogila Formation), and the Bithynian/Pelsonian boundary in 

the lower Zimevitsa Member (lower Babino Formation). 

Ajdanlijsky et al. (2018) have already identified the base of  

the Aegean substage (Olenekian/Anisian boundary) in the 

upper most Petrohan Terrigenous Group (Fig. 3). Based on 

these data, a first precise timing of the sedimentary cyclicity 

within the lower Anisian succession in the area of the Iskar 

gorge becomes possible.

Large-scale cyclicity can be detected by phytoplankton 

abundances. A first marine pulse in the early Anisian 

background image

347

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

(lowermost Opletnya Member, 2 m below the Tenuis Bed) is 

followed by a prominent flooding event in the Bithynian 

(upper part of the Opletnya Member) and a third major floo-

ding event in the Pelsonian (middle part of the Zimevitsa 

Member), documented by peak abundances of marine 

acritarchs. These three flooding phases were also detected in 

the Muschelkalk deposits of southern Poland (Matysik 2016). 

The most prominent transgressive signature in the Pelsonian is 

recorded in carbonate ramp systems along the western Tethys 

shelf (Michalík et al. 1992; Haas et al. 1995; Török 1998; Götz 

et al. 2003; Budai & Vörös 2006; Götz & Török 2008; Stefani 

et al. 2010; Chatalov 2013) and in characteristic transgressive 

facies successions in the northern Peri-Tethys basin (Szulc 

2000; Feist-Burkhardt et al. 2008). It might reflect a global 

warming episode in the Pelsonian (Retallack 2013; Li et al. 

2018). 

Fig. 14. Palynofacies patterns of elementary sequence 6 (lower Opletnya Member), exposed in a road cut 450 m west of the Lakatnik section. 

SB: sequence boundary; TS: transgressive surface; TSd: transgressive deposits; mfz: maximum-flooding zone; eHSd: early highstand deposits; 

lHSd: late highstand deposits. CONT: continental components; MAR: marine components; OP: opaque; TR: translucent; ED: equidimensional; 

BS: blade-shaped.

background image

348

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Sedimentary cyclicity

Controversial interpretations of the prominent small-scale 

cyclicity in the lower part of the Iskar Carbonate Group are 

documented in publications of the last decades. Čatalov (1975) 

assumed that the Svidol Formation was formed under epicon-

tinental tidal-flat conditions characterized by cyclic deposi-

tion. Later, Tronkov (1983, 1989) regarded the Opletnya 

Member of the Mogila Formation as a typical rhythmic suc-

cession and described the main features of these rhythms 

(hemicycles), subdividing them into three lithozones: (i) lower, 

formed by oolitic-bioclastic calcarenites with intraclasts; 

 

(ii) middle, characterized by marly limestones; and (iii) upper, 

made up of dolomites. The rhythms are defined by transgres-

sive surfaces. According to the same author, the thickness  

of the individual sedimentary cycles in the lower Opletnya 

Member is in the range between 2 and 5 m, while upsection 

they can reach and even exceed 20 m. The same author 

assumed that these three lithozones represent (i) the distal off-

shore shelf bars, (ii) a calm back-bar carbonate sedimentation 

with limited water circulation, and (iii) isolated lagoon envi-

ronments, respectively. The time duration and/or the rank of 

the cycles were not defined. He proposed that the most com-

plete and detailed stratigraphic subdivision of the Opletnya 

Member could be achieved considering its rhythmic character, 

using each rhythm (hemicycle) as a distinct correlatable strati-

graphic unit. 

Chatalov (1998, 2000, 2004) described peritidal cycles in 

the lower Opletnya Member, discriminating a total of 17 small 

(meter)-scale shallowing-upward asymmetric cycles. The upper 

part of the member was not discussed. He assumed that each 

shallowing-upward cycle (hemicycle) formed in a tidal-flat 

environment due to sequential passage through its different 

bathymetric zone. As a result, from base to top, the ideal indi-

vidual cycle is tripartite, starting with a subtidal basal lag, 

followed by subtidal mudstones and bioclastic wackestones, 

and ending with intertidal/supratidal dolomites. The thickness 

of these hemicycles varies from 1.1 m to 12.4 m, with  

an ave rage of 4.4 m. According to Chatalov (2016, 2018),  

the influence of relative sea-level changes on the formation of 

these cycles is debatable and he proposed an autogenic control 

for the formation of these peritidal ramp cycles.

Ajdanlijsky et al. (2004) interpreted the entire succession of 

the Opletnya Member as a result of hierarchical cyclic pro-

cesses. The smallest recognizable cyclic unit was defined as 

elementary cycle, beginning with a transgressive surface, 

often with an erosional base. The lower part of these cycles 

was deposited in a high-energy shallow-marine setting, during 

transgression over very shallow-marine (inter- or supratidal) 

deposits forming the uppermost part of the previous cycle.  

The top of the transgressive part of these cycles is marked by 

the deepest lithofacies, indicating maximum flooding. The upper 

part of the cycles demonstrates a shallowing-upwards trend. 

The elementary cycles are grouped into submesocycles, and 

these in turn into mesocycles with thicknesses of several tens 

of meters. Because of the absence of reliable biostratigraphic 

data, the time range of the elementary and submesocycles was 

not defined, but it was assumed that the mesocycles corre-

spond to the third-order cycles of Vail et al. (1991).  

Field data from both sections of the Opletnya Member 

obtained during the present study allow refining the previous 

interpretations by a precise definition and lateral correlation of 

regional bounding surfaces and individual cycles, as well as 

by an assessment of lateral lithofacies variations. The newly 

obtained biostratigraphic data enable to establish a time frame-

work for the sequences of different hierarchical orders and to 

reinterpret the stacking pattern. 

The smallest recognizable cyclic units are here called ele-

mentary sequences (following the concepts of Strasser et al. 

1999). They are symmetrical with a deepening-upward trend 

in the lower and a shallowing-upward trend in the upper part, 

separated by a maximum-flooding surface. Their boundaries 

are represented by the shallowest lithofacies. In many cases, 

sequence boundary and transgressive surface are amalga-

mated, which is explained by the low accommodation on  

the shallow ramp. Lowstand deposits thus are only rarely 

 preserved. Combined into packages of five, these elementary 

sequences form 14 larger cyclic units in the Opletnya Member, 

here defined as small-scale sequences.

