background image

GEOLOGICA CARPATHICA

, APRIL 2019, 70, 2, 183–190

doi: 10.2478/geoca-2019-0010

www.geologicacarpathica.com

Dasycladalean alga Furcoporella diplopora Pia (1918) from 

the type-locality (upper Paleocene–Eocene, Radstadt, 

Austria): new remarks and taxonomic implications

MARIO DE MATTEIS

1

 and FILIPPO BARATTOLO

2, 

1

Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Via Mangiagalli 34, 20133, Milan, Italy;  

mario.dematteis@unimi.it

2

Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università degli Studi di Napoli Federico II, Via Vicinale 

Cupa Cintia, 21, 80126, Naples, Italy; 

 

lippolo@unina.it

(Manuscript received November 13, 2018; accepted in revised form February 21, 2019)

Abstract: The dasycladalean green alga Furcoporella diplopora Pia (1918) exhibits a peculiar structure comprising pairs 

of diverging and rather indistinct pores. Because of such structure, the genus Furcoporella has been a matter of debate. 

Currently, there is still no agreement on its taxonomic position within Dasycladales. This paper provides a re-description 

of the type-species F. diplopora Pia (1918), based on Pia’s type material from the upper Paleocene to Eocene reworked 

carbonates of Radstadt/Pongau, Austria. New observations carried out on this material allowed the acquisition of 

 additional and more complete data on this quite neglected alga. Some morphological characteristics of the thallus, 

 specifically of the laterals are discussed and a suite of potential taxonomic implications are evaluated. Finally, according 

to interpretations the genus Furcoporella is ascribed to the Family Triploporellaceae and more specifically it should be 

placed within the tribe Thyrsoporelleae. 

Keywords: micropaleontology, taxonomy, green algae, Dasycladales, Furcoporella.

Introduction

The dasycladalean alga Furcoporella diplopora was intro-

duced by Pia (in Trauth 1918), investigating the Paleocene to 

middle Eocene detrital limestones, exposed near Radstadt/

Pongau, in Austria. Describing the species, the same author 

erected the genus Furcoporella. Currently it is still considered 

to be a poorly known genus (Deloffre & Génot 1982), despite 

its reported occurrences in many Paleocene–Eocene Tethysian 

shallow-water limestones. Besides the type-locality, F. diplo­

pora specimens have been found in the Middle East (Elliot 

1956, 1968), Libya, Egypt (Pfender & Massieux 1966; Kuss & 

Leppig 1989), China (Yu Jing 1976) and Anatolia (Radoičić & 

Özgen-Erdem 2011).

Presumably, the incomplete understanding of this taxon is  

a consequence of the problematic structure exhibited by  

F. diplopora that displays few pairs of diverging pores 

arranged in whorls around the central stem cavity.

Discussions on this dasycladalean alga started, indeed,  

with Pia’s original generic and specific descriptions 

 

(in Trauth 1918): these were hypothetical (see Paleontological 

description) and Pia clarified the necessity of further modi-

fications, admitting that his generic diagnosis was only 

 temporary. Additionally, although Pia figured two sections  

of  F. diplopora (pl. 1. fig. 1–2), he did not designate  

a holotype.

A notable number of descriptions have followed the original 

study, coupled with attempts to unravel the taxonomic rela-

tionships of the genus Furcoporella with other dasycladalean 

algae (Pia, in Hirmer 1927; Pfender 1940; Elliott 1968; 

Bassoullet et al. 1979; Deloffre & Génot 1982, Deloffre 1988; 

Deloffre & Granier 1992). Consequently, this genus is central 

to much debate, since there is no agreement on the tribe in 

which it should be placed. 

It is also worth mentioning that Furcoporella, which corre-

sponded formerly to a monospecific genus, encloses the spe-

cies  Furcoporella vasilijesimici  (Radoičić,  2005)  described 

from the lower Valanginian detrital limestones of the Metohija 

Unit (Mirdita Zone, Kosovo).

Considering that the taxonomic placement of F. diplopora 

remains unresolved, this taxon deserves to be the subject of  

a more in-depth paleontological study. This paper provides  

a formalized and detailed re-description of this species, made 

on the basis of Pia’s type material. 

