background image

GEOLOGICA CARPATHICA

, AUGUST 2019, 70, 4, 279–297

doi: 10.2478/geoca-2019-0016

www.geologicacarpathica.com

Turbidite sedimentology, biostratigraphy and paleoecology: 

A case study from the Oligocene Zuberec Fm.  

(Liptov Basin, Central Western Carpathians)

DUŠAN STAREK 

, VLADIMÍR ŠIMO, SILVIA ANTOLÍKOVÁ and TOMÁŠ FUKSI

Earth Science Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; 

  

dusan.starek@savba.sk

(Manuscript received December 17, 2018; accepted in revised form June 4, 2019)

Abstract: Outcrops of a thick turbiditic succession are exposed on the northern bank of the Liptovská Mara reservoir 

near Liptovská Ondrašová and Ráztoky. The section consists of rhythmic, predominantly thin- to medium-bedded  

turbidites of the Rupelian age. Their biostratigraphy is based on the  calcareous nannofossils. Facies associations of  

these deposits represent different components of depositional lobe deposits in the turbidity fan system, including mainly 

the lobe fringe and lobe distal fringe/inter-lobe facies associations and locally the medium bedded deposits of the lobe 

off-axis facies association. This interpretation is supported by statistical analysis. The deep-sea turbiditic deposits contain 

trace fossil associations, which include deep-tier fodinichnia and domichnia up to shallow-tier graphoglyptids. Paleo-

current measurements indicate that the majority of sedimentary material was transported from SW and W. 

Keywords: Western Carpathians, Oligocene, turbidites, trace fossils, calcareous nannofossils.

 Introduction

The Oligocene sand-rich turbiditic system represents an im-

portant component of the Central Carpathian Paleogene Basin 

(CCPB). Turbidites form a large part of the Liptov Depression 

infilling, which is located in the northern part of the CCPB, 

but in contrast to the adjacent regions (e.g., Orava–Podhale or 

Spišská Magura), deposit outcrops are poor in the Liptov 

 Depression and larger sedimentary profiles, suitable for sedi-

mentological, biostratigraphic or paleoecological studies are 

scarce currently. We present the results of research on an un-

usual section of a turbidite series which is exposed on  

the banks of the Liptovská Mara Reservoir near Liptovská 

 Ondrašová village (north-west edge of the Liptovský Mikuláš 

town) (Fig. 1C, D). This turbidite succession offers more than 

700 completely exposed beds and provides a unique opportu-

nity to study vertical variation in bed thickness and sedimen-

tary structures. Occurrence of turbidite facies, their frequency 

and vertical relationships, the sandstone and mudstone ratio 

are important features used for discrimination of facies asso-

ciations and interpretation of the depositional environment. 

Measurements of numerous paleocurrent indicators allowed 

determinations of the main paleotransport direction in this part 

of the basin. Detailed biostratigraphic analysis of calcareous 

nannofossils through the entire section allowed dating of these 

turbidite series. Paleoenvironmental evidence from study of 

trace fossils is beneficial within a section that lacks macro fos-

sils. Only sporadic attention has been paid to trace fossils 

within the Liptov Depression of the CCPB (Plička 1983, 1984, 

1987; Plička et al. 1990).

Geological settings

The CCPB lies inside the Western Carpathian Mountain 

chain (Fig. 1A) and belongs to the basinal system of the Peri- 

and Paratethyan seas. The CCPB opening and evolution is 

probably related to crustal thinning, either as a result of sub-

crustal erosion (e.g., Kázmér et al. 2003), or due to the exten-

sional collapse of the overthickened Central Western 

Carpathian crust and the pull of the External Western 

Carpathian oceanic lithosphere retreating subduction 

(Plašienka & Soták 2015; Kováč et al. 2016).

The basin covered a large part of the Central Western 

Carpathian  area  (Fig.  1A, B)  and  is  mainly  filled  up  with 

marine, predominantly turbidite deposits which overlap the 

nappe units substrates and their thickness reach up to 1000 m. 

Their age ranges from the Bartonian (e.g., Samuel & Fusán 

1992; Gross et al. 1993) to the Late Oligocene (cf. Olszewska 

& Wieczorek 1998; Gedl 2000; Soták et al. 2001, 2007; 

Garecka 2005). The CCPB sediments are preserved in many 

structural sub-basins (Fig. 1B), located in the Žilina, Rajec, 

Turiec, Orava, Podhale, Liptov, Poprad, and Hornád regions 

as well as in the Spišská Magura, Levočské vrchy and Šarišská 

vrchovina Mts.

The study area is a part of the Liptov Depression which is 

one of the largest inner-Carpathian depressions. The Liptov 

Depression is formed predominantly by the CCPB sediments 

overlain by Quaternary deposits of variable thickness. Paleo-

gene deposits are bounded by the Mesozoic Central Carpathian 

units and their contact is transgressional in the south while  

the northern boundary is mostly tectonic (Fig. 1C).

background image

280

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

The CCPB deposits (so-called the “Podtatranská skupina 

Group” sensu Gross et al. 1984; Gross 2008) are divided com-

monly into the following formations (Fig. 2) (Gross et al. 

1984): the lowermost Borové Formation consists of breccias, 

conglomerates, lithic sandstones to siltstones, marlstones, 

organodetrital and organogenic limestones. These represent 

the basal terrestrial and shallow-marine transgressive deposits 

(e.g., Marshalko 1970; Kulka 1985; Gross et al. 1993; Baráth 

& Kováč 1995; Filo & Siráňová 1996, 1998; Šurka et al. 2012; 

Jach et al. 2016). This formation is overlain by the Huty 

Formation which includes various mud-rich deep marine 

deposits mainly (e.g., Janočko & Jacko 1999; Soták et al. 2001; 

Fig. 1.  A — Location of study area within the Alpine-Carpathian orogen; B — the Central Carpathian Paleogene Basin system depicting 

structural sub-basins, basement massifs and surrounding units; C — simplified geological sketch of the part of the Liptov region (after Biely 

et al. 1996; modified) with situated locality studied; D  — situational geological map of the wider area of the studied localities (Geological Map 

of Slovakia M 1:50,000 [online] 2013); key: 1 — a) roads and railway, b) rivers, c) built-up area (cities and settlements); 2 — a) deluvial 

deposits, landslides (Quaternary), b) fluvial deposits (Holocene); 3 — a) fluvial and b) glaciofluvial gravels (Quaternary); 4 — Banská Bystrica 

Formation: sand, clayey sand, gravel (Neogene); 5 — Zuberec Formation: a) normal flysch: mudstones, siltstones and sandstones, b) flysch 

with predominance of mudstones and mudstone sequences in flysch deposits (Paleogene); 6 — Huty Formation: mudstones in absolute pre-

dominance over sandstones and conglomerates (Paleogene). Location of studied sections (Liptovská Ondrašová outcrop: 49°05’52.56” N, 

19°34’22.98” E; Ráztoky outcrop: 49°06’06.02” N, 19°33’56.51” E).

background image

281

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Starek et al. 2004) with the occurrences of sandstone mega-

bed  events  (Golab  1959;  Sliva  2005;  Starek  et  al.  2013).  

The Zuberec Formation and the Biely Potok Formation com-

pose the up-section, predominantly consisting of rhythmically 

bedded turbidites and massive sandstones and represent 

 

the various sand-rich submarine fan facies associations (e.g., 

Westwalewicz-Mogilska 1986; Wieczorek 1989; Soták 1998; 

Starek et al. 2000; Sliva 2005; Starek & Fuksi 2017a, b).

The evaluated and interpreted deposits are part of the 

Zuberec Formation (earlier known as “Flysch lithofacies” e.g., 

Gross et al. 1980) within which the above mentioned authors 

allocated several lithofacies with respect to the sandstone and 

mudstone proportions. They interpreted the age of this forma-

tion as the Priabonian–Lower Oligocene. The Oligocene age 

of the Zuberec Formation has also been confirmed in other 

parts of the CCPB (e.g., Olszewska & Wieczorek 1998; Gedl 

2000; Soták et al. 2001; Garecka 2005; Filipek et al. 2017).

Methods

The research involved a standard sedimentological analysis 

of the sections. Bed thicknesses measurement and facies ana-

lysis were a key for further statistical analysis. Determination 

of the bed thickness becomes complicated if it is thinning out 

laterally, contains preserved bedform morphology or the bed 

has an uneven — erosive base. In these cases the average 

thicknesses were used.

Paleocurrent analysis included scour mark measurements 

and current ripple cross-laminations. Postdepositional tilt of 

the directions was restored by simple rotation along the hori-

zontal axis. 

Calcareous nannofossils 

Thirty-nine samples were evaluated to study calcareous 

nannofossils from the Liptovská Ondrašová locality. Six sam-

ples come from a non-profiled part of outcrop. Samples for  

the calcareous nannofossils study were prepared from mud-

stones containing CaCO

by using the decantation method 

(Haq & Lohmann 1976; Perch-Nielsen 1985). The smear 

slides were studied under the light microscope ZEISS AXIO 

SCOPE AI, at 1000× magnification and nannofossil species 

documented by digital camera AXIOCAM 105 COLOR. 

Calcareous nannofossil age determination was carried out 

according to the zonation by Martini (1971), supplemented by 

Perch-Nielsen (1985), Young (1998) and Nannotax websites 

(Young et al. 2017). Preservation and abundance of calcareous 

nannofossils was determined according to Roth & Thierstein 

(1972).  