The number of the smallest cyclic units distinguished in  

the underlying Svidol Formation, interpreted as parasequen-

ces, is 19 (Ajdanlijsky et al. 2018). Their thicknesses vary 

from 0.7 m to 2.9 m (average 1.45 m), similar to those of  

the elementary sequences in the Opletnya Member. These 

parasequences commonly combine into packages of five, with 

the maximum thickness recorded in the lower part of the trans-

gressive interval of these packages. As scale and stacking pat-

tern of the parasequences defined in the Svidol Formation and 

of the elementary sequences in the Zimevitsa Member are 

very similar to those of the elementary sequences in the 

Opletnya Member, a similar formation is assumed. The sub-

sidence rate of the ramp must have been relatively constant 

throughout this time interval and allowed for enough accom-

modation to accumulate the observed sedimentary record. 

Although minor erosion and/or non-deposition certainly occur-

red at the boundaries of some elementary sequences, there is 

no evidence that entire sequences are missing (Strasser 2016). 

Comparing the total number of the Aegean elementary and 

small-scale sequences with the updated Middle Triassic chart 

(Haq 2018), it can be concluded that they are documenting  

an allocyclic signal and formed in tune with the precession 

(20-kyr) and short eccentricity (100-kyr) orbital cycles, 

respectively. The 14 small-scale sequences identified in 

 

the Opletnya Member thus indicate that this member was 

deposited over a time period of 1.4 Myr. Furthermore, based 

on the similarities in the composition and thickness, it can  

be assumed that the elementary and small-scale sequences dis-

tinguished in the lowermost and uppermost Bithynian sub-

stage  (i.e small-scale sequences 13 and 14 in the uppermost 

Opletnya Member and those from the lowermost Zimevitsa 

Member) also represent precession and short eccentricity 

cycles (Figs. 7, 10). 

background image

349

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Concerning the medium-scale sequences, only the one 

 recognized in the Svidol Formation by Ajdanlijsky et al. 

(2018) and the one at the base of the Opletnya Member (see 

above) can be attributed to the 405-kyr long eccentricity cycle. 

They are both composed of 4 small-scale sequences and  

20 elementary sequences and thus reflect the hierarchical 

stacking characteristic of a sedimentary system controlled by 

orbital cycles (e.g., Strasser et al. 2006).

The highly variable lateral and vertical patterns of facies 

and sedimentary structures (see Chapter Sedimentology) 

clearly indicate that the shallow ramp hosted diverse sedimen-

tary environments: from shallow marine to supratidal, from 

low to high energy, from normal marine to evaporative. These 

environments were subjected not only to sea-level fluctuations 

controlled by the orbital cycles but also to currents that shifted 

sediment bodies and to minor tectonic movements that had  

an additional control on accommodation. Consequently, the 

observed sedimentary record is the result of a combination of 

allocyclic as well as of autocyclic and random processes  

(e.g., Pratt & James 1986; Strasser 2018). From the cyclo-

stratigraphic interpretation it appears that the amplitudes of 

the sea-level changes induced by the precessional and short 

eccentricity cycles were sufficient to create facies changes  

that were recorded on the shallow ramp, but that the amplitude 

related to the long eccentricity cycle left its traces only  

in the Svidol Formation and at the base of the Opletnya 

Member. 

Major sequences

The interpretation of the small-scale sequences in the Oplet-

nya Member as reflecting the short (100-kyr) eccentricity 

cycles allows the correlation with some of the major sequence 

boundaries of the Tethyan realm. Ajdanlijsky et al. (2018) cor-

related the base of the Svidol Formation with sequence boun-

dary Ol4 in the upper Olenekian (Hardenbol et al. 1998; Ogg 

2012). According to Li et al. (2018), the next major sequence 

boundary An1 is located 4 long (405-kyr) eccentricity cycles 

above the Ol4 boundary, which corresponds to 16 short  

(100-kyr) eccentricity cycles (Fig. 15). In the study area,  

the Svidol Formation contains four short eccentricity cycles 

that can be correlated with the long eccentricity cycle E13 of 

Li et al. (2018). Consequently, the position of sequence boun-

dary An1 has to be placed at the boundary between the 12

th

 and 

the 13

th

 small-scale sequence (Fig. 7d), and this corresponds to 

the top of cycle E16 of Li et al. (2018). In the Opletnya 

Member, this boundary is marked by the relatively deepest 

local erosion of over 70 cm. The surface is covered by abun-

dant lags of large intraclasts and marks the top of a 10 m thick 

dolomite-dominated interval with tepees, desiccation cracks, 

and abundant evaporites. 

According to Haq (2018), sequence boundary Ol2 (equiva-

lent to Ol4 of Hardenbol et al. 1998) just below the boundary 

between the Spathian and Aegean is dated at 246.9 Ma, and 

sequence boundary An1 in the upper Aegean at 245.5 Ma. This 

implies a duration of about 1.4 Myr for this major sequence. 

However, according to Li et al. (2018) and our own study  

(Fig. 15), the top of the Aegean coincides with sequence 

boundary An1 and the 16 small-scale sequences identified 

here between the two boundaries suggest a duration of  

1.6 Myr (Fig. 15). This discrepancy calls for more research  

in radiometric dating and in astrochronology. For example,  

the date proposed for the Olenekian–Anisian (Spathian–

Aegean) boundary has shifted from 247.1 Ma (Ogg 2012) to 

246.8 (Ogg et al. 2016), to 246.9 Ma (Haq 2018), and then to 

247.2 Ma in the IUGS International Chronostratigraphic Chart 

(2018, version 08). 

The lithofacies data obtained in this study match well to  

the general facies trends in the major sequence bounded by 

Ol4 and An1. According to Li et al. (2018), its maximum- 

flooding surface is in the middle part of cycle E14 (Fig. 15). 

Based on the number of identified small-scale sequences 

above sequence boundary Ol4, this surface has to be placed in 

the maximum-flooding zone of the lowermost medium-scale 

sequence within the Opletnya Member, marked by muddy 

facies and a striking acritarch peak (Fig. 3). Upsection in the 

Opletnya Member, facies indicate decreasing water depth and 

the gradual establishment of peritidal environments, which led 

to precipitation of evaporites and early diagenetic dolomiti-

zation in the small-scale sequences at the top of this major 

sequence. The fact that the study of Li et al. (2018) is based on 

a deep-water section in South China implies that the general 

development of this sequence was controlled by over-regional 

parameters.