Geological setting

The type-locality is situated near Radstadt (see Trauth 1918) 

in the Enns Valley area (47°22’48.3” N, 13°26’01.0” E), 

 adjacent to the Tauern tectonic Window and the Northern 

Calcareous Alps. The whole area belongs to the Eastern Alps 

realm. Here, the Northern Cal ca reous Alps constitute part of 

the Austro-Alpine nappe complex and represent its most 

prominent tectonic unit. The Eastern Alps stacked nappes con-

sist of sedimentary deposits of Late Permian to Eocene age 

and the entire succession is strongly dominated by Triassic 

carbonates (e.g., Wagreich & Faupl 1994; Mandl 2000).

background image

184

DE MATTEIS and BARATTOLO

GEOLOGICA CARPATHICA

, 2019, 70, 2, 183–190

The Valley of the Enns river is filled by Oligocene to 

Quaternary deposits (see Keil & Neubauer 2011 for a review). 

It corresponds to a WE-striking fault-controlled valley deve-

loped after Neogene time (Keil & Neubauer 2009). Since that 

period, the Eastern Alps have been affected by strike-slip 

movements, parallel to the Alpine orogen, accommodating 

lateral extrusion tectonics (Ratschbacher et al. 1991). Such 

strike-slip scheme produced fault-induced lowlands and intra-

montane basins (Dunkl et al. 2005) and modified the drainage 

pattern setting the stage for the modern river system (Frisch et 

al. 1998).

Near Radstadt, exposed fluvial conglomerates contain 

reworked shallow-water carbonate sediments (e.g., Trauth 

1918). Reworked calcareous clasts comprise: i) platform-de-

rived limestone components (with corals, foraminifera and 

calcareous algae); ii) other carbonate debris with nummulitids 

(Trauth 1918; Moussavian 1984). Such reworked carbonates 

also host Furcoporella diplopora specimens, and have been 

interpreted as late Paleocene/early Eocene in age (J. Pignatti 

2018, personal communication).

In the Eastern Alps, Early Paleogene shallow-water carbo-

nates are exposed only as small-scale outcrops or as reworked 

clasts and boulders within younger poorly-dated conglome-

rates (Nebelsick et al. 2005), as in the case of Radstadt/Pongau. 

These localized occurrences likely correspond to the remnants 

of a former shallow-water shelf environment, developed since 

the Middle Paleocene time on the southern edge of the Nor-

thern Calcareous Alps (e.g., Moussavian 1984; Nebelsick et 

al. 2005). Such limestone beds were indeed repeatedly exposed 

since the late Paleocene to the Eocene (Kázmér et al. 2003) 

and subsequently subject to block segmentation and fluvial 

erosion during Oligocene and Miocene times (Moussavian 

1984).

Material

Furcoporella diplopora specimens in Fig. 1 represent Pia’ s 

type material (in Trauth 1918). Such material consists of two 

thin sections labelled CLXXII.1 and CLXXII.2., belonging to 

the ‘Pia Collection’, stored at the Natural History Museum of 

Vienna. One of the authors (F. Barattolo) took the photomicro-

graphs in 1993, during the meeting ‘Alpine Algae’, examining 

Pia’s original material. 

Repository and institutional abbreviation: types examined 

in this study are deposited in the Natural History Museum of 

Vienna, Department of Geology & Paleontology (NHMV- 

DGP), Pia collection, slides labelled CLXXII.1 and CLXXII.2.

Paleontological description

Order Dasycladales Pascher, 1931

Family Triploporellaceae (Pia, 1920) Berger & Kaever 1992

Tribe Thyrsoporelleae Pia 1927

Genus Furcoporella Pia in Trauth 1918

Type-species Furcoporella diplopora Pia in Trauth 1918

Introducing the species F. diplopora, Pia erected the genus 

Furcoporella (Pia in Trauth 1918). The original generic 

description is reported hereafter (English translation by 

Deloffre & Génot 1982):

“General cylindrical shape. The pores are widened towards 

the exterior. At the level of the verticils, they are joined 2 by 2 

at the base and are few in number. Unsegmented skeleton. This 

definition must be considered as temporary, for it seems likely 

that it will have to be modified as forms related to our Eocene 

species will be discovered.”

The same author then provided the following short descrip-

tion for the type-species (from Deloffre & Génot 1982):

“The thallus seems to be always straight. The calcification 

does not reach the axial cell.”

Elliott (1968) added further observations both on the genus 

and on the type-species after the study of larger Middle East 

specimens. In his revision, the author described the ramified 

pores, observable in transversal sections, as short primary late-

rals subsequently dividing into two divergent secondaries.

Deloffre & Génot (1982) supplied the following comment/

remarks for the genus Furcoporella and the type-species:

“Furcoporella is still a little­known genus, relatively and 

rarely quoted. It is a hollow cylindrical calcareous tube with 

numerous regular horizontally­set verticils with a very short 

primary canal divided into two divergent secondary branches. 

