background image

GEOLOGICA CARPATHICA

, FEBRUARY 2019, 70, 1, 75–87

doi: 10.2478/geoca-2019-0005

www.geologicacarpathica.com

Facies and paleoenvironmental reconstruction  

of Early–Middle Miocene deposits in the north-west  

of the Zagros Basin, Iran

ASGHAR ROOZPEYKAR

1, 

, IRAJ MAGHFOURI-MOGHADDAM

1

, MEHDI YAZDI

2

  

and BIZHAN YOUSEFI-YEGANE

1

1

Department of Geology, Faculty of Science, Lorestan University, Lorestan, Iran; asghar.roozpeikar@gmail.com, irajmmms@yahoo.co.uk

2

Department of Geology, Faculty of Science, University of Isfahan, Iran; meh.yazdi@gmail.com

(Manuscript received February 16, 2018; accepted in revised form December 18, 2018)

Abstract: Facies analysis and paleoenvironmental reconstruction of the Burdigalian to Langhian Asmari Formation, 

outcropping in the Khorram Abad Anticline, in the north-west of the Zagros Basin allow us to interpret the carbonate 

ramp history during the Early–Middle Miocene time span. The biota producing sediments in this system are dominated 

by the rhodalgal and echinofor skeletal-grain associations. Based on the facies distribution and paleoecology of the biotic 

content, the ramp is divided into three parts: inner, middle and outer ramp. The inner ramp is further subdivided into  

an inner zone where the main components include imperforate benthic foraminifera and molluscs associated with  

subordinate coral patch reefs, and an outer shallow-water zone dominated by wackestones–packstones with benthic  

foraminifera and coralline red algae facies. A shoal belt dominated by coralline red algae, benthic foraminifera, and coral 

fragments occurs in a distal inner ramp position. The middle ramp is characterized by rhodoliths, crustose red algal 

wackestone and thinly branching corals associated with encrusting foraminifera in proximal parts, and coralline red algal 

with larger benthic foraminifera and bryozoan colonies in the deeper oligophotic zone. The outer ramp includes proximal 

parts dominated by bryozoans, echinoids and molluscs with subordinate planktonic foraminifera and the distal part  

characterized by planktonic foraminifera and deep epifauna and infauna benthic foraminifera. Changes in trophic  

conditions and sea-level fluctuations, which are related to tectonic activities, seem to be the important factors in skeletal 

production and the spatial distribution of carbonate factories.

Keywords: facies, Burdigalian–Langhian, Asmari Formation, Zagros Basin, carbonate ramp, euphotic, oligophotic.

Introduction

Coralline red algae are common components during the Early 

and Middle Miocene (Halfar & Mutti 2005). Their peak in 

abundance, replacing corals as dominant reef builders from 

the Burdigalian to Early Tortonian, paralleled the increased 

extinction rates of planktonic foraminifera, radiolarian, corals 

and larger foraminifera (Halfar & Mutti 2005). The taxonomic 

components of living coralline algal assemblages are distinct 

in different geographical regions, and vary along environmen-

tal gradients within a given region (Adey & Macintyre 1973; 

Adey 1979; Braga et al. 2010; Aguirre et al. 2017). Coralline 

algae thrive in a wide range of trophic conditions, from oligo-

trophic reef environments, such as reef crests where they can 

be the major builders (Bosence 1984) to mesotrophic waters 

on marine platforms in diverse latitudes (Adey & Macintyre 

1973; Aguirre et al. 2017). In addition to light and temperature 

as predominant factors limiting the distribution of coralline 

algae, hydrodynamic energy is considered to be most impor-

tant in affecting rhodolith shape, structure, and distribution 

(e.g., Bosence 1983a, b; Basso 1998; Aguirre et al. 2017). Coral­

line algae growth morphology is also strongly related to envi-

ronmental parameters, in particular to water conditions and 

depth (Peña & Bárbara 2008; Braga et al. 2010; Aguirre et al. 

2017). Highly branched thalli may form in slow moving (Peña 

& Bárbara 2008) or shallow waters (Steller et al. 2003). Dis-

coidal (i.e. flat) forms may be more abundant in deep waters 

where downward growth is unfavourable, whilst spherical and 

ellipsoidal forms may occur in shallower water (Peña & 

 Bárbara 2008). Consequently rhodolith morphology and their 

taxonomic assemblage have been used for paleoecological and 

paleoenvironment reconstructions (Bosence & Pedley 1982; 

Bosence  1983a, b;  Bassi  1995,  2005;  Rasser  &  Piller  2004; 

 Checconi et al. 2010; Brandano & Ronca 2014; Coletti et al. 

2015, 2018). Larger Benthic Foraminifera (LBF) have arisen 

many times in the geological record from ordinary-sized ances-

tors (e.g., Hottinger 1997). Their appearance is often related to 

periods of global warming, relative drought, raised sea levels, 

expansion of tropical and subtropical habitats, and reduced 

oceanic circulation (Hallock & Glenn 1986). The main factor 

limiting the latitudinal distribution of symbiont-bearing fora-

minifera is temperature (e.g., Hottinger 1983; Langer & Hot-

tinger 2000) because persistent temperatures below 14 °C in 

the winter months seem to hinder their survival. Larger fora-

minifera are thus restricted to the tropics apart from a few spe-

cies that can also survive in the warm temperate zone (e.g., 

Betzler et al. 1997; Hohenegger et al. 2000; Langer & Hottin-

ger 2000). Further factors influencing the distribution of larger 

foraminifera are light intensity, water energy and substrate 

conditions (Hottinger 1983; Bassi et al. 2007). 

background image

76

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

This study focuses on the Asmari Formation, a thick carbo-

nate sequence of the Oligocene–Miocene in the foreland Zagros 

Basin, south-west Iran. This Formation is the most prolific 

Iranian oil reservoir (51 oil reservoir which produce near 90 % 

of Iranian oil; Amirshahkarami et al. 2007) and one of the big-

gest in the world (31 billion barrels of oil in place; Roehl & 

Choquette 1985). These limestones are highly fossiliferous, 

and non-skeletal grains are also common. Biogenic compo-

nents include diverse benthic foraminifera, coralline red algae, 

corals, molluscs, echinoids, bryozoans, and serpulids. Non-

skeletal grains, larger benthic foraminifera, and zooxanthellate 

corals suggest deposition in warm tropical waters (Roozpeykar 

& Maghfouri Moghaddam 2016). The paleoecological recon-

struction suggests the present-day Persian Gulf as the most 

appro priate model for the Asmari Fm. (Amirshahkarami et al. 

2007). The aim of the present work are: (1) to identify fora-

miniferal associations and their stratigraphical position; 

 

(2) to characterize the facies and paleoenvironments of  

the Asmari Formation and (3) describe and interpret 

 

the sequence stratigraphic model. 

Geological settings

The NW–SE-trending Zagros orogenic belt extends over 

2000 km from Turkey to southeastern Iran, and it represents  

a large segment of the Alpine–Himalayan collisional system 

(e.g., Berberian & King 1981; Golonka 2004). Its formation 

results from the long-standing convergence between Eurasia 

and Gondwanian-derived fragments, as underlined by ophio-

lite belts and present-day GPS 

 

vectors (Agard et al. 2011). 

 

The mountain belt has been divided 

into NW–SE trending structural 

zones (imbricated and simply fol-

ded belt) parallel to the plate mar-

gin and separated by major fault 

zones such as the High Zagros and 

Mountain front faults (Sepehr & 

Cosgrove 2004). The imbricated 

belt situated between the high 

Zagros and Zagros main reverse 

faults and simply folded belt lies to 

the south west of the High Zagros 

(Sepehr & Cosgrove 2004). The 

se di  mentary column of the Zagros 

fold-thrust belt comprises a 12-km- 

thick section of Lower Cambrian 

through Pliocene strata without 

significant angular unconformities 

(Falcon 1961; Stocklin 1968; Col-

man- Sadd 1978). In addition to  

the tectonic divisions parallel to 

the mountain belt, the belt has also 

been divided laterally to the Lures-

tan, Dezful  Embay ment and Fars 

regions from northwest to  southeast. These were all part of  

the continental margin of the Arabian platform and are now 

separated from each other by N–S and E–W trending fault 

zones. These fault zones played, and still play, an important 

role in controlling sedimentation of the basin and as a result 

these regions have different  sedimentary successions (Sepehr 

& Cosgrove 2004). The study area is located in Tange-

Shabikhon about 12 km North West of Khorram Abad City 

(Lurestan subzone of Zagros fold-thrust zone). The studied 

stratigraphic section was measured in detail at 33°36’10” N 

and 48°17’56” E (Fig. 1). 

The studied section is up to 120 m in thickness, consisting 

of thick bedded and massive limestones in the lower and mid-

dle parts, and of marl and nodular anhydrite in the upper part. 

The strata disconformably overlie the dolomitic Shahbazan 

Formation.

Materials and methods

For this study, one stratigraphic section was measured in  

the field and its lithologies and sedimentary patterns were 

described. Field observations were complemented with the pet-

rographic examination of 50 thin sections and 16 washing 

samples for identification of biogenic components and facies 

characteristics (skeletal components, depositional texture, and 

grain size). The textural classification follows the classifica-

tions of Embry & Klovan (1971) and Dunham (1962). For 

paleoenvironmental reconstructions, the relative abundance of 

calcareous algae, benthic foraminifera and other skeletal 

Fig. 1. Locality and geological map of the studied area.

background image

77

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

components (i.e., the green alga Halimeda, echinoids, mol-

luscs, bryozoans, corals and so on); were estimated in thin-sec-

tion by image analysis and measuring the proportional area 

occupied by each taxon relative to the total biogenic popula-

tion (Perrin et al. 1995). As a result, our suggestions with 

regard to the paleoenvironmental conditions are primarily 

based  on  the  dominant  genera  and  taxa  displaying  > 40 % 

abundance, while the subsidiary taxa are less regarded. 