Statistical analysis

Sandstone and mudstone thickness were used for statistical 

analysis. Specifically, 725 beds from 2 profiles (Liptovská 

Ondrašová 1 = 566; Liptovská Ondrašová 2 = 159 beds), in total 

length of more than 77 m (unlike the total length of outcrop 

92 m) could be measured. All beds were measured in step by 

0.5 cm. No correction was made for compaction. Sandstone–

mudstone ratio, mean, median, minimum, maximum and stan-

dard deviation of sandstone and mudstone thickness were used 

to identify differences between profiles. Boxplot and histo-

gram functions demonstrated variability within profiles and 

expressed the frequency distribution of bed thicknesses. 

Autocorrelation or serial correlation is a tool for identifying 

repeating patterns (Priestley 1981). Autocorrelation shows 

correlation between the lagged values of the time series. It can 

be interpreted as periodicity. The autocorrelation coefficient 

values close to zero show no periodicity (Pinheiro et al. 2018). 

Coarse-division (sandstone) thicknesses of turbidite beds were 

processed by Hurst statistics. Hurst exponent is related to 

autocorrelation of series (Hurst 1951, 1956; Chen & Hiscott 

1999). Recalculated K and D values from Hurst statistics can 

be used to depositional environment interpretation (Chen & 

Hiscott 1999). Coarse-division (sandstone) thicknesses were 

used for computation of cumulative distribution also. Typi-

cally, this function shows a degree of variation from the power- 

law (straight-line) distribution and is calculated and examined 

on a log plot. 2D model simulates proximal vs. distal 

(non-channelized) environment effect (Carlson & Grotzinger 

2001). All analyses were processed by R-cran software  

(R Core Team 2014) and package nlme (Pinheiro et al. 2018).

Fig. 2. Descriptive lithostratigraphy of the filling in the western part 

of the Central-Carpathian Paleogene Basin. Nomenclature of the for-

mations according to Gross et al. (1984, adapted). Biostratigraphy is 

based on the data from Olszewska &Wieczorek (1998), Gedl (2000), 

Starek et al. (2000), Starek (2001), Garecka (2005) and Soták et al. 

(2007).

background image

282

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Description of outcrops

The outcrop studied near Liptovská Ondrašová shows a long 

succession in which two continuously exposed sections 

Liptovská  Ondrašová  1  (LO 1)  and  Liptovská  Ondrašová  2 

(LO 2) were processed (Fig. 3A). LO 1 has a total length of 

more than 68 m and LO 2 is more than 23 m long. Within the 

studied profiles the sedimentary successions show relatively 

monotonous lithology of alternating sandstones and mud-

stones. Between LO 1 and LO 2 sections there is an uncovered 

or poorly outcropped part about 10–15 m long. Here the shor-

ter, non-continuously exposed portions indicate mudstone and 

mainly thin-bedded sequences. However, because of this rela-

tively large interruption of the sedimentary sequence, we have 

processed and evaluated the obtained dataset as two sepa rate 

parts  (LO 1  and  LO 2).  The  LO 2  section  ends  at  a  pier  on  

the edge of the Ráztoky Bay. Further exposures appear on  

the shore of the lake, on the other side of the bay, towards  

the cadastral area of the Ráztoky village drowned by damming 

(Fig. 1D). The following will be referred as the Ráztoky loca-

lity. The exposed sedimentary sequences at the Ráztoky 

loca lity are tectonically fractured and are not suitable for 

detailed profiling.

Results

Sedimentary facies 

Since the sedimentary facies within the LO 1 and LO 2 sec-

tions with the Ráztoky locality as well, are very similar, they 

are described together in the following description. This clas-

sification is based on lithology and primary sedimentary struc-

tures mostly. The following sedimentary facies were identified: 

unstructured ungraded to normally graded medium- to fine- 

grained sandstone; parallel-laminated medium- to fine-grai-

ned sandstone; sandstone with asymmetrical cross-lamination; 

coarse-grained to fine-grained laminated siltstone; massive 

mudstone and mudstone, parts of which reveal an increased 

content of silt and very fine sand (graded and laminated mud-

stone). Sedimentary facies identified within deposits of 

 indi  vi dual sections reflect deposition from sandy high- to low 

density turbidity current (Bouma 1962; Mutti 1992). More 

detailed hydrodynamic interpretation of individual facies as 

well as possible identification of the same facies from other 

authors is shown in Table 1. However, in the following text  

the Bouma classification (Ta–Te divisions sensu Bouma 1962) 

is used for better clarity of identified sedimentary facies. 

Table 1: Sedimentary facies and their interpretation within the studied sections.

Facies

Interpretation

Unstructured ungraded to normally 

graded medium- to fine-grained 

sand stone (Fig. 4A)

A rapid accumulation of sand from dense sandy turbidity current which bypassing the zone of deposition of  

the preceding gravelly flows  — Ta division (sensu Bouma 1962)  or F8 facies (after Mutti 1992)

Parallel-laminated medium- to fine- 

grained sandstone (Fig. 4A–D)

The upper flow regime conditions; traction carpet that is driven by basal shearing of an overlying turbulent 

flow — Tb division (sensu Bouma 1962) or F9 facies (after Mutti 1992)

Sandstone with asymmetrical cross- 

lamination (Fig. 4E, F)

The lower flow regime; traction movement with fallout processes from waning turbidity currents (e.g., Jopling 

& Walker 1968; Mulder & Alexander 2001; Zavala et al. 2011) — Tc division (sensu Bouma 1962), F9 facies 

(after Mutti 1992)

Coarse-grained to fine-grained lami-

nated siltstone

Traction plus fallout processes associated with deposition from suspension during weak turbulent motion in 

low-density turbidity currents (Arthur et al. 1984; Stow & Piper 1984) — Tb division (sensu Bouma 1962),  

E1 interval (after Piper 1978) or F9 facies (after Mutti 1992)

Massive mudstone, some parts reveal 

an increased contents of silt and very 

fine sand (graded and laminated 

mud stone)  (Fig. 4G)

Suspension fall-out from static or slow-moving mud cloud; flnal deposition from a sediment gravity flow event 

(e.g., Piper 1978) — Te division (sensu Bouma 1962), T6 and T7 divisions (after Stow & Shanmugam 1980 

— graded and ungraded turbidite muds respectively)

Fig. 3. A — Sedimentary logs of rhythmical bedded, sand/mud-mixed turbidite succession of the Zuberec Fm. studied in an outcrop near 

Liptovská Ondrášová. The chard depicts vertical distribution of sandstone- and mudstone thicknesses and their possible trends, the sedimentary 

facies, the facies associations, and sampling for stratigraphy. B — Schematic model for the facies associations of the Liptovská Ondrášová 

sections. Individual facies associations represent different components of distributive lobe deposits (model after Prelát et al. 2009, modified). 

C — LO2 section; note the gradual transition between mudstone dominated sequence (FA4) in the bottom of the outcrop and rhythmically 

bedded sandstone-mudstone sequence (FA3) towards the top of the profile. D — Thinning-upward trend of sandstone bed thickness from 

medium- to thick beds with smaller ratio of mudstones (FA2) in the lower part of the picture to thin bedded sequence FA3 in middle part and 

mudstone dominated FA4 in the upper part of the picture. E – Turbidite sequence characterized by FA3 and FA2. Thickening-upward trend of 

sandstone beds is highlighted by white arrow. Note the erosive character of some beds in Fig. 3D, E (highlighted with small black arrows).  

— Rhythmically bedded turbidite sequences with relatively balanced sandstone–mudstone ratio in the middle and top of the outcrop (FA3). 

The lowermost part of the outcrop with mudstone dominated unit corresponds to FA4. Note the relatively sharp transition between thin-bedded 

part and medium-bedded upper part of succession. G — detailed view of very regular thin-bedded, mudstone dominated sequences typical for 

lobe distal fringe/inter-lobe environment (FA4). The scale corresponds to 10 cm.

background image

283

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

background image

284

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Apart from minor exceptions, the whole evaluated sedimen-

tary succession comprises beds which are composed of 

medium- to very fine-grained sandstone with a typical vertical 

arrangement of divisions Ta, Tb and Tc. Here continuous tran-

sition to Td and Te divisions is common. Generally, the Ta 

division usually forms the gradational interval in the turbidite 

lowermost part, especially on thicker beds. Not all beds have 

developed complete Ta–Te Bouma divisions (Fig. 4A). The beds 

(especially thicker ones) are often characterized only by Ta 

and Tb divisions with a rapid transition into siltstones and 

mudstones (Td, Te). The lower bed interfaces are sharp and 

plain mostly, rarely gently undulated (loading deformation). 

Some beds show complex internal arrangement of individual 

facies and they multiply repetitions within a single bed  

(Fig. 4B, C). This type of complex bedding shows a symmetri-

cal arrangement of divisions (Tb–Ta–Tb) (Fig. 4D). On the 

contrary, most of the thin beds (up to 3–5 cm) have developed 

the ripple lamination only (Tc). These beds often show com-

pletely preserved bedform morphology (Fig. 4E, F). Mudstones 

are layered with very thin laminae (in mm scale) of siltstone 

and/or very fine-grained sandstone frequently. They are fine 

horizontally laminated or small scale ripple laminated with 

completely preserved bedform morphology (Fig. 4G). Some 

ripple laminated beds show pinching out character, especially 

the thinner of them. In very rare cases, the beds erosive 

 cha racter may be observed with development of shallow  

scour structures as well (Fig. 4H, I). The erosive character of 

some currents indicates the presence of floating mudstone 

intraclasts (Fig. 5A) which are rarely embraced on the top  

of the sandstone bed. The base of the beds is characterized  

by relatively common small-size erosional current marks 

 

(Fig. 5B–D) and trace fossils (see Ichnofossils chapter). 

Loading and dilatation ridges are much rarer (Fig. 5E), as  

well as coalified phytodetritus on separated bedding planes 

(Fig. 5F).