This genus is found between the Paleocene and the Lutetian of 

Europe, Middle East and China”

“Furcoporella diplopora — Cylindrical dasyclad tube with 

numerous horizontally­set verticils. Each verticil shows a single 

very short and large primary branch divided almost at once 

into two divergent secondaries widening to the exterior […]”

Fig. 1. Furcoporella diplopora Pia (1918), upper Paleocene–lower Eocene of Radstadt/Pongau (Enns Valley, Austria). A – Lectotype; trans-

versal section. It corresponds to the specimen figured by Pia (in Trauth 1918, pl. 1, fig. 2). Notice the evident and wide diverging pores, NHMV-

DGP Pia CLXXII.1. B – Transversal sections, NHMV-DGP Pia CLXXII.1. C – Transversal slightly oblique section, NHMV-DGP Pia 

CLXXII.1. D – Oblique section. Notice the vertical section of the pores and the quite indistinct inner surface of the calcification, NHMV-DGP 

Pia CLXXII.1. E – Longitudinal section of a specimen showing the vertical section of the pores. Notice their overall hourglass shape resulting 

from the cut of the swollen secondary laterals (the section does not cut axially the primary laterals), NHMV-DGP Pia CLXXII.1. F – Oblique 

section showing ordered doubled pores resulting from the divergent secondary lateral. Notice that they are arranged in continuity in simple 

subsequent whorls, NHMV-DGP Pia CLXXII.2. G – Oblique section, NHMV-DGP Pia CLXXII.2. – Oblique section, NHMV-DGP Pia 

CLXXII.2. I – Oblique section, NHMV-DGP Pia CLXXII.2. J – Slightly oblique transversal section. The section transversally cuts two subse-

quent whorls, NHMV-DGP Pia CLXXII.1. K – Oblique-transversal section, NHMV-DGP Pia CLXXII.2. L – Oblique-transversal section, 

NHMV-DGP Pia CLXXII.2.

background image

185

DASYCLADALEAN ALGA FURCOPORELLA DIPLOPORA FROM THE TYPE-LOCALITY RADSTADT (AUSTRIA)

GEOLOGICA CARPATHICA

, 2019, 70, 2, 183–190

background image

186

DE MATTEIS and BARATTOLO

GEOLOGICA CARPATHICA

, 2019, 70, 2, 183–190

Description in this study of F. diplopora expands Pia’s first 

description and includes the observations added by Elliott 

(1968), interpreting diverging pores as first and second order 

laterals. Furthermore, it supplies additional data to the remarks 

provided by Deloffre & Génot (1982).

Furcoporella diplopora P

IA

 (in Trauth) 1918

Fig. 1 A–L

1918 Furcoporella diplopora n. gen., n. sp. – PIA, plate 1, fig. 1, 2, 

text-fig. 4b.

1927 Furcoporella diplopora – PIA, p.86.

1940 Furcoporella diplopora – PFENDER, p. 242–243.

1956 Furcoporella diplopora – ELLIOT, plate 2, fig. 5–6.

1966 Furcoporella diplopora – PFENDER & MASSIEUX, text-fig. 4, 

plate 4, fig. 8–9.

1968 Furcoporella diplopora – ELLIOT, plate 11, fig. 7–9.

1976 Furcoporella diplopora – YU-JING, plate 9, fig. 7–8.

1982 Furcoporella diplopora – DELOFFRE & GÉNOT, plate 8,  

fig. 2–4.

1989 Furcoporella diplopora – KUSS & LEPPIG, fig. 9, g–h; fig. 10a.

2011 Furcoporella diplopora – RADOIČIĆ & ÖZGEN-ERDEM, 

fig. 11, f–i.

Lectotype

Pia (1918) did not designate a holotype for 

 

F. diplopora. Among photomicrographs, one of the original 

specimens figured by Pia (in Trauth 1918, pl. 1, fig. 2) is 

reported and selected as the lectotype. It corresponds to  

the transversal  section A of Figure 1 (NHMV-DGP Pia 

CLXXII.1).

Description

The investigated dasycladalean alga is characterized by  

a sim ple, cylindrical, non-segmented thallus with a relatively 

large central stem. Large diverging pores are interpreted as 

results of a short primary lateral splitting horizontally into two 

divergent second-order laterals, swollen outwards (phloiopho-

rous). Laterals are arranged in a closely packed configuration 

and are set in continuity in subsequent whorls (euspondyl). 

Whorls are set orthogonally to the stem axis since both  

the short, thick primary laterals and the secon dary ones are 

generally horizontal. The latter flare out distally to make  

a quadrangular cortex. Reproduction is supposed syringo-

sporate, less probably endosporate.