Additionally, the changes in relative abundance of coralline 

red algal assemblages counted by this method, were used to 

constrain the bathy metry of the depositional setting (see  

Sup  plementary Table S2). Paleodepth has been interpreted 

following works on recent and fossil examples (Adey 1979, 

1986; Lund et al. 2000; Aguirre et al. 2000; 

Brandano et al. 2005). Following this 

method, the distribution of taxa suggests 

that Corallinales lived in the shallower 

water accompanied by corals and thick-

walled LBF (10–20 m), while Hapalidiales 

are more typical for deeper-water condi-

tions, associated with thin-walled LBF 

(40–80 m). The preservation level of large 

benthic foraminiferal tests was used to 

determine allochthonous fossils related to 

sediment transport. For marls, about 100 g 

of washed residue from every sample were 

checked under the stereomicroscope to pick 

up the main fossil groups. The benthic fora-

minifera were identified to species-level 

(as far as possible), sorted, and counted. 

The identification of genera and species 

largely follows Loeblich & Tappan (1988) 

and Cicha et al. (1998) publications. Plan k -

tonic foraminifera were specified as one 

group and counted in order to obtain P/B 

ratios, meaning the percentages of plank-

tonic foraminifera in the total foramini-

feral assemblages (% P = P/(P+B)×100).

Results and discussion

Facies description and interpretation

Based on biogenic composition, tex-

tural and lithological characteristics, 

twelve facies were identified in the lime-

stone and three facies were identified in 

the marls. These facies are related to dif-

ferent environments of the carbonate 

ramp:

FC1 (porcellaneous foraminiferal wacke­

stone packstone): 

This facies is charac-

terized by abundant larger and small 

porcellaneous foraminifera (45 %). Por-

cellaneous foraminifera are dominated 

by Borelis melo curdicaDendritina rangi and miliolids. 

Soritids, Peneroplis evolutus are also common. Perforate 

foraminifera (genera AmmoniaDiscorbis and Elphidium

(15 %), encrusting coralline red algae (8 %), fragments of 

Porites sp. (15 %), echinoid spines (13 %), molluscs (5 %) 

and quartz grains are occasionally present

 (Fig. 2A, B).

The dominance of porcellaneous foraminifera points to  

a well-lit and shallow portion of the photic zone in a proximal 

inner ramp setting (Romero et al. 2002; Bassi et al. 2007; 

Reuter et al. 2007; Bassi & Nebelsick 2010). Low turbidity is 

indicated by the high diversity of the porcellaneous forami-

niferal fauna, which develops in meso- to oligotrophic settings 

at shallow depths (e.g., Hallock 1984, 1988; Reiss & Hottinger 

Fig. 2. Photomicrographs of the microfacies recognized within the Asmari Formation.  

A, B — FC1, porcellaneous foraminiferal wackestone packstone; C–F — FC2, corallinacea, 

coral boundstone/rudstone; G, H — FC3, perforate-imperforate foraminifera wackestone. 

Biv: Bivalve, Ech: Echinoid, Cor: Coral, Bry: Bryozoan, RA: Red Algae, Den: Dendritina, 

Sor: Soritids, Sph: Sphaerogypsina, Amp: Amphistegina, Num: Nummulitids, Elp: Elphidium, 

EF: Encrusting Foraminifera, PF: Planktonic Foraminifera. 

background image

78

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

1984; Buxton & Pedley 1989). The presence of discorbids and 

small miliolids, along with large porcellaneous taxa, indicates 

the occurrence of extensive seagrass meadows in euphotic con-

ditions (Pomar et al. 2014). The high amount of micrite reflects 

a relatively low-turbulence environment (Barattolo et al. 2007).

FC2 (bioclast­coral boundstone/rudstone): This facies is 

characterized by the dominance of corals (76 %) (mainly of 

genus Porites). The benthic foraminifera (6 %) are also present 

and represented by thick LBF tests (Miogypsina globulina

Amphistegina  sp.,  Borelis melo curdica and Soritids), small 

miliolids,  Elphidium  sp., discorbids and textulariids. Other 

components are coralline red algae (14 %), molluscs (1 %), 

echinoids (2 %) and bryozoans (1 %). The coralline assem-

blage is dominated by the encrusting thalli of Neogoniolithon 

sp. and Lithothamnion cf. valens (Fig. 2C–F).

Neogoniolithon is actually one of the most important frame-

work-forming coralline algae in Eocene carbonate factories 

(Nebelsick et al. 2005), since it can develop directly over a soft 

substrate (Fravega & Vannucci 1989; Rasser 2000; Rasser & 

Piller 2004; Nebelsick et al. 2005; Quaranta et al. 2007). 

Eocene coralline-algal bindstones, are thought to develop at 

depths comparable or slightly greater than those of the rhodo-

lith facies, although with lower energy and higher substrate 

stability (Rasser & Piller 2004; Bassi 2005; Nebelsick et al. 

2005). This is also consistent with models of distribution of 

coralline-algal growth-form in modern oceans, which state 

that coralline-algal framework develops preferentially in envi-

ronments with a stable substrate, moderate to low hydrody-

namic energy and low sedimentation rate (e.g., Basso 1998). 

The foraminiferal (Borelis,  Miogypsina,  Amphistegina and 

miliolid) assemblage suggests deposition in the inner shelf 

habitats, where sea-grass meadows interfinger with adjacent 

unvegetated areas (Schuster & Wielandt 1999; Brandano et al. 

2009a, b). The presence of molluscs, echinoids, bryozoans and 

encrusting forms of corallinacean red algae confirm the occur-

rence of extensive sea-grass meadows over the inner shelf 

(Hoffman 1979; Ivany et al. 1990; Astibia et al. 2004; 

Beavington-Penney et al. 2004). This facies is therefore 

thought to have been deposited in an inner-shelf environment 

largely colonized by sparse scleractinian and coralline-algal 

bioconstructions, within or close to seagrass meadows 

(Maurizot et al. 2015).

FC3 (bioclastic perforate and imperforate foraminifera 

wackestone): The main components are mixed perforate and 

imperforate benthic foraminifera (40 %). The perforate fora-

minifera assemblage is represented by well-preserved thick 

and flat tests of Operculina  complanata, Operculina sp., 

Amphistegina  sp.,  Elphidium sp., and small rotaliids. 

Porcellaneous foraminifera include preserved and abraded 

tests of Borelis melo curdica, Dendritina rangi and miliolids. 

Other common components are bryozoans (19 %), bivalves 

(3 %), corallinacea (8 %), corals (9 %), echinoids (13 %), 

small rotaliids (2 %), encrusting foraminifera (4 %) (acervuli-

nids and Haddonia) and planktonic foraminifera (2 %). 

Corallines are represented by hooked and encrusting thalli of 

Neogoniolithon sp (Fig. 2G, H).

Operculina spp. are epifaunal, herbivorous taxa possessing 

diatoms as endosymbiontic algae. They live in warm water 

from the shallow shelf (e.g., in lagoons) down to the base of 

the photic zone (Murray 1991) depending on the specific 

 species.  The  modern  Operculina (i.e. Operculina complanata

can occur in medium light conditions in somewhat deeper part 

of the photic zone (Bassi et al. 2007). Recent O. ammonoides 

live on fine sandy substrates from the FWWB down to the storm 

wave base at 100 m (Hohenegger et al. 1999; Hohenegger 

2004). The associated foraminiferal assemblage, on the other 

hand, suggest a different setting (Wielandt-Schuster et al. 

2004). Imperforate foraminifera are most abundant making 

them characteristic of the assemblages. However, imperforate 

foraminifera (Borelis and Dendritina) and epiphytic assem-

blages suggest euphotic condition with extensive sea-grass 

meadows on inner shelf areas (Brandano et al. 2012; Brandano 

et  al.  2009a, b;  Mateu­Vicens  et  al.  2008).  Rotaliids  and 

amphisteginids are also common in modern sea-grass environ-

ments (Sen Gupta 1999). The sea-grass meadow interpretation 

is also supported by the presence of red-algal crusts with 

hooked forms (Beavington-Penney et al. 2004). Accordingly, 

this assemblage might be related to a vegetated substrate 

which offers shaded habitats to oligophotic elements (i.e.  

O. complanata) in a distal inner ramp setting. 

FC4 (branching coralline floatstone/rudstone): This facies 

is dominated by free-living coralline branches and rhodoliths 

(72 %). Other components are represented by coralline algal 

debris (2 %), fragments of echinoids (6 %), molluscs (2.5 %), 

bryozoans (0.5 %), LBF (10 %), small benthic (2 %), plank-

tonic (1 %) and encrusting foraminifera (4 %). Hapalidiales 

dominate coralline-algal assemblage in this facies. Corallinales 

are common to rare and are represented only by Lithoporella 

melobesioides. Among recognizable Hapalidiales the genus 

Lithothamnion cf. valens is the most abundant species of  

the association. Mesophyllum cf. roveretoi is another common 

Hapalidiales. Phymatolithon calcareum is rare and is the only 

recognized species of Phymatolithon. The LBF assemblage is 

characterized by thick-walled dominating with thin-walled, 

flat-lenticular subordinate Amphistegina sp., and rare flat and 

thin tests of Operculina complanata. In some samples, rare 

Borelis sp. also occur. Small benthic foraminifera are repre-

sented by cibicidids, Elphidium, textulariids and rare miliolids 

(Fig. 3A–C).