Facies associations 

Within the studied sections, in the sense Prélat et al. (2009), 

the distinguished facies associations mostly correspond to the 

lobe fringe and lobe distal fringe/inter-lobe facies associations 

and to a small extent also lobe off-axis facies association  

(Fig. 3B). For easier comparison we denote the related facies 

associations  as  FA2–FA4  (identically  as  So  et  al.  2013).  

The facies association corresponding to the lobe axis (FA1) 

cannot be identified therefore, the following description 

begins with FA2.

Locally occurring sequences from the middle to upper part 

of  the  LO 1  section  (Fig.  3A)  may  represent  lobe  off-axis 

facies association (FA2). They are represented by medium- 

thick sandstone beds and balanced to slightly predominant 

ratio  of  sandstones.  (Fig.  3D, E).  In  thicker  sandstone  beds 

(>15 cm), massive bedding is the most common (ungraded to 

normally graded sandstone — Ta division). The Ta division 

within thick beds is commonly overlain by parallel-laminated 

sandstones (Tb division) or may fining upwards with rela-

tively sharp transition to siltstone and mudstone facies.  

The ripple cross-lamination (Tc division) is rather sparse in 

thick sandstone beds and is poorly developed. They form only 

thin intervals at the top of the beds, near the transitions to silt-

stones. The geometry of each bed is tabular or sheet-like and 

generally the beds have a good lateral stability. Especially 

within this facies association, beds occur with complex inter-

nal arrangement of individual facies in which multiple repeti-

tion is frequent (Fig. 4B–D), apart from the more frequent  

Ta division and rare occurrence of shallow scour structures 

(Fig. 3D, E).

The medium- to fine grain sizes of most sandstones, tabular 

geometry of beds, occurrence of medium-bedded sandstone 

with massive bedding, intercalation of thin- bedded turbidites 

with abundant Tb, Tc, and Td divisions as well as absence of 

both — some metres to tens metres thick bedseds of massive, 

frequently amalgamated thick sandstones, and large scours or 

evidence for channels suggest deposition in the lobe off-axis 

environment (Prélat et al. 2009; Prélat & Hodgson 2013; So et 

al. 2013). 

In lobe fringe facies association (FA3) mudstone beds are 

predominant (60–70 %). The main component of this facies is 

rhythmic thin-bedded sequence with sandstone and mudstone 

beds, generally ranged from several cm to tens cm in thickness 

(Fig. 3C–F). Beds are tabular or sheet-like and generally they 

have a good lateral stability. The lower bed interfaces are 

sharp with common small-size erosional current marks 

 

(Fig. 5B–C). Lobe fringe facies association comprises all 

identified sedimentary facies and the beds often show com-

plete developed Bouma divisions (Ta–Te, sensu Bouma 1962). 

However, unstructured ungraded- to normally graded sand-

stone facies is much rarer compared to others (Tb–Te divisions) 

and usually builds the rare thicker beds (up to 15–20 cm) or 

lowermost part of the thiner turbidites. The Ta division is less 

common as in the FA2. Especially thin, very fine-grained, up 

to 5 cm thick turbidites consist of Tc–Te divisions only. 

A regularly thin-bedded, rhytmic, some metres thick 

sequence with a high proportion of mudstone, thin-bedded 

finely-structured sandstone with good lateral continuity sup-

ported interpretation of FA3 as lobe fringe deposits (Prélat & 

Hodgson 2013; So et al. 2013).

Lobe distal fringe/inter-lobe facies association (FA4) is 

dominated by thin-bedded fine to very fine-grained sand-

stones, siltstones, and medium- to thick-bedded mudstones 

mainly. In this facies association, mudstones have a strong 

dominance and often make up more than 70 % of the total 

thickness of FA4. Tc–Te divisions are frequent, but the sand-

stone Ta and Tb divisions are very sporadic. This facies asso-

ciation forms shorter sequences in the whole sections but 

reaches its maximum thickness in the lowermost part of  

LO 2  where  the  mudstone  thickness  forms  up  to  120 cm  

(Fig.  3A). A  large  part  of  the  poorly  uncovered  succession 

between  LO 1  and  LO 2  sections  as  well  as  succession  at  

the Ráztoky locality probably also belong to this facies 

 asso ciation. Regularly thin-bedded, fine- to very fine-grained 

turbidites with good lateral continuity and height contents of 

background image

285

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Fig. 4. Sedimentary facies and structures. A — Lithological couple formed by fine-grained sandstone and mudstone with complete “Bouma 

sequence” (Ta–Te divisions); B, C — complex internal arrangement of bed with multiple repetition of individual facies within a bed;  

D —  symmetrical arrangement of facies in sandstone bed; E, F — ripple cross-laminated sandstone beds with completely preserved bedform 

morphology. Note the oppositely oriented lamination within separate beds (E) as well as herringbone structure in a single bed (F); G — mud-

stone with fine lamination of very fine-grained sandstone to siltstone; H, I — small-scale erosive scours (black arrows). A black field on  

the scale corresponds to 1 cm.

background image

286

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

mudstone facies support interpretation of FA4 as lobe distal 

fringe and inter-lobe with the deposition of dilute low concen-

tration turbidity currents or slow hemipelagic deposition 

(Stow & Piper 1984).

Paleocurrent analysis 

The typical features of the thin- to medium-bedded, fine-

grained turbidity sequences are paleocurrent indicators such  

as oriented erosive structures on the bed soles (e.g., frondes-

cent marks, flute marks, longitudinal furrows, ridges and  

tool marks (Fig. 5B–D) and current ripple cross-lamination. 

Paleocurrent data derived from the lower bedding plane struc-

tures, provide general flow orientation SW–NE with transport 

in a NE direction (Fig. 6). These indicators show relatively 

small variation and orientation remains constant throughout 

the whole studied section. Paleocurrent data derived from rip-

ples shows a more significant variability with transport in  

a SE–NE direction. Rarely, some current ripples show mea-

surements of contra-directional orientation with transport NW 

direction. These contradictory ripple laminations occur within 

separate beds (Fig. 4E) or oppositely oriented parts of lamina-

tions within cross-bedded layers where herringbone cross- 

stratification has formed (Fig. 4F).   

Fig. 5. Structures on bedding planes. A — Sandstone molds of weathered mudstone intraclasts; B — flute casts; C — small scale of tool marks, 

a non-defined circular structure in the upper right part of the figure is probably of mechanical origin, similar to the impact or impress structure; 

D — frondescent marks (black arrows on the pictures indicate the direction of paleoflows); E — loading and dilatation ridges on the lower 

bedding plane; F — coalified plant detritus in sandstone. A black field on the scale corresponds to 1 cm.

background image

287

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Bed thickness statistical analysis 

The sections consist of rhythmic, predominantly thin- to 

medium-bedded successions which differ mainly by ratio of 

sandstone (LO 1: 44.5 %, LO 2: 24.2 %) and mudstone beds 

(LO 1: 55.5 %, LO 2: 75.8 %). The vertical arrangement of all 

beds from both sections, as well as the variability in sand-

stone–mudstone proportion, is depicted in Fig. 3.

Beds have variable thickness up to 50 cm (Figs. 3A, 7A). 

Only a few mudstone beds reach greater thicknesses (60– 

120 cm) in the lowermost part of the LO 2 section.

Boxplots and histograms show thickness distributions (both 

sandstone and mudstone divisions) of the beds among indivi-

dual profiles (Fig. 7A, B). The average thicknesses of turbidite 

sandstone facies are 5.4 cm (LO 1 section) and 3.6 cm (LO 2 

section). In the LO 1 section sandstone beds with thicknesses 

smaller than 5 cm are most frequent. 50 % of the beds range 

between 2 and 6 cm. Mudstones from this profile are repre-

sented mostly by beds thinner than 6 cm. In contrast, the LO 2 

section is characterized by thin rhythmically repeating sand-

stone beds of which 50 % are between 1.5 to 5 cm. Mudstone 

variability is higher here and 50 % of mudstone thicknesses 

range between 4 and 14 cm. Frequency distributions are right 

skewed and show higher proportions of small beds and beds 

thicker than 10 or 15 cm are rare. 

Generally, beds show noncyclic vertical organization or 

only low-expressive vertical organization into small-scale 

series with upward thickening of sandstone beds. Bed thinning 

tendency is less common. Autocorrelation of coarse grained 

divisions also shows relatively weak periodicity on 16

th

, 18

th

 

and 27

th

  beds  in  LO 1  section  and  on  every  4

th

  bed  in  LO 2 

section (Fig. 7C). Other bed periodicity signals are 

insignificant. However, vertical patterns in bed arrangement 

of some few metres thick units show a clear upward thicken-

ing tendency (Fig. 3E, F).

The cumulative distribution of the complete coarse-division 

thicknesses from both profiles has an almost linear shape  

(Fig. 7D). Cumulative distributions on logarithmic scales y 

and x axes correspond to frequent occurrence of well defined 

thin  turbidites  in  succession  (Fig.  3A).  Rare  occurrence  of  

a few thicker beds within the profile affects the line and bends 

its upper part slightly. 

The Hurst coefficient was used to verify assumed interpreta-

tions of the depositional paleoe-nvironment (Chen & Hiscott 

1999). The  K  (0.69–0.73)  and  D  (1.9–3.8)  values  of  coarse 

division thicknesses and their percentage within the Liptovská 

Ondra šová sections are located in a narrow field near the inter-

face of basin-floor sheet sand and lobe-interlobe deposits  

(Fig. 7E).

Ichnofossils 

Trace fossils found in the outcrops studied belong to 11 

ichno species.