The identification of the next major sequence boundary 

(An2) is rather uncertain. On the one hand, the lithological and 

biostratigraphical data suggest that it could be situated at the 

top of the 5

th

 elementary sequence of the Babino Formation 

(Fig. 10). This boundary marks an interruption in sedimenta-

tion with signs of subaerial exposure and development of  

a karstic surface that could have resulted from a prolonged 

time gap. On the other hand, its confident placement requires 

also reliable data for the cyclicity within the interval between 

boundaries An1 and An2. Such information is available for  

the uppermost Opletnya Member and lowermost Zimevitsa 

Member, while data on the cyclicity within the Lakatnik 

Member are not available yet. A peak abundance of marine 

acritarchs occurs in the Zimevitsa Member (Fig. 3) and pro-

bably corresponds to the maximum flooding identified by Li 

et al. (2018) below sequence boundary An2 (Fig. 15). 

Soft-sediment deformation

Besides cyclicity, the sigmoidal structures resulting from 

soft-sediment deformation that occur in the lower part of  

the Opletnya Member can serve as a potential tool for event 

stratigraphy. Michalík (1997) interpreted these deformation 

structures  as  record  of  tsunamites  and  Chatalov  (2001a, b, 

2004) followed this interpretation of seismic activity during 

the Anisian. Eleven seismite horizons within muddy lime-

stones were described from the Sfrazen and Lakatnik sections. 

In southern, western, and northern directions the number of 

background image

350

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

these levels decreases, which might provide evidence of  

an ancient earthquake epicenter in the area of these two sec-

tions. However, no data showing their orientation were pre-

sented. Thus, the localization of a possible seismic epicenter 

remains unsettled. 

In the studied sections, synsedimentary deformation is obser-

ved in mudstones, as well as in wacke- and wacke- to pack-

stones (Fig. 6). The stratigraphic position of these deformation 

structures is specific: Ajdanlijsky et al. (2018) pointed out that 

they occur predominantly within the highstand stage of an ele-

mentary sequence. The newly obtained data confirm this 

observation and also shed new light on the facies context of 

these structures. Their position in the upper part of the elemen-

tary sequences, restricted lateral distribution, concave-up mor-

phology on top of the individual beds, and their proximity and 

temporal correlation with small-scale cut-and-fill structures 

indicate that they most probably are connected with soft-sedi-

ment slumping activated by small-scale erosional events. 

Sliding on the steep flank of a channel could produce similar 

sedimentary structures. Furthermore, storm-induced loading 

of non-lithified, cohesive sediment may lead to thixotropic 

behavior (e.g., Chen & Lee 2013). Muddy sediment was more 

abundant during a highstand phase than during transgression, 

which might explain the preferential stratigraphic position of 

these features of soft-sediment deformation.

It has to be mentioned that the lateral distribution and scale 

of sigmoidal structures is much wider and larger than pre-

viously noted. For example, to the south of the study area, 

west of Tserovo village (Fig. 2), a laterally traceable horizon 

of such structures is almost half a meter thick and twice as 

high above the base of the Opletnya Member than the thickest 

level (40 cm) in the studied sections (Fig. 7). Again, this 

horizon is developed in the upper (highstand) part of an ele-

mentary sequence.  

In our opinion, the sigmoidal deformation structures in  

the studied sections are paleoenvironmental indicators of  

the initiation of the shallowing trend within the sequences 

rather than seismites. However, a detailed lateral mapping of 

these structures, including orientation measurements within 

isochronous levels, is necessary to elucidate their origin. 

Conclusions

The early Anisian (Aegean) ramp deposits of the Opletnya 

Member in northwestern Bulgaria feature a prominent cyclical 

pattern of the sedimentary record. In the two studied sections 

of Lakatnik and Sfrazen, the facies are carbonate-dominated 

but also include terrigenous siliciclastic material and evapo-

rites, and are interpreted as having been deposited in a variety 

of environments ranging from peritidal to shallow marine. 

Deepening-shallowing trends of facies evolution and promi-

nent surfaces allow identifying elementary, small-scale, and 

medium-scale sequences. Palynofacies analysis complements 

and confirms the lithofacies analysis within selected sequences. 

The sequences are hierarchically stacked, with 5 elementary 

sequences composing a small-scale one, and 2 or 4 small-scale 

sequences composing a medium-scale one. Biostratigraphic 

data (conodonts and palynomorphs) allow defining the Anisian 

substage boundaries, and thus provide the basis for an estima-

tion of the durations of these sequences. Elementary and 

small-scale sequences are interpreted to reflect the signatures 

of the orbital precession and short eccentricity cycles with 

periodicities of 20 and 100 kyr, respectively. Accordingly, it is 

Fig. 15. Cyclostratigraphic chart of the Opletnya Member in the study area. See text for explanation.

background image

351

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

suggested that the Opletnya Member, which comprises 69 ele-

mentary and 14 small-scale sequences (Fig. 15), was depo-

sited within about 1.4 Myr. Medium-scale sequences that 

correspond to the long eccentricity cycle of 405 kyr have been 

identified only in the Svidol Formation and at the base of  

the Opletnya Member. This suggests that the translation of 

orbital cycles into sea-level changes that were then recorded 

on the shallow ramp was not straightforward, and that other 

processes inherent to the sedimentary system (such as lateral 

migration of sediment bodies) and/or changes in subsidence 

rate must have been at work as well.

Major sequence boundaries are identified at the base of  

the Svidol Formation and within the uppermost Opletnya 

Mem  ber, corresponding to the sequence boundaries Ol4 and 

An1 of the Tethyan realm. According to the cyclostratigraphic 

interpretation presented here, there are 16 small-scale 

sequences between these two sequence boundaries, implying   

a duration of 1.6 Myr. Large-scale flooding events are recog-

nized by peak abundances of marine acritarchs, with the most 

prominent event being identified in the Pelsonian Zimevitsa 

Member. This Pelsonian maximum flooding is recorded in 

carbonate ramp systems along the western Tethys shelf and  

in the northern Peri-Tethys basin. 

This study demonstrates that, based on detailed logging and 

facies analysis, a cyclostratigraphic interpretation of shallow 

ramp deposits is possible. Within a time framework based on 

biostratigraphy and chronostratigraphy, the duration of indi-

vidual meter-scale depositional sequences can be estimated, 

and a time resolution of 20 kyr can be achieved to better inter-

pret the evolution of the sedimentary environments. 

Furthermore, astrochronologically dated correlation with 

regional and over-regional events becomes possible and places 

the studied Bulgarian sections in a global context. 

Acknowledgements: This study is part of the Triassic Ocean 

project TRIO lead by A.E. Götz. The thorough review of Janos 

Haas (Budapest) and the comments of the handling editor 

Jozef Michalík (Bratislava) are gratefully acknowledged.