This facies can be compared to maërl facies which are cha-

racteristically composed of coralline algal branches, rhodoliths, 

and their detritus (e.g., Bosence 1984; Adey 1986; Freiwald et 

al. 1991; Freiwald 1995; Pivko et al. 2017). In modern tropical 

environments, maërl occurs in a very shallow zone commonly 

associated with sea-grass meadows (Bosence 1985; Steneck 

1986). In the present-day Mediterranean Sea, maërl deposits 

occupy the upper part of the circa-littoral zone, just below  

the deepest occurrence of Posidonia meadows (Canals & 

Ballesteros 1997). The maërl facies is also reported in fossil 

deposits (Brandano 2003; Brandano et al. 2010, 2016; Bassi & 

Nebelsick 2010; Nebelsick et al. 2013) from the inner and 

middle ramp deposits in the Oligocene and Miocene 

background image

79

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

carbonates of the Mediterranean realm. The biotic composi-

tion indicates a depositional environment ranging from the dis-

tal part of the inner ramp to the middle ramp settings. The inner 

ramp environment is indicated by the co-occurrence of thick 

perforate forms of Amphistegina and imperforate Borelis  

and miliolids. Deposition in the middle ramp is indicated by 

the pre sence of deep-living LBF (Amphistegina and Oper­

culina), planktonic foraminifera and by the absence of in­situ 

shallow imperforate fauna such as Borelis and miliolids 

(Brandano et al. 2012, 2016): this would imply that the tests of 

foraminifera of shallow-water affinity were resedimented at 

greater depth (Brandano et al. 2010). The increasing depth of 

deposition from inner ramp to middle ramp is also inferred 

from the coralline taxonomic assemblages. The taxonomic 

trend can be summarized as follows: inner ramp assemblage 

characterized by Hapalidiales (Lithothamnion) and Coral-

linales (common Lithoporella); middle ramp, dominated by 

Hapalidiales (Lithothamnion and Mesophyllum) with rare 

Corallinales. A similar increase in Hapalidiales with depth 

together with a relative decrease in Corallinales has been 

widely documented in modern settings (e.g., Adey 1979; Adey 

et al. 1982; Lund et al. 2000) and fossil paleoenvironments 

(Bassi 1995, 1998, 2005; Perrin et al. 1995; Bassi et al. 2006; 

Barattolo et al. 2007; Checconi et al. 2007, 2010). The abun-

dance of free-living coralline branches suggests low sub-

strate-stability (Barattolo et al. 2007). 

FC5 (foralgal grainstone): This facies 

consists of dominating coralline algae 

(60 %) (mainly lumpy and encrusting 

growth forms) and subordinate foramini-

fera (33 %). Further subordinate compo-

nents are molluscs (1 %), echinoderms 

(5 %) and bryozoans (1 %). The most 

abundant LBF are represented by robust 

and thick-walled Amphistegina  sp., 

Sphaerogypsina sp., Miogypsina globu­

lina, Borelis melo curdica and Dendritina 

rangi. Other common foraminifera are 

small rotaliids, miliolids, soritid, Pene­

roplis evolutus and Sphaerogypsina sp. 

(Fig. 3D–F).

The absence of micrite is regarded as 

indicative of moderate to high bottom 

current conditions, an interpretation that 

is further supported by coralline growth-

forms and by the abundance of robust 

benthic foraminifera such as Miogyp-

sinids,  Rotalia,  Sphaerogypsina and 

amphisteginids (Hallock & Glenn 1986; 

Fournier et al. 2004). It is interpreted as  

a shoal developed above fair weather 

wave-base, within the distal inner ramp. 

FC6 (Rhodalgal floatstone/rudstone): 

This facies comprises floatstone/rudstone 

characterized by the abundance of ellip-

soidal, laminar to branched rhodoliths 

(88 %). Rhodoliths range between 2 and  

5 cm and are mainly composed of Neo­

goniolithon  sp. Nuclei consist of corals 

and bryozoans. Lithothamnion cf. valens 

(4 %) is also present, forming free-living 

branches. Other components are benthic 

fora minifera (2.5 %), bivalves (0.5 %), 

bryo zoans (2 %) and echinoids (2 %). Plan-

ktonic foraminifera (1 %) are also present. 

Benthic foraminifera are represented by 

flat  Amphistegina  sp.,  Elphidium  sp., 

 textulariids and encrusting foraminifera 

(Miniacina sp.) (Fig. 3G, H; Fig. 2A).

Fig. 3. Photomicrographs of the microfacies recognized within the Asmari Formation.  

A–C — FC4, branching red algal floatstone-rudstone. D–F — FC5, foralgal grainstone;  

G, H — FC6, Rhodalgal floatstone/rudstone; Biv: Bivalve, Ech: Echinoid, Cor: Coral,  

Bry: Bryozoan, RA: Red Algae, Den: Dendritina, Sor: Soritids, Sph: Sphaerogypsina,  

Amp: Amphistegina, Num: Nummulitids, Elp: Elphidium, Mio: Miogypsina, Mil: Miliolid, 

Bor: Borelis, EF: Encrusting Foraminifera.

background image

80

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

A shallow marine environment is indicated by the domi-

nance of Corallinales, which tend to predominate in shal-

low-water settings of modern seas (Lund et al. 2000; Braga  

& Aguirre 2004; Flamand et al. 2008). Shallow-water 

Corallinales-dominated rhodoliths are also documented in  

the fossil records from the Tethyan realm (e.g., Bassi 1998, 

2005; Brandano et al. 2005, 2010; Bassi et al. 2006, 2008; 

Benisek et al. 2009; Bassi & Nebelsick 2010; Braga et al. 

2010). Bassi & Nebelsick (2010) suggesting an environment 

within the FWWB in a proximal middle ramp setting. 

Ellipsoidal rhodoliths are usually considered characteristic of 

high-energy conditions (e.g., Bassi 1995, 1998; Bassi & 

Nebelsick 2010; Checconi et al. 2010). Nonetheless, rhodolith 

shape is not directly correlated with water energy (e.g., 

Brandano et al. 2005; Bassi et al. 2006). 

The occurrence of thin laminar thalli and 

foraminiferal crusts on the rhodolith sur-

face may reflect relative stabilization and 

only occasional movement in calm water 

prior to burial (e.g., Pisera & Studencki 

1989; Aguirre et al. 1993). Alternatively, 

it is also possible that rhodoliths formed 

in a low energy environment when over-

turning was provided by the activity of 

organisms.

FC7 (Crustose coralline algal wacke­

stone): This facies is characterized by  

the abundance of usually well-preserved, 

thin delicate coralline-algal crusts (40 %). 

The dominating coralline alga is Meso­

phyllum cf. roveretoi. Other components 

are thinly branching corals (14 %), green 

algae (28 %), fragments of molluscs 

(14 %), echinoids (2 %) and small ben-

thic foraminifera (2 %) such as Elphidium 

sp.,  Textularia sp. and Bigenerina  sp  

(Fig. 4B–D).

The coralline alga Mesophyllum is 

reported from low-light environments 

and is commonly found in clear waters at 

a depth of 20–80+ m (Adey 1979; Perrin 

et al. 1992). The dominance of thin deli-

cate crusts suggests low hydrodynamic, 

low light intensity and low sedimentation 

rate (e.g., Lund et al. 2000; Bassi 2005). 

The high amount of fine-grained sedi-

ment between the crusts, also supports 

low hydrodynamic energy (Rasser 2000).

FC8 (acervulinid coral floatstone/rud­

stone): In this facies, thinly branching 

corals (78 %) together with acervulinids 

(8 %) and coralline algae (7 %) are the main 

components. Coralline algal assemblage 

is represented by thin encrusting thalli 

which envelope the coral colonies or float 

within the muddy matrix. The coralline 

assemblage is dominated by Mesophyllum. Rare Lithothamnion 

cf. valens is also present. Benthic foraminifera (3 %), 

 

Ditrupa sp. (0.5 %), echinoids (2 %), bryozoans (0.7 %) and 

bivalves (0.7 %) are subordinate.  The foraminifera associa-

tion is  characterized by encrusting foraminifera (Gypsina  

and  Minia cina), flat Amphistegina sp., flat-thin walled 

nummu litids,  Elphidium  sp., textulariids, rare Borelis melo 

curdica  and Sphaerogypsina sp. Bioerosion is common 

 

(Fig. 4E–H).

Recent acervulinids are common in very shallow water, as 

cryptobionts, up to the lower limit of the photic zone, likely 

due to the disappearance with depth of benthic diatoms, their 

food source (Reiss & Hottinger 1984). They are an indicator of 

reduced competition for substrate encrustation, which could 

Fig. 4. Photomicrographs of the microfacies recognized within the Asmari Formation.  

A — FC 9, Rhodalgal floatstone, rudstone. B–D — FC10, Crustose coralline algal 

wackestone–packestone.;  E–H — FC11, branching coral rudstone. Biv: Bivalve, 

 

Ech: Echinoid, Bry: Bryozoan, RA: Red Algae, Cor: Coral, Amp: Amphistegina,  

Num: Nummulitids, PF: Planktonic Foraminifera.

background image

81

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

be related to a decrease not only in light intensity (Perrin 

1992), but also in sedimentation rate and water turbulence 

(Bassi et al. 2012). The widespread occurrence of these 

 heterotrophic encrusters also indicates suitable conditions in 

terms of food availability (Zamagni et al. 2009). The coral 

assemblage is dominated by branched forms. These coral 

forms are observed in reef environments subjected to low light 

levels and/or relatively high nutrients (Dryer & Logan 1978; 

Sanders & Baron-Szabo 2005) that are highly resistant to sedi-

mentation, and that feed largely or entirely heterotrophically 

(Dryer & Logan 1978). Among the microfaunal components, 

the larger benthic foraminifera are few and represented by 

Operculina complanata and Amphistegina 

sp. At present, Operculina complanata 

thrives in the lower photic zone on fine 

sandy bottoms and is able to tolerate ele-

vated nutrients and sediment influx (e.g., 

Hohenegger 2000; Langer & Hottinger 

2000). Increased nutrient avai lability may 

be the explanation for the posi tive cor-

relation between increased organic mat-

ter, degree of bioerosion and encrustation 

by algae and infaunal suspension feeders 

(Hallock & Schlager 1986; Perrin et al. 

1995; Edinger et al. 2000). Accordingly,  

a low energy middle-ramp environment, 

likely characterized by enhanced nutrient 

level (mesotrophic) and reduced light-

level is conceivable for the studied acer-

vulinid-coral facies. 

FC9 (bioclastic nummulitid wacke­

stone/packstone): The main components 

are thin-walled and flat shelled large ben-

thic foraminifera (50 %). The LBF skele-

tons are dominated by Heterostegina sp., 

Operculina complanata and Amphistegina 

sp. Coralline red algae (10 %) are also 

common and they are dominated by 

Hapalidiales. Echinoids (11 %), molluscs 

(2 %) and bryozoans (23 %) (mainly erect 

rigid bilaminar adeoniform cheilostoma-

tid and vinculariiform cyclostomatid 

Onychocella  sp.,  Tubucellaria sp. and 

Celeporaria sp.) are also abundant. Small 

benthic foraminifers (4 %) also occur. 