Arenicolites Salter, 1857

Arenicolites isp. (Fig. 8)

Arenicolites isp. was observed as a vertically oriented 

U-shaped burrow without wall. Pairs of openings on the bed-

ding planes have the same diameters, but it also has sparsely 

dimorphic morphology. Diameters of sectioned burrows attain 

2.5 to 3.7 mm. Depth of U-shaped burrows is up to 13 mm. 

Distances between pair opening vary between 7 to 14 mm. 

Burrow is relatively shallow. Arms of U-shaped burrow are not 

parallel but are slightly divergent. Arenicolites and Saerichnites 

burrows have the same range of diameters, which may imply 

that Arenicolites represents initial form of Saerichnites burrow 

system. This trace fossil belongs to domichnion, producer is 

thought to be suspension and/or deposits feeder polychaetes 

(Bromley 1996) and amphipod crustaceans (Baucon et al. 

2014) in marine environment.

Arthrophycus Hall, 1852

Arthrophycus cf. tenuis (Książkiewicz, 1977) (Fig. 9A)

A. cf. tenuis was observed as hypichnial tiny sickle-shaped 

burrows with the tapered ends. Branching to bunch-shaped 

burrows were rare. The most typical forms of this ichnogenus 

are arranged into bundles but it is not typical of A. cf. tenuis at 

this locality. The trace fossil occurs on sole of bedding plane 

with occasionally occurrence of bioglyphes striae, which are 

oriented transverse through the trace fossil (modified accor-

ding to Uchman 1998).  A. cf tenuis has relatively high 

 abundance in the lower part of described succession at the 

locality Liptovská Ondrašová. Arthrophycus is considered to 

be fee ding burrows of arthropods and polychaetes (Seilacher 

2007).

Fig. 6. Paleocurrent data derived from oriented erosive structures on 

the lower sides of the beds (white: orientations, dark-grey: directions) 

and current ripple cross-lamination (light-grey).

background image

288

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Fig. 7. Results of statistical analysis. A — Sandstone and mudstone division-thicknesses frequency distribution among individual sections;  

B — frequency analysis of sandstone as well as mudstone bed thicknesses within individual sections; C — time series analysis shows rela-

tively weak periodicity within both sections. ACF — autocorrelation, Lag — the time lags; D — cumulative distribution of the sandstone 

thicknesses. The shape of line of cumulative distribution best corresponds with outer fan environment (cf. Carlson & Grotzinger 2001).  

E — Plot of Hurst K of an original succession against the deviation from mean K of the shuffled succession of individual sections (modified 

on the basis of the plot of Chen & Hiscott 1999).

background image

289

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Bergaueria Prantl, 1947

Bergaueria hemispherica Crimes et al. 1977 (Fig. 9B)

B. hemispherica is presented as a hypichnial knobby hemi-

spherical symmetrical to slightly asymmetrical trace fossil 

without central depression. Height of observed Bergaueria 

attains 14 mm and its diameter is up to 36 mm. B. hemisphe­

rica surface is smooth, occasionally concentric patterns pro-

bably reflected boundaries of surrounding layers of mud or 

sandstone. Producers of Bergaueria are thought to be sea 

anemones (Bromley 1996).

Helminthopsis Heer, 1877

Helminthopsis tenuis Książkiewicz, 1968 (Fig. 9C)

Helminthopsis tenuis was observed as unbranched relatively 

long hypichnial, horizontal, cylindrical, wide, shallow, mean-

der, 1 mm thick. This trace fossil occurs in shallow-marine to 

deep-sea facies, commonly in turbiditic deposits. Systematic 

revision of this ichnogenera (Wetzel & Bromley 1996; Uchman 

1998) shows relatively wide variability within several ichno-

species. Producer of Helminthopsis probably belongs to poly-

chaetes or priapulids (Fillion & Pickeril 1990). H. tenuis is 

relatively rare and it has been found at the Liptovská Ondrašová 

locality only.       

Laevicyclus Quenstedt 1881

Laevicyclus isp. (Fig. 9D)

Only one specimen of this structure has been found on  

the sole bed. Provisionally without further samples it was 

assigned to Laevicyclus isp. It is consisted of two concentric 

circles. Outer circle attains diameter 6 mm and inner circle has 

2.5 mm. Width of the circle strings is 0.3 mm. Central knob 

0.9 mm in diameter with short string is situated inside the inner 

circle. However circular structures can be reflected 

Bathy siphon test scratch marks circular-shape mechanogly-

phes also (Uchman & Rattazzi 2013).

Paleodictyon Meneghini 1850

Paleodictyon minimum Sacco 1888 (Fig. 9E)

P. minimum is typical of tiny mesh size that attains 2–2.2 mm. 

Measured string diameters are in the range 0.47 to 0.56 mm.  

A poorly preserved fragment of one specimen was found on 

the sole bed. Structure of ichnogenus Paleodictyon is charac-

terized as shafts which run up from the middle of tunnels 

between the corners or from the point of corners of horizon-

tally oriented hexagonal mesh to the sea bottom (Rona et al. 

2009, fig. 8; Seilacher 2007, plate 55). Paleodictyon ichnotaxo-

nomical summary revision has been provided by Uchman (1995). 

Planolites Nicholson 1873

Planolites montanus Richter 1937 (Fig. 9F)

Planolites occurs as simple not branched burrows with 

smooth surface which are elliptical or circular in cross section. 

Diameter of observed burrows attains 0.9 to 1.2 mm and  

30 mm length. This morphologically simple burrow is typical 

of cross-facies trace fossils (Fillion & Pickeril 1990).   

Saerichnites Billings 1866

Saerichnites isp. (Fig. 9G,H)

This trace fossil has frequently been found on the upper bed 

surface as a view of sections of two rows of circular or semi-

circular weathered pits or positively weathered vertical or 

oblique burrows. Diameter of sectioned burrows arranged in 

the rows and it attain 2.4 to 3.2 mm in diameter. Morphology 

of such sectioned burrow can be interpreted by two ways:  

(i) horizontal burrow with branched shaft, or (ii) horizontally 

spiralled burrow (Uchman 1995, 1998; Fürsich et al. 2006). 

Fig. 8. Arenicolites isp. from the Ráztoky locality. Perpendicular section with weathered U-shaped burrow of Arenicolites isp. Several sectioned 

burrows on the bedding surface are visible.

background image

290

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

background image

291

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

This form of traces can be assigned into pearl string traces like 

Hormosiroidea,  Margaritichnus,  Nereites,  Parahaentzsche­

linia and Ctenopholeus (Uchman 1995; Fürsich et al. 2006).      

Scolicia De Quatrefages 1849

Scolicia strozzii (Savi & Meneghini 1850) (Fig. 9I)

At Liptovská Ondrašová relatively frequented trace fossils 

occurring on sole beds. It has double parallel ridge morpho-

logy. Diameter of specimen is in the range 12 to 20 mm. 

Diameter  of  the  lobes  is  3  to  6  mm.  Lobes  of  ridges  are 

semi-circular in cross-section. Meandering, diameter of trace 

fossil and lobe is often changing in the same specimen 

(Uchman 1995).  Abundance of S. strozzii is low but it occurs 

on the Liptovská Ondrašová and Ráztoky localities. Scolicia is 

produced by irregular echinoids with double drainage tube 

assigned to the Spatangus group (Uchman 1995; Gibert & 

Goldring 2008).

Strobilorhaphe Książkiewicz, 1968

Strobilorhaphe clavata Książkiewicz, 1968 (Fig. 9J)

Strobilorhaphe  clavata has hypichnial branched burrow 

with numerous laterally arranged cone shaped chambers. 

Length of the chamber attains 7.2 mm and the width is from  

3 to 3.3 mm. Diameter of the burrow is unclear because it is 

covered  by  lateral  clavate  chambers.  Książkiewicz  (1977) 

noted that the burrow is 2 mm wide. Common abundance of  

S. clavata is registered only at the locality Ráztoky.   

Thalassinoides Ehrenberg 1944

Thalassinoides suevicus (Rieth 1932) (Fig. 9K)

Thalassinoides burrows are visible with Y-shaped branching 

on the lower bed surface. Burrows are elliptical to circular in 

cross section, 12–18 mm wide. Thalassinoides are assigned 

into groups of thalassinidean shrimp and part of callianassids 

mostly, which construct open burrow (Bromley 1996). A lot  

of fragments of Thalassinoides have been found at the  

L. Ondrašová locality. 

Meandered sinusoidal trace fossils (Fig. 9L)

Width of burrow is 0.9 to 1.8 mm. Wavelength attains  

13.4 mm and amplitude is 3.1 mm. This form of trace is rare 

and only one has been found on bedding sole at the Ráztoky 

locality. This type of trace can be attributed to fragments of 

meandered traces (e.g., ProtopaleodictyonBelorhaphe).   

In addition to trace fossils and sole marks the rare body fos-

sils were also found on the sandstone surfaces (Fig. 10A–D).

Calcareous nannofossils 

All samples (for sample distribution see Fig. 3A) were posi-

tive and rich in calcareous nannofossils. Calcareous nannofos-

sil preservation is moderate — mechanical damage, etching of 

the specimens is weak. The abundance of the calcareous nan-

nofossils is moderate — about 10 specimens per field of view 

of the microscope.

The majority of the assemblage is composed of allochtho-

nous species, Cretaceous and Eocene age.

Cretaceous species which were found: Arkhangelskiella 

cymbiformis, Cyclagelosphaera reinhardtii, Chiastozygus cf. 

trabalis, Eiffelithus eximius, Lucianorhabdus sp., Micula sp.

Zeugrhabdotus embergeri, Watznaueria barnesae, Watz­

naueria manivitae.

Species that occur only in Eocene strata were found: 

Discoaster barbadensis, Discoaster multiradiatus, Discoaster 

saipanensis, Chiasmolithus grandis, Neococcolithus dubius, 

Tribrachiatus contortus.