Remarks

General features of the calcareous skeleton

The calcification corresponds to a simple massive calca-

reous sleeve. It preferentially envelops the laterals up to their 

distally widened ends, approaching the cortical zone. The cen-

tral cavity is filled either by micritic matrix or blocky sparite. 

The pores, remnants of the former laterals, are commonly 

filled by matrix. Pores are connected to the central cavity by 

relatively wide openings (Fig. 1C, D) and the inner surface of 

the skeleton does not display sharp edges (Fig. 1C, E, I). This 

suggests that the innermost part of the calcification was not 

directly in contact with the central stem outer wall. Therefore, 

the actual central cavity diameter is slightly larger than  

the for mer axial stem diameter. Such a characteristic is pre-

sumably a primary, morphological feature (i.e., calcification 

does not envelop laterals base).

Diverging laterals

Transversal sections of the calcareous skeleton (Fig. 1A–C) 

offer the opportunity to clearly observe the pores splitting into 

two divergent canals. In geometrical terms and in the case  

of an even number of laterals, if the axial section of the ske-

leton cuts the primary laterals axially, it will not cut the diver-

gent secondaries at the same time. The longitudinal and 

oblique  sections  (Fig.  1D, F),  however,  display  elongated 

pores with an overall hourglass shape. The hourglass- 

shaped pores result from a cut passing longitudinally along  

the primary pore and just one of the two divergent secondary 

laterals. Such elongated hourglass shape of the pores may be 

also produced by the relative high thickness of the thin 

sections.

The number of primary laterals per whorl can be simply 

obtained from transversal sections (Fig. 1A–C). It corresponds 

to 5–6, a number markedly lower than that observed by 

Radoičić & Özgen-Erdem (2011, fig. 11g), i.e., 10–12.

According to the geometry observed in the oblique sections 

of  the  calcareous  skeleton  (Fig.  1F, H),  the  phloiophorous 

 secondary laterals are arranged horizontally, appearing elon-

gated and relatively thick at the same time. Their angle of 

divergence has been obtained from the transversal sections 

and corresponds to 43° (average value, see Table 1 for other 

main biometrical parameters). At the far end, each secondary 

lateral flares out and comes in touch with the others alongside, 

making a cortex.

Since the calcification does not envelop the central stem and 

the most proximal part of the laterals, the morphology of  

their junction with the stem is still debated. Additionally, there 

is no trace of narrowing between the large inner pore and  

the diverging ones. 

Reproduction

No evidence of reproductive organs has been observed 

within the calcareous skeleton, neither within the central 

 cavity nor in the primary laterals. There is also no trace of 

reproductive structures such as ampullae. According to 

 

the current state of knowledge, the reproduction type of  

F. diplopora remains unknown.

Reconstruction in this study (see Conclusions) proposes 

large openings connecting both the laterals and with the cen-

tral stem. This kind of large connection is here considered to 

be a primary, morphological characteristic. Presumably, these 

wide portions hosted gametophores (cysts), thus, the repro-

duction type is herein supposed syringosporate (Granier 2010; 

background image

187

DASYCLADALEAN ALGA FURCOPORELLA DIPLOPORA FROM THE TYPE-LOCALITY RADSTADT (AUSTRIA)

GEOLOGICA CARPATHICA

, 2019, 70, 2, 183–190

Mathieu et al. 2011; Granier & Bucur in Granier et al. 2013) 

(see Interpretation of the diverging pores and attribution to 

higher rank).

Interpretation of the diverging pores  

and attribution to higher rank

Studies of fossil dasycladalean algae are frequently met by 

problems connected to the calcification. Since the calcifica-

tion degree is indeed strongly variable, it produces highly 

 different kinds of skeleton (e.g., extensive, scattered or largely 

absent calcification). The structure of fossil dasycladaleans 

must be interpreted principally on the basis of the pores left by 

calcified parts. Consequently, the development of algal recon-

structions may be hard and challenging in the case of scattered 

or even largely absent calcification.

In the specific case of Furcoporella, though it exhibits  

an evident calcareous skeleton, the calcification of the diver-

gent pores remains indistinct. Indeed, the absence of clear 

narrowing at the pore junctions opens the field to ample specu-

lation regarding the order of the laterals (i.e., first+second- 

order laterals vs. first-order only). A suite of junction 

combinations and potential arrangements of the laterals is 

reported in Fig. 2. The first two solutions (Fig. 2A, B) show 

two orders of laterals and consequently an euspondyl arrange-

ment. Both are geometrically consistent with the thin section 

observations. The only difference between these first two 

solutions lies in the width of the connections. The other solu-

tions (Fig. 2C, D) are instead representative of a metaspondyl 

arrangement. In solution C, two first-order laterals are directly 

connected to the stem axis, while the last solution (Fig. 2D) is 

characterized by a vestibule supporting the tuft of laterals. 

