background image

GEOLOGICA CARPATHICA

, JUNE 2019, 70, 3, 222–240

doi: 10.2478/geoca-2019-0013

www.geologicacarpathica.com

Geochronology and Sr–Nd–Hf isotope constraints  

on the petrogenesis of teschenites from the type-locality  

in the Outer Western Carpathians

IRENA BRUNARSKA and ROBERT ANCZKIEWICZ

Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka 1, 31-002 Kraków, Poland;  

 

ndanczki@cyfronet.pl

(Manuscript received September 21, 2018; accepted in revised form May 9, 2019)

Abstract: The Teschenite Association Rocks (TAR) in the Outer Western Carpathian (OWC) flysch form a classic suite 

of alkaline intrusions where teschenite and picrite were first defined. They represent continental intraplate volcanism that 

produced a wide range of melano- to mesocratic rocks emplaced during the Early Cretaceous rifting within the southern 

margin of the European Plate. Geochemical modelling indicates that they may be a product of ~2–5 % partial melting of 

the metasomatised, asthenospheric mantle. The variations in REE (low / heavy REE content, La

N

/Yb

N 

= 11–34) are consistent 

with deep melting of garnet peridotite. Initial ε(Nd)

i

 = 5.0–6.3 and ε(Hf)

i

 = 4.9–10.0 preclude the significant mature crust 

involvement. Instead, a linear array formed by the 

143

Nd/

144

Nd and 

176

Hf/

177

Hf isotopic ratios points to a genesis from  

the mixed, HIMU–OIB source with the more depleted, MORB-type component. Mantle metasomatism was most likely 

caused by the Variscan subduction–collision processes as indicated by the depleted mantle Nd model ages. The isotope 

and trace element ratios of the TAR resemble the European Asthenospheric Reservoir (EAR) — the common mantle 

end-member for the widespread Cenozoic volcanic rocks in Europe. This confirms a long-term existence of the EAR 

mantle component beneath the Central Europe, at least since the Early Cretaceous. In situ laser-ablation ICP-MS U–Pb 

dating of titanite indicates short duration of mafic alkaline magmatism in the OWC, lasting from 123.7 ± 2.1 to 117.9 ± 1.8 Ma. 

Emplacement of the TAR is correlated with the maximum lithospheric thinning that triggered adiabatic decompression 

and  partial  melting  of  the  upwelling  asthenospheric  mantle.  Magmatism  ceased  most  likely  due  to  transition  to   

the dominantly compressive regime associated with the major stress field reorganization directly preceding the Carpathian–

Alpine Orogeny.

Keywords: mafic alkaline magmatism, teschenite, picrite, Outer Western Carpathians, laser ablation U–Pb titanite dating.

Introduction

The Teschenite Association Rocks (TAR) in the Outer Western 

Carpathians (OWC) at the Polish–Czech border belong to 

rather numerous manifestations of the Cretaceous–Cenozoic 

mafic alkaline volcanism in Europe (Rock 1982; Wilson & 

Downes 1991; Rossy et al. 1992; Cebriá & Wilson 1995; 

Spišiak & Balogh 2002; Harangi et al. 2003; Miranda et al. 

2009; Spišiak et al. 2011; Matýsek et al. 2018). The TAR form 

a classic suite of melano- to mesocratic alkaline intrusions 

 emplaced within the OWC flysch named teschenites by 

 Hohenegger (1861). Tschermak (1866) coined the term picrite 

for olivine-bearing teschenites distinguishing them from 

 

the dominant olivine-free teschenites. Rosenbusch (1887) fur-

ther classified teschenites as analcime-bearing essexites and 

analcime-free theralites. The subsequent studies distinguished 

many more petrographic varieties of the TAR which resulted 

in further discoveries of teschenite variations (Smulikowski 

1929, 1980; Mahmood 1973; Kudělásková 1987; Hovorka & 

Spišiak 1988; Narębski 1990; Dostal & Owen 1998; Harangi 

et al. 2003; Włodyka 2010; Matýsek et al. 2018). According to 

QAPF classification, the TAR correspond to analcime gabbro 

(LeMaitre et al. 1989).

Rare petrogenetic studies linked the TAR to Jurassic–Early 

Cretaceous rifting within the southern margin of the European 

Plate  and  partial  melting  of  HIMU  (high 

238

U/

204

Pb)-type 

 mantle  source  (Dostal  &  Owen  1998;  Harangi  et  al.  2003). 

Although there is some uncertainty about the exact timing and 

duration of the TAR magmatism, stratigraphic criteria and 

radiometric dating broadly constrain the emplacement time 

between  Valanginian  and  Cenomanian  (Kudělásková  1987; 

Lucińska-Anczkiewicz  et  al.  2002;  Grabowski  et  al.  2003; 

Harangi et al. 2003; Szopa et al. 2014). Thus, the TAR provide 

a valuable insight into mantle composition, geodynamics and 

lithospheric processes in the complex paleo-tectonic setting 

directly preceding formation of the Alpine–Carpathian 

Orogen.

In this study we review previously published geochemical 

and isotopic data, and further constrain composition, geochro-

nology and likely petrogenesis of the Teschenite Association 

Rocks. Besides the previously conducted Sr and Nd isotope 

studies,  we  also  apply  Hf  isotope  analyses  which  provide  

a new insight into the genesis of TAR. We give detailed 

charac teristics of all main petrographic types along with geo-

chemical modelling of partial melting and magma differentia-

tion processes. Additionally, our in situ U–Pb titanite dating 

background image

223

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

results demonstrate short duration of the TAR emplacement 

during the early Aptian.

Regional geology

The current structure of the OWC was shaped mainly by  

the Early/Middle Miocene collision of the Alcapa Block with 

the southern margin of the European Plate during which pre-

dominantly  Late  Jurassic  to  Early  Miocene  shelf  and  deep 

water flysch deposits with minor carbonates were thrust north-

ward  over  the  Miocene  molasse  deposits  of  the  Carpathian 

foredeep (Nemčok et al. 1989; Rögl 1996; Sperner et al. 2002). 

The suture zone is correlated with the Pieniny Klippen Belt 

(PKB), which is a narrow, E–W trending zone formed mainly 

by the Triassic to Oligocene sediments, predominantly carbo-

nates with subordinate fragments of ophiolites deformed in  

a transpressive setting due to oblique, generally south directed, 

subduction  of  the  oceanic  crust  (Birkenmajer  1977,  1986; 

Nemčok et al. 1989). The PKB separates paleo-accretionary 

prism of the OWC to the north from the southerly units of  

the Internal Carpathian chain (Fig. 1a).

Igneous rocks in the OWC are scarce and volumetrically 

minor. Rare example of continental intraplate magmatic acti-

vity is represented by the TAR whose occurrence is limited to 

the western part of the Silesian Nappe composed of the Upper 

Jurassic  to  Miocene,  predominantly  flysch  sediments  with 

subordinate volcaniclastic rocks (Fig. 1b). 

The vast majority of the TAR in Poland (Silesia region) 

occurs  in  the  Valanginian–Hauterivian  Upper  Cieszyn  Beds 

comprising  mainly  marls  and  shales.  The  Moravian  TAR,  

in  the  Czech  Republic,  occur  in  the  Upper  Hauterivian–

Barremian  sandstones  and  conglomerates  of  the  Těšín–

Hradiště Beds and, very rarely, in the Upper Cieszyn Beds and 

Cieszyn Limestones (Oszczypko 2006).

Teschenites  form centimetres to tens of meters thick 

hypabyssal intrusions (predominantly sills), rarely volcanic 

flows. They display numerous petrographic and geochemical 

types ranging from ultrabasic picrites to intermediate tesche-

nites and syenites. Although the radiometric dating results 

broadly confirm their Early Cretaceous age deduced from  

the stratigraphic data, they differ substantially when it comes 

to exact timing and duration of emplacement. The first dating 

using Ar–Ar method on kaersutite gave ages indicating short 

duration  of  magmatism  from  122.3 ± 3.2  to  120.4 ± 2.6  Ma 

(Lucińska-Anczkiewicz et al. 2002). The subsequent KAr and 

UPb dating resulted in highly scattered ages suggesting much 

longer time of the TAR emplacement during Valanginian to 

Barremian–Aptian  (Grabowski  et  al.  2003;  Harangi  et  al. 

2003; Szopa et al. 2014; Matýsek et al. 2018).

Sampling and methods

We present the analyses of 21 TAR samples from 10 loca-

tions in the Czech Republic and 5 locations in Poland (Table 1, 

Fig. 1b). The whole-rock powders and the heavy-mineral 

 separates were prepared by commonly used techniques of 

crushing, sieving, magnetic and the heavy liquids separation. 

About 2–10 kg of rock was first crushed to gravel size in a jaw 

crusher and then split until 50–100 g of representative whole-

rock portion was achieved. This was powdered in an auto-

mated agate mortar and subsequently used for geochemical 

and isotopic analyses. The remaining part of a sample was 

further  crushed  to  a  fraction  < 315  µm  from  which  heavy 

 minerals were separated using tetrabromethane followed by 

diiodomethane

. The final steps involved magnetic separation 

and handpicking under the stereo microscope.

Whole-rock geochemistry

Geochemical analyses were carried out commercially at  

the Acme Analytical Laboratories in Canada (http://acmelab.

com). Samples were first fused with lithium tetraborate and 

subsequently brought into solution by digestion in nitric acid. 

Abundance of major elements was determined using ICP-ES 

while minor and trace elements were measured using ICP-MS 

(package  LF200).  Exceptions  were  Mo,  Cu,  Pb,  Zn  and  Ni 

which  were  first  digested  in  1:1:1  HNO

3 

: HCl : H

2

O mixture 

and measured by ICP-MS.

Mineral chemistry

Chemical composition of the selected minerals was deter-

mined using the Cameca SX-100 electron microprobe at  

the Faculty of Geology, University of Warsaw. The natural and 

synthetic standards used during analyses were: albite, apatite, 

diopside, orthoclase, rutile, rhodonite, zircon, barite, tugtupite, 

Fe

2

O

3

, Cr

2

O

3

,  La-glass,  Pr-glass,  CeP

5

O

14

, Nb, NiO, V

2

O

5

ThO

2

, UO

2

,  HfO

2

. We applied 15 kV accelerating voltage, 

10–20 nA sample current and 1–5 µm beam diameter (larger 

beam size was applied to mica and feldspar). Integration  

time at the peak was 10 s and the background was measured 

for 5 s. The ZAF method was used for correcting the matrix 

effects.

U–Pb titanite geochronology

Geochronological analyses were carried out in Kraków 

Research Centre, Institute of Geological Sciences, Polish 

Academy of Sciences. 

In situ U–Pb titanite dating was performed using an excimer 

laser (ArF) RESOlution M-50 by Resonetics (now Applied 

Spectra) equipped with a large format, dual-volume sample 

cell S155 coupled with the ICP-MS XSeriesII by ThermoFisher. 

Titanite crystals were mounted in an epoxy resin and polished. 

Prior to analyses, a mount was cleaned using acetone, fol-

lowed by 1N nitric acid and ultra-pure water. Ablation took 

place in pure He which was mixed in an ablation funnel with 

Ar nebulizer gas. Downstream, nitrogen was added to enhance 

sensitivity of the ICP-MS. Before entering ICP source, aerosol 

passed through a signal smoothing manifold. Basic tuning of 

background image

224

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

N

0

100 km

Inner Alpine-Carpathian-Dinarides belt

Thrust fault

Strike-slip  fault

Fig. 1b

European foreland

Dinarides

Outer Western Carpathians

Inner Western

Carpathians

Eastern Carpathians

Southern Carpathians

 

ALPS

DIN

AR

IDE

S

Adriatic Sea

BALKANS

Black Sea

PANNONIAN

BASIN

CENTRAL

EUROPEAN

PLATFORM

EASTERN

EUROPEAN

PLATFORM

Baltic Sea

Tei

ey

e-To

rn

u st 

one

ss

r

q

i

z

POLAND

Kraków

300 km

Transylvanian

  Basin

Apuseni

Mts.

European foreland

V

n

a

ie

n

Ba

sin

 

b

Danu e

a n

B si

16°

19°

22°

25°

28°

45°

46°

47°

48°

49°

50°

Pannonian Basin

Eastern Alps

ALCAP

A

TISIA

Mid-Hungarian fault zo

ne

C A R P A T

H I

A

N

S

Neogene calc-alkaline volcanic rocks

Pieniny Klippen Belt

Outer Carpathian flysch

Mollase foredeep Basin

POLAND

CZECH

REPUBLIC

SLOVAKIA

Picrite

Teschenite

Syenite

Foredeep sediments

Sub-Silesian Nappe
Cieszyn unit

Godula unit
Fore-Magura Unit

Silesian nappe

Magura Nappe

SAMPLE LOCATIONS:

CARPATHIAN FLYSCH UNITS:

Faults

Thrusts
Country

Borders

CIESZYN/

TĚŠÍN

KARVINÁ

WISŁA

ŻYWIEC

KORBIELÓW

NOVÝ JIČÍ N

WADOWICE

BIELSKO-BIAŁA

a

b

Fig. 1

N

20 km

]

Miocene deposits

Fig. 1. Simplified geological map of the Carpathian–Pannonian region (a) after Horváth (1993). Small rectangle in (a) marks the Western 

Carpathian region expanded in (b) after Żytko et al. (1989) with the marked sample locations.

background image

225

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

the instrument was conducted using NIST 

612 glass standard ablated in a raster mode. 

Gas flows and torch position were adjusted  

to maximum signal stability and oxide pro-

duction below 0.5 

% (measured with 

248

ThO

+

/

232

Th

+

).

We used 1014.8 ± 2.0 Ma old OLT1 titanite 

(Kennedy et al. 2010) as a primary standard 

and  520 ± 5  Ma  titanite  from  Stjernøy  in 

Northern Norway (Pedersen et al. 1989) as  

a secondary standard. Every six unknowns or 

the secondary standards, two measurements 

of the primary standard were carried out. 

After two cleaning shots, the residual signal 

was washed out for 30 s and then 35 s of gas 

blank was measured which was followed by 

40 s ablation. Standards and unknowns were 

ablated using 40 µm spot size and the clea-

ning  shots  were  of  60  µm  dia meter.  Laser 

fluence of about 2 J/cm

2

 was applied with 

ablation frequency of 5 Hz. Sum mary of the 

analytical parameters is presented in Table 2.

Data reduction was conducted using Vizual 

Age_UcomPbine (Chew et al. 2014) in Iolite  

v. 3.4 program (Paton et al. 2011) functioning 

under IgorPro software by Wavemetrics. 

Final age calculations were performed using 

Isoplot  4.15  (Ludwig  2012).  All  intercept 

ages were cal culated using common Pb composition estimated 

applying model of Stacey and Kramers (1975). All reported 

age errors are 2σ.

Isotope geochemistry

Isotope composition measurements of Sr, Nd and Hf were 

aquired in the same laboratory as U–Pb titanite dating 

described above. Sample dissolution, column chemistry and 

mass spectrometric procedures are outlined in Anczkiewicz & 

Anczkiewicz  (2016)  and  references  therein.  Isotope  ratio 

 measurements were conducted using multicollector induc-

tively  coupled  plasma  mass  spectrometer  (MC  ICP-MS) 

Neptune by ThermoFisher. Instrumental mass bias of all 

 measured isotopic ratios was corrected using exponential law 

of Russell et al. (1978). Isotopic ratios of Sr were normalized 

to 

87

Sr/

86

Sr = 0.1194, and initial 

87

Sr/

86

Sr ratios were calculated 

using  decay  constant  λ

87Rb

 = 1.3972 × 10

−11

 yr

–1

 (Villa et al. 

2015). Repeated measurements of the SRM 987 standard over  

the period of analyses gave 

87

Sr/

86

Sr = 0.710258 ± 12  (n = 7). 

Mass bias of Nd isotope ratios was corrected by normalization 

to 

146

Nd/

144

Nd = 0.7219. The JNd-1 standard yielded 

143

Nd/

144

Nd 

= 0.512103 ± 9  (n = 6)  over  a  period  of  analyses.  Constants  

used  for  the  initial  ε(Nd)

i

 calculations: decay constant 

 

λ

147Sm

 = 6.54×10

−12

 yr

−1

 (Lugmair and Marti 1978), present-day 

143

Nd/

144

Nd

CHUR(0) 

= 0.512637  and 

147

Sm/

144

Nd

CHUR(0) 

= 0.1966 

(Jacobsen & Wasserburg 1980). Neodymium depleted mantle 

model age T

DM

 calculations followed DePaolo (1981). 

Haf nium isotope ratios were normalized to 

179

Hf/

177

Hf = 0.7325. 

Values used for the initial ε(Hf)

i

 calculations: decay con-

stant  λ

176Lu

 = 1.865 × 10

−11

 yr

−1

 (Scherer et al. 2001), present 

day 

176

Hf/

177

Hf

CHUR(0)

 = 0.282785 and 

176

Lu/

177

Hf

CHUR(0)

 = 0.0336 

(Bouvier  et  al.  2008).  The  JMC475  Hf  standard  gave  

176

Hf/

177

Hf = 0.282160 ± 13 (n = 8) over the period of analyses.

TAR type

Sample GPS coordinates

Primary mineral asemblage Secondary 

alterations

Picrites

CPR-1 N 49°31.584’ E 17°57.662’

Ol-Am-Bt-Cpx-(Ap)

x

CM-1

N 49°50.15’ E 18°55.11’

Cpx-Bt-Fs/Fd-(Ap)

xxxx

Teschenites CSTa-2 N 49°41.281’ E 18°16.248’

Cpx-Am-Bt-Fs/Fd-(Ap)

x

CBS-1 N 49°38.400’ E 18°21.966’

Cpx-Bt-Fs-(Ap)

x

CS-4

N 49°47.419’ E 18°53.255’

Cpx-Am-Fs/Fd-(Ap)

xx

CR-6

N 49°47.70’ E 18°38.45’

Cpx-Fs-Bt-(Ap-Ttn)

x

CP-4

N 49°43.230’ E 18°40.110’

Cpx-Am-Bt-Fs/Fd-(Ap-Ttn)

o

CRE-3 N 49°43.726’ E 18°18.349’

Cpx-Am-Fs/Fd-(Ap-Ttn)

x

CT-1

N 49°34.257’ E 18°13.442’

Cpx-Am-Bt-Fs/Fd-(Ap-Ttn)

xxx

CJ-1

N 49°31.813’  E 17°58.190’

Cpx-Am-Bt-Fs/Fd-(Ap-Ttn)

xx

CBL-1 N 49°34.256’ E 18°00.791’

Cpx-Am-Bt-Fs/Fd-(Ap)

x

CR-1

N 49°47.70’ E 18°38.37’

Cpx-Am-Fs/Fd-(Ap)

o

CRE-2 N 49°43.572’ E 18°18.700’

Cpx-Am-Bt-Fs/Fd-(Ap)

x

CR-8

N 49°47.70’ E 18°38.45’

Cpx-Am-Fs/Fd-(Ap- Ttn)

xx

CHB-1 N 49°44.900’ E 18°25.947’

Cpx-Am-Fs/Fd-(Ap)

xx

CP-3

N 49°43.230’ E 18°40.110’

Cpx-Am-Bt-Fs/Fd-(Ap-Ttn)

x

CB-2

N 49°45.49’ E 18°37.80’

Cpx-Am-Fs/Fd-(Ap-Ttn)

x

CZ-1

N 49°34.527’ E 18°02.799’

Fs/Fd-Am-Bt-(Ap)

xxxx

Syenites

CB-4

N 49°46.11’ E 18°37.00’

Cpx-Fs-(Ap)

xxxx

CB-5

N 49°46.11’ E 18°37.00’

Cpx-Fs-(Ap)

xxxx

CZI-1

N 49°44.063’ E 18°26.879’

Fs/Fd-Cpx-(Ap-Ttn)

xxx

Minor  or  accessory  minerals  are  indicated  in  parentheses.  The  degree  of  secondary  alterations:  

ο — fresh rock, x — small, xx — medium, xxx — strong, xxxx — very strong. Teschenite CP-1* was 

exceptionally highly altered with no primary rock-forming minerals preserved, and thus it was used only 

for titanite dating. Abbreviations: Cpx — clinopyroxene, Am — amphibole, Bt — dark mica,  

Fs — feldspar, Fd — feldspathoid, (Ap) — accessory apatite, (Ttn) — accessory titanite.