The assemblage includes textulariids, rare 

miliolids,  Cibicides sp. and rare encrus-

ting forms Gypsina sp. and Miniacina sp 

(Fig. 5A–C).

The abundance of Hapalidiales and 

thin-shelled, flat nummulitids suggest 

that the accumulation of biota occurred in 

the oligophotic zone (Hohenegger 1996; 

Brandano & Corda 2002; Brandano et  

al. 2010; Novak et al. 2013). Erect, rigid 

bryozoans suggest moderate water 

turbulence and sedimentation rates (Lagaaij & Gautier 1965; 

Moissette et al. 2007). 

FC10 (pelagic foraminifera bioclastic wackestone–pack­

stone):  This facies consists of fine to coarse fragments and 

tests of larger benthic foraminifera (32 %) associated with 

planktonic foraminifera (12.5 %). Nummulitids and amphiste-

ginids are represented as predominantly flat and thin walled 

forms. Small benthic foraminifera (3 %) are rare and include 

textulariids, Elphidium crispum and miliolids. Other important 

components are Ditrupa  sp.  (1 %), bryozoans (11 %), echi-

noid plates and spines (24 %), coralline red algae (14.5 %) and 

bivalve shell fragments (1 %)  (Fig. 5D–F).

Fig. 5. Photomicrographs of the microfacies recognized within the Asmari Formation.  

A–C — FC12, bioclast nummulitidae wackestone packstone. D–F — FC13, pelagic 

foraminifera bioclastic packstone; G, H — MF14, fine bioclastic wackestone Biv: Bivalve, 

Ech: Echinoid, Bry: Bryozoan, RA: Red Algae, Amp: Amphistegina, Num: Nummulitids, 

Dit: Ditrupa, PF: Planktonic Foraminifera, Qg: Quartz Grain, Rhod: Rhodolith, 

 

EF: Encrusting Foraminifera.

background image

82

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

The co-occurrence of planktonic foraminifera and thin, flat 

nummulitids point to deposition at the dysphotic lower middle 

ramp (Hӧntzsch et al. 2010). The occurrence of shallow water 

dwellers such as epiphytic foraminifers and thick Amphistegina 

specimens, reflect active downslope sediment transport pro-

cesses (Mateu-Vicens et al. 2008). 

FC11 (fine bioclastic wackestone): This microfacies con-

sists of fine-grained bioclastic wackestone with highly abraded 

biogenic components, dominated by echinoid plates and 

spines (61 %), bryozoans (9 %) and foraminifera (20 %). 

Foraminifera are dominated by Elphidium sp. and planktonic 

foraminifera. Coralline algae (6 %) and bivalves (4 %) are 

present in minor percentages. In some samples, bioturbation is 

high. Fine quartz grains are also present (Fig. 5G, H).

The combination of micritic matrix and a relatively high 

degree of fragmentation points to textural inversion (Folk 

1962) that can be explained by a low-energy environment 

affected by occasional storm events (Rasser et al. 2005).  

The absence of LBF and occurrence of planktonic taxa indi-

cate outer-ramp setting (Mateu-Vicens et al. 2008). The sedi-

ment-producing biota (echinoids, bryozoans and bivalves) 

together with an absence of larger foraminifera such as 

Heterostegina and Operculina suggest a depositional environ-

ment located at the transition between the oligophotic and 

aphotic zone (Brandano et al. 2010). Bryozoans, together with 

molluscs and echinoids, are heterotrophic organisms that do 

not require much light to live and proliferate (Brandano & 

Corda 2002). Thus, their occurrence could suggest a high 

nutrient supply that could have limited the development of 

euphotic biota, favouring the bloom of photo independent 

biota such as planktonic foraminifera and suspension feeders 

(Brandano et al. 2016).

Marly facies

 

The marly deposits are dominated by planktonic and small 

benthic foraminifera, including both infaunal and epifaunal 

taxa. Three facies are recognized based on the relative abun-

dance of infaunal/epifaunal benthic foraminifera and plank-

tonic foraminifera.

FM1: This facies developed in the lower parts of the marly 

deposits. Planktonic foraminifera such as Globigerinoides and 

Globigerina are the dominant components. Echinoid spines 

and benthic foraminifera are also present. The assemblage is 

characterized by Cibicidoides spand Heterolepa dutemplei

Planktonic/benthic ratio of 90–100 % has been recorded for 

this facies (Supplementary Fig. S4).

The fine-grained composition and planktonic foraminifera 

abundance suggest hemipelagic deposition in an open-marine, 

low energy environment situated below storm wave base 

(Peyros et al. 2010). The presence of the Cibicidoides and 

Heterolepa species indicate a well oxygenated substrate and 

the presence of bottom water currents (Székely & Filipescu 

2016).

FM2: This facies is characterized by the co-occurrence of 

epifaunal and infaunal benthic foraminifera. The most 

abundant species are Bulimina inflata,  Nonion  fabum and 

Uvigerina spEpifaunal taxa also occur (mainly Neoeponides 

sp., Eponides spand Siphoninoides cf. echinata). Planktonic 

taxa are present and represented by Globigerina,  Globi­

gerinoides and Globorotalia (Supplementary Fig. S4).

The benthic foraminiferal assemblages (Neoeponides

Siphoninoides and Bulimina) indicate that the deposition of 

this succession took place in a relatively deep sedimentary 

basin, consistent with the outer shelf-slope environment 

(Murray 1991; Schmiedl et al. 2003). The co-existence of 

Siphoninoides with Bulimina spp., which is assumed to tole-

rate increased nutrient supply, are indicative of oxygen 

depleted, mesotrophic to eutrophic seafloor environments 

(García-Gallardo et al. 2017). 

FM3:  This facies is composed of anhydrite nodules and 

occurs in the upper part of the marl deposits. Planktonic and 

benthic foraminifera are abundant. The benthic assemblage is 

dominated by Bulimina spp., while the planktonic assemblage 

is constituted by Orbulina and Globigerinoides. The P/B ratio 

reach up to 40 % (Supplementary Fig. S4).

Low diversity assemblages, dominated by one or few 

 species, tend to occur in stressed environments (Drinia et al. 

2004). The presence of infaunal benthic foraminifera (Buli­

mina) indicates an unstable, stressed environment, probably 

linked to the presence of low oxygen concentration (Jorissen 

et al. 1992; Kaiho 1994) and high salinity on the seafloor  

(Van der Zwaan 1982; Verhallen 1991; Drinia et al. 2007;  

Di Stefano et al. 2010). 

Depositional model

The facies distribution represents a gradual shift from  

a shallow lagoonal setting to a basin environment (Fig. 6 and 

Supplementary Fig. S5). Slide deposits and breaks on the slope 

angle were not observed. Coral reefs are not developed, but 

small scattered patch reefs occur. This suggest a ramp mor-

phology for the carbonate system. This interpretation is also 

supported by the absence of oncoids, pisoids and aggregate 

grains that have been found in shelf carbonates and are rarely 

present in a ramp system (Flügel 2004). The general facies 

pattern indicates a progressive deepening upward from inner 

ramp to middle ramp and finally to outer ramp environment 

Two facies zones have been defined among the inner ramp 

sediments: proximal and distal shallow water zones. The proxi-

mal shallow water zone is dominated by porcellaneous fora-

miniferal wackestone/packstone comprising Borelis, miliolids, 

Dendritina, soritids and molluscs. Subordinate biota includes 

encrusting coralline red algae, small fragments of coral, echi-

noids and small rotalids. In general, porcellaneous larger fora-

minifers (such as peneropelids and soritids) predominantly 

live in symbiosis with dinophyceans, chlorophyceans or 

rhodophyceans (Romero et al. 2002). Today, larger porcella-

neous foraminifera thrive in tropical carbonate platforms 

within the upper part of the photic zone (e.g., Reiss & Hottinger 

1984; Hohenegger 2000). The abundant occurrence of this 

 foraminifera group reflects environments with very limited 

background image

83

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

circulation and relatively hypersaline (Geel 2000) and sug-

gests the presence of sea-grass meadows (Sen Gupta 1999; 

Brandano et al. 2009a, b; Bassi & Nebelsick 2010). In the deeper 

parts of the inner zone, coral colonies (Porites) form small-

patches associated with miliolids, small rotaliids, Borelis

miogypsinids and amphisteginids. The distal shallow-water 

zone is characterized by an increase in the coralline-red algal 

contents of sediments. It consists of mixed foraminifera 

wackestone and branching red algae floatstone/rudstone. 

 

The mixed foraminifera wackestone, comprises a highly 

diverse assemblage of large perforate and imperforate fora-

minifera, small benthic foraminifera (miliolids, textularids, 

small rotaliids), encrusting red algae, molluscs, echinoids and 

bryozoans. Branching red-algae floatstones/rudstones contain 

abundant red algal nodules and branches with rare miliolids 

and large foraminifera. A shoal belt of grainstone occurs in  

the transitional part of inner to middle ramp deposits. In the shoal 

deposits, skeletal grains usually display a high degree of frag-

mentation and abrasion. Robust benthic foraminifera and 

 corallinacean fragments were the predominant biotic compo-

nents. The coralline association (Lithothamnion,  Neogonio­

lithon and Spongites) and larger foraminifera assemblage 

(AmphisteginaMiogypsina, Operculina) place the inner ramp 

in the euphotic–mesophotic shallow-water zone (Pomar 2001). 

The absence of sedimentary structures together with the pre-

sence of foraminiferal assemblage, characterized by abundant 

epiphytic taxa, indicates deposition into a seaweed or sea-

grass dominated environment (Brandano et al. 2009a, b).

Based on the biota, the middle ramp can also be subdivided 

into two distinct facies belts: proximal and distal middle ramp. 