Among the reported morphologies, however, the euspondyl 

arrangement is considered to be the most probable configura-

tion. It is worth mentioning that each of the four alternative 

solutions provided in Fig. 2 may fit well the geometry of  

the pores of Furcoporella. Of course, the choice of one among 

the four-reported hypotheses leads to relevant taxonomic 

 consequences. According to the features observed in thin sec-

tion, the “channelled primary lateral” option (Fig. 2A) is 

selected as the most probable one, since it requires fewer 

assumptions.

A metaspondyl arrangement (with or without a vestibule) 

would cause the shifting of the genus Furcoporella to 

 

the Family Diploporaceae. In his first description, Pia actually 

pointed out the morphological affinity of F. diplopora with  

the genus Diplopora (in Trauth 1918): the specific name he 

has chosen is certainly a clear reference to this similarity. 

Anyway, the elements and the geometries figured in Fig. 2C, D 

are typical of Upper Paleozoic and Triassic genera. Given  

the remarkable time gap between these older genera and  

the Eocene age of F. diplopora, it is considered these two solu-

tions less probable than the first two. Because of the euspon-

dyl configuration, the genus Furcoporella should be placed in 

the Family Triploporellaceae: this attribution is indeed in 

agreement with the one already proposed by Radoičić (2005). 

The  same  author  (Radoičić  2005)  and  Radoičić  &  Özgen-

Erdem (2011) assigned Furcoporella diplopora to the tribe 

Salpingoporellae, which includes verticillated genera sharing 

the occurrence of only primary laterals. Here, the occurrence 

of two orders of laterals prompts us to exclude such 

attribution.

Lastly, excluding the assignment of the genus to the subtribe 

Macroporellinae initially proposed by Pfender (1940): actually, 

this subtribe formerly included both euspondyl and aspondyl 

forms (Pia 1927), but now is restricted to grouping only some 

aspondyl genera (Deloffre 1988).

Specimen

Thin Section

d

D

w

h

p

p'

α

 

(°)

d/D

a

CLXXII.1

175.3

317.6

6

69.2

35.1

43

0.55

b

CLXXII.1

174.7

383.7

5

81.6

44.3

43

0.46

c

CLXXII.1

195.2

370.5

6

68.9

33.8

38

0.53

d

CLXXII.1

186.9

350.6

0.53

e

CLXXII.1

138.9

254.7

86.7

0.55

f

CLXXII.2

152.2

258.1

5

68.3

0.59

g

CLXXII.2

167.1

284.5

68.2

0.59

h

CLXXII.2

161.3

287.8

6

88.4

0.56

i

CLXXII.2

173.2

285.9

78.7

0.61

j

CLXXII.1

147.6

274.6

6

60.9

31.8

46

0.54

k

CLXXII.2

147.5

256.4

0.58

l

CLXXII.2

154.8

291.1

67.0

34.9

0.53

Min

138.9

254.7

5

68.2

60.9

31.8

38

0.46

Max

195.2

383.7

6

88.4

81.6

44.3

46

0.61

N. of measures

12

12

8

5

5

5

4

12

Average

164.6

301.3

6

78.1

69.5

36.0

43

0.55

St. deviation

17.14359

44.56555

0.51640

9.66737

7.52627

4.81697

3.31662

0.03947

Table 1: Main biometrical parameters of Furcoporella diplopora Pia. All size parameters are given in µm, with the exception of 

, given in 

degrees. d — inner diameter of the central cavity; D — outer diameter of the calcareous skeleton; w — number of primary laterals per whorl; 

h — height between subsequent whorls; p — width of primary laterals; p’ — width of secondary laterals (measured at the base); α — average 

angle of divergence of the secondary laterals.

background image

188

DE MATTEIS and BARATTOLO

GEOLOGICA CARPATHICA

, 2019, 70, 2, 183–190

Among the Triploporellaceae, Furcoporella diplopora 

shows a remarkable resemblance to some other Paleocene–

Eocene species belonging to the tribes Dissocladelleae and 

Thyrsoporelleae. The occurrence of two orders of strong 

 

late 

rals allows comparison of Furcoporella with Disso­

cladella. The latter genus shows indeed a short, globose 

 primary lateral and phloiophorous secondaries similar to  

those of Furco porella, but in the case of Dissocladella  

the primary lateral is attached to the central stem through  

a small pore and the number of secondary laterals is always 

more than two.

Differently, the short and strong primary lateral of 

Furcoporella exhibits a wide opening with the central cavity. 