Table 1: GPS coordinates, modal composition and the intensity of secondary alterations 

of the Teschenite Association Rock samples. 

U–Pb dating

Laser ablation

RESOlution M-50

Wavelength 

193 nm (ArF)

Pulse length 

20 ns

Fluence at sample 

2 J/cm

2

Repetition rate

5 Hz

Spot size

40 µm

Mass spectrometer

ICP MS XseriesII

RF power (W)

1400

Sample gas Ar flow (L/min)

c. 0.8

Cool gas Ar flow (L/min)

13 

Auxiliary gas Ar flow (L/min)

c. 0.9 

Nitrogen flow (mL/min)

5-6

He flow (L/min)

c. 0.3

Background measurements (s)

40

Ablation time (s)

40

Washout time (s)

35

Scanned masses

43

Ca,

 206

Pb, 

207

Pb, 

208

Pb, 

232

Th, 

238

U

Dwell time (ms)

5, 50, 50, 30, 30, 20 

Table 2: Instrument parameters and analytical conditions of laser- 

ablation ICP-MS analyses.

background image

226

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Table 3: Major (wt. %) and trace element (ppm) concentrations of the Teschenite Association Rocks. 

Rock type:

Picrite

Teschenite

Sample no.:

CPR-1

CM-1

CSTa-2

CBS-1

CS-4

CR-6

CP-4

CRE-3

CT-1

CJ-1

CBL-1

CR-1

CRE-2

SiO

2

39.8

37.79

42.16

42.22

40.97

42.38

43.24

45.58

37.74

38.89

40.6

41.33

41.52

TiO

2

0.96

1.92

2.32

2.77

2.09

3.15

3.02

2.69

3.83

2.91

3.15

2.79

3.03

Al

2

O

3

4.45

6.21

9.72

12.36

11.66

11.97

12.94

16.67

11.26

14.19

15.15

17.7

14.27

Fe

2

O

3T

12.71

12.27

8.47

9.86

11.51

10.51

10.61

9.89

14.57

10.86

12.76

11.57

10.68

MnO

0.2

0.2

0.14

0.15

0.16

0.15

0.14

0.17

0.25

0.19

0.2

0.18

0.13

MgO

28.33

17.87

13.83

7.8

8.97

8.49

7.16

3.99

6.41

5.73

5.45

4.66

7.01

CaO

4.5

12.45

15.65

14.32

14.21

16.44

14.94

7.77

11.89

12.6

12.47

10.06

11.7

Na

2

O

0.54

0.4

1.14

1.53

2.88

1.68

2.04

5.21

1.99

3.44

3.29

2.32

1.77

K

2

O

0.64

1.42

1.14

2.74

1.06

1.19

2

2.55

2.38

1.61

1.93

3.27

2.45

P

2

O

5

0.18

1.42

0.37

0.71

1.02

0.45

0.55

0.96

1.76

1.07

0.75

0.8

0.67

LOI

6.8

7.1

4.3

5.1

4.9

3.2

2.8

4.1

7.3

7.9

3.6

4.8

6.30

Total

99.11

99.05

99.24

99.56

99.43

99.61

99.44

99.58

99.38

99.39

99.35

99.48

99.53

Mg#

72.1

71.5

66.8

68.5

70.6

69.3

69.5

68.6

74.4

69.8

72.1

70.7

69.5

TOT/C

0.11

0.17

0.36

0.51

0.4

0.03

<0.02

0.02

1.08

1.14

0.02

0.05

0.40

TOT/S

0.08

0.09

0.07

0.48

0.16

<0.02

0.12

0.04

0.41

0.21

<0.02

0.06

0.12

LILE
Cs

0.5

1.1

0.5

1.7

3.6

1.9

5.3

3.5

1.8

3.2

0.3

2.7

1.8

Rb

18.5

25.9

37

53.7

25.7

22.5

57.5

45.8

60

39.3

34.7

66.2

61.5

Ba

246

1138

1025

1046

805

412

995

1106

1009

1195

1023

1211

994

Sr

248.2

912.7

726.7

730.3

1293.6

621.3

1389.9

1028.8

1411.3

1737.2

2251.4

1814.5

1070.3

HFSE
Th

1.9

11.9

5

6.5

10.2

5

6

10

9.5

15.5

7.2

9.3

9.2

U

0.6

3.6

1.6

1.9

3

1.1

1.6

3.3

2.9

4.5

1.7

1.6

2.9

Nb

25.6

118.5

47.3

77.1

80.4

54

64.6

116.7

117.5

134.5

102.2

106.5

91.5

Ta

1.3

5.5

2.8

4.6

4.4

3.2

4

6.7

7.2

7.3

5.9

6.5

5.5

Pb

1.5

6.2

2.1

3

3.9

3.1

2.4

5.2

4.8

5.7

3

3

3.80

Zr

62.6

337.2

154.7

198.9

192.5

196.6

197

272.1

494.6

380.8

208.5

212.4

242.4

Hf

1.6

6.8

4.5

4.9

4.1

5.5

5.3

5.6

12.4

7.2

4.5

4.1

5.4

Y

8.6

28.5

17.6

24.3

31.7

21.9

23.2

31.4

44.1

31.9

26.7

23.5

28.0

REE
La

18.5

99.7

37.7

56.3

87.5

41

47.9

77.4

103.4

107

67.8

67

61.7

Ce

31

181.3

68.8

108.8

157.5

78.8

86.4

146

209.7

193.7

122.3

119.5

115.6

Pr

3.48

19.86

7.82

12.54

16.68

9.21

10.19

15.85

25.48

19.89

13.11

12.64

12.92

Nd

14

75.4

31.2

51.6

61.7

37.4

42.2

60.4

102.1

74

51.4

46.2

48.7

Sm

2.49

13.19

6.23

10.04

10.95

7.81

8.6

10.82

19.36

13.03

9.38

8.39

9.38

Eu

0.76

3.85

2.00

3.11

3.55

2.39

2.84

3.49

5.91

4.07

2.93

2.76

3.03

Gd

2.42

10.95

5.68

8.66

9.44

7.1

8.04

9.69

15.91

10.71

8.01

7.45

8.52

Tb

0.34

1.35

0.8

1.16

1.33

0.96

1.09

1.43

2.12

1.42

1.14

1.01

1.21

Dy

1.79

6.29

4.25

6.15

6.64

4.99

5.48

7.12

10.91

7.15

6.34

5.27

6.09

Ho

0.32

1.04

0.75

1.06

1.23

0.9

0.97

1.31

1.87

1.23

1.13

0.93

1.09

Er

0.75

2.56

1.74

2.4

3.05

2.12

2.41

3.18

4.4

3.13

2.81

2.49

2.70

Tm

0.11

0.32

0.24

0.32

0.41

0.27

0.32

0.42

0.58

0.41

0.37

0.37

0.35

Yb

0.61

1.77

1.3

1.76

2.32

1.65

1.9

2.43

3.21

2.32

2.22

1.98

2.15

Lu

0.09

0.23

0.19

0.25

0.32

0.22

0.24

0.36

0.44

0.31

0.31

0.27

0.30

Transition metals
Cr

855.3

431.1

845.0

78.7

143.7

23.9

47.9

<0.002

<0.002

<0.002

<0.002

<0.002

<0.002

Co

105.2

63.7

37.6

36.3

42.4

37

36.4

24.3

37.2

33.5

42.6

36.8

37.8

Ni

709.3

638.2

90.7

20.8

108.7

21.6

20

1.3

27

26.2

17.9

11.2

26.6

Sc

14

15

57

23

22

47

30

4

16

9

11

6

16

V

131

164

225

246

207

305

276

167

226

270

336

289

286

Cu

17.2

144

42.7

58.8

59.7

71.2

58.5

15.6

93.6

69.7

57.2

52.7

73.80

Zn

69

119

34

78

79

55

40

72

147

106

51

45

72.00

Ga

6.9

11.6

13.5

15.6

15.5

16.4

17.8

20.3

21.6

20.6

18.7

18.9

18.4

Sn

<1

3

1

2

2

3

2

2

4

1

1

1

2

W

2.2

1.6

<0.5

<0.5

2.7

2

0.5

3.8

1.9

1.3

2.1

0.7

3.2

Mo

1.4

0.5

2.3

2.1

4.3

0.2

1.3

1.8

1.8

3.8

0.7

0.9

2.3

background image

227

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Petrography and mineral 

chemistry

The Teschenite Association Rocks 

show wide range of compositional and 

textural variations (Table 3 and Fig. 2) 

on a regional, as well as on a single 

intrusion scale (see also Smulikowski 

1929, 1980; Mahmood 1973; Kudě lás-

ková  1987;  Hovorka  &  Spišiak  1988; 

Narębski  1990;  Dostal  &  Owen  1998; 

Harangi  et  al.  2003;  Włodyka  2010; 

Matýsek  et  al.  2018).  Well-preserved 

samples, generally, are panidiomorphic, 

fine- to coarse-grained and have por-

phyritic, microporphyritic or ophitic 

tex 

 

tures. Phenocrysts are clinopyro-

xene, amphibole, olivine, biotite, 

 phlogopite  and  feldspar.  Matrix  has 

composition similar to the phenocrysts 

but may also contain altered glass and 

secondary analcime. Apatite and Fe–Ti 

oxides occur as minor or accessory 

mine rals. Below we present petrogra-

phy of the main rock types that were 

subjected to the detailed geochemical, 

isotopic and geochronological studies. 

Due to high degree of alterations, pre-

cise classification is often problematic, 

and thus, we applied simplified subdivi-

sion distinguishing three main lithologi-

cal types: 1) ultramafic picrite, 2) the most 

common, mesocratic teschenite, and 

rich in felsic minerals 3) mesocratic 

sye nite. Electron microprobe analyses 

of the selected phenocrysts are presen-

ted in Supplementary Table S1.

Picrites (CPR-1, CM-1) are relatively 

rare and typically poorly preserved. 

Fairly fresh picrite represented by sam-

ple CPR-1 consists mainly of olivine, 

Ca-amphibole (Ti-rich pargasite and 

Ti-rich ferro-pargasite), clinopyroxene 

(diopside), phlogopite, spinel, apatite 

and opaque minerals (Table S1). 

Olivine (Fo

82

Fo

85

) has CaO content  

> 0.3  wt.  %  which  rules  out  the  direct 

mantle origin (Simkin & Smith 1970; 

Sato et al. 1991). Poikilitic amphibole, 

with no signs of recrystallization or 

alteration, surrounds smaller crystals of 

olivine and diopside (Fig. 2a). This indi-

cates that the sample is a cumulate and 

amphibole probably represents inter-

cumulus liquid of nephelinitic compo-

sition consolidated around cumulus 

Rock type:

Teschenite

Syenite

Sample no.:

CR-8

CHB-1

CP-3/11

CB-2

CZ-1

CB-4

CB-5

CZI-1

SiO

2

41.74

41.92

43.29

46.83

41.56

47.63

47.04

48.92

TiO

2

2.67

2.66

2.91

2.21

3.5

2.29

2.28

3.13

Al

2

O

3

17.07

15.68

13.01

17.1

14.27

15.03

15.13

13.91

Fe

2

O

3T

11.05

11.8

11.44

7.69

11.21

10.28

9.84

12.76

MnO

0.19

0.2

0.17

0.13

0.16

0.13

0.13

0.16

MgO

4.12

4.78

6.75

4.47

4.55

5.45

5.09

4.22

CaO

10.7

10.03

14.17

8.17

7.31

6.97

7.89

6.40

Na

2

O

2.81

4.31

2.09

4.42

4.63

4.4

4.46

4.65

K

2

O

2.47

2.32

1.93

2.77

1.05

1.57

1.64

1.59

P

2

O

5

0.97

1.19

0.67

0.07

1.04

0.39

0.38

0.45

LOI

5.70

4.60

3.10

5.70

10.20CZ

5.50

5.80

3.05

Total

99.49

99.49

99.53

99.56

99.48

99.64

99.68

99.69

Mg-no.

70.0

70.9

70.5

65.8

70.2

68.5

69.0

72.1

TOT/C

0.04

0.02

0.04

0.07

1.73

0.28

0.5

0.15

TOT/S

<0.02

0.10

0.15

0.06

0.16

0.04

0.12

<0.02

LILE
Cs

3.9

0.8

2.9

9.6

4.2

2.8

3.5

0.8

Rb

50

47.5

45.5

49.9

23.2

25.2

25.9

27.3

Ba

1120

1197

829

1325

735

748

845

644

Sr

1650.7

1077.1

597

545.5

1321.5

1003.5

951.9

727.4

HFSE
Th

8.6

11.8

7.0

10.4

9.0

3.0

2.9

4.4

U

1.8

3.8

1.6

2.9

1.7

0.1

0.9

1.5

Nb

103.1

108.9

84.5

129.7

113.6

37.9

36.9

51.3

Ta

6.7

6.1

5.0

8.6

7.0

2.2

2.4

3.2

Pb

3.20

4.40

3.00

13.9

2.50

2.40

1.90

2.30

Zr

209.5

223.5

204.5

260.7

396.4

130.8

126.4

191.1

Hf

4.2

4.4

5.0

5.1

8.6

3.4

3.3

4.6

Y

26.0

29.6

25.4

20.3

33.5

19.0

18.3

26.0

REE
La

74.1

93.1

58.7

53.7

82.1

26.1

25.4

43.0

Ce

134.5

158.0

106.5

92.1

162.5

48.3

47.2

77.5

Pr

14.25

16.81

11.94

9.87

18.56

5.87

5.63

8.78

Nd

53.6

62.3

47.5

34.7

73.1

24.7

24.0

35.2

Sm

9.45

10.93

8.96

6.08

13.49

5.33

5.25

7.32

Eu

2.98

3.48

3.00

2.03

4.22

1.92

1.86

2.39

Gd

8.08

9.33

7.99

5.52

11.44

5.32

5.18

7.24

Tb

1.14

1.27

1.11

0.82

1.60

0.80

0.77

1.07

Dy

5.90

6.80

5.83

4.58

8.43

4.18

4.07

5.40

Ho

0.97

1.15

1.00

0.85

1.44

0.79

0.81

0.99

Er

2.41

2.87

2.48

2.14

3.49

1.97

1.96

2.51

Tm

0.34

0.39

0.35

0.30

0.45

0.26

0.24

0.32

Yb

2.02

2.40

1.90

1.87

2.42

1.41

1.39

2.01

Lu

0.29

0.32

0.27

0.24

0.33

0.19

0.19

0.27

Transition metals
Cr

<0.002

<0.002

88.9

27.4

<0.002

13.7

13.7

<0.002

Co

34.6

38.9

38.3

22.6

24.4

32.1

32.6

34.5

Ni

7.3

9.4

21.4

13.2

11.1

40.3

43.8

22.4

Sc

5

5

26

25

7

16

15

16

V

274

261

268

175

215

175

173

254

Cu

38.9

39.3

66.6

28.5

55.1

63.6

64.3

133.1

Zn

63

66

63

95

107

83

81

111

Ga

18.7

19.7

18.1

16.7

21.9

16.5

16.2

18.0

Sn

2

2

2

2

2

2

1

2

W

1.5

1.5

3.2

0.8

1.9

1.3

2.0

1.9

Mo

0.4

1.6

0.4

0.8

3.2

0.4

0.8

0.6

Table 3 (continued): Major (wt. %) and trace element (ppm) concentrations of the Teschenite 

Association Rocks. 

background image

228

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

composed of olivine, spinel, and clinopyroxene (Best 1970; 

Dawson 1982). Secondary alterations are expressed as chlori-

tization of phlogopite and serpentinization of olivine. Locally, 

rare carbonate crystals were observed. Unlike CPR-1, picrite 

CM-1 is severely altered. It comprises relics of clinopyroxene 

with numerous olivine inclusions pseudomorphosed by ser-

pentine, phlogopite, apatite and opaque minerals.

The studied teschenites are fine- to coarse-grained, typically 

with porphyritic textures. Phenocrysts are formed by clinopy-

roxene, amphibole and dark mica set in fine crystalline matrix 

500 µm

500 µm

500 µm

500 µm

500 µm

Ap

Ap

Ttn

Cpx

Cpx

Fs

Fs

Fs

Am

Chl

Am

Cpx

Chl

Chl

Cpx

Chl

Ap

Chl

Chl

Am

500 µm

Srp

Ol

Am

Ol

a

b

c

d

f

e

Ap

Fig. 2. Photomicrographs of the TAR samples: a — olivine enclosed in a large amphibole in picrite CPR-1 (XPL); b — elongated apatite and 

titanite in fine-grained matrix, teschenite CT-1 (PPL); c — sector zoning and partial chloritization of clinopyroxene in teschenite CRE-2 (XPL); 

d — clinopyroxene and amphibole surrounded by feldspars, in syenite CZI-1 (XPL); e — partly chloritized amphibole with clinopyroxene 

inclusion in teschenite CR-6 (XPL); f — chlorite pseudomorph after pyroxene in syenite CB-4 (PPL). Abbreviations: Am — amphibole;  

Chl — chlorite; Cpx — clinopyroxene; Ol — olivine; Srp — serpentine; Fs — feldspar; Ttn — titanite; Ap — apatite. XPL — cross polarized 

light; PPL — plane-polarized light. See text for details.

background image

229

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

composed of the same minerals with an addition of alkali feld-

spars, and the secondary analcime. Apatite and opaques occur 

as minor or accessory minerals. Idiomorphic apatite crystals 

are common inclusions in the phenocrysts and in matrix  

(Fig. 2b). In some samples accessory amount of titanite is 

present (Fig. 2b). Clinopyroxene of diopside composition, 

locally with hedenbergite rims (Table S1), forms idiomorphic 

crystals often exhibiting sector zoning (Fig. 2c). In some sam-

ples, it occurs as radial aggregates with younger generation 

overgrowing the earlier diopside. Amphibole frequently over-

grows diopside or dark mica and displays wide range of com-

positions. Typically, it shows rimward increase in Fe, Ti, Si 

accompanied by decrease in Mg. The core composition corre-

sponds to kaersutite while rim is formed by ferro- pargasite, 

hastingsite or ferro-kaersutite (Table S1). Rare dark mica 

 

crystals are of biotite–annite composition (Table S1). 