 References

Adams A., Diamond L.W. & Aschwanden L. 2018: Dolomitization by 

hypersaline reflux into dense groundwaters as revealed by verti-

cal trends in strontium and oxygen isotopes: upper Muschelkalk, 

Switzerland. Sedimentology 66, 362–390.

Ajdanlijsky G., Tronkov D. & Strasser A. 2004: Cyclicity in the  

Lower Triassic Series between Opletnya railway station and 

Sfrazen hamlet. In: Sinnyovsky D. (Ed.): Geological routes in 

the northern part of the Iskar River Gorge. V. Nedkov Publ.,  

90–101.

Ajdanlijsky G., Götz A.E. & Strasser A. 2018: The Early to Middle 

Triassic continental–marine transition of NW Bulgaria: Sedi-

mentology, palynology and sequence stratigraphy. Geol. Carpath. 

69, 2, 129–148.

Assereto  R.  &  Čatalov  G.  1983:  The  Mogila  Formation  (Lower– 

Middle Triassic) and lithostratigraphical levels in the Triassic 

System of NW Bulgaria. Geologica Balc. 13, 6, 29–36 

 

(in Russian).

Assereto R., Tronkov D. & Čatalov G. 1983: The Mogila Formation 

(Lower–Middle Triassic) in Western Bulgaria. Geologica Balc. 

13, 6, 25–27 (in Bulgarian).

Benatov S. 1998: An attempt for biostratigraphic zonation of West 

Bulgarian Middle Triassic on benthonic macrofauna. C.R. Bulg. 

Acad. Sci. 51, 11–12, 69–72.

Benatov S. 2000: Macrofauna from Peri-Tethyan Middle Triassic in 

the southern slopes of Western Stara Planina Mountain (Western 

Bulgaria). In: Bachmann G.H. & Lerche I. (Eds.): Epicontinental 

Triassic,  Volume  2. Zbl. Geol. Paläont.,  Teil I (1998), 9/10, 

1137–1144.

Benatov S. 2001: Brachiopod biostratigraphy of the Middle Triassic 

in Bulgaria and comparison with elsewhere in Europe. In: Brun-

ton H., Robin L., Cocks M. & Long, S.M. (Eds.): Brachiopods 

Past and Present. The Systematics Association Special Volume 

Series 63, 384–393.

Benatov S. & Chatalov A. 2000: New data about the stratigraphy and 

lithology of the Iskar Carbonate Group (Lower–Middle Triassic) 

in the Zaburde district, Western Bulgaria. Ann. Univ. Sofia “St. 

Kliment Ohridski”, Fac. Geol. Geogr. 93, vol. 1 — geology, 

83–105.

Benatov S., Budurov K., Trifonova E. & Petrunova L. 1999: Parallel 

biostratigraphy on micro- and megafauna and new data about the 

age of the Babino Formation (Middle Triassic) in the Iskur 

Gorge, Western Stara Planina Mountains. Geologica Balc. 29, 

33–40.

Benton M.J. 2015: When Life Nearly Died: The Greatest Mass 

 Extinction  of  All  Time.  Thames & Hudson, London, 1–352.

Berger A., Loutre M.F. & Dehant V. 1989: Astronomical frequencies 

for pre-Quaternary palaeoclimate studies. Terra Nova 1, 

 

474–479.

Borkhataria R., Aigner T. & Pipping K.J.C.P. 2006: An unusual, 

 muddy, epeiric carbonate reservoir: The Lower Muschelkalk 

(Middle Triassic) of the Netherlands. AAPG Bull. 90, 1, 

 

61–89.

Boulila S., Galbrun B., Hinnov L.A. & Collin P.-Y. 2008: High-reso-

lution cyclostratigraphic analysis from magnetic susceptibility in 

a Lower Kimmeridgian (Upper Jurassic) marl-limestone succes-

sion  (La  Méouge,  Vocontian  Basin,  France).  Sediment. Geol. 

203, 54–63.

Budai T. & Vörös A. 2006: Middle Triassic platform and basin evolu-

tion of the Southern Bakony Mountains (Transdanubian Range, 

Hungary). Riv. Ital. Paleont. S. 112, 359–371.

Budurov K. 1976: Die triassischen Conodonten des Ostbalkans. 

 Geologica Balc. 6, 2, 95–104.

Budurov K. 1980: Conodont Stratigraphy of the Balkanide Triassic. 

Riv. Ital. Paleont. 85, 3–4, 767–780.

Budurov K. & Petrunova L. 2000: Muschelkalk conodonts as compo-

nents of Peri-Tethyan fauna. In: Bachmann G.H. & Lerche I. 

(Eds.): Epicontinental Triassic, Volume 2. Zbl. Geol. Paläont.

Teil I (1998), 9/10, 989–995.

Budurov K. & Stefanov S.A. 1972: Plattform-Conodonten und ihre 

Zonen in der Mittleren Trias Bulgariens. Mitt. Ges. Geol. Berg­

baustud. 21, 829–852.

Budurov K. & Stefanov S.A. 1973: Etliche neue Platform-Conodon-

ten aus der Mitteltrias Bulgariens. C. R. Acad. Bulg. Sci. 26, 

803–806.

Budurov K. & Stefanov S.A. 1975: Neue Daten über die Conodon-

tenchronologie der balkaniden Mittleren Trias. C. R. Acad. Bulg. 

Sci. 28, 791–794.

Budurov K. & Trifonova E. 1984: Correlation of Triassic conodont 

and foraminiferal zonal standards in Bulgaria. C. R. Acad. Bulg. 

Sci. 37, 625–627.

Budurov K. & Trifonova E. 1995: Conodont and foraminiferal 

 successions from the Triassic of Bulgaria. Geologica Balc. 25, 

13–19.

background image

352

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Budurov K., Trifonova E. & Zagorčev I. 1995: The Triassic in south-

west Bulgaria. Stratigraphic correlation of key sections in the 

Iskar Carbonate Group. Geologica Balc. 25, 27–59.

Budurov K., Zagorchev I., Trifonova E. & Petrunova L. 1997:  

The Triassic in Eastern Stara planina Mts. Lithostratigraphic 

notes. Rev. Bulg. Geol. Soc. 58, 2, 101–110.

Čatalov  G.  1975:  Facies  analysis  of  the  Svidol  Formation  (Lower 

 Triassic) of the Teteven anticlinorium (Central Fore-Balkan). 

Geologica Balc. 5, 2, 67–86. 

Čatalov G. & Visscher H. 1990: Palynomorphs from Stoilovo Forma-

tion,  Veleka  Group  (Triassic),  Strandža  Mountain,  Southeast 

Bulgaria. Geologica Balc. 20, 2, 53–57.