The proximal middle ramp facies, are represented by rhod-

algal facies, comprising thin encrusting Neogoniolithon asso-

ciated with bryozoans, corals and rare to common LBF and 

encrusting foraminifera.

Toward deeper water, this facies is replaced by crustose red 

algal floatstone/rudstone and acervulinid coral floatstone/

rudstone. The presence of crustuse coralline algae in a middle 

ramp setting can be related to suitable substrates and low 

 turbulence conditions (Bassi 1995; Rasser & Piller 2004).  

The profusion of encrusting foraminifera suggests enhanced 

trophic levels (i.e. mesotrophic conditions), with competition 

for the substrate as the main limiting factor (Mutti & Hallock 

2003).

The distal sector is characterized by the dominance of coral-

line red algal and larger hyaline foraminifers, and the disap-

pearance of hermatypic corals. The inner facies is represented 

by coralline algal floatstone/rudstone dominated by Litho­

thamnion and Mesophyllum. Associated taxa include flat 

Amphi stegina and some encrusting foraminifera. In deeper 

parts, this facies is replaced by larger foraminifera facies.  

The faunal assemblage includes mostly thin LBF (Operculina

Heterostegina,  Amphistegina), rare to common branching 

bryozoans, echinoids, molluscs, coralline red algae, Ditrupa

encrusting benthic foraminifera and planktonic foraminifera. 

A low sedimentation rate is presumably responsible for the very 

dense foraminiferal accumulation (Bassi 2005). In the upper 

part of the section, this facies exhibits a grain-size decrease 

and an increased percentage of planktonic foraminifera.  

The muddy sediments of the middle ramp setting reflect 

low-energy conditions. The absence of wave-related struc-

tures and the abundance of coralline algae and LBF such as 

HeterosteginaOperculina and Amphistegina, place the mid-

dle ramp setting in the oligophotic zone, below the fair weather 

wave base (Pomar et al. 2012). 

The sediments from outer ramp are characterized by the pre-

dominance of photo-independent biota. The main sediment- 

producing biota in the shallower facies are primarily 

repre sented by bryozoans and echinoids and to a lesser extent 

by small benthic foraminifera and bivalves. All the skeletal 

grains are embedded in a fine micritic matrix. In rare cases 

some reworked elements from the oligophotic zone, such as 

fragmented coralline red algae, are present. Deeper facies are 

inner ramp

Middle ramp

Outer ramp

Euphotic

Oligophotic

Aphotic

FWWB

SWB

Red algae
Pectenids

orals

C

Nummulitids

Amphisteginids

pifauna foraminifera

E

Infauna foraminifera

Sea-grass
Imperforate

foraminifera

Echinids
Bryozoans

Fm1

Fm2

Fm3

Fc11

Fc10

Fc9

Fc8

Fc1

Fc2

Fc3

Fc4

Fc5

Fc7

Fc6

Fig. 6. Depositional model for the platform carbonate of the Asmari Formation in the Tang-e-Shabikhon area, Zagros Basin, south-west Iran. 

FWWB: Fair weather wave base; SWB: Storm wave base (see text for further details).

background image

84

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

dominated by planktonic foraminifera together with benthic 

foraminifera lacking photosynthetic organisms. 

Conclusions

The skeletal assemblage of the studied mixed carbonate– 

evaporitic units is mainly composed of foraminifera and coral-

line algae. Corals, bryozoans and molluscs are subordinated. 

Based on the benthic and planktonic foraminifera distribution, 

the studied section is Burdigalian–Langhian in age. Based on 

the facies analysis and the faunal constituents, the study sec-

tion was deposited on a homoclinal ramp. The ramp is divided 

into three parts: an inner ramp, a middle ramp and an outer 

ramp. The inner ramp is characterized by wackestone–pack-

stone with a diverse assemblage of imperforated foraminifera 

in shallow protected areas, and bioclast imperforate forami-

nifera wackestone with branching red algae floatstone/rudstone 

in the deeper part. The shoal facies is marked by foraminifera, 

corals as well as coralline red algal grainstone. The shallower 

parts of the middle ramp are characterized by the occurrence 

of acervulinid, coral boundstone and floatstone, branching 

coral rudstone and rhodolith wackestone-packstone. The distal 

middle ramp is dominated by coralline algal floatstone/ 

rudstone and bioclastic nummulitic wackestone/packstone. 

The shallower parts of the outer ramp are characterized by 

bryozoans, echinoids, rare benthic foraminifera and mollusc 

fragments. Planktonic foraminifera together with epifaunal 

and infaunal deep benthic foraminifera are the most important 

components of distal outer ramp to basin facies. The benthic 

foraminifera association in a distal outer ramp setting indi-

cates a shift from a stable environment with well-oxygenated 

bottom-waters and oligotrophic conditions to an unstable 

environment with eutrophic and dysoxic conditions.

Acknowledgements: We are thankful to Prof. Marco Brandano 

(Universita di Roma ‘‘La Sapienza’’) for valuable suggestions. 

We are grateful to Prof. Abdel Galil A. Hewaidy and Dr. Sherif 

Farouk for their help during the study of planktonic foramini-

fera. Our gratitude goes to Dr. Giovanni Coletti as well as to 

Dr. Natália Hlavatá Hudáčková for constructive criticism of 

the manuscript. We thank Mohammad Chelehnia, Rohallah 

Vaziri and Mohsen Shadmand for their assistance during  

the fieldwork. 

References

Adey  W.H.  1979: Crustose coralline algae as microenvironmental 

 indicators in the Tertiary Historical Biogeography Plate Tecto-

nics and the changing environment. In: Gray J. & Boucot A.J. 

(Eds.): Proceedings of the thirty-seventh Annual Biology Collo-

quium, 459–464.

Adey W.H. 1986: Coralline algae as indicators of sea-level. In: van de 

Plassche O. (Ed.): Sea-Level Research: a manual for the collec-

tion and evaluation of data. Springer Netherlands, Dordrecht, 

229–280.

Adey W.H. & Mcintyre I.G. 1973: Crustose coralline algae: A reeva-

luation in the geological sciences. Geol. Soc. Amer. Bull. 84, 

883–904.

Adey W.H., Towensend R.A. & Boy W.T. 1982: The crustose coral-

line algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. 

Smithsonian Contributions to the Marine Sciences 15, 1–74.

Agard  P., Omrani J., Jolivent L., Whitechurch H., Vrielynck B., Spakman 

W., Monié P., Meyer B. & Wortel R. 2011: Zagros orogeny: a sub-

duction-dominated process. Geol. Mag. 148, 5–6, 692–725.

Aguirre J., Braga J.C. & Martín J.M. 1993: Algal Nodules in the 

 Upper Pliocene Deposits at the Coast of Cadiz (S. Spain). In: 

Barattolo, F., De Castro, P., Parente, M. (Eds.), Studies on Fossil 

Benthic Algae: Bollettino della Società Paleontologica Italiana 

1, 1–7.

Aguirre J., Riding R. & Braga J.C. 2000: Diversity of coralline red 

algae: origination and extinction patterns from the Early Creta-

ceous to the Pleistocene. Paleobiology 26, 651–667.

Aguirre J., Braga J.C. & Bassi D. 2017: The role of rhodolith and 

 rhodolith beds in rock record and their use in paleoenviron-

mental reconstructions. In: Riosmena-Rodriguez R., Nelson W. 

& Aguirre J. (Eds.): Rhodolith/maerl bed: a global perspective. 

Springer­Verlag, Berlinspec. vol., 105–138.

Amirshahkarami M., Vaziri-Moghaddam H. & Taheri A. 2007: Sedi-

mentary facies and sequence stratigraphy of the Asmari Forma-

tion at Chaman-Bolbol, Zagros Basin Iran. J. Asian Earth Sci. 29 

5–6, 947–959.

Astibia H., Payros  A., Pereda Suberbiola X., Elorza J., Berreteaga A., 

Etxebbaria N., Badiola A. & Tosquella J. 2004: Sedimentology 

and taphonomy of sirenian remains from the Middle Eocene of 

the Pamplona Basin (Navarre, western Pyrenees). Facies 50, 

463–475.

Barattolo F., Bassi D. & Romero R. 2007: Upper Eocene larger fora-

miniferal-coralline algal facies from the Klokova Mountain 

(south continental Greece). Facies 53, 361–375.

Bassi D. 1995: Crustose coralline algal pavements from Late Eo-

cene-Colli Berici of Northern Italy. Rivista Italiana di Paleonto­

logia e Stratigrafia 101, 81–92.

Bassi D. 1998: Coralline algal facies and their palaeoenvironments in 

the Late Eocene of Northern Italy (Calcare di Nago). Facies 39, 

179–202.

Bassi D. 2005: Larger foraminiferal and coralline algal facies in an 

Upper Eocene storminfluenced, shallow water carbonate plat-

form (Colli Berici, north-eastern Italy). Palaeogeogr. Palaeocli­

matol. Palaeoecol. 226, 17–35.

Bassi D. & Nebelsick J.H. 2010: Components, facies and ramps: re-

defining Upper Oligocene shallow water carbonates using coral-

line red algae and larger foraminifera (Venetian area, northeast 

Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 258–280. 

Bassi D., Carannante G., Murru M., Simone L. & Toscano F. 2006: 

Rhodalgal/bryomol assemblages in temperate type carbonate, 

channelised depositional systems: the Early Miocene of the Sar-

cidano area (Sardinia, Italy). In: Pedley H.M. & Carannante G. 

(Eds.): Cool-water Carbonates: Depositional Systems and Palaeo-

environmental Control. Geol. Soc. London, Spec. Publ. 255, 

35–52.

Bassi D., Hottinger L. & Nebelsick J.H. 2007: Larger foraminifera 

from the Late Oligocene of the Venetian area, north-eastern Italy. 

Palaeontology 50, 845–868.

Bassi D., Checconi A., Hohenegger J., Iryu Y. & Nebelsick J.H. 2008: 

Present-day and fossil rhodolith pavements compared: their 

 potential for analysing shallow-water carbonate deposits. Sedi­

ment. Geol. 214, 74–84.