Such a wide junction closely resembles that of Thyrsoporella 

and Belzungia. However, these two genera can still be dif fe-

rentiated since they display four to five orders of laterals  fining 

outwards (e.g., Radoičić & Özgen-Erdem 2011).

It is suggested that the genus Furcoporella seems to be 

strictly related to the genus Anatolia Radoičić & Özgen-Erdem 

2011. According to the authors (p. 231), in Anatolia “the thal­

lus consists of cylindrical articles with rather spaced whorls. 

The whorl consists of three orders of horizontal to sub­hori­

zontal laterals arranged in vertical rows. The primary laterals 

divide into two divergent, strong and stocky secondaries. Each 

secondary lateral gives rise to 4–5 slender tertiaries, distally 

enlarged. Reproductive organs are unknown.” Apart from  

the shape of the thallus (presumably not articulated vs. articu-

lated), the two genera share similar features of the primary and 

secondary laterals. The only remarkable difference consists of 

the absence and presence of tertiary phloiophorous laterals 

respectively. In Anatolia the sites of reproduction were see-

mingly located within the primary and secondary laterals and 

the relatively thin phloiophorous tertiary laterals functioned as 

assimilators. In Furcoporella secondary laterals alone pro-

bably performed both reproduction and assimilation. Such 

hypothesis coupled with the previously listed morphological 

similarities lead us to assign the genus Furcoporella to tribe 

Thyrsoporelleae.

Concerning the issue of family level attribution, recently 

Granier & Bucur in Granier et al. (2013) proposed the erection 

of the new family Thyrsoporellaceae to include syringosporate 

genera. This clade is directly derived from the family 

Triploporellaceae that consequently becomes paraphyletic. 

Actually, all Dasycladales clades at family level (Berger & 

Kaever 1992: Granier & Bucur in Granier et al. 2013) except 

Seletonellaceae and Dasycladaceae, must be considered para-

phyletic if not polyphyletic and need a general re-examination 

that takes into account DNA data from extant forms (Berger et 

al. 2003; Verbruggen et al. 2009). For this reason, instead of 

following the classification proposed by Granier & Bucur in 

Granier et al. (2013), we prefer the classic Berger & Kaever 

(1992) classification, assigning the tribe Thyrsoporelleae to 

the family Triploporellaceae.

Conclusions

This paper presents a detailed revision of Furcoporella 

 diplopora Pia and new paleontological data on the genus 

Furcoporella. Overall, the re-description reported herein 

expands Pia’s first description and matches the observations 

added by Elliott (1968) on the laterals. A comprehensive 

reconstruction of Furcoporella diplopora was provided as  

a result  in which all the previously examined features are 

coherently represented (Fig. 3).

This study focused on this problematic and neglected  

alga, with the aim of facilitating a complete taxonomic 

 

assignment of the genus Furcoporella in Dasycladalean 

 systematics. Besides simply modelling the thallus in this 

reconstruction, we have taken into account a suite of diverse 

lateral arran gements, evaluating potential taxonomic impli-

cations. Finally, according to this interpretation the genus 

Furcoporella was assigned to the Family Triploporellaceae, 

also sug gesting that this taxon should be placed within  

the tribe Thyrsoporellae.

Fig. 2. Alternative arrangements of the laterals fitting the geometry of 

the divergent pores (in transversal view): A — euspondyl, showing  

a single primary lateral bearing two divergent secondaries, both  

with wide connections; B — euspondyl, showing a single primary 

lateral bearing two divergent secondaries with narrow connections;  

C — meta spondyl arrangement, showing a tuft of two primary laterals 

directly attached to the central cylindrical stem; D — metaspondyl 

vestibulated, showing primary lateral set in a tuft of two, sustained by 

a vestibule.

background image

189

DASYCLADALEAN ALGA FURCOPORELLA DIPLOPORA FROM THE TYPE-LOCALITY RADSTADT (AUSTRIA)

GEOLOGICA CARPATHICA

, 2019, 70, 2, 183–190

In sum, our observations confirm the presence of two orders 

of laterals: the wide divergent pores are interpreted as the 

result of short primary laterals bearing two divergent phloio-

phorous secondaries. These are connected to the primary 

 lateral by large openings (Fig. 2A). Accordingly, laterals with 

no tapered bases were reproduced. The laterals and the subse-

quent cortical meshes are arranged in ordered repetitive rows. 

The cortical meshes, corresponding to the uncalcified outer 

ends or edges of secondary laterals, have been drawn as 

sub-rectangles set horizontally; this solution is geometrically 

consistent given the number of secondary laterals and the arran-

gement in tangential and oblique section (Fig. 1F). Addi-

tionally, according to the evidence observed in thin section 

(see General features of the calcareous skeleton), the calcifi-

cation has been reproduced without directly touching the cen-

tral stem wall.