Feldspars are represented chiefly by K-feldspar, albite and 

rare K–Na-feldspar. Feldspars are commonly carbonatized. 

Partial chloritization of amphibole is also frequently observed 

(Fig. 2d).

The most felsic type of the TAR is represented by rare 

syenites (CZI-1, CB-4, CB-5) characterized by considerably 

lower mafic phenocrysts/matrix ratio. Phenocrysts are repre-

sented by clinopyroxene (diopside, seldom augite) and amphi-

bole (kaersutite, Table S1). Matrix is composed of K-feldspar, 

albite and secondary analcime (Fig. 2e). Clinopyroxene and 

amphibole crystals are corroded or partly chloritized along 

edges and fractures or even entirely chloritized (Fig. 2f). 

Chlorite aggregates occur also between feldspar crystals. 

Ilmenite, Fe-oxides and titanite form skeletal and needle- 

shaped aggregates. Small apatite crystals are abundant as 

inclusions in feldspar and in the phenocrysts.

In addition to alterations described above, saussuritization 

and  zeolitisation  are  observed.  More  detailed  account  on 

secon dary processes in the TAR can be found in Dolníček et 

al. (2010a, b, 2012).

Major and trace elements

The chemical composition of the studied samples is given in 

Table 3. Despite careful sample selection, some degree of 

alteration is an inherent feature of the TAR which is reflected 

by the secondary alterations described above but also by  

the elevated LOI observed in majority of the collected samples 

(3–7 wt. % with an exception of CZ-1 where LOI is as high as 

10.2 wt. %).

The studied samples are generally poor in silica (41–51 wt. % 

volatile–free) and rich in P

2

O

5

 and TiO

2

 (Fig. 3a, Table 3). 

CIPW-normative compositions show that TAR are, only with 

a few exceptions (CB-4, CZI-1, CT-1), strongly silica-under-

saturated (normative nepheline up to 15 wt. %). The content of 

MgO is 4–28 wt. % and Mg# = (MgO/(MgO + FeO

t

)) × 100 (in 

molar proportions) varies from 40 to 82 (Table 3).

According to TAS classification (Le Bas et al. 1986) they 

are mainly basanites or tephrites with smaller number of 

picrobasalts, basaltic trachyandesites, basalts and one sample 

classifies as a phonotephrite (Fig. 3a). Because the degree of 

major element mobility linked to the secondary alterations has 

not been quantified, which may cast some doubts on accuracy 

of this classification, we additionally present classification 

based on “immobile” trace elements following Pearce (1996). 

In the latter classification the studied and the previously pub-

lished teschenites fall within the alkaline fields of alkali 

basalts, trachybasalts, tephrites, basanites and, similarly to 

TAS classification, one sample falls within the phonotephrite 

field (Fig. 3b). Thus, both classifications are largely consistent 

(Fig. 3a and b).

In the Fenner-type variation diagrams of major-element 

oxides vs. MgO, two distinct trends are revealed. An inflected 

trend is observed for CaO and TiO

2

, while Al

2

O

3

 and Na

2

show a gently curved, convex-downward trend. The remai-

ning oxides (SiO

2

 and P

2

O

5

) do not follow any obvious regular 

pattern (Fig. 4).

Picro-

basalt

Basalt

Basaltic

andesite

Trachyte

Phonolite

Tephriphonolite

Phonotephrite

Foidite

Tephrite

Basanite

T

rachy-

basalt

Basaltic 

trachy-

    andesite

T

rachyandesite

Andesite

0

2

4

6

8

10

14

16

Na

O + 

KO

 (wt.%

)

22

12

40

50

60

SiO   (wt.%)

2

Ultrabasic

Intermediate

Basic

e

n

il

a

k

l

a

e

n

il

a

k

l

a

b

u

s

picrite
teschenite
syenite
published

data

a)

Basalt

Alkali

basalt

Foidite

Ande

site

Basal

tic an

desite

Trach

y-

andesi

te

Tephr

iphon

olite

Rhyolite

Dacite

Trachyte

Phonolite

Alkali

rhyolite

0.01

0.1

1

10

100

0.

001

0.

005

0.

05

0.

5

Nb/Y

Zr/Ti

b)

Fig. 3. a — Total Alkali Silica classification diagram (Le Bas et al. 1986); b — Nb/Y vs. Zr/Ti classification of Pearce (1996) for the studied 

TAR (coloured symbols) and the published data shown in grey (Dostal & Owen 1998; Harangi et al. 2003; Włodyka 2010).

background image

230

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Aug

Di

Di

Aug

Di

Aug

Aug

Di

Aug

Par

Kaer

Par

Kaer

Par

Kaer

Kaer

Di

Kaer

Par

Par

Phl

Bt

Phl

Bt

Phl

Bt

Phl

Bt

Phl

Bt

Ol

Ol

Ol

Ol

Ol

Si

[wt%

]

2

0

5

25

10

15

20

30

45

55

30

50

60

35

40

65

Al

[wt%

]

2

3

0

5

25

10

15

20

30

8

20

4

16

24

12

CaO [wt%

]

0

5

25

10

15

20

30

10

20

5

15

25

Na

O [wt%

]

2

0

5

25

10

15

20

30

2

6

1

4

7

3

5

a)

b)

c)

d)

e)

f)

MgO [wt%]

PO 

[wt%

]

2

5

0

5

25

10

15

20

30

1

3

2

4

MgO [wt%]

Ti

[wt%

]

2

0

5

25

10

15

20

30

1

3

2

4

picrite

teschenite

syenite

literature data
avarage 

phenocrysts 

composition

All samples show mutually comparable abundances of trace 

elements, with an exception of picrite CPR-1 that displays sig-

nificantly lower trace-element contents (Fig. 5). However, all 

samples display generally strong enrichment in incompatible 

over more compatible elements expressed as a negative slope 

in primitive-mantle normalized spider diagram (Fig. 5a). A little 

smaller degree of enrichment is observed for the syenites  

(Fig. 5a). Besides the negative slope, other features common 

for  our  samples  are:  negative  Rb,  K,  Pb  and  Hf  anomalies, 

positive Nb, Ta, Ba, LREE and, less conspicuous, Sr anomaly 

(Fig.  6a).  Similarly  chondrite-normalized REE  diagram  dis-

plays sub-parallel, linear patterns with high enrichment in 

more  incompatible  light  REE  (La

n

/Yb

n

 = 1238) and no Eu 

anomalies (Fig. 5b). In absolute values, light REE enrichment 

is the highest in the picrites and the lowest in the syenites. 

Heavy  REE  show  very  low  normalized  values  and  display 

Fig. 4. Fenner diagrams of MgO vs.: a — SiO

2

b — Al

2

O

3

c — CaO; d — Na

2

O; e — P

2

O

5

 and f — TiO

2

. The previously published data 

shown in grey (Dostal & Owen 1998; Harangi et al. 2003; Włodyka 2010). Average chemical composition of the phenocrysts according to  

the microprobe analyses presented in Table S1. Abbreviations: Aug — augite; Di — diopside; Ol — olivine; Kaer — kaersutite; Par — par-

gasite; Bt — biotite; Phl — phlogopite.

background image

231

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

11

01

00

100

0

Rb

Ba

Th

U

Ta

Nb

K

La

Ce

Pb

Pr

Sr

Nd

Hf

Zr

Sm

Eu

Ti

Dy

Y

Yb

Lu

Sa

mp

le

/P

rimi

tive

Ma

nt

le

teschenite

picrite

syenite

La

Pr

Pm

Eu

Tb

Ho

Tm

L

u

Ce

Nd

Sm

Gd

Dy

Er

Yb

1

10

100

100

0

Sa

mp

le

/R

EE

chondr

ite

average OIB

a)

b)

much less variations in abundance in comparison to that 

observed for light REE.

Laser-ablation ICP-MS U–Pb titanite dating

The dating results obtained for six samples are summarized 

in the Supplementary Table S2 and Fig. 6. Each sample was 

analyzed during an individual session during which the secon-

dary standard measurements were accurate within ≤ 1 % 2 RSD 

(2 relative standard deviations) and yielded the weighted mean 

age of 520.9 ± 3.5 Ma (MSWD = 2.0, n = 7).

We analyzed 20–40 crystals depending on abundance of 

titanite in a sample. Expectedly, the analyses show significant 

and variable amounts of common Pb. Crystals virtually com-

mon Pb-free are scarce and were found only in sample CHB-1 

from  Horní  Bludovice  (Fig.  6).  Nevertheless,  the  obtained 

dating results reveal a rather coherent picture. Intercept ages 

with Terra-Wasserburg concordia and 

207

Pb-corrected weighted 

mean ages show slight variations but are indistinguishable 

within the estimated uncertainties.

Five out of six samples gave nearly identical lower intercept 

ages between 117.9 ± 1.8 and 119.3 ± 1.4 Ma (MSWD < 2 for 

all samples). Only teschenite CT-1 from Tichá yielded an older 

age of 123.7 ± 2.1 Ma (Fig. 6) which was confirmed by a repli-

cate measurement. Due to a high closure temperature of  

the U–Pb system in titanite (e.g., Villa 1998; Cherniak 2000) 

and very fast cooling of small bodies emplaced into a cold 

shallow crust, we interpret the obtained ages as reflecting  

the time of intrusive TAR emplacement.

Isotope geochemistry

Whole-rock  Sr,  Nd  and  Hf  isotope  compositions  are  pre-

sented in Table 4. Initial 

143

Nd/

144

Nd and 

176

Hf/

177

Hf  ratios 

(corrected  for  emplacement  age  t = 120  Ma)  yielded  a  very 

narrow  range  of  ε(Nd)

i

 = 5.0  to  6.3  and  wider  range  of  

ε(Hf)

i

 = 4.9 to 10.0 shown in Figure 7a–b. This results in a steep 

array in ε(Nd)

i

–ε(Hf)

i

 diagram, intersecting the Terrestrial Array 

of Vervoort et al. (2011). Unlike Nd and Hf isotopes, 

87

Sr/

86

Sr

i

 

initial ratios vary broadly from 0.7032 to 0.7071 (Fig. 7a).

Discussion

Fractional crystallization

Except for the cumulate picrite CPR-1, the other samples of 

the TAR do not fulfil the requirements for mantle primary par-

tial melts, and thus they must have undergone some degree of 

differentiation (Green & O’Hara 1971; Gill 2010). The signi-

ficance of fractional crystallization (FC) process is suggested 

by the presence of geochemical trends showing higher varia-

tions in compatible relatively to incompatible trace elements 

(Fig. 8) and the presence of cumulate texture in picrite CPR-1. 

The inflected trend in the MgO–CaO diagram (Fig. 4c) implies 

that the magmas were most likely subjected to two stages of 

differentiation: (1) CaO increase probably related to olivine 

crystallization, and (2) CaO decrease likely related to fractio-

nation of clinopyroxene. The first stage could have led to  

the formation of relatively primitive teschenites (e.g. CS-4) and 

the second fractionation step would have led to the formation 

of the more evolved teschenites and syenites. The negative 

correlations  of  MgO  vs.  Na

2

O, Al

2

O

3

 and SiO

2

, as well as  

the absence of Eu anomaly suggest that feldspar fractionation 

did not play any significant role in TAR formation (Figs. 4  

and 5b).

Crustal contamination

Trace-element ratios sensitive to crustal contamination (e.g., 

Th/La,  Zr/Nb,  Ba/Nb,  La/Nb)  along  with  Nb/Yb  vs. Th/Yb 

discrimination diagram of Pearce (2008) shown in Fig. 9a 

Fig. 5. Spider diagrams: a — primitive-mantle normalized trace-elements, normalization values after McDonough & Sun (1995); b — chon-

drite-normalized REE, normalization values after Boynton (1984). Average ocean island basalt (OIB) composition after Sun & McDonough 

(1989).

background image

232

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

argue against the significant crustal involvement in the magma 

genesis of the TAR. Similarly, narrow range of positive  

ε(Nd)

i

 = 5.0–6.3 and ε(Hf)

i

 = 4.9–10.0 point to very little, if any, 

crustal contamination (see also Dostal & Owen 1998; Harangi 

et al. 2003). High and diverse 

87

Sr/

86

Sr values (Fig. 7a), which 

typically point to the crustal involvement, are most likely  

a result of interaction with the Nd-poor and Sr-rich liquids, 

possibly sea or diagenetic water (Rossy et al. 1992; Dolníček 

et al. 2010b).

Partial melting

High enrichment in incompatible elements, Zr/Nb = 2.0–4.2, 

K/Nb < 179,  decreasing  La/Yb  ratios  with  increasing  SiO

2

 

content along with the positive ε(Nd)

i

 and ε(Hf)

i

 values, imply 

that parental magmas may have formed by the small degree  

of partial melting of a mantle source (Fig. 9b). TiO

2

/Yb vs. 

Nb/Yb diagram of Pearce (2008) points to a rather deep,   

garnet peridotite melting (Fig. 9c). The presence of the resi-

dual garnet in the source is also suggested by the low  

HREE  content  and  strong  light  to  heavy  REE  fractionation 

(Fig. 5b).

Using  the  GCDkit  (Janoušek  et  al.  2006,  2016)  and 

PETROMODELER  software  (Ersoy  2013),  we  conducted 

modelling of non-modal batch melting adapting initial mantle 

source composition of Clague & Frey (1982) together with  

the modified modal garnet and spinel peridotite compositions of 

Bradshaw et al. (1993). We used the distribution coefficients 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

238

U/

206

Pb

207

Pb

/

206

Pb

data-point error ellipses are 2σ

Intercept at 

119.3 ± 1.4 Ma

MSWD = 1.4

80

100

120

140

160

180

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

238

U/

206

Pb

207

Pb

/

206

Pb

data-point error ellipses are 2σ

Intercept at 

118.5 ± 1.7 Ma

MSWD = 1.6

90

100

110

120

130

140

150

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

238

U/

206

Pb

207

Pb

/

206

Pb

data-point error ellipses are 2σ

Intercept at 

118.7± 1.4 Ma

MSWD = 1.4

85

95

105

115

125

135

145

CZi-1-12, syenite, Žermanice

CR8, teschenite, Rudów

CP11, teschenite Puńców

119.7 ± 1.6  Ma

119.2 ± 1.6 Ma 

120.8 ± 1.6 Ma 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

238

U/

206

Pb

207

Pb

/

206

Pb

data-point error ellipses are 2σ

Intercept at 

123.7± 2.1 Ma

MSWD = 1.5

90

100

110

120

130

140

150

160

125.6 ± 2.0 Ma 

CT1-12, teschenite Tichá

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

238

U/

206

Pb

20

7

Pb

/

20

6

Pb

data-point error ellipses are 2σ

Intercept at 

117.9 ± 1.8 Ma

MSWD = 1.7

CHB1-12, teschenite, Horní  Bludovice

90

100

110

120

130

140

150

160

118.9 ± 1.9  Ma

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

238

U/

206

Pb

20

7

Pb

/

20

6

Pb

data-point error ellipses are 2σ

Intercept at 

118.1 ± 1.6 Ma

MSWD = 1.6

95

105

115

125

135

118.8 ± 2.2 Ma 

CR-6, teschenite, Rudów

Fig. 6. Laser-ablation ICP-MS U–Pb titanite dating results. Ellipses represent 2σ errors.

background image

233

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Sample

Lithology

Sm  [ppm]

Nd  [ppm]

147

Sm/

144

Nd

143

Nd/

144

Nd

εNd

(120) 

T

DM

Nd 

(Ga)

Rb 

[ppm]

Sr 

[ppm]

87

Rb/

86

Sr*

87

Sr/

86

Sr

87

Sr/

86

Sr

(120)

Lu 

[ppm]

Hf 

[ppm]

176

Lu/

177

Hf

176

Hf/

177

Hf

εHf

(120)

CPR-1

picrite

2.65

13.1

1

0.1221

0.512879±4

5.9

0.30

18.5

248.2

0.2051

0.703562±16

0.703218

0.09

1.63

0.0082

0.282985±5

9.1

CM-1

picrite

14.02

79.20

0.1071

0.512834±7

5.2

0.32

25.9

912.7

0.0781

0.704200±10

0.704069

0.24

7.16

0.0048

0.282858±5

4.9

CST

a-2

teschenite

6.45

30.68

0.1271

0.512864±9

5.5

0.34

37.0

726.7

0.1401

0.704025±13

0.703790

0.19

4.43

0.0062

0.282944±6

7.8

CBS-1

teschenite

10.17

48.03

0.1280

0.512862±10

5.4

0.35

53.7

730.3

0.2024

0.703719±1

1

0.703379

0.23

4.92

0.0067

0.282933±5

7.4

CS-4

teschenite

11.31

62.79

0.1089

0.512877±10

6.0

0.27

25.7

1293.6

0.0547

0.703700±10

0.703608

0.34

4.25

0.01

12

0.282998±5

9.3

CR-6

teschenite

8.04

38.92

0.1250

0.512869±6

5.6

0.33

22.5

621.3

0.1

139

0.703737±1

1

0.704949

0.23

5.84

0.0056

0.282973±4

8.9

CP-4

teschenite

9.21

41.74

0.1334

0.512882±9

5.8

0.34

57.5

1390

0.1225

0.705140±12

0.703775

0.24

5.38

0.0064

0.282963±5

8.4

CRE-3

teschenite

11.54

61.72

0.1

131

0.512850±9

5.4

0.32

45.8

1029

0.0997

0.703981±1

1

0.703570

0.34

5.84

0.0083

0.282961±5

8.2

CT

-1

teschenite

18.50

94.80

0.1

180

0.512834±8

5.0

0.36

60.0

141

1

0.1

170

0.703856±12

0.703660

0.41

12.34

0.0048

0.282930±6

7.4

CJ-1

teschenite

12.95

73.1

1

0.1071

0.512830±8

5.1

0.33

39.3

1737

0.0424

0.704137±8

0.706056

0.32

7.29

0.0061

0.282943±5

7.8

CBL-1

teschenite

9.20

49.01

0.1

134

0.512863±7

5.7

0.30

34.7

2251

0.1582

0.706127±12

0.704500

0.31

4.63

0.0095

0.283007±6

9.8

CRE-2

teschenite

9.46

48.94

0.1

169

0.512847±9

5.3

0.33

61.5

1070

0.0623

0.704765±9

0.704033

0.29

5.49

0.0074

0.282950±6

7.9

CR-8

teschenite

10.09

56.06

0.1088

0.512856±8

5.6

0.30

50.0

1651

0.1214

0.704536±9

0.704031

0.29

4.29

0.0095

0.282984±7

9.0

CHB-1

teschenite

10.62

60.19

0.1067

0.512848±9

5.5

0.30

47.5

1077

0.0833

0.704235±12

0.704396

0.32

4.35

0.0103

0.282970±5

8.4

CP-3

teschenite

9.14

46.28

0.1

194

0.512870±8

5.7

0.31

45.5

597.0

0.2098

0.705755±1

1

0.705403

0.27

5.13

0.0076

0.282980±6

9.0

CZ-1

teschenite

13.22

68.85

0.1

161

0.512858±8

5.6

0.32

23.2

1322

0.0483

0.703980±1

1

0.703899

0.32

8.84

0.0051

0.282949±5

8.1

CB-4

syenite

5.58

24.42

0.1383

0.51291

1±16

6.2

0.30

25.2

1004

0.0691

0.707240±10

0.707124

0.21

3.51

0.0083

0.282999±4

9.6

CB-5

syenite

5.47

23.90

0.1383

0.512909±8

6.2

0.31

25.9

951.9

0.0749

0.706193±1

1

0.706067

0.20

3.39

0.0085

0.28301

1±10

10.0

CZI-1

syenite

7.69

70.07

0.0663

0.512858±8

6.3

0.21

27.3

727.4

0.1033

0.704629±8

0.704456

0.28

5.00

0.0078

0.283000±6

9.7

All 

errors 

are 

2SE 

(standard 

errors) 

and 

relate 

to 

the 

last 

significant 

digits. 