A large part of the assemblage comprised species with their 

first occurrence in the Eocene and also they occur in Oligocene 

strata: Chiasmolithus altus, Chiasmolithus oamaruensis, Cycli­

cargolithus floridanus, Dictyococcites bisectus, Discoaster 

nodifer, Helicosphaera bramlettei, Helicosphaera compacta, 

Isthmolithus recurvus, Lanternithus minutus, Pontosphaera 

latelliptica, Reticulofenestra hillae, Reticulofenestra moorei, 

Reticulofenestra umbilicus, Sphenolithus radians,  Trans ver­

sopontis pulcher (Fig. 11)

Biostratigraphically significant species with their first 

occurrence in the Oligocene (see Fig. 11 and Table 2): Cycli­

cargolithus abisectus, Helicosphaera recta, Reticulofenestra 

lockeri, Reticulofenestra ornata, Sphenolithus dissimilis. They 

formed the smallest part of the nanno-assemblage. 

On the basis of the detected nano-assemblage the Lower 

Oligocene  age  of  the  samples  was  determined.  The  NP23 

Zone (Rupelian age) was determined by the species Reti­

culofenestra lockeri, Reticulofenestra ornata, Helicosphaera 

recta, Sphenolithus dissimilis, Chiasmolithus altus, Trans­

versopontis pulcher and Cyclicargolithus abisectus

Fig. 9. Trace fossil assemblage of the Liptovská Ondrašová and the Ráztoky localites. A — Sole bed with tiny scratchy like hypichnial lines of 

Arthrophycus tenuis (L. Ondrašová); B — Bergaueria hemispherica presents natural casts of biologically originated depressions that are situa-

ted on the sole beds. Upper and side views (Ráztoky); C — slim (up to 1 mm in diameter) unbranched irregularly meandered Helminthopsis 

tenuis occurs as a hyporelief (L. Ondrašová); D — rarely occurring hypichnial questionable specimen of Laevicyclus isp., this structure can be 

interpreted as scratch circle-shaped marks also (sensu Uchman and Rattazzi, 2013), (Ráztoky); E — poorly preserved Paleodictyon minimum 

on sole bed (Ráztoky); F — hypichnial, unbranched Planolites montanus is pointed by arrows. Trace in the right corner of the picture belongs 

to Thalassinoides (L. Ondrašová); G, H — vertical to subvertical oriented burrows arranged in the double rows of Saerichnites isp. on upper 

bedding surface (Ráztoky); I — hypichnial Scolicia strozzii double line traces produced by irregular sea urchins (L. Ondrašová); J — branched 

hypichnial burrow of Strobilorhaphe clavata with magnified part of triangular shaped tiny chambers (Ráztoky); K — Thalassinoides suevicus 

with Y-shaped branched burrows, swollen in area of branching, sole bed (L. Ondrašová); L — regularly meandered hypichnial fragmented trace 

fossil rare occurs on the Ráztoky locality.

background image

292

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Cycli cargolithus  abisectus was found only in the sample 

Lo-21 and first occurrence of this species is biostratigrafical 

significant  for  the  NP23/24  Zone  boundary  (Perch-Nielsen 

1985; Young 1998). 

In six samples from non-profiled exposures (Ráztoky 

 

loca lity)  Isthmolithus recurvus was indicated. It determines 

the lower part of the NP 23 Zone. The species Isthmolithus 

recurvus has the last occurrence in the Zone NP 23 (Perch-

Nielsen 1985; Young 1998) (see Table 2).

Discussion

Most of the beds studied have the character of deposition 

from sandy high- to low density turbidity currents with typical 

vertical development of Bouma divisions. However, some 

beds show the repeated or symmetrical arrangement of indi-

vidual facies within a single bed which should be caused by: 

hidden amalgamation in short successive turbidities or it is a 

reflection of waxing vs. waning processes in pulsating flows. 

The second case is more characteristic of turbulent hyper-

pycnal flows. However, frequent phytodetritic material as  

a characteristic diagnostic feature of hyperpycnites (if present 

in the source material, e.g., Zavala et al. 2012) was not 

observed here. Although the presence of phytodetritus was 

recorded in some sandstones (Fig. 5F) its occurrence is rather 

rare compared to other localities of the Zuberec Formation (cf. 

Starek & Fuksi 2017a,b; Kotulová et al. 2019). 

The facies associations distinguished on the basis of the pre-

dominant sedimentary facies, sandstone bed thickness and 

proportion of mudstone facies have a close affinity to different 

components of distributive lobe deposits in a turbidity fan 

system. The mud-dominant zone (including the lowermost 

part of LO 2) may correspond to the interlobe environment in 

the outer fan lobes but also may indicate either starvation of 

the basin or reduction of the sediment input to the basin’s 

deeper part, probably related to relative sea-level rise (Johnson 

et al. 2001; Prélat et al. 2009; Grundvag et al. 2014). Frequent 

alternation of individual facies associations can be interpreted 

as a result of random shifting of lobe elements due to intra-

basinal factors such as depositional topography (autogenic 

compensation processes), fan-channel switching, channel 

bifurcation and avulsion of channel or lobe shifting. On the 

basis of identified facies associations it is possible to interpret 

the sedimentary record of the studied outcrops as distal lobe 

deposits in an outer fan environment. This interpretation was 

also supported by the results of Hurst statistics which show 

that coarse division thickness and coarse division thickness 

percentage values define the environment as basin-floor sheet 

sand near the interface with lobe-interlobe deposits. Greater 

dissipation  of  values  of  the  LO 1  section  located  symmetri-

cally around the border between basin-floor sheet sand and 

lobe interlobe deposits is caused by occurrence of a few 

thicker beds in the dataset. Coarse division thickness percen-

tage represents harmonized data which minimize the effect of 

these thicker beds occurrence. The almost linear shape of 

cumulative distribution can also be correlated with the outer 

fan environment, not affected by significantly thicker amalga-

mated beds of the lobe axis and channels (Carlson & Grotziger 

2001).

The identified trace fossils Arthrophycus cf. tenuisScolicia 

strozziiStrobilorhaphe clavataThalassinoides suevicus from 

the Liptovská Ondrášová sections can be interpreted as a typi-

cal association for a turbidite depositional system of 

Fig. 10. Body fossils. A — Shark vertebra; B — circular fragment of a bone on the upper bed surface with shale rip-up clasts; C — fish scale; 

D — rib bone fragment; B–D scale in millimetres.

background image

293

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

archety pal  Cruziana ichnofacies (Seilacher 1967; Knaust & 

Bromley 2012; MacEachern et al. 2007). This assemblage can 

be  situated in the area of the turbidite sedimentary system of 

depo sitional lobes. Traces described within the Ráztoky loca-

lity section such as Arenicolites isp., Bergaueria hemisphe­

ricaSaerichnites isp. and questionable finds of Paleodiction 

minimum, fragments of sinusoidal graphoglyptids and 

Laevicyclus isp. present significant change of the ichnoassem-

blage. This change can be summarized as a change from  

an association of deposit feeders (e.g., Helminthopsis tenuis

Planolites montanusScolicia strozziiThalassinoides suevi­

cus) to an association of shallow domichnia (Arenicolites isp., 

Bergaueria hemispherica,  Saerichnites  isp. that occupy the 

sub strate to depths of 13–14 mm) and form traces of bottom 

surface association (Paleodictyon minimum and sinusoidal 

fragments of graphoglyptids). With regard to the thin layered 

lithology of the upper part of the studied section and occur-

rences of graphoglyptid fragments, this ichnoassemblage can 

be approximately compared with fan-fringe facies of 

Paleodictyon–Nereites subichnofacies (sensu Uchman 2007) 

with unusual association of Arenicolites isp., Bergaueria 

 hemispherica and Saerichnites isp.  

The predominantly thin-bedded development of turbidite 

sequences identified at the Liptovská Ondrášová and Ráztoky 

localities is characteristic rather for the facies association of 

the distal parts of the sandy fan. However, the available data 

from other parts of the CCPB point to a much greater varia -

bility of facies and facies associations within deposits of  

the Zuberec Formation (cf. Soták 1998; Starek & Fuksi 

2017a,b). This variability can also be observed within 

 

the Liptov Depression itself. Especially in the middle to eas-

tern part of the depression (in a wider area near settlements of 

Fig. 11. Calcareous nannofossils from Liptovská Ondrašová and Ráztoky locations. 1, 2 — Reticulofenestra lockeri, samples: Lo-11, Lo-31;  

3, 4 — Chiasmolithus altus, sample: Lo-21; 5 — Dictyococcites bisectus , sample: Lo-21; 6 — Isthmolithus recurvus, sample: Ráztoky 3;  

7 — Discoaster nodifer, sample: Lo-14; 8 — Sphenolithus dissimilis, sample: Lo-12; 9  — Cyclicargolithus floridanus, sample: Lo-12;  

10 — Lanternithus minutus, sample: Lo-21; 11 — Helicosphaera recta, sample: Lo-24; 12 — Helicosphaera bramlettei, sample: Lo-33;  

13 — Transversopontis pulcher, sample: Lo-31; 14, 15 — Reticulofenestra ornata, samples: Lo-21, Lo-29; 16 — Cyclicargolithus abisectus

sample: Lo-15; 17 — Reticulofenestra moorei, sample: Lo-21; 18 — Reticulofenestra umbilicus, sample: Lo-21; 19 — Reticulofenestra hillae

sample: Lo-21; 20 — Pontosphaera latelliptica, sample: Lo-7.

background image

294

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

the  Gôto vany,  Bodice,  Bobrovček,  Bobrovec,  Pavlová  Ves, 

Liptovská Kokava and Liptovský Mikuláš town) there are tens 

of metres thick turbidity sequences with a slight mudstone 

predominance and similar sediment development to the out-

crops stu died. On the other hand, in other locations such as the 

Likavka–Ružomberok area and in the area of the Liptovská 

Mara Dam wall, the sequences of the Zuberec Formation have 

the character of medium- to thick-bedded turbidites with up to 

1m thick massive sandstones (Gross et al. 1980). On the 

Liptovský Ondrej locality these turbidite sequences associate 

with the conglomerates of incised submarine slump. The varia-

bility of facies and facies associations within the Zuberec 

Formation is probably related to the position of the deposits 

studied within the depositional fan architecture and their spa-

tial migration during the sequential-stratigraphic development 

of the CCPB.