Bassi D., Iryu Y., Humblet M., Matsuda H., Machiyamada H., Sasaki 

K., Matsuda S., Aai K. & Inoue T. 2012: Recent macroids on the 

Kikai-jima shelf, Central Ryukyu Islands, Japan. Sedimentology 

59, 2024–2041.

background image

85

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Basso D. 1998: Deep rhodolith distribution in the Pontian Islands, 

 Italy: a model for the palaeoecology of a temperate sea. Palaeo­

geogr. Palaeoclimatol. Palaeoecol. 137, 173–187.

Beavington-Penney S.J., Wright V.P. & Woelkering W.J. 2004: 

 Recognising macrophytevegetated environments in the rock 

 record: a new criterion using “hooked” forms of crustose coral-

line red algae. Sediment. Geol. 166, 1–9. 

Benisek M.F., Betzler C., Marcano G. & Mutti M. 2009: Coralline- 

algal assemblages of a Burdigalian platform slope: implications 

for carbonate platform reconstruction (northern Sardinia, 

 western Mediterranean Sea). Facies 50, 375–386.

Berberian M. & King G.C. 1981: Towards a paleogeography and tec-

tonic evolution of Iran. Canad. J. Earth Sci. 18, 2, 210–265.

Betzler C., Brachert T.C. & Nebelsick J.H. 1997: The warm temperate 

carbonate province — A review of facies, zonations, and deli-

mitations. Cour. Forsch.–Inst. Senckenber

g 201, 83–99.

Bosence D.W.J. & Pedley H.M. 1982: Sedimentology and palaeo-

ecology of a Miocene coralline algal biostrome from the Maltese 

islands. Palaeoeogr. Palaeoclimatol. Palaeoecol. 38, 9–43.

Bosence D.W.J. 1983a: Description and classification of Rhodoliths 

(Rhodoids, Rhodolithes). In: Peryt T.M. (Ed.): Coated Grains. 

Springer, Berlin, Heidelberg, 217–224.

Bosence D.W.J. 1983b: The occurrence and ecology of Rhodoliths 

(Rhodoids, Rhodolithes). In: Peryt T.M. (Ed.): Coated Grains. 

Sprin ger, Berlin, Heidelberg, 225–242.

Bosence D.W.J. 1984: Construction and preservation of two recent 

coralline algal reefs, St. Croix, Caribbean. Palaeontology 27, 

549–574.

Bosence D.W.J. 1985: Sedimentology and budget of a recent carbo-

nate mound, Florida Keys. Sedimentology 32, 317–343.

Braga J.C. & Aguirre J. 2004: Coralline algae indicate Pleistocene 

evolution from deep, open platform to outer barrier reef environ-

ments in the northern Great Barrier Reef margin. Coral Reefs 23, 

547–558.

Braga J.C., Bassi D. & Piller W. 2010: Paleoenvironmental signifi-

canse of Oligocene–Miocene coralline red algae — a review. Int. 

Assoc. Sedimentol., Spec. Publ. 42, 165–182. 

Brandano M. 2003: Tropical/Subtropical inner ramp facies in lower 

Miocene ‘‘Calcari a Briozoi e Litotamni’’ of the Monte Lungo 

Area (Cassino Plain, Central Apennines, Italy). Bollettino della 

Societá Geologica Italiana 122, 85–98.

Brandano M. & Corda L. 2002: Nutrient, sea level and tectonics con-

strains for the facies architecture of Miocene carbonate ramp in 

Central Italy. Terranova 14, 257–262.

Brandano M.  & Ronca S. 2014: Depositional processes of the mixed 

carbonate–siliciclastic rhodolith beds of the Miocene Saint-Flo-

rent Basin, northern Corsica. Facies 60, 73–90.

Brandano M., Vannucci G., Pomar L. & Obrador A. 2005: Rhodolith 

assemblages from the Lower Tortonian carbonate ramp of 

Menorca (Spain): environmental and paleoclimatic implications. 

Palaeogeogr. Palaeoclimatol. Palaeoecol. 226, 307–323.

Brandano M., Tomassetti L., Pedley M. & Matteucci R. 2009a: Het-

erozoan carbonates in oligotrophic tropical waters: the Attard 

member of the lower coralline limestone formation (Upper Oli-

gocene, Malta). Palaeogeogr. Palaeoclimatol. Palaeoecol. 274, 

54–63.

Brandano M., Frezza V., Tomassetti L., Pedley M. & Matteucci R. 

2009b: Facies analysis and palaeoenvironmental interpretation 

of the Late Oligocene Attard Member (Lower Coralline Lime-

stone Formation), Malta. Sedimentology 56, 1138–1158.

Brandano M., Frezza V., Tomassetti L., Bosselini F. & Mazzucchi A. 

2010: Depositional model and paleodepth reconstruction of  

a coral-rich, mixed siliciclastic-carbonate system: the Burdigalian 

of Capo Testa (northern Sardinia, Italy). Facies 56, 433–444.

Brandano M., Lipparini L., Campagnoni V. & Tomassetti L. 2012: 

Dowslope-migrating large dunes in the Chattian carbonate ramp 

of the Majella Mountains (Central Apennines, Italy). Sediment. 

Geol. 255–256, 29–41.

Brandano M., Cornacchia I., Raffi I. & Tomassetti L. 2016: The Oli-

gocene–Miocene stratigraphic evolution of the Majella carbo-

nate platform (Central Apennines, Italy). Sediment. Geol. 333, 

1–14.

Buxton M.W.N. & Pedley H.M. 1989: A standardized model for 

Tethyan Tertiary carbonate ramps. Geol. Soc. London, Spec. 

Publ. 146, 746–748.

Canals M. & Ballesteros E. 1997: Production of carbonate particles 

by phytobenthic communities on the Mallorca-Menorca shelf, 

northwestern Mediterranean Sea. Deep­Sea Res. II, 44, 

 

611–629.

Checconi A., Bassi D., Passeri L. & Rettori R. 2007: Coralline red 

algal assemblage from the Middle Pliocene shallow-water tem-

perate carbonates of the Monte Cetona (Northern Apennines, 

 Italy).  Facies 53, 57–66.

Checconi A., Bassi D., Carannante G. & Monaco P. 2010: Re-depo-

sited rhodoliths in the Middle Miocene hemipelagic deposits of 

Vitulano (Southern Apennines, Italy): Coralline assemblage 

characterization and related trace fossils. Sediment. Geol. 225, 

50–66.

Cicha I., Rögl F., Rupp Ch. & Ctyroká J. 1998: Oligocene–Miocene 

foraminifera of the Central Paratethys. Verlag Waldemar Kramer

Frankfurt am Main, 1–325.

Coletti G., Basso D., Frixa A. & Corselli C. 2015: Transported rho-

doliths witness the lost carbonate factory: a case history from  

the Miocene Pietra da Cantoni limestone (NW Italy). Rivista 

Italiana di Paleontologia e Stratigrafia 121, 345–368.

Coletti G., Basso D. & Corselli C. 2018:  Coralline algae as depth  

indicators in the Sommiéres Basin (early Miocene, Southern 

France). Geobios 51, 15–30.

Colman-Sad S.P. 1978: Fold development in Zagros Simply Folded 

Belt. Am. Assoc. Petrol. Geol. Bull. 62, 984–1003. 

Di Stefano A., Verducci M., Lirer F., Ferraro L., Iaccarino S.M., 

 Hüsing S.K. & Hilgen F.J. 2010: Paleoenvironmental conditions 

preceding the Messinian Salinity Crisis in the Central Mediterra-

nean: Integrated data from the Upper Miocene Trave section 

 (Italy).  Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 37–53.

Drinia H., Antonarakou A. & Tsaparas N. 2004: Diversity and abundance 

trends of benthic foraminifera from the southern part of the Irak-

lion Basin, central Crete. Bull. Geol. Soc. Greece 36, 772–781.

Drinia H., Antonarakou A., Tsaparas N. & Kontakiotis G. 2007: Pa-

laeoenvironmental conditions preceding the Messinian Salinity 

Crisis: A case study from Gavdos Island. Geobios 40, 251–265.

Dryer S. & Logan A. 1978: Holocene reefs and sediments of Castle 

Harbour, Bermuda. JMar. Res. 36, 399–425.

Dunham R.J. 1962: Classification of carbonate rocks according to 

their depositional texture. In: Ham W.E. (Ed.): Classification of 

Carbonate Rocks. Am. Assoc. Petrol. Geol. Bull., 108–121.

Edinger E.N., Limmon G.V., Jompa J., Widjatmok W., Heikoop J.M. 

& Risk M.J. 2000: Normal coral growth rates on dying reefs: are 

coral growth rates good indicators of reef health? Mar. Pollution 

Bull. 40, 404–425.

Embry A.F. & Klovan J.E. 1971: A Late Devonian reef tract on North-

eastern Banks Island, NWT. Can. Petrol. Geol. Bull. 19, 730–781.

Falcon N.L. 1961: Major earth-flexturing in the Zagros Mountain of 

southwest Iran. J. Geol. Soc. London 117, 367–376.

Flamand B., Cabioch G., Payri C. & Pelletire B. 2008: Nature and 

biological composition of the New Caledonian outer barrier reef 

slopes. Mar. Geol. 250, 157–179.

Flügel E. 2004: Microfacies of carbonate rocks: analysis interpreta-

tion and application. Springer, Berlin, 1–976.

Folk R.L. 1962: Spectral subdivision of limestone types. In: Hamm 

W.E. (Ed.): Classification of carbonate rocks. AAPG Memoir 1, 

62–84.

background image

86

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Fournier F., Montaggioni L. & Borogmano J. 2004: Paleoenviron-

ments and high-frequency cyclicity from Cenozoic South-East 

Asian shallow water carbonates: a case study from the Oligo–

Miocene buildups of Malampaya (Offshore Palawan, Philip-

pines). Mar. Petrol. Geol. 21, 1–21.

Fravega P., Piazza M. & Vannucci G. 1989: Archaeolithothamnium 

Rothpletz, ecological-stratigraphic indicator? In: Simposio di 

Ecologia e Paleoecologia delle Comunita` Bentoniche 1985. Atti 

3, 729–743 (in Italian).