Concentrations 

determined 

by 

isotope 

dilution 

method, 

except 

for 

Rb 

and 

Sr 

which 

were 

determined 

by 

ICP-MS. 

Uncertainty 

of 

87

Rb/

86

Sr

147

Sm/

144

Nd and 

176

Lu/

177

Hf 

ratios are 1 %, 0.3 % and 0.5 %, respectively

. Normalizing ratios, decay constants, model values used for the calculations along with standards reproducibility are given in the main text.

from Kostopoulos & James (1991). Details of 

model ling parameters are presented in Table 5.

The calculated melting curves plotted in the Zr/Nb 

vs. Ce/Y plot (Fig. 10a) show that nearly all samples 

presented in this study, and the vast majority of  

the published data, could have originated by 2–5 % 

partial melting of peridotite containing ca. 2.5 to 

6.0 % of garnet (Fig. 10a). Only very few samples 

reported  by  Włodyka  (2010)  show  better  fit  with  

a curve portraying the partial melting of a spinel- 

bearing source. Additionally, we calculated melting 

curves in the Yb

n

–Ce

n

/Yb

n

 space which is more 

 sensitive to the presence of garnet and spinel in  

the source (Fig. 10b). This projection clearly exclu-

des the possibility of melting in the spinel stability 

field  suggested  in  Fig.  10a  and  by  Harangi  et  al. 

(2003). Furthermore, it narrows down the range of 

garnet content in the source to ca. 46 %. At the same 

time, it suggests slightly wider range of melting 

fractions from 2.5 to 10 %. However, in this respect, 

inferences based on Fig. 10a seem more adequate, as 

Zr/Nb ratio is more sensitive to the degree of partial 

melting. The subhorizontal shift of some data in  

the direction of higher Yb

n

 content seems to be asso-

ciated with magma differentiation or very the low 

abundance of garnet, but not with the presence of 

spinel in the source.

Our modelling results show that the low degree of 

partial melting of the metasomatized garnet perido-

tite, with, or without, fractional crystallization, could 

well explain the trace-element variations in practi-

cally all the TAR.

Magma source

Geochemical signature of the TAR places them in 

the group of alkaline within-plate basalts with dis-

tinct OIB affinity as inferred on the basis of the pro-

jections shown in Figure 9a and c of Pearce (2008). 

This is additionally supported by the relative enrich-

ment in the incompatible trace elements (Fig. 5) and, 

typical  of  OIB,  HFSE  ratios  such  as  Zr/Y = 7–13,  

Zr/Nb = 2–4 and Nb/Yb = 18–76 (Ulrych et al. 1993). 

The negative anomalies of Rb, K and Pb with the high 

primitive-mantle normalized Nb and Ta contents 

(Fig. 5a) further constrain magma source as a HIMU- 

type OIB (Wilson & Downes 1991). The enrichment 

in LILE relative to HFSE indicates the presence of 

an  enriched  component  together  with  HIMU  and  

the depleted mantle signature (Fig. 11).

Although  the  HIMU  reservoir  was  initially 

defined on the basis of the highly radiogenic Pb iso-

tope composition, it is also characterized by the dis-

tinct  Nd–Hf  isotope  systematics  (Woodhead  1996; 

Hanyu et al. 2012; Nebel et al. 2013). The HIMU 

acquired fractionated (SmNd)/(LuHf) relative to 

Table 4:

 Summary of Rb–Sr

, Sm–Nd and Lu–Hf isotope analyses of the 

Teschenite 

Association Rocks. Initial 

87

Sr/

86

Sr

i

 ratios, ε(Nd)

i

 and ε(Hf)

i

 calculated for emplacement time t = 120 Ma.

background image

234

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

the BSE, and thus the HIMU-derived magmatic rocks plot sig-

nificantly below the Terrestrial Array, forming its own, much 

steeper  linear  trend  (Fig.  7b).  Only  sample  CM-1  displays  

the same systematics as typical HIMU rocks from St. Helena 

and Mangaia (Cook–Austral Islands). The remaining samples 

lie within, or on the prolongation of the field defined mostly 

by more radiogenic CookAustral samples (Fig. 7b). The most 

radiogenic TAR fall into the OIB field, close to the Terrestrial 

Array. Thus, we interpret the observed Nd–Hf isotopic sys-

tematics as a result of mixing between components derived 

from HIMU-type and less fertile component like MORB type 

basalts (Fig. 7b).

As mentioned above, Sr isotopes are of little use when it 

comes to constraining petrogenesis of the TAR. However, it is 

noteworthy that the lowest 

87

Sr/

86

Sr

i

 coupled with a very nar-

row range of ε(Nd)

i

 values seem to converge near the HIMU 

field which well agrees with the general picture derived from 

the NdHf isotopes (Fig. 7a).

Although high concentration of the incompatible elements 

could be primarily due to the low degree of partial melting,  

the significant degree of mantle metasomatism is indicated by 

the abundance of amphibole, apatite or phlogopite even in  

the most primitive samples. The depletion of K and Rb relative 

to Ba, Nb and Ta (Fig. 5a) points to the presence of the residual 

amphibole and/or phlogopite in the mantle source. The domi-

nant role of amphibole is inferred on the basis of high K/Rb  

(>250) and low Rb/Sr (<0.09) in the melts (Furman & Graham 

1999; Ulrych et al. 2011), and on the basis of the common 

occurrence of this phase in the European mantle xenoliths 

(Downes 2001). Volatile-rich mantle domains could have ori-

ginated due to infiltration of subduction-related fluids from 

the recycled oceanic crust possibly during the Variscan 

Fig. 7. Sr–Nd–Hf isotope composition of the TAR: a — initial 

87

Sr/

86

Sr

i

 vs. ε(Nd)

i

 and b — initial ε(Nd)

i

 vs. ε(Hf)

i

 diagrams. Initial ratios 

corrected fort the emplacement time t = 120 Ma. Terrestrial Array after Vervoort et al. (2011). Published Sr–Nd isotope data for the Pyrenees 

from Rossy et al. (1992), for the Carpathians from Dostal & Owen (1998), Harangi et al. (2003), for Central and Western Europe from Wilson 

& Downes (2006); Nd–Hf isotope data for Vogelsberg area from Jung et al. (2011), for Rhӧn area from Jung et al. (2005) and Jung & Hoernes 

(2000), HIMU, OIB, EM, DM data from Woodhead (1996), Chauvel et al. (1997), Salters and White (1998), Hanyu et al. (2012), Nebel et al. 

(2013). Lower part of the field is shown for the most extreme HIMU signature from St. Helena and Mangaia (Cook–Austral Islands).

10

20

50

100

200

500

1000

1

5

10

50

100

500

1000

Zr [ppm]

Ni [ppm

]

Ni [ppm

]

0.5

1

5

10

50

500

0.5

Yb [ppm]

a)

b)

picrite
teschenite

syenite

FC

PM

1

5

10

50

100

500

Fig. 8. Log–log diagrams showing relationship between incompatible (Zr, Yb) and compatible (Ni) elements in response to dominantly partial 

melting (PM) or fractional crystallization (FC) processes, indicated by tentatively estimated vectors: a — Zr vs. Ni and b — Yb vs. Ni.

background image

235

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Orogeny. As also pointed out by Dostal & Owen (1998), this is 

suggested by the depleted mantle Nd model ages (0.26–0.36 Ga: 

Table 4). The presence of the recycled oceanic crust at the depth 

of 400–600 km in the Central European mantle was proposed 

on the basis of seismic tomography studies (Piromallo et al. 

2001).

The presence of the HIMU asthenospheric mantle in Europe 

is often explained in the context of hot fingers derived from  

a mantle plume (Wilson & Bianchini 1999). So called “super 

plume event”, involving mantle upwellings worldwide, started 

at ca. 120 Ma (Larson 1991), i.e. during the TAR emplace-

ment. Harangi et al. (2003) proposed that Cape Verde plume 

activity, that triggered central Atlantic opening, could either 

have channelled the HIMU component in the N–NE direction 

or pollute the upper mantle layer beneath Europe, leading to 

the formation of the common European Asthenospheric 

Reservoir (EAR, Cebriá & Wilson 1995). Mantle plume may 

have generated mafic, volatile-rich intrusions that caused  

the  upper  mantle  metasomatism  (Bogaard  &  Wӧrner  2003; 

Seghedi et al. 2004a).

An alternative scenario requires transport of the deep mantle 

material with the HIMU signature to the volatile-rich upper 

mantle, in response to adiabatic decompression and passive 

upwelling. Adiabatic decompression rather than mantle plume 

is our preferred mechanism given the short duration and small 

volume of TAR volcanism as well as an overall extensional, 

incipient rift setting in the studied region during Early 

Cretaceous. Since the volatile-rich mantle domains melt more 

readily, even small decompression would induce melting. 

Adiabatic decompression appears to have played a significant 

role also in generating Cenozoic magmatism in Europe 

(Wilson & Downes 2006; Lustrino & Wilson 2007).

Timing of TAR emplacement

There have been several attempts of dating alkaline rocks 

from the OWC. Lucińska-Anczkiewicz et al. (2002) conducted  

Ar–Ar dating of kaersutites and obtained a tight group of ages 

for the three mesocratic teschenites, yielding a weighted mean 

age of 122.3 ± 3.2 Ma. Dating of an additional syenite sample 

by the same authors gave a little younger, but still overlapping 

within the analytical precision, age of 120.4 ± 2.6 Ma. This led 

the authors to a suggestion that the more evolved magma 

could have intruded slightly later. 

These coherent results, suggesting short duration of alkaline 

magmatism in the area, are in marked contrast to the subse-

quent geochronological studies. The reported K–Ar ages of 

amphibole, biotite and whole-rock fractions vary widely from 

63.6 ± 1.6 to 148.6 ± 3.6 Ma (Grabowski et al. 2003) and from 

96.3 ± 3.7 to 128.3 ± 5.6 Ma (Harangi et al. 2003). Grabowski 

et al. (2003) explained the wide range of ages as a result of 

hydrothermal alterations but the oldest, biotite ages spanning 

from 137.9 ± 2.0 to 133.1± 1.8 Ma were interpreted as reliable 

and reflecting the time of biotite crystallization during 

teschenites emplacement. Szopa et al. (2014) applied in situ 

LA ICP-MS UPb apatite dating that resulted in two rather 

imprecise ages of 103 ± 20 and 127 ± 9 Ma. The third sample 

from Puńców gave fairly precise 119.6 ± 3.2 Ma age, confir-

ming earlier Ar–Ar dating results of Lucińska-Anczkiewicz et 

al. (2002) from the same locality (120.4 ± 2.6 Ma). The recent 

Fig. 9. Incompatible element ratios diagrams: a — Nb/Yb vs. Th/Yb 

(Pearce 2008); b — SiO

2

 vs. La/Yb; c — Nb/Yb vs. TiO

2

/Yb (Pearce 

2008). Data from the previous studies shown in grey (Dostal & Owen 

1998; Harangi et al. 2003; Włodyka 2010).

background image

236

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

U–Pb  dating  of  apatite  from  the  Žermanice  sill,  using  laser 

ablation multi collector ICP-MS, also provides an imprecise 

120 ± 10 Ma age, interpreted as the time of sill emplacement 

(Matýsek et al. 2018).

High scatter among the published K–Ar ages is almost cer-

tainly caused by the well acknowledged excess Ar problems, 

in the studied area caused, at least partly, by very strong alte-

rations in the vast majority of the TAR. High common Pb in 

apatite, on the other hand, along with the low U content, are 

responsible for the low precision of in situ U–Pb dating, which 

makes such ages of limited use. Taking into account the pub-

lished interpretations of the previous geochronological stu dies, 

teschenites in the Outer Western Carpathians would have been 

emplaced between 138 and 105 Ma with the most repro    ducible 

ages  grouping  around  105  to  123  Ma. This  suggests  ca.  20  

to  even  30  Ma  long  period  of  alkaline  magmatism  during  

the Early Cretaceous. Our new U–Pb titanite dating of five 

teschenites and one syenite are in good agreement with  

the Ar–Ar data of Lucińska-Anczkiewicz et al. (2002). Five 

out of six samples gave unresolvable within the analytical pre-

cision  ages  between  117.9 ± 1.8  and  119.3 ± 1.4  Ma  (Fig.  6). 

Notably, severe alterations in the teschenite CP-1 from 

Puńców did not have any negative consequences for our  dating 

results. The UPb system in titanite must have remained intact 

as indicated by a very good age consistency with the four other 

samples. Only teschenite CT-1 from Tichá area gave an older 

123.7 ± 2.1 Ma age that we interpret as reflecting the earlier 

emplacement time.

On the whole, our results along with the ages of Lucińska-

Anczkiewicz et al. (2002) indicate that small portions of  partial 

melts were extruded, or emplaced into a shallow crust, within 

a rather short period of time, between 124 and 119 Ma.

Geodynamic implications

The Early Cretaceous to Neogene mafic alkaline rocks from 

Western and Central Europe show similar geochemical and 

isotopic systematics (Rossy et al. 1992; Hovorka & Spišiak 

1993; Hovorka et al. 1999; Ivan et al. 1999; Harangi 2001; 

Spišiak & Balogh 2002; Harangi et al. 2003; Seghedi et al. 

2004a, b; Wilson & Downes 2006; Jung et al. 2011; Spišiak et 

al. 2011; Oszczypko et al. 2012) Wide areal extent of geo-

chemically and isotopically similar igneous activity implies 

the presence of a relatively long-lived, enriched reservoir in 

the upper mantle which likely can be correlated with European 

Asthenospheric Reservoir (EAR) as defined by Cebriá & 

10%

8%

6%

4%

2%

2.5% Gr

t

6% Gr

t

10%

8%

6%

4%

2%

5% Sp

10%

6%

4%

2%

1%

mantle source

composition

picrite

teschenite

syenite

 1

 2

 3

 4

 5

 6

 7

 

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0

 0

Ce/Y

Zr/Nb

 10

 15

 20

 25

 30

 35

 5

 10

 15

 20

 25

 30

 35

 40

 0

 0

(Ce/Yb)n

(Yb)n

literature data

6% Gr

t

4% Gr

t

5% Sp

10%

8%

2%

2%

4%

4%

5%

6%

10%

10%

6%

8%

4%

8%

3%

3%

1%

a)

b)

5

FC

Fig. 10. Trace-elements based petrogenetic partial melting model of the TAR magmas calculated using GCDkit (Janoušek et al. 2006) and 

PETROMODELLER  software  (Ersoy  2013).  Data  from  the  previous  studies  shown  in  grey  (Dostal  &  Owen  1998;  Harangi  et  al.  2003; 

Włodyka 2010). Modelling parameters summarized in Table 5.

Mantle  source  modal  composition  and  melting  modes,  modified  from 

Bradshaw et al. (1993)
%

Ol

Opx

Cpx

Grt

Sp

Proportion of phases

Spinel periditite

60

20

15

0

5

Garnet peridotite 2.5 %

60

23

14.5

2.5

0

Garnet peridotite 4 %

60

22.5

13.5

3

0

Garnet peridotite 6 %

60

22.5

11.5

6

0

Contribution to melt

Spinel periditite

10

10

50

0

30

Garnet peridotite 2.5 %

10

30

55

5

0

Garnet peridotite 4 %

10

30

55

5

0

Garnet peridotite 6 %

10

30

55

5

0

Trace element composition of mantle source (Clague & Frey 1982)
ppm

Zr

Nb

Ce

Y

Yb

20

4

5.44

6

0.6

Partition coefficients (Kostopulous & James 1992)

Zr

Nb

Ce

Y

Yb

Ol

0.1

0.0001

0.000008

0.01

0.0194

Opx

0.03

0.001

0.00105

0.1

0.0631

Cpx

0.16

0.015

0.0389

0.2

0.19

Spl

0.05

0.0001

0.000008

0.0078

0.00032

Grt

0.32

0.04

0.0014

2.2885

4.7

Table 5: Input parameters used for of non-modal batch melting 

 modelling shown in Fig. 10. Abbreviations: Ol — olivine, Opx — 

orthopyroxene, Grt — garnet, Sp — spinel.

background image

237

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Wilson (1995). Our study of the TAR shows that their petro-

genesis, indeed, can be associated with EAR, as also suggested 

by Harangi et al. (2003). The Cretaceous mafic alkaline volca-

nism, including volumetrically minor alkaline magmatism in 

the Outer Western Carpathians, is interpreted as a result of  

the incipient rift zone formation that triggered opening of  

the Alpine Tethys and the North Pyrenean Rift Zone. 

 

The Teschenite Association Rocks occur exclusively within 

the Silesian Nappe which constitutes central part of the former 

Outer Western Carpathians Basin. This basin formed as  

a result of rifting within the southern passive margin of  

the European Plate, possibly due to the eastward escape and 

rotation of the Alcapa and Tisia blocks in the Late Jurassic to 

Early Cretaceous (Słomka 1986; Ślączka et al. 1999; Spišiak 

et al. 2011). Rift never evolved to a sea-floor spreading stage 

(Nemčok et al. 2001) and the maximum extent of the Outer 

Western Carpathians Basin was reached during Hauterivian–

Aptian (Książkiewicz 1960). Maximum lithospheric thinning 

achieved during Early Aptian possibly triggered the adiabatic 

decompression and the partial melting in the volatile-rich 

metasomatized asthenospheric mantle. Our dating results indi-

cate that the extension climax was accompanied by short  

(~ 5 Myr) episode of alkaline magmatism lasting from ca. 124 

to  119  Ma.  The  short  duration  of  the  magmatic  activity  in  

the Silesian Basin could be related to a major stress 

reorganization in the region. The maximum extension that we 

correlate with the TAR emplacement was followed in the south-

eastern Outer Carpathians by the compressive regime in  

the Aptian–Albian (Sandulescu 1988; Kruglov 1989). This 

compressional phase was also manifested by uplift of the intra- 

basin ridges, the siliciclastic turbidites deposition and the syn- 

sedimentary  folding  in  the  Silesian  and  Magura  basins 

(Švábenická et al. 1997; Oszczypko 2006). Hence, it seems 

plausible to assume that rapid transition from the extensional 

climax to the compressive regime during the Aptian could 

have ceased mafic alkaline magmatism in the Silesian Basin.

Conclusions

The Jurassic–Early Cretaceous formation of the rift-related 

sedimentary basins in the northern part of the Tethys Ocean 

was accompanied by alkaline magmatism. A suite of the ultra-

basic to intermediate Teschenite Association Rocks was 

emplaced within the Silesian Basin due to small degree of par-

tial melting of the metasomatized asthenospheric mantle likely 

accompanied by some degree of the two-stage fractional crys-

tallization.  Melting  was  triggered  by  the  maximum  litho-

spheric thinning associated with rifting and adiabatic 

decompression at the southern margin of the European Plate. 