The paleoecological evaluation of the nannofossil assem-

bla 

ge was done on the basis of autochthonous species. 

 

The majo rity of the autochthonous assemblage was formed by 

tem  perate-water  species  like  Cyclicargolithus, Reticulo­

fenestra, Dictyococcites, Cocolithus. Warm water species 

such as Discoasters, Sphenolithus, Helicosphaera are very 

rare. Cold water species such as Reticulofenestra lockeri and 

Reticulofenestra ornata also occurred in small numbers. 

Reticulofenestra lockeri and Reticulofenestra ornata are 

endemic species which tolerated hyposaline waters (Báldi-

Béke 1984; Nagymarosy & Voronina 1992). This paleoeco-

logical condition is typical for the NP23/24 Zone (Báldi-Béke 

1984; Nagymarosy 1990; Soták 2010). 

Paleocurrent measurements point to the main transport of 

the material from SW and W which is generally consistent 

with the measurements of paleocurrents in the Orava–Podhale 

part of the CCPB (cf. Marschalko & Radomski 1960; Starek 

2001; Starek & Fuksi 2017a). Uniform paleotransport mode 

suggests that the Liptov and Orava–Podhale sub-basins for-

med one sedimentary area without distinctive segmentation 

during the Oligocene. Rare opposite oriented paleocurrent 

indicators could be dimensions which occur in confined basins 

bounded by tectonic slopes or which would indicate feeding of 

depositional lobes from several sources. However, the scarcity 

of these results, as well as the fact that these paleocurrent data 

were derived from ripples, point rather to the combined flows 

and possible reworking of sandy fine-grained turbidites 

through  bottom  currents  (e.g.,  Shanmungam  et  al.  1993; 

Martín-Chivelet et al. 2008).

Conclusions

The facies associations we have distinguished represent dif-

ferent components of distributive lobe deposits in a turbidite 

fan system. They correspond mainly to the lobe fringe and 

lobe distal fringe/inter-lobe facies associations with the local 

occurrence of medium bedded sequences corresponding to the 

lobe off-axis facies association. The interpretation as outer fan 

environment with basin-floor sheet sand near the interface 

with lobe–interlobe deposits was also supported by Hurst sta-

tistics and the shape of cumulative distribution. Relatively 

frequent alternation of individual facies associations within 

the evaluated sedimentary sections could be interpreted as 

a result of random shifting of depositional lobe elements and 

sedimentary facies. 

An environment with turbidite deposition also generally 

corresponds to the identified trace fossil association of 

deep-tiering fodinichnia and domichnia up to shallow-tiering 

graphoglyptid traces.

The Rupelian age of the sedimentary sections near the 

Liptovská Ondrašová and Ráztoky localities was determined 

on the basis of the nanoassemblage detected. 

Measurement of paleocurrents shows transport of material 

mainly from the SW and W. It is generally consistent with  

the paleotransport in Orava and Podhale, pointing to one sedi-

mentation area without distinctive segmentation during 

 

the Oligocene.  

Table 2: Distribution of nannofossils in the Liptovská Ondrašová and 

Ráztoky outcrops with indications of important index species for 

biostratigraphic classification of the Oligocene formations.

background image

295

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Acknowledgements: This work was supported by the scien-

tific grant agency of the Slovak Republic (Vega 2/0014/18) 

and Slovak Research and Development Agency under the con-

tract No. APVV-14-0118. The authors are grateful to Ivana 

Koubová (Earth Science Institute of the SAS, Bratislava) for 

language correction. Thanks are also extended to Jozef 

 Michalík (Earth Science Institute of the SAS, Bratislava), 

 Alfred Uchman (Jagiellonian University, Kraków), Ľubomír 

Sliva (Nafta a.s., Bratislava) and an anonymous reviewer for 

the detailed review of the manuscript and constructive com-

ments.

References

Arthur M.A., Dean W.E. & Stow D.A.V. 1984: Models for the depo-

sition of Mesozoic–Cenozoic fine-grained organic–carbonrich 

sediment in the deep sea. In: Stow D.A.V. & Piper D.J.W. (Eds.): 

Fine-grained sediments: Deep-water processes and facies. Geo­

logical Society of London Special Publications 15, 527–560.

Báldi-Béke M. 1984: The nannoplankton of the Transdanubian Paleo-

gene formations. Geologica Hungarica, Series Paleontologica 

Institutum Geologicum Hungaricum Budapestini 43, 1–223.

Baráth I. & Kováč M. 1995: Systematics of gravity-flow deposits in 

the marginal Paleogene formations between Markušovce and 

Kluknava villages (Hornád Depression). Mineralia Slovaca, 

 Geovestník 27, 1–6 (in Slovak).

Baucon A., Ronchi A., Felletti F 

 

 2014: Evolution of crustaceans at 

the edge of the end-Permian crisis: ichnonetwork analysis of the 

fluvial succession of Nurra (Permian–Triassic, Sardinia, Italy). 

Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 74–103.

Biely A.,  Bezák V.,  Elečko  M.,  Kaličiak  M.,  Konečný V.,  Lexa  J., 

Mello J., Nemčok J., Potfaj M., Rakús M., Vass D., Vozár J. & 

Vozárová A. 1996: Geological Map of Slovakia (1:500,000). 

Geological Survey of Slovak Republic, Bratislava.

Bouma A. H. 1962: Sedimentology of Some Flysch Deposits. Elsevier

Amsterdam, 1–168.

Bromley R.G. 1996: Trace Fossils. Biology, taphonomy and applica-

tions. Second edition. Chapman & Hall, 1–361.

Carlson J. & Grotzinger J.P. 2001: Submarine fan environment in-

ferred from turbidite thickness distributions. Sedimentology 48, 

1331–1351.

Chen Ch. & Hiscott R.N. 1999: Statistical analysis of facies clustering 

in submarine-fan turbidite successions. J. Sediment. Res. 69, 

505–517.

Filipek A., Wysocka A & Barski M. 2017: Depositional setting of the 

Oligocene sequence of the Western Carpathians in the Polish 

Spisz region — a reinterpretation based on integ rated palyno-

facies and sedimentological analyses. Geol. Quarterly 61, 4, 

859–876.

Fillion D. & Pickerill R.K. 1990: Ichnology of the Upper Cambrian? 

To Lower Ordovician Bell Island and Wabana groups of eastern 

Newfoundland, Canada. Palaeontographica Canadiana  7,  119.   

Filo I. & Siráňová Z. 1996: The Tomášovce Member — a new litho-

stratigraphic unit of the Subtatric Group. Geologicke Práce, 

Správy 102, 41–49 (in Slovak with English summary).

Filo  I.  &  Siráňová  Z.  1998:  Hornád  and  Chrasť  Member  —  new 

 regional lithostratigraphic units of the Sub-Tatric Group. Geo­

logické Práce, Správy  103,  35–51  (in  Slovak  with  English 

 summary).

Fürsich F.T., Wilmsen M. & Seyed-Emami K. 2006: Ichnology of 

Lower Jurassic beach deposits in the Shemshak Formation at 

Shahmirzad, southeastern Alborz Mountains, Iran. Facies 52, 

599–610.

Garecka M. 2005: Calcareous nannoplankton from the Podhale 

Flysch (Oligocene–Miocene, Inner Carpathians, Poland). In: 

Tyszka  J.,  Oliwkiewicz-Miklasińska  M.,  Gedl  P.  &  Kaminski 

M.A. (Eds.): Methods and Applications in Micropalaeontology. 

Studia Geologica Polonica 124, 353–369.

Gedl P. 2000: Biostratigraphy and palaeoenvironment of the 

 

Podhale Palaeogene (Inner Carpathians, Poland) in the light  

of palynological studies. Studia Geologica Polonica  117,  

155–303.

Geological map of Slovakia M 1:50,000 [online] 2013 [Geologická 

mapa Slovenska M 1:50 000]. Štátny geologický ústav Dionýza 

Štúra, Bratislava. http://apl.geology.sk/gm50js.

Gibert J.M. de & Goldring R. 2008: Spatangoid-produced ichnofab-

rics (Bateig Limestone, Miocene, Spain) and the preservation of 

spatangoid trace fossils. Palaeogeogr. Palaeoclimatol. Palaeo­

ecol. 270, 299–310. 

Golab J. 1959: On the geology of the western Podhale flysch area. 

Biul. Inst. Geol., Warszawa, 1–149. 

Gross P. 2008: Lithostratigraphy of Western Carpathians: Paleogene 

— Podtatranská Group. Štátny Geologický Ústav D. Štúra

 Bratislava, 1–78 (in Slovak with English summary).

Gross P., Köhler E., Biely A., Franko O., Hanzel V., Hricko J., Kupčo G., 

Papšová J., Priechodská Z., Szalaiová V., Snopková P., Stránska M., 

Vaškovský I. & Zbořil Ľ. 1980: Geology of Liptovská kotlina 

depression [Geológia Liptovskej kotliny]. Štátny Geologický Ústav 

D. Štúra, Bratislava, 1–242 (in Slovak with English summary).

Gross P., Köhler E. & Samuel O. 1984: A new lithostratigraphic divi-

sion of the Inner-Carpathian Paleogene. Geologické Práce, 

Správy 81, 113–117 (in Slovak with English summary).