Freiwald A. 1995: Sedimentological and biological aspects in the 

 formation of branched rhodoliths in northern Norway. Beitr

Paläeontol. 20, 7–19. 

Freiwald A., Henrich R., Schafer P. & Willkomm H. 1991: The signi-

ficance of high-boreal to subarctic maerl deposits in Northern 

Norway to reconstruct Holocene climatic changes and sea level 

oscillations. Facies 25, 315–340.

García-Gallardo A., Grunert P., Van der Schee M., Sierro F.J., 

Jimenez-Espejo A., Alvarez Zarikian, F.J. & Piller W.E. 2017: 

Benthic foraminifera-based reconstruction of the first Mediterra-

nean-Atlantic exchange in the early Pliocene Gulf of Cadiz. 

 Palaeogeogr. Palaeoclimatol. Palaeoecol. 472,   93–107.

Geel T. 2000: Recognition of stratigraphic sequences in carbonate 

platform and slope deposits: empirical models based on microfa-

cies analysis of Palaeogene deposits in southeastern Spain. 

 Palaeogeogr. Palaeoclimatol. Palaeoecol. 155, 211–238.

Golonka J. 2004: Plate tectonic evolution of the southern margin of 

Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 1, 

235–273.

Halfar J. & Mutti M. 2005: Global dominance of coralline red-algal 

facies: a response to Miocene oceanographic events. Geology 

33, 481–484.

Hallock P. 1984: Distribution of selected species of living algal sym-

biont-bearing foraminifera on two coral pacific reefs. J. Fora­

minifer. Res. 9, 61–69.

Hallock P. 1988: The role of nutrient availability in bioerosion: con-

sequences to carbonate build-ups. Palaeogeogr. Palaeoclimatol. 

Palaeoecol. 63, 275–291.

Hallock P. & Glenn E.C. 1986: Larger foraminifera: A Tool for Paleo-

environmental analysis of Cenozoic carbonate depositional fa-

cies. Palaios 1, 55–64.

Hallock P. & Schlager W. 1986: Nutrient excess and the demise of 

coral reefs and carbonate platforms. Palaios 1, 389–398.

Hoffman A. 1979: Indian Ocean affinities of a Badenian (Middle 

Miocene) seagrass-associated macrobenthic community of Po-

land. Annales Géologique des Pays Helléniques, Tome hors série 

2, 537–541.

Hohenegger J. 1996: Remarks on the distribution of larger foramini-

fera (Protozoa) from Palau (western Carolines). In: Aoyama T. 

(Ed.): The progress report of the 1995 survey of the research 

project, Man and the environment in Micronesia. Kagoshima 

University Research Center for the Pacific IslandsOccasional 

Papers 32, 19–45.

Hohenegger J. 2000: Coenoclines of larger foraminifera. Micro­

paleontology 46 (Supplement 1), 127–151.

Hohenegger J. 2004: Depth coenoclines and environmental conside-

rations of western Pacific larger foraminifera. J. Foram. Res. 34, 

9–33.

Hohenegger J., Yordanova E., Nakano Y. & Tatzreiter F. 1999: Habi-

tats of larger foraminifera on the upper reef slope of Sesoko 

 Island, Okinawa, Japan. Mar. Micropaleontol. 36, 109–168.

Hohenegger J., Yordanova E. & Hatta A. 2000. Remarks on West 

 Pacific Nummulitidae (Foraminifera). J. Foram. Res. 30, 3–28.

Hӧntzsch S., Scheibner Ch., Kuss J., Mazrouk A.M. & Rasser M.W. 

2010: Tectonically driven carbonate ramp evolution at the 

 southern Tethyan shelf: the Lower Eocene succession of the 

Galala Mountains, Egypt. Facies 57, 1, 51–72. 

Hottinger L.  1983. Processes determining the distribution of larger 

foraminifera in space and time. Utrecht Micropaleontol. Bull

30, 239–253.

Hottinger L. 1997: Shallow benthic foraminiferal assemblages as sig-

nals for depth of their deposition and their limitations. Bulletin 

de la Societé Géologique de France. 168, 491–505.

Ivany L.C., Portell R.W. & Jones D.S. 1990: Animal-plant relation-

ships and paleobiogeography of an Eocene seagrass community 

from Florida. Palaios 5, 244–258.

Jorissen F.J., Barmawidjaja D.M., Puskaric S. & van Der zwaan G.J. 

1992: Vertical distribution of benthic foraminifera in the northern 

Adriatic Sea: the relation with the organic flux. Mar. Micro­

paleontol. 19, 131–146.

Kaiho K. 1994: Benthonic foraminiferal dissolved-oxygen index  

and dissolved levels in the modern ocean. Geology 22, 

 

719–722.

Lagaaij R. & Gautier Y.V. 1965: Bryozoan assemblages from marine 

sediments of the Rhône delta, France. Micropaleontology 11, 

39–58.

Langer M. & Hottinger L. 2000: Biogeography of selected “larger” 

foraminifera. Micropaleontology 46, 57–86.

Loeblich A.R. & Tappan H. 1988: Foraminiferal Genera and Their 

Classification.  Van Nostrand Reinhold International Company 

Limited, New York, 1–2115.

Lund M., Davies P.J. & Braga J.C. 2000: Coralline algal nodules off 

Fraser Island, Eastern Australia. Facies 42, 25–34.

Mateu-Vicens G., Hallock P. & Brandano M. 2008: A depositional 

model and paleoecological reconstruction of the lower Tortonian 

distally steepend ramp of Menorca (Balearic Islands, Spain), 

Palaios 23, 465–481.

Maurizot P., Cabioch G., Fournier F., Leonide Ph., Sebih S., Rouillard 

P., Montaggioni L., Collot J., Martin-Garin B., Chaproniere G., 

Braga J.C. & Sevin B. 2016: Post-obduction carbonate system 

development in New Caledonia (Népoui, Lower Miocene). 

 Sediment. Geol. 331, 42–62.

Moissette P., Dulai A., Escarguel G., Kăzmér M., Müller P. & Saint 

Martin J.P. 2007: Mosaic of environments by bryozoan faunas 

from the Middle Miocene of Hungary. Palaeogeogr. Palaeocli­

matol. Palaeoecol. 252, 530–556.

Murray J.W. 1991: Ecology and Palaeoecology of Benthic Forami-

nifera. Longman Harlow, Harlow, 1–397.

Mutti M. & Hallock P. 2003: Carbonate systems along nutrient and 

temperature gradients: some sedimentological and geochemical 

constraint. Int. J. Earth Sci. 92, 465–475.

Nebelsick J.H., Rasser M. & Bassi D. 2005: Facies dynamics in Eocene 

to Oligocene circumalpine carbonates. Facies 51, 197–216.

Nebelsick J.H., Bassi D. & Lempp J. 2013: Tracking paleoenviron-

mental changes in coralline algal-dominated carbonates of the 

Lower Oligocene Calcareniti di Castelgomberto formation 

(Monti Berici, Italy). Facies 59, 133–148.

Novak V., Santodomingo N., Rösler A., Di Martino E., Braga J.C., 

Taylor P.D., Johnson K.J. & Renema W. 2013: Environmental 

reconstruction of a late Burdigalian (Miocene) patch reef in 

 deltaic deposits (East Kalimantan, Indonesia). Palaeogeogr. 

 Palaeoclimatol.  Palaeoecol. 374, 110–122.

Peña V. & Bárbara I. 2008: Biological importance of an Atlantic Eu-

ropean maërl bed off Benencia Island (northwest Iberian Penin-

sula). Botanica Marina 51, 493–505.

Perrin C. 1992: Signification écologique des foraminiféres acervuli-

nidés et leur rôle dans la formation de faciés récifaux et orga-

nogénes depuis le paléocéne. Geobios 25, 725–751.

Perrin C., Bosence D. & Rosen B. 1995: Quantitative approaches to 

palaeozonation and palaeobathymetry of coral and coralline 

 algae in Cenozoic reefs. In: Bosence D.W.J. & Allison P.A. 

(Eds.): Marine palaeoenvironmental analysis from fossils. Geol. 

Soc. London, Spec. Publ. 83,181–229.

background image

87

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Roehl P.O. & Choquette P.W. 1985: Carbonate petroleum reservoirs. 

Springer, New York, 1–622. ISBN 978-1-4612-9536-5

Peyros A., Pujalte V., Tosquella J. & Orue-Etxebarria X. 2010:  

The Eocene storm-dominated foralgal ramp of the western Pyre-

nees (Urbasa-Andia Formation): an analogue of future shal-

low-marine carbonate system? Sediment. Geol. 228, 184–204.

Pisera A. & Studencki W. 1989: Middle Miocene rhodoliths from the 

Korytnica Basin (Southern Poland): environmental significance 

and paleontology. Acta Palaeontologica Polonica 34, 179–209.

Pomar L. 2001: Ecological control of sedimentary accommodation: 

evolution from carbonate ramp to rimmed shelf, Upper Miocene, 

Balearic Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 175, 

249–272.

Pomar L., Bassant P., Brandano M., Ruchonnet C. & Janson X. 2012: 

Impact of carbonate producing biotas on platform architecture: 

insights from Miocene examples of the Mediterranean region. 

Earth­Sci. Rev. 113, 186–211.

Pomar L., Mateu-Vicens G., Morsilli M. & Brandano M. 2014: Car-

bonate ramp evolution during the Late Oligocene (Chattian), 

Salento Peninsula, southern Italy. Palaeogeogr. Palaeoclimatol. 

Palaeoecol. 404, 109–132.

Quaranta F., Vannucci G. & Basso D. 2007: Neogoniolithon contii 

comb. nov. based on the taxonomic re-assessment of Mastro-

rilli’s original material from the Oligocene of NW Italy (TPB). 

Rivista Italiana di Paleontologia e Stratigrafia 113, 43–55.

Rasser M.W. 2000: Coralline red algal limestones of the Late Eocene 

Alpine foreland basin in Upper Austria: Component analysis, 

facies and paleoecology. Facies 42, 59–92.