Rb/Nb

Ba/N

b

b)

a)

c)

d)

La/Th

Rb/Th

U/Pb

Rb/La

HIMU

EMI

EMII

EMI

EMII

HIMU

EMII

EMI HIMU

EMII

EMI

HIMU

Ce/Pb

Ba/L

a

picrite

teschenite

syenite

0.5

1.0

1.5

2.0

2.5

01

02

03

04

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

01

02

03

04

05

06

07

0

0

5

10

15

20

05

10

152

0

0.5

1.0

1.5

05

10

15

20

25

Fig. 11. Trace-element ratios diagrams: a — Rb/Nb vs. Ba/Nb; b — Rb/Th vs. La/Th; c — U/Pb vs. Ce/Pb and d — Rb/La vs. Ba/La showing 

fields characteristic of ocean-island basalts derived from HIMU, EMI and EMII mantle end-members (Willbold & Stracke 2006).

background image

238

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

About 2–5 % of partial melting occurred most likely within 

the volatile-rich mantle domains in the garnet stability field. 

Mantle metasomatism might have been induced by the earlier, 

Variscan  subduction  events.  The  Nd–Hf  isotopic  signature, 

together with the incompatible trace-elements composition, 

indicate the HIMU-type OIB mantle source mixed with the more 

“depleted”, probably MORB-type component. The geochemi-

cal and isotopic characteristics point to the genesis associated 

with the European Asthenospheric Reservoir — the common 

mantle end-member for the widespread Cenozoic volcanic 

rocks in Europe — that seems important also for the Cretaceous 

mafic volcanism in Central and Western Europe.

In situ U–Pb titanite dating indicates that the TAR were 

emplaced over a short period of time between 124 and 119 Ma 

(Aptian) during maximum lithospheric thinning in the Outer 

Western Carpathians Basin. Magmatic activity ceased during 

the major stress reorganization associated with the transition 

to the dominantly compressive regime between the southern 

European margin and North Africa.

Acknowledgments: This project was funded by Polish Natio-

nal Science Centre grant no. 2011/01/B/ST10/04683. We thank 

Zdeněk Dolníček for his help in the field and creative discus-

sions and Jakub Bazarnik as well as Dariusz Sala for their 

 laboratory and field assistance. We are grateful to Skår Øyvind 

and Allen Kennedy for sharing titanite standards. We are 

 indebted to Vojtěch Janouśek and an anonymous reviewer for 

providing very detailed and helpful reviews. We are grateful to 

Milan  Kohút  and  Igor  Petrík  for  the  editorial  handling  of  

the manuscript.

References

Anczkiewicz A.A. & Anczkiewicz R. 2016: U–Pb zircon geochrono-

logy and anomalous Sr–Nd–Hf isotope systematics of late oro-

genic andesites: Pieniny Klippen Belt, Western Carpathians, 

South Poland. Chem. Geol. 427, 1–16.

Best M.G. 1970: Kaersutite–peridotite inclusions and kindred mega-

crysts in basanitic lavas, Grand Canyon, Arizona. Contrib. 

 Mineral.  Petrol. 27, 25–44. 

Birkenmajer K. 1977: Jurassic and Cretaceous lithostratigraphic units 

of the Pieniny Klippen Belt, Carpathians, Poland. Studia Geol. 

Polon. 45, 1–159.

Birkenmajer K. 1986: Stages of structural evolution of the Pieniny 

Klippen Belt, Carpathians. Studia Geol. Polon. 88, 7–32.

Bogaard P.J.F. & Wӧrner G. 2003: Petrogenesis of basanitic to tho-

leiitic  volcanic  rocks  from  the  Miocene  Vogelsberg,  Central 

 Germany.  J. Petrol. 44, 569–602. 

Bouvier A., Vervoort J.D. & Patchett P.J. 2008. The Lu–Hf and Sm–Nd 

isotopic composition of CHUR: Constraints from unequilibrated 

chondrites and implications for the bulk composition of terres-

trial planets. Earth Planet. Sci. Lett. 273, 48–57. 

Boynton W.V. 1984: Cosmochemistry of the Rare Earth Elements: 

Meteorite  Studies.  In:  Henderson  R.  (Ed.):  Developments  in 

 Geochemistry  2.  Elsevier, Amsterdam, 63–114. 

Bradshaw T.K.K., Hawkesworth C.J.J. & Gallagher K. 1993: Basaltic 

volcanism in the Southern Basin and Range: no role for a mantle 

plume. Earth Planet. Sci. Lett. 116, 45–62. 

Cebriá J. & Wilson M. 1995: Cenozoic mafic magmatism in Western/

Central Europe: a common European asthenospheric reservoir. 

Terra Nova, Abstract Supplement 7, 162.

Chauvel C., McDonough W., Guille G. Maury R. & Duncan R. 1997: 

Contrasting old and young volcanism in Rurutu Island, Austral 

chain. Chem. Geol. 139, 125–143. 

Cherniak D.J. 2000: Rare earth element diffusion in apatite. Geochim. 

Cosmochim. Acta. 64, 3871–3885. 

Chew  D.M.,  Petrus  J.A.  &  Kamber  B.S.  2014:  U–Pb  LA-ICPMS 

 dating using accessory mineral standards with variable common 

Pb. Chem. Geol. 363, 185–199. 

Clague D.A. & Frey F.A. 1982: Petrology and trace element geo-

chemistry of the Honolulu volcanics, Oahu: implications for the 

oceanic mantle below Hawaii. J. Petrol. 23, 447–504. 

Dawson J.B. 1982: Upper-Mantle Amphiboles: A Review. Mineral. 

Mag. 45, 35–46. 

DePaolo D.J. 1981: Neodymium isotopes in the Colorado Front 

Range and crust–mantle evolution in the Proterozoic. Nature 

291, 193–196. 

Dolníček Z., Kropáč K., Uher P. & Polách M. 2010a: Mineralogical 

and geochemical evidence for multi-stage origin of mineral 

veins hosted by teschenites at Tichá, Outer Western Carpathians, 

Czech Republic. Chem. Erde-Geochem. 70, 267–282. 

Dolníček Z., Urubek T. & Kropáč K. 2010b: Post-magmatic hydro-

thermal mineralization associated with Cretaceous picrite (Outer 

Western Carpathians, Czech Republic): interaction between  

host rock and externally derived fluid. Geol. Carpath.  61,  

327–339. 

Dolníček Z., Kropáč K., Janíčková K. & Urubek T. 2012: Diagenetic 

source of fluids causing the hydrothermal alteration of tesche-

nites in the Silesian Unit, Outer Western Carpathians, Czech 

 

Republic: petroleum-bearing vein mineralization from the 

Stříbrník site. Mar. Petrol. Geol. 37, 27–40. 

Dostal J. & Owen J.V. 1998: Cretaceous alkaline lamprophyres from 

northeastern Czech Republic: geochemistry and petrogenesis. 

Geol. Rundschau 87, 67–77. 

Downes H. 2001: Formation and modification of the shallow sub-con-

tinental lithospheric mantle: a review of geochemical evidence 

from ultramafic xenolith suites and tectonically emplaced 

 ultramafic massifs of western and central Europe. J. Petrol. 42, 

233–250. 

Ersoy  E.Y.  2013:  PETROMODELER  (Petrological  Modeler):  

a Microsoft Excel spreadsheet program for modelling melting, 

mixing, crystallization and assimilation processes in magmatic 

systems. Turk. J. Earth Sci. 22, 115–125. 

Furman T. & Graham D. 1999: Erosion of lithospheric mantle beneath 

the East African Rift system: geochemical evidence from the 

Kivu volcanic province. Lithos 48, 237–262.

Gill R. 2010: Igneous rocks and processes. a practical guide, 1

st

 ed. 

Wiley-Blackwell, Chichester, 1–428. 

Grabowski J., Krzemiński L., Nescieruk P., Szydło A., Paszkowski M., 

Pécskay Z. & Wójtowicz A. 2003: Geochronology of teschenitic 

intrusions in the outer Western Carpathians of Poland — con-

straints from 

40

K/

40

Ar ages and biostratigraphy. Geol. Carpath. 

54, 385–393.

Green D.H. & O’Hara M.J. 1971: Composition of basaltic magmas as 

indicators of conditions of origin: application to oceanic volca-

nism [and discussion]. Philos. T. Royal Soc. A. 268, 707–725. 

Hanyu T., Tatsumi Y., Senda R., Miyazaki T., Chang Q., Hirahara Y., 

Takahashi T., Kawabata H., Suzuki K., Kimura J.I. & Nakai S. 

2012:  Geochemical  characteristics  and  origin  of  the  HIMU 

 reservoir: a possible mantle plume source in the lower mantle. 

Geochem. Geophy. Geosys. 12, 1–30. 

Harangi S. 2001: Neogene magmatism in the Alpine-Pannonian Tran-

sition Zone — A model for melt generation in a complex geody-

namic setting. Acta Vulcanol. 13, 25–39.

background image

239

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Harangi S., Tonarini S., Vaselli O. & Manetti P. 2003: Geochemistry 

and petrogenesis of Early Cretaceous alkaline igneous rocks in 

Central Europe: implications for a long-lived EAR-type mantle 

component beneath Europe. Acta Geol. Hung. 46, 77–94. 

Hohenegger L. 1861: Die geognostischen Verhältnisse der Nordkar-

pathen in Schlesien und des angrenzenden Theilen von Mähren 

und Galicien als Erläuterung zu der geognostischen Karte der 

Nordkarpathen. Perthes, Gotha, 1–50.

Horváth F. 1993: Towards a mechanical model for the formation of 

the Pannonian basin. Tectonophysics 226, 333–357. 

Hovorka D. & Spišiak J. 1988: Mesozoic volcanism of the Western 

Carpathians. Veda, Bratislava, 1–263 (in Slovak).

Hovorka  D.  &  Spišiak  J.  1993:  Mesozoic  volcanic  activity  of  the 

Western Carpathian Segment of the Tethyan Belt: diversities in 

space and time. Jahrb. Geol. Bundesanst. 136, 769–782.

Hovorka D., Dostal J. & Spišiak J. 1999: Geochemistry of the Creta-

ceous alkali basaltic rocks of the central part of the Western Car-

pathians (Slovakia). Krystalinikum 25, 37–48.

Ivan P., Hovorka D. & Méres Š. 1999: Riftogenic volcanism in the 

Western Carpathian geological history: a review. GeoLines 9, 

41–47.

Jacobsen S.B. & Wasserburg G.J. 1980: Sm-Nd isotopic evolution of 

chondrites. Earth Planet. Sci. Lett. 50, 139–155. 

Janoušek V., Farrow C.M. & Erban V. 2006: Interpretation of whole-

rock geochemical data in igneous geochemistry: introducing 

 Geochemical Data Toolkit (GCDkit). J. Petrol. 47, 1255–1259. 

Janoušek V., Moyen J.-F., Martin H., Erban V. & Farrow C. 2016: 

Geochemical modelling of igneous processes — principles and 

recipes in R Language, 1st ed. Springer, Heidelberg New York 

Dordrecht London, 1–346.

Jung S. & Hoernes S. 2000: The major- and trace-element and isotope 

(Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic 

rocks from the Rhön area (central Germany): Petrology, mantle 

source characteristics and implications for asthenosphere-litho-

sphere interactions. J. Volcanol. Geotherm. Res. 99, 27–53. 

Jung S., Pfänder J.A., Brügmann G. & Stracke A. 2005: Sources of 

primitive alkaline volcanic rocks from the Central European Vol-

canic Province (Rhön, Germany) inferred from Hf, Os and Pb 

isotopes. Contrib. Mineral. Petrol.150, 546–559. 

Jung S., Pfänder J.A., Brauns M. & Maas R. 2011: Crustal contamina-

tion and mantle source characteristics in continental intra-plate vol-

canic rocks: Pb, Hf and Os isotopes from central European volca-

nic province basalts. Geochim. Cosmochim. Acta. 75, 2664–2683. 

Kennedy A.K., Kamo S.L., Nasdala L. & Timms N.E. 2010: Grenville 

skarn titanite: potential reference material for SIMS U–Th–Pb 

analysis. Can. Mineral. 48, 1423–1443. 

Kostopoulos D.K. & James S.D. 1991: Parameterization of the mel-

ting regime of the shallow upper mantle and the effects of varia-

ble lithospheric stretching on mantle modal stratification and 

trace-element concentrations in magmas. J. Petrol. 33, 665–691. 

Kruglov S. 1989: Geodynamics of the Ukrainian Carpathians. Geol. 

Carpath. 40, 101–123.

Książkiewicz M. 1960: Pre-orogenic sedimentation in the Carpathian 

geosyncline. Geol. Rundsch. 50, 8–31.

Kudělásková J. 1987: Petrology and geochemistry of selected rock 

types teschenite association, Outer Western Carpathians. Geol. 

Carpath. 38, 545–573.

Larson R.L. 1991: Latest pulse of Earth: evidence for a mid-Creta-

ceous superplume. Geology 19, 6, 547–550.

Le Bas M.J.L., Maitre R.W.L., Streckeisen A. & Zanettin B. 1986:  

A chemical classification of volcanic rocks based on the Total 

Alkali-Silica Diagram. J. Petrol. 27, 745–750. 

LeMaitre R.W., Streckeisen A., Zanettin B., LeBas M.J., Bonin B., 

Bateman P., Bellieni G., Dudek A., Efremova S., Keller J., 

Lameyre J., Sabine P.A., Schmid R., Sorensen H. & Woolley A.R. 

1989: Igneous rocks: a classification and glossary of terms.  

International Union of Geological Sciences subcommission on 

the systematics of igneous rocks, 32–39. 

Locock AJ. 2014: An Excel spreadsheet to classify chemical analyses 

of  amphiboles  following  the  IMA  2012  recommendations. 

 Computers & Geosciences 62, 1–11.

Lucińska-Anczkiewicz A., Villa I.M., Anczkiewicz R. & Ślączka A. 

2002: 

40

Ar /

39

Ar dating of alkaline lamprophyres from the Polish 

Western Carpathians. Geol. Carpath. 53, 45–52.

Ludwig K.R. 2012: A geochronological toolkit for Microsoft Excel. 

Berkeley Geochronology Center Spec. Publ. 5, 1–75.

Lugmair G.W. & Marti K. 1978: Lunar initial 

143

Nd/

144

Nd: differential 

evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 

39, 349–357. 

Lustrino M. & Wilson M. 2007: The circum-Mediterranean anoro-

genic Cenozoic igneous province. Earth-Sci. Rev. 81, 1–65. 

Mahmood  A.  1973:  Petrology  of  the  teschenitic  rock  series  from  

the type area of Cieszyn (Teschen). Ann. Soc. Geol. Pol. XLIII, 

153–216.

Matýsek D., Jirásek J., Skupien P. & Thomson S.N. 2018: The Žer-

manice sill: new insights into the mineralogy, petrology, age, and 

origin of the teschenite association rocks in the Western Car-

pathians, Czech Republic. Int. J. Earth Sci. 107, 7, 2553–2574.

McDonough W.F. & Sun S.-S. 1995: The composition of the Earth. 

Chem. Geol. 120, 223–253.

Miranda  R.,  Valadares  V.,  Terrinha  P.,  Mata  J.,  Azevedo  M.D.R., 

Gaspar M., Kullberg J.C. & Ribeiro C. 2009: Age constraints on 

the  Late  Cretaceous  alkaline  magmatism  on  the  West  Iberian 

margin. Cretaceous Res. 30, 575–586. 

Narębski W. 1990: Early rift stage in the evolution of western part of 

the Carpathians: geochemical evidence from limburgite and 

teschenite rock series. Geol. Carpath. 41, 521–528.

Nebel O., Arculus R.J., van Westrenen W., Woodhead J.D., Jenner 

F.E.,  Nebel-Jacobsen  Y.J.,  Wille  M.  &  Eggins  S.M.  2013: 

 Coupled  Hf–Nd–Pb  isotope  co-variations  of  HIMU  oceanic  

island  basalts  from  Mangaia,  Cook-Austral  Islands,  suggest  

an Archean source component in the mantle transition zone.  

Geochim. Cosmochim. Acta. 112, 87–101. 

Nemčok M., Marko F., Kováč M. & Fodor L. 1989: Neogene tecto-

nics and paleostress changes in the Czechoslovakian part of the 

Vienna Basin. Jahrb. Geol. Bundesanst. 132, 443–458.

Nemčok M., Nemčok J., Wojtaszek M., Ludhova L., Oszczypko N., 

Sercombe  W.J.,  Cieszkowski  M.,  Paul  Z.,  Coward  M.P.  & 

 Ślączka A. 2001: Reconstruction of Cretaceous rifts incorpora-

ted in the outer west Carpathian wedge by balancing. Mar. 

 Petrol.  Geol. 18, 39–64. 

Oszczypko N. 2006: Late Jurassic–Miocene evolution of the Outer 

Carpathian fold-and-thrust belt and its foredeep basin (Western 

Carpathians, Poland). Geol. Quarterly 50, 169–194.

Oszczypko  N.,  Salata,  D.  &  Krobicki  M.  2012:  Early  Cretaceous 

 intra-plate volcanism in the Pieniny Klippen Belt — a case study 

of the Velykyi Kamenets/Vilkhivchyk (Ukraine) and Biała Woda 

(Poland) sections. Geol. Quarterly 56, 629–648. 

Paton C., Hellstrom J., Paul B., Woodhead J. & Hergt J. 2011: Iolite: 

Freeware for the visualisation and processing of mass spectro-

metric data. J. Anal. Atom. Spectrom. 26, 2508. 

Pearce J.A. 1996: A user’s guide to basalt discrimination diagrams. 

Trace element geochemistry of volcanic rocks: applications for 

massive sulphide exploration Geol. Assoc. Canada,  Short 

Course Notes 12, 79–113.

Pearce J.A. 2008: Geochemical fingerprinting of oceanic basalts with 

applications to ophiolite classification and the search for Ar-

chean oceanic crust. Lithos 100, 14–48. 

Pedersen R.B., Dunning G.R. & Robins B. 1989: U–Pb ages of 

nepheline syenite pegmatites from the Seiland Magmatic Pro-

vince, N Norway, In: Gayer, R.A. (Ed.), The Caledonide Geology 

of Scandinavia. Springer Netherlands, Dordrecht, 3–8. 

background image

240

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Piromallo C., Vincent A.P., Yuen D.A. & Morelli A. 2001: Dynamics 

of the transition zone under Europe inferred from wavelet 

cross-spectra of seismic tomography. Phys. Earth Planet. Inter. 

125, 125–139. 

Rock N.M.S. 1982: The Late Cretaceous alkaline igneous province in 

the Iberian Peninsula, and its tectonic significance. Lithos  15, 

111–131. 

Rögl F. 1996: Stratigraphic correlation of Paratethys Oligocene and 

Miocene. Mitt. Gesell. Geol. Bergbaust. Österreich 41, 65–73.

Rosenbusch H. 1887: Mikroskopische Physiographie der Mineralien 

und Gesteine. Vol. II. Massige Gesteine., 2nd ed. Schweizerbart

Stuttgart, 1–596.