Gross P., Köhler E., Mello J., Haško J., Halouzka R., Nagy A., Kováč P., 

Filo I., Havrila M., Maglay J., Salaj J., Franko O., Zakovič M., 

Pospíšil L., Bystrická H., Samuel O. & Snopková P. 1993: Geo-

logy of Southern and Eastern Orava [Geológia Južnej a Východ-

nej Oravy]. Geologický Ústav D. Štúra,  Bratislava,  1–319  (in 

Slovak).

Grundvag S.A., Johannessen E.P., Helland-Hansen W. & Plink-

Björklund P. 2014: Depositional architecture and evolution of 

progradationally stacked lobe complexes in the Eocene Central 

Basin of Spitsbergen. Sedimentology 61, 535– 569.

Haq B.U. & Lohmann G.P. 1976: Early Cenozoic calcareous nanno-

plankton biogeography of the Atlantic Ocean. Marine Micro­

paleontology 1, 119–197.

Hurst H.E. 1951: Long-term storage capacity of reservoirs. 

 

Trans ac tions of the American Society of Civil Engineers 116, 

770–808.

Hurst H.E. 1956: Methods of using long-term storage in reservoirs. 

Proceedings of the Institution of Civil Engineers 5.5, 

 

519–543.

Jach R., Gradzinski M. & Hercman H. 2016: New data on pre-Eocene 

karst in the Tatra Mountains, Central Carpathians, Poland. Geol. 

Quarterly 60, 2, 291–300.

Janočko J. & Jacko S. 1999: Marginal and deep-sea deposits of Cen-

tral-Carpathian Paleogene Basin, Spiš Magura region, Slovakia: 

implication for basin history. Slovak Geological Magazine 4, 

281–292.

Johnson S.D., Flint S.S., Hinds D. & Wickens H.D.V. 2001: Anatomy 

of basin floor to slope turbidite systems, Tanqua Karoo, South 

Africa: sedimentology, sequence stratigraphy and implications 

for subsurface prediction. Sedimentology 48, 987–1023.

Jopling A.V. & Walker R.G. 1968: Morphology and origin of rip-

ple-drift cross-lamination, with examples from the Pleistocene 

of Massachusetts. J. Sediment. Petrol. 38, 971–984.

Kázmér M., Dunkl I., Frisch W., Kuhlemann J. & Ozsvárt P. 2003: 

The Palaeogene forearc basin of the Eastern Alps and Western 

Carpathians: subduction erosion and basin evolution. J. Geol. 

Soc.  160, 413–428.

background image

296

STAREK, ŠIMO, ANTOLÍKOVÁ and FUKSI

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Knaust D. & Bromley R. 2012: Trace Fossils as Indicators of Sedi-

mentary Environments. Developments in Sedimentology 64, 

1–924.

Kotulová J., Starek D., Havelcová M. & Pálková H. 2019: Amber  

and organic matter from the late Oligocene deep-water 

 

deposits of the Central Western Carpathians (Orava– 

Podhale Basin). International Journal of Coal Geology 207, 

96–109.

Kováč M., Plašienka D., Soták J., Vojtko R., Oszczypko N., Less Gy., 

Ćosović  V.,  Fügenschuh  B.  &  Králiková  S.  2016:  Paleogene 

 palaeogeography and basin evolution of the Western Carpathi-

ans, Northern Pannonian domain and adjoining areas. Global 

Planet. Change 140, 9–27.

Książkiewicz M. 1977: Trace fossils in the flysch of the Polish Car-

pathians. Palaeontologia Polonica 36, 1–208.

Kulka A. 1985:  Arni sedimentological model in the Tatra Eocene. 

Geol. Quarterly 29, 31–64.

MacEachern J.A., Pemberton S.G., Gingras M.K. & Bann K.L. 2007: 

The ichnofacies paradigm: a fifty-year retrospective. In: Miller 

W., III, (Ed.): Trace Fossils. Concepts, Problems, Prospects. 

 Elsevier, Amsterdam, 52–77.

Marshalko R. 1970: The research of sedimentary textures, structures, 

and palaeocurrent analysis of basal formations (Central Western 

Carpathian Paleogene, N of Spišsko-gemerské rudohorie Mts.). 

Acta Geologica et Geographica Universitatis Comenianae 19, 

129–163.

Marschalko R. & Radomski A. 1960: Preliminary results of investiga-

tions of current directions in the fysch basin of the Central 

 Car pathians.  Annales Societatis Geologurum Poloniae  30,  3, 

259–272.

Martini E. 1971: Standard Tertiary and Quaternary calcareous nanno-

plankton zonation. In: Proc. of the II. Planktonic Conference, 

Roma, 739–785.

Martín-Chivelet J., Fregenal-Martínez M.A. & Chacón B. 2008: 

 Traction structures in contourites  In: Rebesco M. & Camer-

lemghi A. (Eds.): Contourites. Developments in Sedimentology 

60, 159–182.

Mulder T. & Alexander J. 2001: The physical character of subaqueous 

sedimentary density flows and their deposits. Sedimentology 48, 

269–299.

Mutti E. 1992: Turbidite sandstones. AGIP, Istituto di Geologia, Uni­

versita` di Parma, 1–275.

Nagymarosy A. 1990: Paleogeographical and paleotectonical outlines 

of some intracarpathian Paleogene basins. Geologický Zborník 

— Geologica Carpathica 41, 3, 259–274. 

Nagymarosy A. & Voronina A.A. 1992: Calcareous nannoplankton 

from the Lower Maykopian Beds (Early Oligocene, Union of 

Independent States). In: Harmšmid B. & Young J. (Eds.): 

 Nannoplankton  research.  Proc. 4th INA Conference, Prag, 1991, 

Knih. ZPN 14b, 2, 189–221. 

Olszewska B.W. & Wieczorek J. 1998: The Paleogene of the Podhale 

Basin (Polish Inner Carpathians) — micropaleontological per-

spective. Przeglad Geologiczny 46, 721–728.

Perch–Nielsen K. 1985: Cenozoic calcareous nannofossils. In: Bolli 

H., Saunders J.B. & Perch-Nielsen K.: Plankton stratigraphy. 

Cambridge Univ. Press, Cambridge, 427–554.

Pinheiro J., Bates D., DebRoy S., Sarkar D. & R Core Team 2018: 

nlme: Linear and Nonlinear Mixed Effects Models. R package 

version 3.1-137. 

Piper D.J.W. 1978: Turbidite muds and silts on deep-sea fans and 

abyssal plains. In: Stanley D.J. & Kelling G. (Eds.): Sedimenta-

tion in submarine Canyons, fans and Trenches. Dowden, 

Hutchinson and Ross, Stroudsburg, 163–176.

Plašienka D. & Soták J. 2015: Evolution of Late Cretaceous–Palaeo-

gene synorogenic basins in the Pieniny Klippen Belt and adja-

cent zones (Western Carpathians, Slovakia): tectonic controls 

over a growing orogenic wedge. Annales Societatis Geologorum 

Poloniae 85, 43–76.

Plička  M.  1983:  Popradichnium erraticum ichnogen. n. sp. n. — 

a new trace fossil from the Eocene Flysch of Slovakia. Věstník 

Ústř. Ústavu geologického 58, 5, 301–303.

Plička M. 1984: Two new fossil traces in Inner-Carpathian Paleogene 

in Slovakia (Czechoslovakia). Západné Karpaty, sér. paleon­

tológia,9, 195–200. 

Plička M. 1987: Fossil traces in the Inner-Carpathian Paleogene of 

Slovakia, Czechoslovakia. Západné Karpaty, séria paleonto­

lógia 12, 125–196.

Plička M., Němcová A. & Siráňová Z. 1990: Two new trace fossils in 

the Czechoslovak Carpathian Flysch — Result of the activity of 

Eel-like fish (Anquiliformes). Západné Karpaty, séria paleon­

tológia 14, 109–123. 

Prélat A., Hodgson D.M. & Flint S.S. 2009: Evolution, architecture 

and hierarchy of distributary deep-water deposits: a high-resolu-

tion outcrop investigation from the Permian Karoo Basin, South 

Africa. Sedimentology 56, 2132–2154.

Prélat A. & Hodgson D.M. 2013: The full range of turbidite bed thick-

ness patterns in submarine lobes: controls and implications.   

J. Geol. Soc. 170, 209–2014.

Priestley M.B. 1981: Spectral Analysis and Time Series. Academic 

Press, London, New York, 1–890. 

R Core Team 2014: R: A language and environment for statistical 

computing.  R Foundation for Statistical Computing, Vienna, 

Austria. http://www.r-project.org/.

Rona P.A., Seilacher A., Vargas C., Gooday A.J., Bernhard J.M., 

Bowser S., Vetriani C., Wirsen C.O., Mullineaux L., Sherrell R., 

Grassle J.F., Lowh S. & Lutz R.A. 2009: Paleodictyon nodosum

A living fossil on the deep-seafloor. Deep­Sea Research II, 56, 

1700–1712.

Roth P. H. & Thierstein H. 1972: Calcareous nannoplankton: leg. 14 

of the Deep Sea Drilling Project. In: Hayes D.E., Pimm A.C., et 

al. (Eds.): Initial reports DSDP 14, 421– 485.

Samuel O. & Fusán O. 1992: Reconstruction of subsidence and 

 

sedimentation of Central Carpathian Paleogene. Západné 

 Karpaty, Séria Geológia, 16, 7–46 (in Slovak with English 

 summary).