Catuneanu O. 2019: Scale in sequence stratigraphy. Mar. Petrol. 

Geol. 106, 128–159.

Catuneanu O., Abreu V., Bhattacharya J.P., Blum M.D., Dalrymple 

R.W., Eriksson P.G., Fielding C.R., Fisher W.L., Galloway W.E., 

Gibling M.R., Giles K.A., Holbrook J.M., Jordan R., Kendall 

C.G.St.C., Macurda B., Martinsen O.J., Miall A.D., Neal J.E., 

Nummedal D., Pomar L., Posamentier H.W., Pratt B.R., Sarg 

J.F., Shanley K.W., Steel R.J., Strasser A., Tucker M.E. & 

 Winker C. 2009: Towards the standardization of sequence stra-

tigraphy. Earth­Sci. Rev. 92, 1–33. 

Chatalov G. 1980: Two facies types of Triassic in Strandza Mountain, 

Bulgaria. Riv. Ital. Paleont. S. 85, 3/4, 1029–1046. 

Chatalov G. 1991: Triassic in Bulgaria — a review. Bull. Tech. Univ. 

Istanbul 44, 1/2, 103–135. 

Chatalov A. 1997: Sedimentology of the carbonate rocks from the 

Mogila Formation in Western Balkanides. PhD Thesis Abstract, 

Sofia University “St. Kl. Ohridski”, 1–46 (in Bulgarian).

Chatalov A. 1998: Arid carbonate tidal flat sedimentation imprinted 

in the Mogila Formation (Spathian-Anisian) from the Western 

Balkanides, Bulgaria. Hallesches Jahrb. Geowiss. Reihe B

Beih. 5, 32–33.

Chatalov A. 2000: The Mogila Formation (Spathian-Anisian) in the 

Western Balkanides of Bulgaria — ancient counterpart of an arid 

peritidal complex. In: Bachmann G.H. & Lerche I. (Eds.): 

 Epicontinental  Triassic,  Volume  2. Zbl. Geol. Paläont.,  Teil I 

(1998), 9/10, 1123–1135.

Chatalov A. 2001a: Deformational structures in the Iskar Carbonate 

group (Lower-Upper Triassic) from the Western Balkanides. 

Geologica Balc. 30, 3–4, 43–57.

Chatalov A. 2001b: Signature of paleoseismic activity in the Triassic 

carbonate rocks from Northwestern Bulgaria. Sediment 2001

Jena, Abstract Vol., 29.

Chatalov A. 2004: Route VIII. Sedimentological sites in the carbonate 

Triassic between Lakatnik railway station and Opletnya village. 

In: Sinnyovsky D. (Ed.): Geological routes in the northern part 

of the Iskar River Gorge. V. Nedkov Publ., 102–116.

Chatalov A. 2013: A Triassic homoclinal ramp from the Western 

Tethyan realm, Western Balkanides, Bulgaria: Integrated insight 

with special emphasis on the Anisian outer to inner ramp facies 

transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 34–58.

Chatalov A. 2016: Dominant autogenic control on the formation of 

peritidal cycles in the Olenekian carbonate succession of NW 

Bulgaria. Geosciences 2016, Abstract Vol., 109–110.

Chatalov A. 2018: Global, regional and local controls on the develop-

ment of a Triassic carbonate ramp system, Western Balkanides, 

Bulgaria. Geol. Mag. 155, 641–673.

Chatalov A., Benatov S. & Vangelov D. 2001: New data about the 

holostratotype of the Babino Formation (Middle Triassic). Ann. 

Univ. Sofia “St. Kliment Ohridski”, Fac. Geol. Geogr. 94, Vol. 1 

– geology, 27–40.

Chemberski G., Vaptsarova A. & Monahov I. 1974: Lithostratigraphy 

of the Triassic variegated terrigenous-carbonate and carbonate 

sediments studied with deep drilling in Northwestern and  Central 

North Bulgaria. Ann. DSO Geol. Res. 20, 327–341 (in Bulgarian).

Chen J. & Lee H.S. 2013: Soft-sediment deformation structures in 

Cambrian siliciclastic and carbonate storm deposits (Shan-

dong Province, China): Differential liquefaction and flui-

dization triggered by storm-wave loading. Sediment. Geol. 

288, 81–94. 

Chen Y.L., Krystyn L., Orchard M.J., Lai X.L. & Richoz S. 2015:  

A review of the evolution, biostratigraphy, provincialism, and 

diversity of Middle and early Late Triassic conodonts. Pap. 

 Palaeontol. 2, 235–263.

Chen Y., Scholze F., Richoz S. & Zhang Z. 2019: Middle Triassic 

conodont assemblages from the Germanic Basin: implications 

for multi-element taxonomy and biogeography. J. Syst. Palaeon­

tol. 17, 5, 359–377. 

Chrząstek A.  2013:  Trace  fossils  from  the  Lower  Muschelkalk  of 

Raciborowice Górne (North Sudetic Synclinorium, SW Poland) 

and their palaeoenvironmental interpretation. Acta Geol. Polon

63, 3, 315–353.

Combaz A. 1964: Les palynofaciès. Rev. Micropaléont. 7, 205–218.

Combaz A. 1980: Les kérogènes vus au microscope. In: Durand B. 

(Ed.): Kerogen: Insoluble organic matter from sedimentary 

rocks. Edition Technip, 55–111.

Escudero-Mozo M.J., Márquez-Aliaga A., Goy A., Martín-Chivelet 

J., López-Gómez J., Márquez L., Arche A., Plasencia P., Pla C., 

Marzo M. & Sánchez-Fernández D. 2015: Middle Triassic car-

bonate platforms in eastern Iberia: Evolution of their fauna and 

palaeogeographic significance in the western Tethys. Palaeo­

geogr. Palaeoclimatol. Palaeoecol. 417, 236–260.

Feist-Burkhardt S., Götz A.E., Szulc J. (coordinators), Borkhataria R., 

Geluk M., Haas J., Hornung J., Jordan P., Kempf O., Michalík J., 

Nawrocki J., Reinhardt L., Ricken W., Röhling H.-G., Rüffer T., 

Török Á. & Zühlke R. 2008: Triassic. In: McCann T. (Ed.):  

The  Geology  of  Central  Europe.  Vol.  2.  Geological Society,  

London, 749–821.

Flügel E. 2004: Microfacies of Carbonate Rocks. Springer, Berlin, 

1–976.