Rossy M., Azambre B. & Albarède F. 1992: REE and Sr/Nd isotope 

geochemistry of the alkaline magmatism from the Cretaceous 

North Pyrenean Rift Zone (France-Spain). Chem. Geol. 97,  

33–46. 

Russell W.A., Papanastassiou D.A. & Tombrello T.A. 1978: Ca iso-

tope fractionation on the Earth and other solar system materials. 

Geochim. Cosmochim. Acta 42, 1075–1090. 

Salters V.J.M. & White W.M. 1998: Hf isotope constraints on mantle 

evolution. Chem. Geol. 145, 447–460. 

Sandulescu M. 1988: Cenozoic tectonic history of the Carpathians. 

In:  Royden  L.H.  &  Horvath  F.  (Ed.):  The  Pannonian  Basin:  

A Study in Basin Evolution. AAPG Memoir, 17–25.

Sato H., Tchoua F. & Kusakabe M. 1991: Olivine phenocrysts in some 

Cameroonian basalts — implications for primary magma com-

position. Mineral. Petrol. 44, 253–269. 

Scherer E., Münker C. & Mezger K. 2001: Calibration of the lute-

tium–hafnium clock. Science 293, 683–687. 

Seghedi I., Downes H., Szakács A., Mason P.R.D., Thirlwall M.F., 

Emilian R., Pécskay Z., Márton E. & Panaiotu C. 2004a: Neo-

gene–Quaternary magmatism and geodynamics in the Carpa-

thian–Pannonian region: a synthesis. Lithos 72, 117–146. 

Seghedi I., Downes H., Vaselli O., Szakács A., Balogh K. & Pécskay Z. 

2004b: Post-collisional Tertiary–Quaternary mafic alkalic mag-

matism in the Carpathian-Pannonian region: a review. Tectono-

physics 393, 43–62. 

Simkin T. & Smith J.V. 1970: Minor-element distribution in olivine. 

J. Geol. 78, 304–325. 

Ślączka A., Oszczypko N., Malata E. & Cieszkowski M. 1999: An 

early history of the Outer Carpathian basin. Geol. Carpath. 50, 

170–172.

Słomka T. 1986: Statistical approach to study of flysch sedimentation 

– Kimmeridgian–Hauterivian Cieszyn beds, Polish Outer Car-

pathians. Ann. Soc. Geol. Pol. 56, 277–336.

Smulikowski K. 1929: Materials on knowledge of magmatic rocks 

from Teschen region in Silesia. Arch. Tow. Nauk. we Lwowie 1, 

1–122 (in Polish).

Smulikowski K. 1980: Remarks on teschenite magmatic province (in 

Polish). Ann. Soc. Geol. Pol. L-1, 41–54.

Sperner B., Ratschbacher L. & Nemčok M. 2002: Interplay between 

subduction retreat and lateral extrusion: Tectonics of the Western 

Carpathians. Tectonics 21, 1051. 

Spišiak J. & Balogh K. 2002: Mesozoic alkali lamprophyres in Varis-

can granitoids of the Malé Karpaty and Nízké Tatry Mountains 

— geochronology and geochemistry. Geol. Carpath. 53, 

 

295–301.

Spišiak J., Plašienka D., Bučová J., Mikuš T. & Uher P. 2011: Petro-

logy and palaeotectonic setting of Cretaceous alkaline basaltic 

volcanism in the Pieniny Klippen Belt (Western Carpathians, 

Slovakia). Geol. Quarterly 55, 27–48.

Stacey J.S. & Kramers J.D. 1975: Approximation of terrestrial lead 

isotope evolution by a two-stage model. Earth Planet. Sci. Lett

26, 207–221. 

Sun S.-S. & McDonough W.F. 1989: Chemical and isotopic systema-

tics of oceanic basalts: implications for mantle composition and 

processes. In: Saunders A.D. & Norry M.J. (Eds.): Magmatism 

in the Ocean Basins. Geol. Soc. London, Spec. Pub. 42, 313–345. 

Švábenická L., Bubík M., Krejčí O. & Stráník Z. 1997: Stratigraphy 

of  Cretaceous  Sediments  of  the  Magura  Group  of  Nappes  in 

Moravia (Czech Republic). Geol. Carpath. 48, 179–191.

Szopa K., Włodyka R. & Chew D. 2014: LA-ICP-MS U–Pb apatite 

dating of Lower Cretaceous rocks from teschenite-picrite asso-

ciation in the Silesian Unit (southern Poland). Geol. Carpath. 65, 

273–284. 

Tindle A.G. & Webb P.C. 1990: Formula Unit Calculations — with 

optional calculated Li2O. 2. Li2O and H2O calculations. Euro-

pean J. Mineral. 2, 595–610.

Tschermak  G.  1866:  Felsarten  von  ungewöhnlicher  Zusammen-

setzung in den Umgebung von Teschen und Neutitschein. Sitz.-

Ber. Akad. Wiss. (Wien) 53, 260–287.

Ulrych J., Pivec E., Žák K., Bendl J. & Bosák P. 1993: Alkaline and 

ultramafic carbonate lamprophyres in Central Bohemian carbo-

niferous basins, Czech Republic. Mineral. Petrol. 48, 65–81. 

Ulrych J., Dostal J., Adamovič J., Jelínek E., Špaček P., Hegner E. & 

Balogh K. 2011: Recurrent Cenozoic volcanic activity in the 

 Bohemian Massif (Czech Republic). Lithos 123, 133–144. 

Vervoort J.D., Plank T. & Prytulak J. 2011: The Hf–Nd isotopic com-

position of marine sediments. Geochim. Cosmochim. Acta. 75, 

5903–5926. 

Villa I.M. 1998: Isotopic closure. Terra Nova 10, 42–47. 

Villa I.M., De Bièvre P., Holden N.E. & Renne P.R. 2015: IUPAC–

IUGS recommendation on the half life of 

87

Rb.  Geochim. 

 Cosmochim.  Acta. 164, 382–385. 

Willbold M. & Stracke A. 2006: Trace element composition of mantle 

end-members: implications for recycling of oceanic and upper 

and lower continental crust. Geochem. Geophy. Geosys. 7, 1–30. 

Wilson  M.  &  Bianchini  G.  1999:  Tertiary–Quaternary  magmatism 

within the Mediterranean and surrounding regions. In: Durand B., 

Jolivet L., Horváth F. & Séranne M. (Eds.): Tertiary–Quaternary 

magmatism within the Mediterranean and surrounding regions. 

Geol. Soc. London, Spec. Publ. 156, 141–168. 

Wilson M. & Downes H. 1991: Tertiary–Quaternary Extension-Rela-

ted  Alkaline  Magmatism  in  Western  and  Central  Europe.  

J. Petrol. 32, 811–849. 

Wilson M. & Downes H. 2006: Tertiary–Quaternary intra-plate mag-

matism in Europe and its relationship to mantle dynamics. In: 

Gee  D.G.  &  Stephenson  R.A.  (Eds):  European  Lithosphere 

 Dynamics.  Geol. Soc. London, Memoires 32, 147–166. 

Włodyka  R.  2010:  The  evolution  of  mineral  composition  of  the 

Cieszyn magma province rocks. Wydawnictwo  Uni wersytetu 

Śląskiego, Katowice, 1–232 (in Polish).

Woodhead J.D. 1996: Extreme HIMU in an oceanic setting: the geo-

chemistry of Mangaia Island (Polynesia), and temporal evolu-

tion of the Cook–Austral hotspot. J. Volcan. Geotherm. Res. 72, 

1–19. 

Żytko K., Gucik S., Ryłko W., Oszczypko N., Zając R., Garlicka I., 

Nemčok J., Eliáš M., Menčík E. & Stráník Z. 1989: Map of the 

tectonic elements of the Western Outer Carpathians and their 

Foreland. In: Poprawa D. & Nemčok J. (Eds.): Geological Atlas 

of the Western Outer Carpathians and Their Foreland. Państ-

wowy Instytut Geologiczny, Warszawa.

background image

i

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Supplement 

Table S1: Electron microprobe analyses of the selected phenocrysts.

Representative pyroxene compositions from Teschenite Association Rocks samples 

Rock type:

Picrite

Picroteschenite

Mineral:

Di

Di

Di

Di

Di

Di

Di

Di

Di

Di

Di

Di

Sample:

CPR1-1

CPR1-1

CS4-2.

CS4-2.

CS4-3

CS4-3

CSTa2-2

CSTa2-2

CR6-2

CR6-2

CR6-4

CR6-4

2

8

2

3

4

5

8

11

5

9

4

5

uniform

uniform bright rim dark core bright zone dark zone dark core very bright 

rim

dark zone bright zone bright core dark zone

SiO

2

46.79

47.86

43.59

50.37

47.96

49.86

47.17

48.87

48.52

43.70

43.31

46.59

TiO

2

2.18

2.13

3.39

1.25

1.94

1.46

2.61

1.34

2.08

3.25

3.97

2.70

Al

2

O

3

6.62

5.97

8.63

3.36

5.20

3.68

5.73

2.28

4.48

7.86

8.30

6.21

Cr

2

O

3

0.76

0.77

0.01

0.39

0.04

0.21

0.47

0.07

0.01

0.00

0.00

0.12

Fe

2

O

3

4.06

3.27

5.62

3.26

4.60

3.29

3.89

4.34

2.95

5.67

5.67

4.15

FeO

1.80

1.93

2.76

2.31

2.85

2.66

1.96

11.20

3.65

3.28

2.33

1.94

MnO

0.04

0.08

0.11

0.08

0.14

0.11

0.00

0.53

0.17

0.09

0.04

0.00

MgO

13.38

13.88

11.13

15.02

13.53

14.67

13.80

8.05

13.63

11.07

11.52

13.27

CaO

24.10

24.17

23.66

23.93

23.71

23.90

23.97

22.43

23.78

23.55

23.97

24.21

Na

2

O

0.29

0.30

0.45

0.33

0.34

0.30

0.32

1.04

0.28

0.41

0.37

0.33

K

2

O

0.00

0.01

0.02

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.00

Total

100.02

100.38

99.37

100.30

100.32

100.14

99.92

100.14

99.56

98.88

99.49

99.52

No. oxyg.

6

6

6

6

6

6

6

6

6

6

6

6

Si

1.737

1.765

1.648

1.854

1.780

1.841

1.752

1.884

1.812

1.664

1.636

1.739

Ti

0.061

0.059

0.096

0.035

0.054

0.041

0.073

0.039

0.058

0.093

0.113

0.076

Al

0.290

0.260

0.385

0.146

0.227

0.160

0.251

0.104

0.197

0.353

0.369

0.273

Cr

0.022

0.022

0.000

0.011

0.001

0.006

0.014

0.002

0.000

0.000

0.000

0.004

Fe3+

0.113

0.091

0.160

0.090

0.129

0.091

0.109

0.126

0.083

0.162

0.161

0.117

Fe2+

0.056

0.060

0.087

0.071

0.088

0.082

0.061

0.361

0.114

0.104

0.073

0.060

Mn

0.001

0.002

0.004

0.002

0.004

0.003

0.000

0.017

0.005

0.003

0.001

0.000

Mg

0.740

0.763

0.627

0.824

0.748

0.808

0.764

0.463

0.759

0.629

0.649

0.739

Ca

0.959

0.955

0.959

0.944

0.943

0.946

0.954

0.927

0.951

0.961

0.970

0.968

Na

0.021

0.021

0.033

0.024

0.024

0.021

0.023

0.078

0.020

0.030

0.027

0.024

K

0.000

0.000

0.001

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Total

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

Mg no.

0.930

0.928

0.878

0.921

0.894

0.908

0.926

0.562

0.869

0.857

0.898

0.924

All analyses by electron microprobe; Di - diopside, He - hedenbergite, Aug - augite

background image

ii

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Representative pyroxene compositions from Teschenite Association Rocks samples 

Rock type:

Teschenite

Syenite

Mineral:

Di

Di

Di

Di

He

Di

Di

He

Di

Di

He

Di

Di

Aug

Aug

Sample:

CBL1-2 CBL1-2 CRE3-1 CRE3-1 CRE3-2 CRE3-3 CRE3-3 CRE3-3 CRE3-4 CRE3-4 CRE3-4 CZI1-1 CZI1-1 CZI1-1 CZI1-4

21

22

12

19

32

33

7

8

7

11

12

9

10

13

1

uniform uniform dark zone bright 

zone

bright 

rim

dark core brighter 

zone

very 

bright rim dark core

brighter 

zone 2

very 

bright rin uniform uniform uniform uniform

SiO

2

44.46

41.97

49.36

44.57

46.15

46.14

47.56

46.31

48.93

49.9

46.7

49.45

48.64

51.23

50.44

TiO

2

3.31

4.57

1.85

3.54

1.82

2.62

2.12

1.46

1.96

1.39

1.74

1.81

2.13

0.85

0.99

Al

2

O

3

7.86

9.44

4.06

6.99

2.75

5.71

4.79

2.11

3.85

3.09

3.01

3.46

4.08

1.95

2.39

Cr

2

O

3

0.00

0.03

0.00

0.01

0.00

0.01

0

0

0.01

0.01

0

0

0.01

0

0

Fe

2

O

3

5.27

5.80

3.42

5.08

6.33

4.22

3.31

4.68

3.38

2.13

4.49

2.78

3.28

1.37

2.54

FeO

2.50

2.94

3.62

3.79

17.74

6.92

6.34

19.77

3.88

7.14

15.33

5.97

5.92

9.82

7.83

MnO

0.10

0.08

0.17

0.09

0.94

0.33

0.27

0.99

0.11

0.26

0.86

0.17

0.2

0.36

0.37

MgO

11.88

10.61

13.72

11.50

2.22

9.94

11

1.68

13.67

11.95

4.53

13.67

13.45

13.76

14.22

CaO

23.86

23.70

23.47

23.04

19.72

22.95

23.08

19.94

23.28

23.26

20.84

22.03

21.81

20.05

20.35

Na

2

O

0.38

0.43

0.51

0.55

1.92

0.68

0.63

1.57

0.45

0.52

1.38

0.43

0.44

0.35

0.34

K

2

O

0.01

0.00

0.00

0.01

0.00

0

0.02

0.03

0

0

0.01

0.01

0

0

0

Total

99.63

99.57

100.18

99.17

99.59

99.52

99.12

98.54

99.52

99.65

98.89

99.78

99.96

99.74

99.47

No. oxyg.

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

Si

1.672

1.591

1.830

1.691

1.859

1.761

1.808

1.895

1.829

1.881

1.863

1.850

1.820

1.926

1.896

Ti

0.094

0.130

0.052

0.101

0.055

0.075

0.061

0.045

0.055

0.039

0.052

0.051

0.060

0.024

0.028

Al

0.348

0.422

0.177

0.312

0.131

0.257

0.215

0.102

0.170

0.137

0.142

0.153

0.180

0.086

0.106

Cr

0.000

0.001

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Fe3+

0.149

0.165

0.095

0.145

0.192

0.121

0.095

0.144

0.095

0.060

0.135

0.078

0.092

0.039

0.072

Fe2+

0.079

0.093

0.112

0.120

0.598

0.221

0.202

0.677

0.121

0.225

0.512

0.187

0.185

0.309

0.246

Mn

0.003

0.003

0.005

0.003

0.032

0.011

0.009

0.034

0.003

0.008

0.029

0.005

0.006

0.011

0.012

Mg

0.666

0.600

0.758

0.650

0.133

0.565

0.624

0.102

0.762

0.671

0.269

0.762

0.750

0.771

0.797

Ca

0.961

0.963

0.932

0.936

0.851

0.938

0.940

0.874

0.932

0.939

0.891

0.883

0.874

0.808

0.819

Na

0.028

0.032

0.037

0.040

0.150

0.050

0.046

0.125

0.033

0.038

0.107

0.031

0.032

0.026

0.025

K

0.000

0.000

0.000

0.000

0.000

0.000

0.001

0.002

0.000

0.000

0.001

0.000

0.000

0.000

0.000

Total

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

4.000

Mg no.

0.894

0.865

0.871

0.844

0.182

0.719

0.756

0.132

0.863

0.749

0.345

0.803

0.802

0.714

0.764

All analyses by electron microprobe; Di - diopside, He - hedenbergite, Aug - augite

Table S1 (continued): Electron microprobe analyses of the selected phenocrysts.

background image

iii

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Representative amphibole compositions from Teschenite Association Rocks samples 

Group:

OH,F,Cl

OH,F,Cl

oxo

oxo

OH,F,Cl

OH,F,Cl

OH,F,Cl

OH,F,Cl

OH,F,Cl

oxo

Subgroup:

Ca

Ca

B = Ca

B = Ca

Ca

Ca

Ca

Ca

Ca

B = Ca

Species:

Ti-par

Ti-rich par

ferri-kaer ferro-ferri-kaer Ti-ferro-Par

Ti-par

Ti-Par

Ti-par

K-hast

ferro-ferri-kaer

Sample:

CPR-1-3

CPR-1-3

CRE3-1

CRE3-3

CS4-1

CS4-.

CSTa2-1

CSTa2-1

CBL1-2

CBL1-2

15

16

6

1

1

7

12

21

3

4

uniform

uniform

uniform

overgrowth on 

px

uniform

rim on px

uniform

uniform

bright rim

dark core

SiO

2

40.49

41.07

39.08

39.13

37.73

37.51

40.10

39.15

35.21

35.25

TiO

2

3.86

3.63

5.08

4.65

2.91

3.55

4.20

4.20

0.64

4.38

ZrO

2

0.02

0.02

0.04

0.05

0.13

0.06

0.06

0.00

0.03

0.08

Al

2

O

3

13.95

13.37

12.39

11.91

14.30

15.66

13.17

13.75

14.58

15.95

Cr

2

O

3

0.22

0.12

0.00

0.01

0.00

0.00

0.05

0.04

0.02

0.01

MnO

0.10

0.10

0.33

0.47

0.45

0.34

0.18

0.21

0.70

0.41

Mn

2

O

3

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

FeO

8.22

8.24

10.66

13.34

17.35

15.13

12.03

12.24

25.89

13.16

Fe

2

O

3

0.00

0.00

7.39

6.51

1.65

0.89

0.00

0.08

5.04

8.08

NiO

0.06

0.08

0.07

0.00

0.02

0.02

0.00

0.09

0.00

0.02

MgO

14.33

14.61

8.62

7.25

7.79

9.15

12.11

12.00

0.24

5.22

CaO

12.43

12.42

11.82

11.46

11.59

12.01

12.12

12.19

10.52

11.89

Na

2

O

2.66

2.53

2.66

2.68

2.26

2.33

2.60

2.53

1.86

1.92

K

2

O

1.39

1.43

1.11

1.29

1.53

1.46

1.37

1.38

2.66

1.84

H

2

O

+

2.05

2.02

0.76

0.84

1.90

1.96

1.96

2.01

1.81

0.81

F

0.00

0.06

0.12

0.10

0.11

0.03

0.11

0.00

0.06

0.24

Cl

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

O=F,Cl (calc)

0.00

-0.03

-0.05

-0.04

-0.05

-0.01

-0.05

0.00

-0.03

-0.10

Total

99.78

99.67

100.08

99.65

99.68

100.09

100.01

99.87

99.22

99.16

No. oxyg.