Acknowledgements: The paper benefited from comments by 

reviewers Bruno Granier, Ioan I. Bucur and Marc André Con-

rad. The authors also wish to thank Mathias Harzhauser and 

Andreas Kroh (Natural History Museum, Vienna) for chec-

king the labels of the type-material. Johannes Pignatti 

 (University of Rome) is acknowledged for suggestions about 

the age of the microfacies of F. diplopora. We are grateful to 

Sarah M. Jacquet (University of Missouri) for her valuable 

comments and review of the English.

References

Bassoullet J.P., Bernier P., Deloffre R., Génot P., Jaffrezo M. &  

Vachard D. 1979: Essai de classification des Dasycladales en 

 tribu.  Bulletin Centres Recherche Exploration­Production 

elf­Aquitaine 3, 429–442.

Berger S. & Kaever M.J. 1992: Dasycladales. An illustrated mono-

graph of a fascinating algal order. Georg Thieme Verlag

 Stuttgart–New  York,  1–247.

Berger S., Fettweiss U., Gleissberg S., Liddle L.B., Richter U.,  

Sawitzky H. & Zuccarello G.C. 2003: 18S rDNA phylogeny and 

evolution of cap development in Polyphysaceae (formerly 

Aceta  bulariaceae;  Dasycladales,  Chlorophyta).  Phycologia 42, 

506–561.

Deloffre R. 1988: Nouvelle taxonomie des algues Dasycladales. 

 Bulletin Centres Recherche Exploration­Production elf­Aqui­

taine 12, 1, 165–217.

Deloffre R. & Génot P. 1982: Cenozoic Dasyclad Algae. Bulletin 

Centres Recherche Exploration­Production elf­Aquitaine,  

Mém. 4, 1–247 (in French).

Deloffre R. & Granier B. 1992: Inventaire des Algues Dasycladales 

fossiles. I° partie — Les Algues Dasycladales du Tertiaire. Revue 

de Paléobiologie 11, 2, 331–356.

Dunkl I., Kuhlemann J., Reinecker J. & Frisch W. 2005: Cenozoic 

relief evolution of the Eastern Alps — constraints from apatite 

fission track age-provenance of Neogene intramontane sedi-

ments. Austrian J. Earth Scie. 98, 92–105.

Elliott G.F. 1956: Further records of fossil calcareous Algae from  

the Middle East. Micropaleontology 2, 327–334.

Elliott G.F. 1968: Permian to Paleocene Calcareous Algae (Dasycla-

daceae) of the Middle East. Bulletin of the British Museum 

 (Natural  History), Supplement 4, London, 1–111.

Fig. 3.  Furcoporella diplopora Pia (1918): Reconstruction of 

 thallus.  A — Longitudinal (axial) view: a — perspective view of 

the alga, showing the cortex geometry and the splitting of the late-

rals; b — laterals and calcification (black-coloured); c — cal-

careous skeleton only (black-coloured). B — Transversal view:  

a — central stem and 3-D view of the laterals; b – former organic 

parts, i.e., central stem, primary and divergent secondary laterals; 

c — calcareous skeleton only (black-coloured) with the pores 

(white-coloured). Notice the trace of the axial section (A): it does 

not cut axially the primary laterals.

background image

190

DE MATTEIS and BARATTOLO

GEOLOGICA CARPATHICA

, 2019, 70, 2, 183–190

Frisch W., Kuhlemann J., Dunkl I. & Brügel A. 1998: Palinspastic 

reconstruction and topographic evolution of the Eastern Alps 

during late Tertiary tectonic extrusion. Tectonophysics 297, 1, 

1–15.

Granier B. 2010: Bucurella, a new genus of the Tribe Thyrsoporelleae 

(fossil Dasycladalean algae). Carnets de Géologie, Madrid, 

 Article 2010/03 (CG2010_A03).

Granier B., Dias-Brito D., Bucur I.I. & Tibana P. 2013: Brasiliporella

a new mid-Cretaceous dasycladacean genus: The earliest record 

of the Tribe Batophoreae. Facies 59, 1, 207–220.

Kázmér M., Dunkl I., Frisch W., Kuhlemann J. & Ozsvárt P. 2003: 

The Palaeogene forearc basin of the Eastern Alps and Western 

Carpathians: subduction erosion and basin evolution. J. Geol. 

Soc. 160, 3, 413–428.