Ganev M. 1974: Stand der Kenntnisse über die Stratigraphie der Trias 

Bulgariens. In: Zapfe H. (Ed.): Die Stratigraphie der alpin-medi-

terranen Trias. Symposium Wien, Schriftenr. Erdwissenschaftl. 

Komm., Österr. Akad. d. Wissenschaften, Bd. 2, 93–96.

Głuchowski  E.  &  Salamon  M.  2005: The  Lower  Muschelkalk  cri-

noids from Raciborowice, North-Sudetic Basin, SW Poland. 

Geol. Quarterly 49, 1, 83–92.

Gonzalez R. & Eberli G.P. 1997 : Sediment transport and bedforms in 

a carbonate tidal inlet; Lee Stocking Island, Exumas, Bahamas. 

Sedimentology 44, 1015–1030.

Götz A.E. 1996: Fazies und Sequenzanalyse der Oolithbänke (Unte-

rer Muschelkalk, Trias) Mitteldeutschlands und angrenzender 

Gebiete. Geol. Jb. Hessen 124, 67–86.

Götz A.E. & Török Á. 2008: Correlation of Tethyan and Peri-Tethyan 

long-term and high-frequency eustatic signals (Anisian, Middle 

Triassic). Geol. Carpath. 59, 4, 307–317.

Götz A.E. & Török Á. 2018: Muschelkalk ramp cycles revisited. In: 

Montenari M. (Ed.): Stratigraphy & Timescales, vol. 3: Cyclo-

stratigraphy and Astrochronology, 265–284.

Götz A.E., Török Á., Feist-Burkhardt S. & Konrád Gy. 2003: Palyno-

facies patterns of Middle Triassic ramp deposits (Mecsek Mts.,  

S Hungary): A powerful tool for high-resolution sequence stra-

tigraphy. Mitt. Ges. Geol. Bergbaustud. Österr. 46, 77–90.

Götz A.E., Luppold F.W. & Hagdorn H. 2019: Biostratigraphie und 

Zonierung der Conodonten des Muschelkalks. In: Deutsche 

Stratigraphische Kommission (Ed.): Stratigraphie von Deutsch-

land XIII. Muschelkalk. Schriftenr. Dt. Ges. Geowiss. 91, in 

press.

Haas J., Kovács S. & Török Á. 1995: Early Alpine shelf evolution in 

the Hungarian segment of the Tethys margin. Acta Geol. Hung

38, 95–110.

background image

353

MIDDLE TRIASSIC RAMP DEPOSITS (NW BULGARIA)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Haas J., Budai T. & Raucsik B. 2012: Climatic controls on sedimen-

tary environments in the Triassic of the Transdanubian Range 

(Western Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol

353–355, 31–44.

Hagdorn H. & Głuchowski E. 1993: Palaeobiogeography and strati-

graphy of Muschelkalk echinoderms (Crinoidea, Echinoidea)  

in Upper Silesia. In: Hagdorn H. & Seilacher A. (Eds.): 

 Muschelkalk. Schöntaler Symposium 1991. Goldschneck, Korb, 

165–176.

Hardenbol J., Thierry J., Farley M., Jacquin T., de Graciansky P.-C. & 

Vail  P.  1998:  Mesozoic  and  Cenozoic  sequence  chronostrati-

graphic framework of European basins. SEPM Spec. Publ. 60, 

1–13.

Hardie L.A. & Garrett P. 1977: General environmental setting. In: 

Hardie L.A. (Ed.): Sedimentation on the Modern Carbonate 

 Tidal Flats of Northwest Andros Island, Bahamas. John Hopkins 

University, Stud. Geol. 22, 12–49.

Hardie L.A. & Ginsburg R.N. 1977: Layering: the origin and environ-

mental significance of lamination and thin bedding. In: Hardie 

L.A. (Ed.): Sedimentation on the Modern Carbonate  Tidal Flats 

of Northwest Andros Island, Bahamas. John Hopkins University, 

Stud. Geol. 22, 50–123.

Haq B.U. 2018: Triassic eustatic variations re-examined. GSA Today 

28,  https://doi.org/10.1130/GSATG381A.1.

Heunisch C. 1999: Die Bedeutung der Palynologie für Biostratigra-

phie und Fazies in der Germanischen Trias. In: Hauschke N.  

&  Wilde  V.  (Eds.):  Trias  —  eine  ganz  andere  Welt,  Europa  

am Beginn des Erdmittelalters. Pfeil­Verlag, München, 

 

207–220.

Heunisch C. 2019: Palynomorphs of the Muschelkalk. In: Deutsche 

Stratigraphische Kommission (Ed.): Stratigraphie von Deutsch-

land XIII.  Muschelkalk. Schriftenr. Dt. Ges. Geowiss. 91, in 

press.

Hillgärtner H., Dupraz C. & Hug W. 2002: Microbially induced ce-

mentation of carbonate sands: are micritic meniscus cements 

good indicators of vadose diagenesis? Sedimentology 48, 

 

117–131.

Hinnov L.A. 2013: Cyclostratigraphy and its revolutionizing appli-

cations in the Earth and planetary sciences. GSA Bull. 125, 

1703–1734.

Hinnov L.A. 2018: Cyclostratigraphy and astrochronology in 2018. 

In: Montenari M. (Ed.): Stratigraphy & Timescales, vol. 3: 

 Cyclostratigraphy  and  Astrochronology.  Acad. Press, 1–80.

Ivanov Zh. 1998: Tectonics of Bulgaria. Unpubl. Habil. Thesis. Sofia 

University “St. Kliment Ohridski”, 1–634 (in Bulgarian).

IUGS International Chronostratigraphic Chart 2018: International 

Commission on Stratigraphy, version 2018/08.  www.strati-

graphy.org.

Kalvacheva R.K. & Čatalov G.A. 1974: Palynomorphen aus phylli-

toiden Tonschiefern des Strandza-Gebirges. C. R. Acad. Bulg. 

Sci. 27, 10, 1419–1422.

Knaust D. 1998: Trace fossils and ichnofabrics on the Lower Muschel-

kalk carbonate ramp (Triassic) of Germany: tool for high-resolu-

tion sequence stratigraphy. Geol. Rundsch. 87, 21–31. 

Knaust D. 2007: Invertebrate trace fossils and ichnodiversity in shal-

low-marine carbonates of the German Middle Triassic (Muschel-

kalk). In: Bromley R.G., Buatois L., Mángano G., Genise J.F. & 

Melchor R.N. (Eds.): Sediment–Organism Interactions: A Multi-

faceted Ichnology. SEPM Spec. Publ. 88, 221–238.