Seilacher A. 1967: Bathymetry of trace fossils. Mar. Geol. 5,  

413–428.

Seilacher A. 2007: Trace Fossil Analysis. Springer, Berlin, 1–226.

Shanmungam  G.,  Spalding  T.D.  &  Rofheart  D.H.  1993:  Process  

sedimentology and reservoir quality of deep-marine 

 

bottom-current reworked sands (sandy contourites): 

 

an example from the Gulf of Mexico. AAPG Bull. 77, 

 

1241–1259.

Sliva Ľ. 2005: Sedimentary facies of the Central Carpathian Paleo-

gene Basin from Spišská Magura.  PhD. Thesis, Department of 

Geology and Paleontology – Faculty of Natural Sciences CU

Bratislava, 1–137 (in Slovak).

So Y.S., Rhee Ch.W., Choi P.-Y., Kee W.-S., Seo J.Y. & Lee E.-J. 

2013: Distal turbidite fan/lobe succession of the Late Paleozoic 

Taean Formation, western Korea. Geosciences Journal 17, 1, 

9–25.

Soták J. 1998: Sequence stratigraphy approach to the Central Car-

pathian Paleogene (Eastern Slovakia): eustasy and tectonics as 

controls of deep-sea fan deposition. Slovak Geological Maga­

zine 4, 185–190.

Soták J. 2010: Paleoenvironmental changes across the Eocene–Oligo-

cene boundary: insights from the Central-Carpathian Paleogene 

Basin. Geol. Carpath. 61, 5, 393–418.

Soták J., Pereszlenyi M., Marschalko R., Milička J. & Starek D. 2001: 

Sedimentology and hydrocarbon habitat of the submarine-fan 

deposits of the Central Carpathian Paleogene Basin (NE Slova-

kia). Mar. Petrol. Geol. 18, 87–114.

background image

297

OLIGOCENE TURBIDITES FROM THE LIPTOV BASIN (CENTRAL WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2019, 70, 4, 279–297

Soták J., Gedl P., Banská M. & Starek D. 2007: New stratigraphic 

data from the Paleogene formations of the Central Western Car-

pathians at the Orava region: Results of integrated micropaleon-

tological study in the Pucov section. Mineralia Slovaca  39, 

 89–106 (in Slovak with English summary).

Starek D. 2001: Sedimentology and paleodynamic of Paleogene for-

mations of the Central Westrn Carpathians in Orava. PhD. 

 Thesis, Geological Institute of the Slovak Academy of Sciences

 Bratislava, 1–152 (in Slovak with English summary).

Starek D. & Fuksi T. 2017a: Distal turbidite fan/lobe succession of  

the Late Oligocene Zuberec Fm. – architecture and hierarchy 

(Central Western Carpathians, Orava-Podhale basin). Open Geo­

sciences 9, 1, 385–406. 

Starek D. & Fuksi T. 2017b: Statistical analysis as a tool for identifi-

cation of depositional palaeoenvironments in deep-sea fans 

 (Palaeogene formations, Central Western Carpathians, north 

Slovakia). Acta Geologica Slovaca 9, 2, 2017, 149–162

Starek D., Andreyeva-Grigorovich A.S. & Soták J. 2000: Suprafan 

deposits of the Biely Potok Formation in the Orava region: Sedi-

mentary facies and nannoplankton distribution. Slovak Geolo­

gical Magazine 6, 188–190.

Starek D., Sliva L. & Vojtko R. 2004: The channel-levee sedimentary 

facies and their synsedimentary deformation: a case study from 

Huty Formation of the Podtatranská skupina Group (Western 

Carpathians). Slovak Geological Magazine 10, 177–182.

Starek  D.,  Soták  J.,  Jablonsky  J.  &  Marschalko  R.  2013:  Large- 

volume gravity flow deposits in the Central Carpathian Paleo-

gene Basin (Orava region, Slovakia): evidence for hyper-

pycnal river discharge in deep-sea fans. Geol. Carpath. 64, 

305–326.

Stow D.A.V. & Shanmugam G. 1980: Sequence of structures in fine-

grained turbidites: comparision of recent deep-sea and ancient 

flysch sediment. Geology 25, 23–42.

Stow D.A.V. & Piper D.J.W. 1984: Fine-grained sediments: Deepwa-

ter processes and facies. In: Stow D.A.V. & Piper D.J.W. (Eds.): 

Geol. Soc. London, Spec. Publ. 15, 1–659.

Šurka J., Sliva Ľ. & Soták J. 2012: Facial development of the Borové 

Formation in the area of Biely Potok at the town of Ružomberok 

and at Komjatná village (Western Carpathians, Slovakia). 

 Mineralia Slovaca 44, 3, 267–278. 

Uchman A. 1995: Taxonomy and palaeoecology of flysch trace fos-

sils: The Marnoso-arenacea Formation and associated facies 

(Miocene, Northern Apennines, Italy). Beringeria 15, 1–115.

Uchman A. 1998: Taxonomy and ethology of flysch trace fossils: 

 Revision of the Marian Książkiewicz collection and studies of 

complementary material. Annales Societatis Geologorum Polo­

niae 68, 105–218.

Uchman A. 2007: Deep Sea Ichnology: development of major con-

cepts. In: W. Miller III (Ed.): Trace Fossils: Concepts, Problems, 

Prospects. Elsevier, 248–267.

Uchman A. & Rattazzi B. 2013: Scratch circles associatedwith the 

large foraminifer Bathysiphon from deep-sea turbiditic sedi-

ments of the Pagliaro Formation (Palaeocene), Northern Apen-

nines, Italy. Sediment. Geol. 289, 115–123.

Westwalewicz-Mogilska E. 1986: A new look at the genesis of the 

Podhale Flysh. Przegląd  Geologiczny  34,  690–698  (in  Polish 

with English summary).

Wetzel A. & Bromley R.G. 1996: Re-evaluation of ichnogenus 

 Helminthopsis Heer 1877 — a new look at the type material. 

Palaeontology 39, 1–19.

Wieczorek J. 1989: The Hecho model for Podhale flysh? Przegląd 

Geologiczny 37, 419–422 (in Polish).

Young J. R. 1998: Neogene. In: Bown P. R. (Ed.): Calcareous Nanno-

fossil Biostratigraphy. Kluwer Academic Publishers, Dordrecht, 

225–265.

Young, J.R., Bown P.R. & Lees J.A. 2017: Nannotax3 website. Inter­

national Nannoplankton Association. http://www.mikrotax.org/

Nannotax3. 

Zavala C., Arcuri M., Di Meglio M., Gamero Diaz H. & Contreras C. 

2011: A genetic facies tract for the analysis of sustained hyper-

pycnal flow deposits. In: R. M. Slatt & C. Zavala C. (Eds.): 

 Sediment transfer from shelf to deep water — Revisiting the de-

livery system. AAPG Studies in Geology 61, 31–51.

Zavala C., Arcuri M. & Valiente L.B. 2012: The importance of plant 

remains as diagnostic criteria for the recognition of ancient 

 hyperpycnites.  Revue de Paléobiologie 11, 457–469.

Appendix

Checklist of taxa mentioned in the text in alphabetic order:

Nannoplankton species

Arkhangelskiella cymbiformis Vekshina, 1959 

Chiasmolithus altus Bukry & Percival, 1971

Chiasmolithus grandis (Bramlette & Riedel, 1954) Radomski, 1968 

Chiasmolithus oamaruensis (Deflandre, 1954) Hay et al., 1966

Cyclagelosphaera reinhardtii (Perch-Nielsen, 1968) Romein, 1977

Cyclicargolithus abisectus (Muller, 1970) Wise, 1973

Cyclicargolithus floridanus (Roth & Hay, in Hay et al., 1967) Bukry, 

1971

Dictyococcites bisectus (Hay, Mohler, & Wade, 1966) Bukry & 

 Percival,  1971

Discoaster barbadensis Tan, 1927 

Discoaster nodifer (Bramlette & Riedel, 1954) Bukry, 1973

Discoaster multiradiatus Bramlette & Riedel, 1954

Discoaster saipanensis Bramlette & Riedel, 1954

Eiffelithus eximius (Stover, 1966) Perch-Nielsen, 1968

Helicosphaera bramlettei (Müller, 1970) Jafar & Martini, 1975

Helicosphaera compacta Bramlette & Wilcoxon, 1967

Helicosphaera recta (Haq, 1966) Jafar & Martini, 1975

Isthmolithus recurvus Deflandre in Deflandre & Fert, 1954

Lanternithus minutus Stradner, 1962

Neococcolithus dubius (Deflandre in Deflandre & Fert, 1954) Black, 

1967

Pontosphaera latelliptica (Báldi-Beke & Baldi, 1974) Perch- 

Nielsen, 1974

Reticulofenestra hillae Bukry & Percival, 1971

Reticulofenestra lockeri Müller, 1970

Reticulofenestra moorei Bown & Dunkley Jones, 2012

Reticulofenestra ornata Müller, 1970

Reticulofenestra umbilicus (Levin, 1965) Martini &  Ritzkowski,1968

Sphenolithus dissimilis Bukry & Percival, 1971

Sphenolithus radians Deflandre in Grassé, 1952

Transversopontis pulcher (Deflandre in Deflandre & Fert, 1954) 

Perch-Nielsen, 1967

Tribrachiatus contortus (Stradner, 1958) Bukry, 1972

Zeugrhabdotus embergeri (Noël 1959) Perch-Nielsen, 1984

Watznaueria barnesae (Black in Black & Barnes, 1959) Perch- 

Nielsen, 1968

Watznaueria manivitae Bukry, 1973