Keil M. & Neubauer F. 2009: Initiation and development of a fault- 

controlled, orogen-parallel overdeepened valley. The Upper 

Enns Valley, Austria. Austrian J. Earth Scie. 102, 80–90.

Keil M. & Neubauer F. 2011: The Miocene Enns Valley basin 

(Austria) and the North Enns Valley fault. Austrian J. Earth Sci. 

104, 49–65.

Kuss J. & Leppig U. 1989: The early Tertiary (middle-late Paleocene) 

limestones from the western Gulf of Suez, Egypt. Neues Jahrb. 

Geol. Paläont. Abh. 177, 289–332.

Mandl G.W. 2000: The Alpine sector of the Tethyan shelf–examples 

of Triassic to Jurassic sedimentation and deformation from the 

Northern Calcareous Alps. Mitteilungen der Österreichischen 

Geologischen Gesellschaft 92 (1999), 61–77.

Mathieu R., Bellier J.-P. & Granier B. 2011: Manuel de micropaléon-

tologie. Carnets de Géologie, Madrid, Article 2011/02 (CG2011_

B02), 1–123. 

Moussavian E. 1984: Die Gosau-und Alttertiär-Gerölle der Angerberg- 

Schichten (Höheres Oligozän, Unterinntal, Nördliche Kalk-

alpen). Facies 10, 1, 1–85.

Nebelsick J.H., Rasser M.W. & Bassi D. 2005: Facies dynamics in 

Eocene to Oligocene circumalpine carbonates. Facies 51, 1–4, 

197–217.

Pascher A. 1931: Systematische Übersicht über die mit Flagellaten  

in Zusammenhang stehenden Algenreihen und Versuch 

 

einer Einreihung dieser Algenstämme in die Stämme des 

Pflanzenreiches.  Beihefte zum Botanischen Centralblatt 48, 

317–332.

Pfender J. 1940. Les Algues du Nummulitique égyptien et des terrains 

Crétacés–Eocènes de quelques régions mésogéennes. Bulletin de 

l’Institute Égypte 22, 225–250.

Pfender J. & Massieux M. 1966: Les Algues du Nummulitique égyp-

tien et des terrains crétacés–éocénes de quelques régions méso-

géennes. Première partie. Texte de Juliette Pfender revu et com-

plété par Michèle Massieux. Revue de Micropaléontologie 9, 

111–132.

Radoičić R. 2005: New Dasycladales and microbiota from the lower-

most Valanginian of the Mirdita Zone. Geoloski anali Balkan­

skoga poluostrva 66, 27–53.

Radoičić R. & Özgen-Erdem N. 2011: New Data on the Dasycladales 

from the Lower Eocene of Seyitgazi Region, Eskişehir, Central 

Turkey. Turkish Journal of Earth Sciences 20, 213–242.

Ratschbacher L., Frisch W., Linzer H.G. & Merle O. 1991: Lateral 

extrusion in the Eastern Alps, part 2: structural analysis. Tectonics 

10, 2, 257–271.

Trauth F. 1918: Das Eozanvorkommen bei Radstadt im Pongau. 

 Kaiserliche 

Akademie der Wissenschaften, Wien 95, 171–278.

Verbruggen H., Ashworth M., LoDuca S.T., Vlaeminck C., Cocquyt E., 

Sauvage T., Zechman F.W., Littler D.S., Littler M.M., Leliaert F. 

& De Clerck O. 2009: A multi-locus time-calibrated phylogeny 

of the siphonous green algae. Molecular Phylogenetics and 

 Evolution 50, 642–653.

von Pia J. 1918:  Paläontologischer Teil – Thallophyta – Dasyclada-

ceae. In: Trauth F. (Ed): Das Eozänvorkommem bei Radstadt im 

Pongau.  Kaiserliche Akademie der Wissenschaften, Wien 95, 

209–213.

von Pia J. 1920: Die Siphonae verticillatae von Karbon bis zur  Kreide. 

Abhandlungen der Zoologischen­Botanischen Gesellschaft

Wien 11, 1–263.

von Pia J. 1927: I. Abteilung: Thallophyta. In: Hirmer M. (Ed.): 

Handbuch der Paläobotanik. Bd. Odenburg, München, Berlin 1, 

31–136.

Wagreich M. & Faupl P. 1994: Palaeogeography and geodynamic 

evolution of the Gosau Group of the northern Calcareous Alps 

(Late Cretaceous, eastern Alps, Austria). Palaeogeogr. Palaeo­

climatol. Palaeoecol. 110, 3–4, 235–254.

Yu Jing W. 1976: Calcareous algae from the Late Cretaceous and 

 Paleogene sediments in the Mount Jolmo, Lungma region. 

 Academia Sinica, 425–457.