Knaust D., Curran H.A. & Dronov A.V. 2012: Shallow-marine car-

bonates. In: Knaust D. & Bromley R.G. (Eds.): Trace fossils as 

indicators of sedimentary environments. Dev. Sedimentol. 64, 

705–750.

Kustatscher E. & Roghi G. 2006: Anisian palynomorphs from the 

Dont Formation of the Kühwiesenkopf/Monte Prà Della Vacca 

Section (Northern Italy). Micropalaeontology 52, 3, 223–244.

Li M., Huang C., Hinnov L., Chen W., Ogg J. & Tian W. 2018: Astro-

chronology of the Anisian stage (Middle Triassic) at the Guandao 

reference section, South China. Earth Planet. Sci. Lett. 482, 

591–606.

Lukoczki G., Haas J., Gregg J.M., Machel H.G., Kele S. & John C.M. 

2019: Multi-phase dolomitization and recrystallization of Mid-

dle Triassic shallow marine-peritidal carbonates from the 

Mecsek Mts. (SW Hungary), as inferred from petrography, car-

bon, oxygen, strontium and clumped isotope data. Mar. Petrol. 

Geol. 101, 440–458. 

Matysik M. 2016: Facies types and depositional environments of  

a morphologically diverse carbonate platform: a case study from 

the Muschelkalk (Middle Triassic) of Upper Silesia, Southern 

Poland. Ann. Soc. Geol. Polon. 86, 119–164.

Michalík J. 1997: Tsunamites in a storm-dominated Anisian carbo-

nate  ramp  (Vysoká  Formation,  Malé  Karpaty  Mts.,  Western 

 Carpathians).  Geol. Carpath. 48, 4, 221–229.

Michalík J., Masaryk P., Lintnerová O., Papšová J., Jendrejáková O. 

& Reháková D. 1992: Sedimentology and facies of a storm-

domi nated Middle Triassic carbonate ramp (Vysoká Formation, 

Malé Karpaty Mts., Western Carpathians). Geol. Carpath. 43, 4, 

213–230.

Montañez I.A. & Osleger D.A. 1993: Parasequence stacking patterns, 

third-order accommodation events, and sequence stratigraphy  

of Middle to Upper Cambrian platform carbonates, Bonanza 

King Formation, southern Great Basin. AAPG Mem. 57, 

 

305–326.

Montenat C., Barrier P., Ott d’Estevou P. & Hibsch C. 2007:  Seismites: 

An attempt at critical analysis and classification. Sediment. Geol

196, 5–30.

Niedźwiedzki  R.  &  Salamon  M.,  2006:  Triassic  crinoids  from  the 

 Tatra Mountains and their stratigraphic significance (Poland). 

Geol. Carpath. 57, 2, 69–77.

Ogg J. 2012: Triassic. In: Gradstein F., Ogg J., Schmitz M. & Ogg G. 

(Eds.): The geological time scale 2012. Elsevier, Amsterdam, 

681–730.

Ogg J.G., Ogg G.M. & Gradstein F.M. 2016: The Concise Geologic 

Time Scale 2016. Elsevier, Amsterdam, 1–234.

Petrash  D.A.,  Bialik  O.M.,  Bontognali  T.R.R.,  Vasconcelos  C., 

 Roberts J.A., McKenzie J.A. & Konhauser K.O. 2017: Micro-

bially catalyzed dolomite formation: From near-surface to burial. 

Earth Sci. Rev. 171, 558–582.

Petrunova L. 1992a: First palynological evidence of the Ladinian Age 

of the Preslav Formation in Northwest Bulgaria. Geol. Bulgarica 

22, 2, 46.

Petrunova L. 1992b: Palynological evidence of the Early Karnian Age 

of the Moesian Group in Northwest Bulgaria. Geol. Bulgarica 

22, 2, 94.

Petrunova L. 1999: Palynological correlations of the Preslav Forma-

tion (Iskur Carbonate Group) to the Peri-Tethyan Triassic of 

Central Europe. Geol. Bulgarica 29, 1–2, 136.

Petrunova L. 2000: Palynomorphs around the boundary Lower– 

Middle Triassic from an olistolith in Eastern Stara Planina 

Mountains, Bulgaria. In: Proceed. Int. Workshop on the Lower–

Middle Triassic (Olenekian-Anisian) boundary. Tulcea, Roma-

nia, 53–55. 

Philip J., Masse J. & Camoin G. 1996: Tethyan carbonate platforms. 

In:  Nairn  A.E.M.,  Ricou  L.-E.,  Vrielynck  B.  &  Dercourt  J. 

(Eds.):  The  Ocean  Basins  and  Margins.  Vol.  8.  The  Tethys 

Ocean. Plenum Press, New York–London, 239–266.

Pöppelreiter M. 2002: Facies, cyclicity and reservoir properties of the 

Lower Muschelkalk (Middle Triassic) in the NE Netherlands. 

Facies 46, 119–132.

Posamentier H.W., Allen G.P. & James D.P. 1992: High-resolution 

sequence stratigraphy — the East Coulee delta, Alberta. J. Sedi­

ment. Petrol. 62, 310–317.

background image

354

AJDANLIJSKY, STRASSER and GÖTZ

GEOLOGICA CARPATHICA

, 2019, 70, 4, 325–354

Pratt B.R. & James N.P. 1986: The St George Group (Lower Ordovi-

cian) of western Newfoundland: tidal flat island model for car-

bonate sedimentation in shallow epeiric seas. Sedimentology 33, 

313–343.

Rameil N., Götz A.E. & Feist-Burkhardt S. 2000: High-resolution se-

quence interpretation of epeiric shelf carbonates by means of 

palynofacies analysis: an example from the Germanic Triassic 

(Lower Muschelkalk, Anisian) of East Thuringia, Germany. 

 Facies 43, 123–144.

Reineck H.-E. & Singh I.B. 1975: Depositional Sedimentary Envi-

ronments. Springer, Berlin, 1–439.

Retallack G.J. 2013: Permian and Triassic greenhouse crises. Gond­

wana Res. 24, 90–103.

Rychliński T. & Szulc J. 2005: Facies and sedimentary environments 

of the Upper Scythian–Carnian succession from the Belanské 

Tatry Mts., Slovakia. Ann. Soc. Geol. Polon. 75, 155–69.

Stampfli G.M., Hochard C., Vérard C., Wilhem C. & von Raumer J. 

2013: The formation of Pangea. Tectonophysics 593, 1–19.