22

22

22

22

22

22

22

22

22

22

Si

5.936

6.021

5.979

6.069

5.815

5.685

5.967

5.853

5.773

5.548

Al

2.064

1.979

2.021

1.931

2.185

2.315

2.033

2.147

2.227

2.452

Ti

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Fe3+

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

[T]

8.000

8.000

8.000

8.000

8.000

8.000

8.000

8.000

8.000

8.000

Ti

0.426

0.400

0.585

0.543

0.337

0.405

0.470

0.472

0.079

0.519

Zr

0.001

0.001

0.003

0.004

0.010

0.004

0.004

0.000

0.002

0.006

Al

0.346

0.331

0.214

0.246

0.413

0.482

0.277

0.276

0.591

0.507

Cr

0.026

0.014

0.000

0.001

0.000

0.000

0.006

0.005

0.003

0.001

Mn

3+

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Fe

3+

0.000

0.000

0.851

0.759

0.193

0.102

0.000

0.009

0.623

0.957

Ni

0.007

0.009

0.009

0.000

0.002

0.002

0.000

0.011

0.000

0.003

Mn

2+

0.012

0.012

0.009

0.039

0.019

0.020

0.023

0.022

0.095

0.051

Fe

2+

1.008

1.010

1.363

1.731

2.236

1.917

1.497

1.531

3.548

1.732

Mg

3.132

3.193

1.966

1.676

1.790

2.067

2.686

2.675

0.059

1.225

[C]

4.958

4.970

5.000

4.999

5.000

4.999

4.963

5.001

5.000

5.001

Mn

2+

0.000

0.000

0.034

0.023

0.040

0.023

0.000

0.005

0.002

0.004

Fe

2+

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Mg

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Ca

1.953

1.951

1.938

1.904

1.914

1.950

1.932

1.953

1.848

1.996

Na

0.047

0.049

0.029

0.073

0.046

0.027

0.068

0.042

0.150

0.000

[B]

2.000

2.000

2.001

2.000

2.000

2.000

2.000

2.000

2.000

2.000

Ca

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Na

0.709

0.670

0.761

0.733

0.629

0.658

0.682

0.691

0.441

0.586

K

0.260

0.267

0.217

0.255

0.301

0.282

0.260

0.263

0.556

0.369

[A]

0.969

0.937

0.978

0.988

0.930

0.940

0.942

0.954

0.997

0.964

OH

2.000

1.972

0.774

0.867

1.946

1.986

1.948

2.000

1.969

0.844

F

0.000

0.028

0.058

0.049

0.054

0.014

0.052

0.000

0.031

0.119

Cl

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

O

0.000

0.000

1.168

1.084

0.000

0.000

0.000

0.000

0.000

1.036

[W]

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

1.999

Total

15.927

15.907

15.979

15.987

15.930

15.939

15.905

15.955

15.997

15.965

All analyses by electron microprobe; Amphibole formula calculated after Locock (2014); Ti-par – Ti-pargasite; Ti-rich par – Ti rich pargasite; ferri-Kaer – ferri kaersutite; 

K-hast – K-hastingsite; ferro-ferri-kaer – ferro-ferri-kaersutite

Table S1 (continued): Electron microprobe analyses of the selected phenocrysts.

background image

iv

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Representative mica compositions from Teschenite Association Rocks samples 

Rock:

Picrite

Picroteschenite

Mineral:

Bt

Bt

Bt

Phl

Phl

Phl

Bt

Bt

Bt

Bt

Bt

Bt

Bt

Bt

Sample:

CPR1-1 CPR1-1 CPR1-1 CPR-1-4. CPR-1-4. CPR-1-4. CSTa-2-3 CSTa-2-3 CSTa-2-3 CSTa-2-3 CSTa-2-3 CSTa-2-3 CSTa-2-3 CSTa-2-3

1

2

13

4

6

7

2

3

4

5

6

7

8

9

SiO

2

37.24

36.87

36.56

37.39

36.54

39.35

36.21

37.05

35.88

37.20

36.72

36.86

36.86

37.00

TiO

2

6.07

6.18

5.01

3.61

5.38

3.92

6.02

6.15

6.55

6.14

6.02

5.63

5.96

5.80

Al

2

O

3

17.23

17.19

16.68

16.16

16.97

12.45

16.69

16.80

16.39

16.97

16.56

16.66

16.83

16.86

FeO

7.67

7.42

9.34

7.77

7.80

8.75

11.03

10.21

10.19

10.02

11.15

12.93

11.69

11.88

MnO

0.12

0.12

0.04

0.07

0.07

0.07

0.12

0.07

0.07

0.12

0.10

0.20

0.06

0.09

MgO

18.16

18.29

17.79

19.75

18.60

23.68

15.72

16.57

15.50

16.83

16.02

15.17

15.94

15.97

CaO

0.00

0.00

0.10

0.25

0.15

0.13

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Na

2

O

0.86

0.86

1.59

1.59

1.06

0.62

0.69

0.73

0.69

0.72

0.70

0.66

0.76

0.67

K

2

O

8.44

8.17

7.32

7.50

8.09

4.90

8.27

8.33

8.18

8.23

8.37

8.55

8.19

8.43

BaO

0.65

0.77

0.39

0.24

0.80

0.50

0.47

0.57

0.76

0.69

0.56

0.50

0.52

0.43

F

0.00

0.09

0.21

0.00

0.11

0.00

0.18

0.03

0.25

0.07

0.13

0.00

0.11

0.02

Cl

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Cr

2

O

3

0.11

0.14

0.11

0.05

0.04

0.00

0.01

0.03

0.00

0.00

0.00

0.00

0.05

0.00

H

2

O

*

4.20

4.14

4.02

4.13

4.10

4.18

3.99

4.14

3.92

4.14

4.06

4.13

4.09

4.15

O=F,Cl

0.00

0.04

0.09

0.00

0.05

0.00

0.08

0.01

0.11

0.03

0.05

0.00

0.05

0.01

Total

100.75

100.20

99.07

98.51

99.66

98.55

99.32

100.67

98.27

101.10

100.34

101.29

101.01

101.29

No. oxyg.

22

22

22

22

22

22

22

22

22

22

22

22

22

22

Si

5.311

5.284

5.323

5.429

5.282

5.645

5.315

5.340

5.317

5.334

5.339

5.352

5.326

5.336

Al iv

2.689

2.716

2.677

2.571

2.718

2.105

2.685

2.660

2.683

2.666

2.661

2.648

2.674

2.664

[T]

8.000

8.000

8.000

8.000

8.000

7.751

8.000

8.000

8.000

8.000

8.000

8.000

8.000

8.000

Al vi

0.207

0.188

0.185

0.194

0.173

0.000

0.202

0.195

0.180

0.202

0.178

0.203

0.193

0.202

Ti

0.651

0.666

0.549

0.394

0.585

0.423

0.665

0.667

0.730

0.662

0.658

0.615

0.648

0.629

Cr

0.012

0.016

0.013

0.006

0.005

0.000

0.001

0.003

0.000

0.000

0.000

0.000

0.006

0.000

Fe

0.915

0.889

1.137

0.943

0.943

1.050

1.354

1.231

1.263

1.202

1.356

1.570

1.413

1.433

Mn

0.014

0.015

0.005

0.009

0.009

0.009

0.015

0.009

0.009

0.015

0.012

0.025

0.007

0.011

Mg

3.861

3.907

3.861

4.275

4.008

5.064

3.440

3.560

3.424

3.597

3.472

3.283

3.433

3.433

[M]

5.661

5.681

5.749

5.821

5.722

6.546

5.677

5.664

5.605

5.678

5.676

5.695

5.699

5.708

Ca

0.000

0.000

0.016

0.039

0.023

0.020

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Na

0.238

0.239

0.449

0.448

0.297

0.172

0.196

0.204

0.198

0.200

0.197

0.186

0.213

0.187

K

1.535

1.493

1.359

1.389

1.492

0.897

1.548

1.531

1.546

1.505

1.552

1.583

1.509

1.551

Ba

0.036

0.043

0.022

0.014

0.045

0.028

0.027

0.032

0.044

0.039

0.032

0.028

0.029

0.024

[A]

1.809

1.776

1.846

1.889

1.857

1.117

1.772

1.768

1.789

1.744

1.782

1.798

1.752

1.762

Total

15.470

15.456

15.595

15.710

15.580

15.414

15.449

15.432

15.394

15.422

15.458

15.493

15.451

15.471

OH*

4.000

3.959

3.903

4.000

3.950

4.000

3.916

3.986

3.883

3.968

3.940

4.000

3.950

3.991

F

0.000

0.041

0.097

0.000

0.050

0.000

0.084

0.014

0.117

0.032

0.060

0.000

0.050

0.009

Cl

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Al total

2.896

2.904

2.862

2.766

2.891

2.105

2.888

2.854

2.863

2.868

2.838

2.851

2.866

2.866

Fe/Fe+Mg

0.192

0.185

0.228

0.181

0.190

0.172

0.282

0.257

0.269

0.250

0.281

0.323

0.292

0.294

 All analyses by electron microprobe; H

2

O calculations after Tindle & Webb (1990); Bt - biotite, Phl - phlogopite

Table S1 (continued): Electron microprobe analyses of the selected phenocrysts.

background image

v

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Representative olivine compositions from Teschenite Association Rocks samples 

Rock type:

Picrite

Mineral:

Ol

Ol

Ol

Ol

Ol

Ol

Ol

Ol

Formula

CPR1-2

CPR1-2

CPR1-3

CPR1-3

CPR1-3

CPR1-3

CPR1-4

CPR1-4

5

6

9

10

11

12

1

2

MgO

44.13

44.25

44.09

44.65

44.05

42.95

44.62

44.91

CaO

0.48

0.46

0.44

0.33

0.41

0.48

0.42

0.41

MnO

0.30

0.25

0.24

0.25

0.29

0.32

0.32

0.19

FeO(tot)

15.61

15.21

14.63

13.95

14.75

16.59

14.55

14.37

NiO

0.07

0.19

0.16

0.16

0.09

0.15

0.11

0.19

Al2O3

0.03

0.04

0.03

0.04

0.03

0.01

0.02

0.03

Cr2O3

0.01

0.02

0.01

0.02

0.03

0.01

0.02

0.03

SiO

2

40.10

40.30

40.00

40.62

39.98

39.92

40.37

40.67

TiO

2

0.03

0.02

0.02

0.01

0.01

0.02

0.01

0.01

Total

100.77

100.75

99.62

100.04

99.64

100.44

100.45

100.81

No. oxygens

4

4

4

4

4

4

4

4

Mg

1.645

1.646

1.655

1.661

1.654

1.614

1.660

1.662

Ca

0.013

0.012

0.012

0.009

0.011

0.013

0.011

0.011

Mn

0.006

0.005

0.005

0.005

0.006

0.007

0.007

0.004

Fe

2+

(tot)

0.326

0.317

0.308

0.291

0.311

0.350

0.304

0.298

Ni

0.001

0.004

0.003

0.003

0.002

0.003

0.002

0.004

Al

0.001

0.001

0.001

0.001

0.001

0.000

0.001

0.001

Cr

0.000

0.000

0.000

0.000

0.001

0.000

0.000

0.001

Si

1.003

1.006

1.007

1.014

1.007

1.006

1.007

1.009

Ti

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Total cations

2.996

2.993

2.992

2.985

2.992

2.993

2.992

2.990

Fo%

83.210

83.640

84.100

84.870

83.920

81.890

84.220

84.620

Mg/Mg+Fe

0.835

0.839

0.843

0.851

0.842

0.822

0.845

0.848

Ol - olivine

Table S1 (continued): Electron microprobe analyses of the selected phenocrysts.

background image

vi

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Table S2: Summary of laser ablation ICP-MS U–Pb titanite dating results.

Isotope ratios

Ages (Ma)

207

Pb/ 

235

U

±2SE

206

Pb/ 

238

U ±2SE

238

U/ 

206

Pb ±2SE

207

Pb/ 

206

Pb ±2SE

206

Pb/ 

238

U age

±2SE

207

Pb/ 

235

U age

±2SE

207

Pb-corr. Age ±2SE

Sample CP1-11

0.520

0.065

0.0219

0.0013

45.66

2.71

0.170

0.023

139.7

8.4

405

44

117.5

9.3

1.050

0.180

0.0255

0.0022

39.22

3.38

0.331

0.063

162.0

14.0

686

90

114.0

21.0

1.000

0.120

0.0256

0.0017

39.06

2.59

0.309

0.040

163.0

11.0

661

61

114.0

12.0

0.548

0.076

0.0215

0.0014

46.51

3.03

0.190

0.029

136.8

9.1

410

49

114.0

11.0

1.161

0.088

0.0271

0.0012

36.90

1.63

0.315

0.025

172.0

7.4

759

40

115.7

9.6

0.431

0.057

0.0210

0.0010

47.53

2.26

0.153

0.021

134.1

6.3

354

41

117.8

8.3

0.356

0.046

0.0217

0.0011

46.08

2.34

0.126

0.017

138.0

7.2

298

34

125.6

8.0

0.432

0.081

0.0229

0.0021

43.67

4.00

0.141

0.031

146.0

14.0

347

59

129.0

14.0

0.430

0.110

0.0205

0.0018

48.78

4.28

0.146

0.037

131.0

11.0

330

78

114.0

14.0

0.447

0.072

0.0225

0.0015

44.44

2.96

0.160

0.028

143.4

9.3

346

50

128.0

12.0

0.484

0.079

0.0217

0.0014

46.08

2.97

0.186

0.036

139.3

9.3

365

51

120.0

12.0

0.759

0.090

0.0238

0.0014

42.02

2.47

0.256

0.033

151.4

8.9

546

52

116.0

11.0

0.416

0.052

0.0217

0.0010

46.15

2.13

0.143

0.020

138.1

6.3

334

38

123.5

8.0

0.405

0.060

0.0203

0.0013

49.26

3.15

0.148

0.023

129.5

8.2

321

42

113.9

9.2

0.439

0.070

0.0204

0.0013

49.02

3.12

0.164

0.028

130.3

8.5

338

48

112.9

9.7

0.396

0.072

0.0224

0.0015

44.64

2.99

0.137

0.027

142.6

9.1

315

52

128.0

11.0

0.476

0.074

0.0217

0.0013

46.08

2.76

0.175

0.032

138.0

8.2

368

51

119.7

9.4

0.570

0.130

0.0223

0.0015

44.84

3.02

0.185

0.038

142.0

9.6

417

73

118.5

9.8

0.308

0.037

0.0201

0.0010

49.70

2.40

0.113

0.015

128.3

6.1

266

29

118.0

6.9

0.372

0.082

0.0218

0.0018

45.87

3.79

0.133

0.031

139.0

12.0

298

60

123.0

12.0

0.400

0.100

0.0219

0.0019

45.66

3.96

0.137

0.035

140.0

12.0

306

71

125.0

13.0

0.506

0.085

0.0216

0.0013

46.30

2.79

0.175

0.029

137.8

8.0

375

54

117.0

9.6

0.429

0.062

0.0211

0.0014

47.39

3.14

0.158

0.026

134.5

9.0

337

44

117.0

11.0

1.310

0.100

0.0289

0.0014

34.60

1.68

0.359

0.038

183.4

9.0

827

45

119.0

13.0

0.511

0.081

0.0223

0.0014

44.84

2.82

0.182

0.031

142.0

8.8

380

53

121.0

10.0

0.373

0.050

0.0214

0.0011

46.73

2.40

0.134

0.019

136.5

7.1

308

38

122.7

8.2

0.640

0.100

0.0234

0.0015

42.74

2.74

0.205

0.035

149.1

9.5

467

63

120.0

13.0

1.280

0.140

0.0290

0.0015

34.48

1.78

0.305

0.033

184.0

9.7

798

59

128.0

12.0

0.446

0.065

0.0227

0.0013

44.05

2.52

0.153

0.025

144.5

8.3

349

43

126.8

9.9

0.422

0.056

0.0223

0.0012

44.84

2.41

0.145

0.021

142.0

7.5

342

41

125.7

9.1

0.985

0.082

0.0259

0.0013

38.61

1.94

0.286

0.025

164.8

7.9

678

44

118.8

9.3

1.590

0.150

0.0301

0.0019

33.22

2.10

0.422

0.050

191.0

12.0

928

61

110.0

15.0

0.630

0.100

0.0233

0.0015

42.92

2.76

0.206

0.030

148.5

9.4

447

58

116.4

9.5

0.351

0.029

0.0204

0.0006

49.02

1.35

0.123

0.010

130.2

3.6

301

21

118.6

4.0

Sample CR8-11

0.530

0.150

0.0231

0.0026

43.29

4.87

0.198

0.060

147.0

17.0

430

110

121.0

20.0

0.330

0.052

0.0224

0.0014

44.64

2.79

0.120

0.022

142.4

8.7

280

41

131.0

9.8

0.416

0.057

0.0210

0.0014

47.62

3.17

0.156

0.023

133.5

9.0

342

43

116.3

9.9

0.334

0.054

0.0203

0.0013

49.26

3.15

0.131

0.024

129.4

8.2

270

40

117.3

9.4

0.328

0.057

0.0217

0.0014

46.08

2.97

0.122

0.022

138.0

8.9

268

42

126.3

10.0

0.316

0.046

0.0197

0.0011

50.76

2.83

0.119

0.019

125.5

6.9

267

36

114.4

7.9

0.482

0.083

0.0221

0.0016

45.25

3.28

0.178

0.035

140.5

10.0

376

57

122.0

13.0

0.368

0.067

0.0209

0.0015

47.85

3.43

0.137

0.025

133.3

9.6

293

49

120.0

11.0

0.350

0.063

0.0191

0.0013

52.36

3.56

0.134

0.024

121.6

8.5

282

47

108.2

9.3

0.397

0.067

0.0202

0.0013

49.50

3.19

0.158

0.030

128.5

8.4

315

49

114.0

10.0

0.368

0.062

0.0195

0.0014

51.28

3.68

0.147

0.026

124.1

9.0

296

45

110.0

10.0

0.285

0.053

0.0210

0.0015

47.62

3.40

0.116

0.025

133.9

9.3

233

39

125.0

11.0

0.358

0.060

0.0206

0.0014

48.54

3.30

0.138

0.026

131.3

8.9

286

43

118.6

10.0

0.323

0.047

0.0206

0.0010

48.52

2.35

0.122

0.018

131.5

6.4

267

36

121.0

7.7

0.301

0.051

0.0205

0.0011

48.90

2.63

0.109

0.019

130.4

6.7

252

39

120.5

7.4

0.292

0.048

0.0198

0.0011

50.51

2.81

0.111

0.018

126.2

6.9

242

36

117.5

8.1

0.399

0.064

0.0194

0.0012

51.55

3.19

0.155

0.027

123.9

7.6

312

46

107.4

9.2

0.341

0.060

0.0197

0.0015

50.76

3.87

0.148

0.030

125.4

9.2

277

45

114.0

11.0

0.357

0.059

0.0210

0.0016

47.62

3.63

0.134

0.028

133.6

10.0

284

43

123.0

11.0

0.374

0.054

0.0209

0.0015

47.85

3.43

0.154

0.027

133.2

9.5

313

42

119.0

11.0

0.301

0.056

0.0213

0.0014

46.95

3.09

0.117

0.024

135.6

8.8

243

42

125.7

10.0

background image

vii

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Isotope ratios

Ages (Ma)