Stefani M., Furin S. & Gianolla P. 2010: The changing climate frame-

work and depositional dynamics of the Triassic carbonate plat-

forms from the Dolomites. Palaeogeogr. Palaeoclimatol. 

 

Palaeoecol. 290, 43–57.

Strasser A. 2016: Hiatuses and condensation: an estimation of time 

lost on a shallow carbonate platform. Depositional Record 1, 

91–117.

Strasser A. 2018: Cyclostratigraphy of shallow-marine carbonates — 

limitations and opportunities. In: Montenari M. (Ed.): Stratigra-

phy & Timescales, vol. 3: Cyclostratigraphy and Astrochronolo-

gy, 151–187.

Strasser A., Pittet B., Hillgärtner H. & Pasquier J.-B. 1999: Deposi-

tional sequences in shallow carbonate-dominated sedimentary 

systems: concepts for a high-resolution analysis. Sediment. 

Geol. 128, 201–221.

Strasser A., Hillgärtner H., Hug W. & Pittet B. 2000: Third-order 

depo sitional cycles reflecting Milankovitch cyclicity. Terra 

Nova 12, 303–311.

Strasser A., Hilgen F.J. & Heckel P.H. 2006: Cyclostratigraphy — 

concepts, definitions and applications. Newsl. Stratigraphy 42, 

75–114.

Szulc J. 2000: Middle Triassic evolution of the northern Peri-Tethys 

area as influenced by early opening of the Tethys ocean. Ann. 

Soc. Geol. Polon. 70, 1–48.

Török Á. 1998: Controls on development of Mid-Triassic ramps: 

 examples from southern Hungary. In: Wright, V.P. & Burchette 

T.P. (Eds.): Carbonate ramps. Geol. Soc. London, Spec. Publ. 

149, 339–367.

Toula F. 1878: Geologische Untersuchungen im westlichen Theile  

des  Balkan  und  in  angrenzenden  Gebieten.  VII  Ein  geolo-

gisches  Profil  von  Vraca  an  der  Isker  und  durch  die  Isker-

schluchten nach Sofia. Sitzber. d. k. Akad. Wissenschaften Wien 

77, 247–317.

Tronkov D. 1960: About the Triassic stratigraphy in Iskar River 

Gorge. Ann. Geol. res. Direct. 10, 131–153.

Tronkov D. 1968: The Lower–Middle Triassic boundary in Bulgaria. 

Comm. geol. inst. Bulg. Acad. Sci., paleont. ser. 17, 113–130  

(in Bulgarian).

Tronkov D. 1973: Grundlagen der Stratigraphie der Trias im Belo-

gradčik Antiklinorium (Nordwest Bulgarien). Bull. Geol. Inst., 

ser. Strat. Lithol. 22, 73–98.

Tronkov D. 1976: Triassische Ammoniten-Sukzessionen im Westli-

chen Balkangebirge in Bulgarien. C. R. Acad. bulg. sci. 29, 9, 

1325–1328.

Tronkov D. 1981: Stratigraphy of the Triassic System in part of the 

Western Srednogorie (West Bulgaria). Geologica Balc. 11, 1, 

3–20 (in Russian).

Tronkov D. 1983: The Mogila Formation (Lower–Middle Triassic) in 

Iskar River Gorge and Vratza Mountain (Western Stara Planina 

Mountain). Geologica Balc. 13, 6, 37–52 (in Russian).

Tronkov D. 1989: The carbonate Triassic in Lakatnik section. In: 

 Nachev I. (Ed.): Stratigraphy and sedimentology of the Phanero-

zoic  in  Bulgaria.  XIV  Congr.  Carp.-Balk.  Geol. Assoc.,  Field 

guide, 27–29 (in Russian).

Tronkov D. 1992: Godec Formation and Mazgoska Formation — two 

new Middle Triassic lithostratigraphic units in the Western Stara 

Planina mountain. Geologica Balc. 22, 6, 62.

Tronkov D. 1995: Triassic System. In: Haydutov I. (Ed.): Explanation 

notes to the geological map of Bulgaria on scale 1:100,000, 

Berkovitca map sheet. Avers, Sofia, 44–59 (in Bulgarian).

Tronkov D., Encheva M. & Trifonova T. 1965: Stratigraphy of the 

Triassic system in north-western Bulgaria. Proc. Geol. Inst., Bul­

garian Academy of Sciences 14, 261–292.

Tyson  R.V.  1987:  The  genesis  and  palynofacies  characteristics  of 

 marine petroleum source rocks. In: Brooks J. & Fleet A.J. (Eds.): 

Marine Petroleum Source Rocks. Geol. Soc. Spec. Publ. 26, 47–67.

Tyson R.V. 1993: Palynofacies analysis. In: Jenkins D.G. (Ed.):  Applied 

Micropaleontology.  Kluwer Academic Publishers,   Dordrecht, 

153–191.

Tyson  R.V.  1995:  Sedimentary  organic  matter:  organic  facies  and 

 palynofacies. Chapman & Hall, London, 1–615.

Vail P.R., Audemard F., Bowman S.A., Eisner P.N. & Perez-Cruz C. 

1991: The stratigraphic signatures of tectonics, eustasy and 

 sedimentology — an overview. In: Einsele G., Ricken W. & 

 Seilacher A. (Eds.): Cycles and Events in Stratigraphy. Springer

Berlin, 617–659.

van Wagoner  J.,  Mitchum  R.,  Campion  K.  &  Rahmanian V.  1990: 

Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and 

Outcrops. AAPG Methods in Exploration 7, 1–55.

Wood G.D., Gabriel A.M. & Lawson J.C. 1996: Palynological tech-

niques — processing and microscopy. In: Jansonius J. & McGre-

gor D.C. (Eds.): Palynology: Principles and Applications. AASP 

Foundation 1, 29–50.

Yanev S. 2000: Palaeozoic terranes of the Balkan Peninsula in the 

framework of Pangea assembly. Palaeogeogr. Palaeoclimatol. 

Palaeoecol. 161, 151–177.

Zagorchev I. & Budurov K. 2009: Triassic geology. In: Zagorchev I., 

Dabovski Ch. & Nikolov T. (Eds.): Geology of Bulgaria, vol. 2, 

Mesozoic geology. Acad. Publ. “Prof. Marin Drinov”, Sofia, 

39–131.

Zdravkov A., Ajdanlijsky G., Gross D. & Bech A. 2019: Organic 

 petrological and geochemical properties of jet from the middle 

Triassic Mogila Formation, West Bulgaria. Geol. Carpath. 70, 

62–74.