207

Pb/ 

235

U

±2SE

206

Pb/ 

238

U ±2SE

238

U/ 

206

Pb ±2SE

207

Pb/ 

206

Pb ±2SE

206

Pb/ 

238

U age

±2SE

207

Pb/ 

235

U age

±2SE

207

Pb-corr. Age ±2SE

0.200

0.026

0.0189

0.0008

52.94

2.13

0.078

0.010

120.6

4.8

182

23

117.3

5.6

0.759

0.072

0.0248

0.0013

40.32

2.11

0.232

0.024

157.7

8.0

555

43

123.1

10.0

0.151

0.015

0.0195

0.0006

51.36

1.64

0.057

0.006

124.3

3.9

142

13

122.8

4.5

0.378

0.070

0.0200

0.0013

50.00

3.25

0.143

0.030

127.5

8.5

291

49

115.0

11.0

0.360

0.068

0.0209

0.0014

47.85

3.21

0.139

0.028

133.1

9.1

295

50

119.0

11.0

0.386

0.061

0.0203

0.0013

49.26

3.15

0.151

0.027

129.7

8.5

306

42

115.3

9.8

0.758

0.064

0.0244

0.0011

40.98

1.85

0.228

0.020

155.4

6.8

557

38

121.1

7.8

0.285

0.057

0.0198

0.0014

50.51

3.57

0.108

0.022

126.2

8.6

242

43

116.3

9.3

0.367

0.062

0.0215

0.0013

46.51

2.81

0.124

0.021

137.2

8.1

291

44

123.6

9.5

0.416

0.069

0.0219

0.0015

45.66

3.13

0.151

0.025

139.7

9.5

336

49

123.0

11.0

0.519

0.057

0.0223

0.0012

44.84

2.41

0.174

0.019

142.4

7.3

406

37

121.4

7.7

0.362

0.066

0.0209

0.0014

47.85

3.21

0.133

0.026

133.2

8.7

289

48

121.4

10.0

0.419

0.065

0.0218

0.0016

45.87

3.37

0.147

0.024

138.9

10.0

327

46

123.2

10.0

0.363

0.058

0.0213

0.0016

46.95

3.53

0.143

0.024

135.0

10.0

290

42

122.0

12.0

0.389

0.085

0.0210

0.0017

47.62

3.85

0.152

0.039

134.0

11.0

317

61

118.0

13.0

0.326

0.057

0.0194

0.0013

51.55

3.45

0.143

0.027

123.7

8.5

274

44

110.9

10.0

Sample CJ-12

0.710

0.100

0.0236

0.0015

42.37

2.69

0.241

0.040

150.0

9.5

502

61

117.0

12.0

0.715

0.092

0.0241

0.0017

41.49

2.93

0.235

0.033

153.0

11.0

515

57

119.0

12.0

0.636

0.080

0.0238

0.0017

42.02

3.00

0.206

0.030

152.0

10.0

468

48

124.0

12.0

0.800

0.100

0.0250

0.0017

40.00

2.72

0.249

0.036

161.0

11.0

561

59

126.0

13.0

0.619

0.087

0.0245

0.0017

40.82

2.83

0.200

0.033

156.0

11.0

456

56

129.0

13.0

0.702

0.090

0.0239

0.0015

41.84

2.63

0.223

0.033

151.8

9.5

508

54

122.0

12.0

0.516

0.065

0.0237

0.0012

42.19

2.14

0.160

0.020

151.0

7.7

409

44

129.4

9.1

0.596

0.072

0.0243

0.0013

41.15

2.20

0.193

0.027

154.7

8.1

454

46

129.0

10.0

0.639

0.091

0.0232

0.0015

43.10

2.79

0.225

0.037

147.6

9.6

465

58

119.0

11.0

0.536

0.063

0.0230

0.0014

43.48

2.65

0.184

0.024

146.4

8.8

424

44

123.2

10.0

0.597

0.073

0.0240

0.0017

41.67

2.95

0.205

0.030

153.0

10.0

466

50

125.0

13.0

0.630

0.100

0.0234

0.0016

42.74

2.92

0.207

0.034

148.7

10.0

457

63

120.0

12.0

0.810

0.100

0.0248

0.0019

40.32

3.09

0.255

0.034

157.0

12.0

566

58

120.0

14.0

0.594

0.081

0.0238

0.0013

42.02

2.30

0.192

0.027

151.5

8.0

439

51

126.2

9.9

0.677

0.087

0.0260

0.0017

38.46

2.51

0.204

0.030

165.0

11.0

485

55

137.0

13.0

0.730

0.100

0.0242

0.0017

41.32

2.90

0.240

0.038

154.0

10.0

512

62

120.0

13.0

0.660

0.110

0.0238

0.0016

42.02

2.82

0.207

0.039

152.7

10.0

462

69

125.0

12.0

0.693

0.090

0.0241

0.0016

41.49

2.75

0.222

0.032

153.4

9.9

493

56

124.0

12.0

0.710

0.120

0.0271

0.0018

36.90

2.45

0.195

0.034

172.0

11.0

487

66

142.0

14.0

0.770

0.120

0.0248

0.0018

40.32

2.93

0.238

0.038

158.0

11.0

529

67

122.0

14.0

0.830

0.110

0.0255

0.0017

39.22

2.61

0.242

0.033

162.0

11.0

566

60

124.0

13.0

0.710

0.110

0.0252

0.0018

39.68

2.83

0.230

0.038

160.0

11.0

502

63

128.0

14.0

0.642

0.089

0.0255

0.0015

39.22

2.31

0.192

0.028

162.0

9.2

471

56

134.0

11.0

0.770

0.110

0.0235

0.0020

42.55

3.62

0.260

0.047

150.0

12.0

532

61

114.0

14.0

0.680

0.094

0.0231

0.0015

43.29

2.81

0.252

0.040

146.8

9.3

483

57

115.0

12.0

0.710

0.220

0.0245

0.0031

40.82

5.16

0.246

0.093

156.0

19.0

480

130

124.0

25.0

0.680

0.110

0.0241

0.0016

41.49

2.75

0.228

0.040

153.6

10.0

471

64

125.0

14.0

0.850

0.110

0.0262

0.0019

38.17

2.77

0.271

0.040

167.0

12.0

576

60

128.0

14.0

0.546

0.070

0.0240

0.0014

41.67

2.43

0.183

0.025

153.0

9.0

428

48

131.0

11.0

0.584

0.088

0.0236

0.0017

42.37

3.05

0.193

0.033

150.0

10.0

423

58

125.0

12.0

0.900

0.130

0.0260

0.0016

38.46

2.37

0.250

0.034

165.5

9.8

593

64

124.0

13.0

0.810

0.120

0.0264

0.0020

37.88

2.87

0.246

0.040

167.0

13.0

550

70

130.0

16.0

0.690

0.110

0.0245

0.0016

40.82

2.67

0.230

0.039

155.9

9.9

484

68

124.0

13.0

0.508

0.077

0.0238

0.0014

42.02

2.47

0.169

0.030

151.6

8.8

388

53

132.0

11.0

0.800

0.120

0.0254

0.0019

39.37

2.95

0.245

0.039

162.0

12.0

552

66

124.0

15.0

0.528

0.075

0.0246

0.0016

40.65

2.64

0.165

0.025

156.3

9.8

411

52

134.0

11.0

Table S2 (continued): Summary of laser ablation ICP-MS U–Pb titanite dating results.

background image

viii

BRUNARSKA and ANCZKIEWICZ

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Isotope ratios

Ages (Ma)

207

Pb/ 

235

U

±2SE

206

Pb/ 

238

U ±2SE

238

U/ 

206

Pb ±2SE

207

Pb/ 

206

Pb ±2SE

206

Pb/ 

238

U age

±2SE

207

Pb/ 

235

U age

±2SE

207

Pb-corr. Age ±2SE

0.710

0.130

0.0244

0.0025

40.98

4.20

0.231

0.050

155.0

16.0

513

83

123.0

18.0

Sample Czi-1-12

1.050

0.120

0.0272

0.0015

36.76

2.03

0.299

0.039

172.9

9.1

681

59

124.0

13.0

0.471

0.049

0.0220

0.0011

45.45

2.27

0.157

0.017

140.4

7.0

386

34

122.1

7.7

1.070

0.190

0.0258

0.0028

38.76

4.21

0.313

0.062

164.0

18.0

704

92

113.0

21.0

1.060

0.110

0.0277

0.0014

36.10

1.82

0.283

0.032

175.9

8.5

694

56

125.0

11.0

0.726

0.052

0.0234

0.0009

42.72

1.64

0.235

0.021

149.1

5.7

541

31

117.0

7.5

0.860

0.170

0.0243

0.0020

41.15

3.39

0.251

0.046

155.0

13.0

585

88

115.0

16.0

1.010

0.120

0.0260

0.0016

38.46

2.37

0.304

0.039

165.4

10.0

675

62

116.0

13.0

0.463

0.067

0.0215

0.0011

46.51

2.38

0.157

0.024

137.3

7.0

370

46

118.7

8.3

0.820

0.130

0.0238

0.0016

42.02

2.82

0.256

0.044

151.6

10.0

575

72

113.0

13.0

1.007

0.095

0.0264

0.0013

37.88

1.87

0.288

0.030

167.9

8.0

683

48

121.0

11.0

1.350

0.160

0.0275

0.0022

36.36

2.91

0.381

0.055

175.0

14.0

848

65

110.0

19.0

1.590

0.140

0.0314

0.0018

31.85

1.83

0.405

0.047

199.0

11.0

930

57

120.0

16.0

1.040

0.130

0.0271

0.0016

36.90

2.18

0.298

0.038

172.0

9.9

683

65

121.0

11.0

0.783

0.077

0.0244

0.0012

40.98

2.02

0.243

0.025

155.2

7.8

561

45

119.6

8.8

0.417

0.032

0.0208

0.0007

48.03

1.61

0.147

0.012

132.8

4.4

347

23

116.9

4.8

0.855

0.095

0.0266

0.0017

37.59

2.40

0.255

0.033

169.0

11.0

597

55

129.0

13.0

0.930

0.130

0.0266

0.0023

37.59

3.25

0.267

0.044

169.0

14.0

647

67

126.0

17.0

0.620

0.063

0.0241

0.0012

41.49

2.07

0.203

0.023

153.1

7.4

470

38

126.1

9.0

0.658

0.051

0.0242

0.0009

41.41

1.53

0.200

0.017

153.8

5.6

500

31

125.2

7.0

1.870

0.340

0.0368

0.0036

27.17

2.66

0.381

0.077

233.0

23.0

1010

120

139.0

33.0

0.857

0.085

0.0257

0.0011

38.91

1.67

0.246

0.026

163.6

7.0

600

46

125.2

8.7

1.070

0.150

0.0269

0.0017

37.17

2.35

0.316

0.051

171.0

11.0

692

73

120.0

15.0

0.589

0.073

0.0245

0.0014

40.82

2.33

0.178

0.024

155.7

8.6

473

53

129.7

9.7

0.761

0.084

0.0240

0.0014

41.67

2.43

0.243

0.027

153.0

8.9

551

49

117.2

9.6

0.980

0.110

0.0272

0.0016

36.76

2.16

0.278

0.036

172.6

9.8

647

59

127.0

12.0

1.040

0.100

0.0275

0.0016

36.36

2.12

0.298

0.036

175.0

10.0

692

50

127.0

12.0

0.707

0.085

0.0238

0.0014

42.02

2.47

0.223

0.030

151.5

8.9

525

54

120.0

11.0

0.762

0.079

0.0235

0.0015

42.55

2.72

0.251

0.028

149.4

9.2

553

47

114.0

10.0

1.460

0.160

0.0309

0.0020

32.36

2.09

0.350

0.036

196.0

12.0

858

71

123.0

12.0

0.619

0.063

0.0228

0.0010

43.80

1.92

0.209

0.025

145.5

6.4

470

40

118.6

8.4

0.742

0.086

0.0260

0.0015

38.46

2.22

0.232

0.037

165.1

9.3

545

52

132.0

13.0

0.946

0.096

0.0271

0.0014

36.90

1.91

0.273

0.032

172.3

8.9

656

54

126.0

12.0

0.984

0.094

0.0255

0.0013

39.22

2.00

0.310

0.038

162.1

8.1

664

49

115.0

11.0

0.880

0.110

0.0250

0.0019

40.00

3.04

0.260

0.035

159.0

12.0

612

59

118.0

13.0

1.140

0.110

0.0287

0.0017

34.84

2.06

0.324

0.041

182.0

11.0

751

55

127.0

15.0

0.564

0.048

0.0226

0.0008

44.23

1.58

0.191

0.019

144.1

5.1

446

31

118.5

6.7

0.712

0.079

0.0246

0.0012

40.65

1.98

0.220

0.026

156.7

7.3

529

48

123.8

9.1

0.738

0.065

0.0237

0.0012

42.19

2.14

0.236

0.023

151.1

7.2

546

40

117.0

8.4

Sample CBH1-12

0.688

0.068

0.0234

0.0011

42.74

2.01

0.227

0.025

148.7

6.6

500

41

119.3

8.3

1.137

0.086

0.0292

0.0013

34.25

1.52

0.303

0.027

185.4

8.2

742

43

131.0

10.0

0.715

0.072

0.0240

0.0012

41.67

2.08

0.226

0.024

152.9

7.8

522

44

119.2

8.9

0.128

0.025

0.0182

0.0007

54.91

2.17

0.049

0.010

116.3

4.5

115

21

115.9

5.1

0.265

0.042

0.0202

0.0010

49.58

2.34

0.099

0.016

128.6

6.0

231

33

120.2

6.8

0.830

0.098

0.0248

0.0014

40.32

2.28

0.262

0.034

157.7

8.9

583

55

119.0

11.0

0.822

0.057

0.0249

0.0009

40.16

1.39

0.244

0.019

158.5

5.4

594

32

120.7

6.4

0.566

0.076

0.0212

0.0014

47.17

3.11

0.198

0.029

135.4

8.6

431

51

110.0

10.0

1.317

0.093

0.0302

0.0013

33.11

1.43

0.337

0.029

191.7

8.4

837

41

126.0

11.0

0.676

0.076

0.0236

0.0012

42.37

2.15

0.228

0.030

150.1

7.5

510

48

118.8

9.7

0.561

0.074

0.0218

0.0013

45.87

2.74

0.182

0.027

139.2

8.1

428

47

115.4

9.9

0.803

0.082

0.0258

0.0013

38.76

1.95

0.250

0.030

163.8

7.9

572

50

126.0

10.0

Table S2 (continued): Summary of laser ablation ICP-MS U–Pb titanite dating results.

background image

ix

TESCHENITES FROM THE TYPE-LOCALITY IN THE OUTER WESTERN CARPATHIANS

GEOLOGICA CARPATHICA

, 2019, 70, 3, 222–240

Isotope ratios

Ages (Ma)

207

Pb/ 

235

U

±2SE

206

Pb/ 

238

U ±2SE

238

U/ 

206

Pb ±2SE

207

Pb/ 

206

Pb ±2SE

206

Pb/ 

238

U age

±2SE

207

Pb/ 

235

U age

±2SE

207

Pb-corr. Age ±2SE

1.020

0.110

0.0270

0.0015

37.04

2.06

0.285

0.032

171.8

9.3

685

57

124.0

12.0

3.270

0.240

0.0482

0.0023

20.75

0.99

0.499

0.041

303.0

14.0

1440

60

140.0

19.0

0.555

0.046

0.0219

0.0008

45.60

1.66

0.186

0.017

139.8

5.0

434

30

116.3

5.7

0.576

0.077

0.0229

0.0013

43.67

2.48

0.204

0.029

145.7

8.1

433

50

120.2

8.8

0.646

0.068

0.0226

0.0011

44.25

2.15

0.231

0.030

143.8

7.0

488

43

115.3

9.1

0.127

0.019

0.0191

0.0006

52.25

1.56

0.049

0.007

122.2

3.6

117

16

121.7

4.0

4.250

0.230

0.0560

0.0023

17.86

0.73

0.559

0.036

351.0

14.0

1664

46

131.0

20.0

0.599

0.066

0.0216

0.0010

46.30

2.14

0.212

0.025

137.7

6.4

448

42

112.3

7.6

0.215

0.029

0.0192

0.0008

52.16

2.18

0.084

0.012

122.3

5.0

188

24

117.3

5.5

1.370

0.120

0.0291

0.0014

34.36

1.65

0.353

0.037

184.6

9.0

852

53

117.0

12.0

0.468

0.064

0.0216

0.0012

46.30

2.57

0.174

0.026

137.5

7.3

371

46

117.1

8.5

0.528

0.061

0.0226

0.0012

44.25

2.35

0.190

0.026

144.2

7.3

404

42

122.5

9.1

0.817

0.061

0.0236

0.0009

42.30

1.61

0.262

0.022

150.5

5.7

590

35

113.1

7.2

Sample CR6-11

0.416

0.047

0.0218

0.0010

45.79

2.10

0.145

0.018

139.1

6.4

335

34

123.3

7.1

0.401

0.067

0.0214

0.0013

46.73

2.84

0.156

0.032

136.6

8.0

312

48

120.4

9.8

0.577

0.068

0.0224

0.0011

44.64

2.19

0.204

0.026

142.8

7.0

436

45

117.0

9.1

0.482

0.069

0.0218

0.0013

45.87

2.74

0.165

0.025

138.7

8.1

369

48

118.1

9.2

0.377

0.046

0.0214

0.0009

46.82

2.06

0.132

0.017

136.1

6.0

315

35

120.7

6.7

0.495

0.054

0.0215

0.0009

46.45

2.01

0.177

0.021

137.9

6.0

391

37

117.0

7.4

0.366

0.045

0.0214

0.0010

46.82

2.19

0.134

0.018

136.1

6.3

299

34

123.0

7.3

0.249

0.031

0.0192

0.0009

52.16

2.34

0.103

0.013

122.3

5.4

223

26

114.6

6.1

0.396

0.064

0.0219

0.0012

45.66

2.50

0.141

0.026

139.8

7.6

314

47

124.0

8.9

0.329

0.053

0.0201

0.0010

49.75

2.48

0.138

0.024

128.3

6.6

262

40

118.0

8.5

0.345

0.051

0.0207

0.0010

48.31

2.33

0.127

0.020

132.2

6.5

271

37

120.4

7.4

0.298

0.045

0.0211

0.0011

47.39

2.47

0.112

0.019

134.5

7.1

244

35

125.1

8.1

0.351

0.047

0.0212

0.0010

47.19

2.16

0.126

0.018

135.0

6.1

282

34

123.9

7.6

0.364

0.061

0.0206

0.0013

48.54

3.06

0.147

0.026

131.1

7.9

292

46

116.9

9.1

0.674

0.065

0.0225

0.0010

44.42

1.87

0.225

0.022

143.4

6.0

498

39

112.6

6.9

0.442

0.073

0.0204

0.0014

49.02

3.36

0.165

0.032

130.0

8.7

339

50

112.0

10.0

0.400

0.057

0.0204

0.0011

49.02

2.64

0.155

0.025

129.8

7.1

318

41

112.8

8.1

Table S2 (continued): Summary of laser ablation ICP-MS U–Pb titanite dating results.