Rasser M. & Piller W. 2004: Crustose algal frameworks from the Eo-

cene Alpine foreland. Palaeogeogr. Palaeoclimatol. Palaeoecol

206, 21–39.

Rasser M., Scheibner C. & Mutti M. 2005. A paleoenvironmental 

standard section for Early Ilerdian tropical carbonate factories 

(Corbieres, France; Pyrenees, Spain). Facies 51, 217–232.

Reiss Z. & Hottinger L. 1984: The Gulf of Aqaba: ecological micro-

paleontology. Springer, Berlin, 1–356. 

Reuter M., Piller W.E., Harzhauser M., Mandic O., Berning B.,   

Rögl F., Kroh A., Aubry M.P., Wielandt-Schuster U. & Hame-

dani A. 2007: The Oligo-/Miocene Qom Formation (Iran): 

 evidence for an early Burdigalian restriction of Tethyan Seaway 

and closure of its Iranian gateways. Int. J. Earth. Sci. 98,  

627–650.

Romero J., Caus E. & Rossel J. 2002: A model for the palaeoenviron-

mental distribution of larger foraminifera based on Late Middle 

Eocene deposits on the margin of the south Pyrenean basin  

(SE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 179,  

43–56.

Roozpeykar A. & Maghfouri Moghaddam I. 2016: Sequence biostrati-

graphy and paleoenvironmental reconstruction of the Oligocene–

early Miocene deposits of the Zagros Basin (Dehdasht area, 

South West Iran). Arab. J. Geosci. 9, 1, article 77.

Sanders D. & Baron-Szabo R. 2005: Scleractinian assemblages under 

sediment input: their characteristics and relation to the nutrient 

input concept. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 

139–181. 

Schmiedl G., Mitschele A., Beck S., Emeis K.C., Hemleben C., 

Schultz H., Sperling M. & Weldeab S. 2003: Benthic forami-

niferal record of ecosystem variability in the eastern Mediterra-

nean Sea during times of sapropel S5 and S6 deposition. Palaeo­

geogr. Palaeoclimatol. Palaeoecol. 190, 139–164.

Schuster F. & Wielandt U. 1999: Oligocene and Early Miocene coral 

faunas from Iran: palaeoecology and palaeobiogeography. Int. J. 

Earth Sci. 88, 571–581.

Sen Gupta B.K. 1999: Foraminifera in marginal marine environ-

ments. In: Sen Gupta B.K. (Ed.): Modern Foraminifera. Kluwer 

Academic Publishers, Dordrecht, 141–159.

Sepehr M.F. & Cosgrove J.W. 2004: Structural framework of the 

 Zagros fold thrust belt, Iran. Mar. Petr

ol. Geol. 21, 829–843.

Steller D.L., Riosmena-Rodríguez R., Foster M.S. et al 2003: Rhodo-

lith bed diversity in the Gulf of California: the importance of 

rhodolith structure and consequences of disturbance. Aquatic 

Conservation, Marine Freshwater Ecosystems 13, S5–S20.

Stocklin J. 1968: Structural history and tectonics of Iran: a review. 

Am. Assoc. Petrol. Geol. Bull. 52, 1229–1258. 

Steneck R.S. 1986: The ecology of coralline algal crusts convergent 

patterns and adaptative strategies: Annual Review of Ecology, 

Evolution and Systematics, 17, 273–303.

Székely S.F. & Filipescu S. 2016: Biostratigraphy and paleoenviron-

ments of the Late Oligocene in the north-western Transylvanian 

Basin revealed by the foraminifera assemblages. Palaeogeogr. 

Palaeoclimatol. Palaeoecol. 449, 484–509.   

Van der Zwaan G.J. 1982: Paleoecology of late Miocene Mediterra-

nean Foraminifera. Utrecht Micropaleontological Bullettins  

25, 202.

Verhallen P. 1991: Late Pliocene to early Pleistocene Mediterranean 

mud-dwelling foraminifera; influence of a changing environ-

ment on community structure and evolution. Utrecht Micro­

paleontological Bulletins 40, 219.

Wielandt-Schuster U., Schuster F., Harzhauser M., Mandic O., Kroh 

A., Rogl F., Reisinger J., Liebetrau V., Steininger F.F. & Piller W. 

2004: Stratigraphy and palaeoecology of Oligocene and Early 

Miocene sedimentary sequences of the Mesohellenic Basin (NW 

Greece). Cour. Forschungsinst. Senckenberg 248, 1–55.

Zamagni J., Košir A. & Mutti M. 2009: The first microbialite -coral 

mounds in the Cenozoic (Uppermost Paleocene) from the 

 Northern Tethys (Slovenia): Environmentally-triggered phase 

shifts preceding the PETM? Palaeogeogr. Palaeoclimatol. 

 Palaeoecol. 274, 1–17.

background image

i

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Biogenic components 

Biogenic components are dominated by coralline red algae 

and foraminifera (including benthic and planktonic forami-

nifera) (Tables S1 and S2). Corals, bryozoans, mollusks, bar-

nacles, echinoids and Ditrupa are subordinate. Benthic 

Foraminifera are represented by both perforate and imperfo-

rate forms. The calcareous red algae are dominated by species 

of the Hapalidiales and Corallinales. Rare geniculate coralline 

red algae are also present. Six genera were identified: 

 

The Corallinales is represented by Lithoporella melobesiodes, 

Neogoniolithon spand Spongites sp. Hapalidiales are repre-

sented by Lithothamnion cf. valensPhymatolithon cf. calca­

reum and Mesophyllum cf. roveretoiCorallina sp. is the only 

geniculate coralline red alga.

Mollusks are represented by pectinids, oysters and gastro-

pods. Echinoderms are recognized mostly as spine cross sec-

tions or test fragments. Among them, Clypeaster is present. 

Bryozoans are mostly represented by erect delicate branching 

and erect bilaminar growth forms belonging to cyclostomate 

and cheilostomate families. Among them, Onychocella sp., 

Tubucellaria sp. and Celeporaria sp. were recognized. 

Zooxanthellate corals are mainly dominated by poritids. 

Biostratigraphy

Both planktonic and benthic fossil foraminifera were used 

to determine the age (Figs. S1 and S2). In the lower and mid-

dle parts of this section, the planktonic foraminifera are rare, 

thus the biostratigraphic setting of the assemblages, in the absence 

of planktonic data, is based on the benthic foraminifera. 

Among the benthic foraminifera, Miogypsina globulina is 

important. The Miogypsina globulina is a common world-

wide marker species for the Burdigalian (Özcan & Less 2009). 

The occurrence of it indicates SBZ 25 of Cahuzac & Poignant 

(1997). In the upper part of the section, planktonic forami-

nifera are common. Based on the distribution, three biozones 

were recognized: The first recognized zone corresponds to  

the Trilobatus trilobus Zone (M4 of Berggren et al.  1995) and 

dated late Burdigalian. It is considered that the interval 

between 75–93 m belongs to this biozone, because of the First 

Occurrence (FO) Trilobatus trilobus at the base and of 

Praeorbulina glomerosa at the top. The next interval that was 

recognized corresponds to the Praeorbulina glomerosa Zone 

(M5 of Berggren et al. 1995) that extends from 93 to 103 m, 

between the FO of Praeorbulina glomerosa and that of 

Orbulina suturalis. This zone is assigned to Langhian age.  

The last zone recognized corresponds to the Orbulina  sutu

 ralis 

Zone (M6 of Berggren et al. 1995), which is defined by the range 

of  Orbulina suturalis. This zone occupies the upper part of  

the section (from 103–120 m) and dated Langhian. The bio-

zones recognized in study section are shown in Fig. S1.

Continued of depositional environment

These marly sediments show major differences in abun-

dance, diversity and composition of benthic foraminifera 

assemblages (Fig. S3). These differences mostly represent 

different paleoecological conditions such as substrate, sedi-

mentation rate, salinity, oxygen concentration and trophic con-

ditions. In the lower parts of sediments, planktonic foraminifera 

show a high species diversity and benthic forami nifera assem-

blages are characterized by epifaunal species. Planktonic fora-

minifera assemblages are dominated by shallow-surface 

dwelling forms such as T. trilobus, Gs. diminutus, Gs. alti­

aperturus, Gs. subquardatus, T. immaturus, G. bulloides, 

Globigerinella obesa and G. falcoensis. The co- occurrence of 

the planktonic species Globigerina  bulloides­ praebulloides 

and  Globigerinoides spp. suggests a seasonal succession of 

assemblages characterized by the alternation of warm seasons 

with a stratified oligotrophic water and cool seasons with  

a mixed upper water column (e.g., Reynolds & Thunell  

1985; Rigual-Hernández et al. 2012; Kuhnt et al. 2013; Salmon 

et al. 2014). The seafloor protists are characte rized by 

 epifaunal  Cibicidoides spp., which are widespread in well- 

ventilated (Schmiedl et al. 2003), and, in general, they are 

tolerant to continues influx and low quality organic matter 

(Venturelli et al. 2014; Gottschalk et al. 2016). Therefore,  

the co-occurrence of Cibicidoides spp., and high-nutrient 

marker planktonic G. praebulloides

­bulloides group, might 

indicate seasonal influx of phytodetritus, corresponding to 

continental nutrient input by rivers. In the middle part of 

deposits, a marked increase in diversity of both benthic and 

planktonic foraminifera was observed. Benthic foraminifera 

are mainly represented by Bulimina inflataBolivina spathu­

lata,  Uvigerina  sp. and Nonion fabum. The occasional pre-

sence in some samples of Siphoninoides cf. echinata and 

Neoeponides sp. is observed. Planktonic taxa are constituted 

by Trilobatus trilobus, T. diminutus, T. immaturus, Gs. alti­

aperturus, Gs. subquardatus, G. brazieri, O. bilobata, O. sutu­

ralis, Gt. scitula, Gt. obesa, and Gt. mayeri. The simultaneous 

presence of surface-dwellers (Globigerinoides  spp., and 

 

Gt. mayeri) indicative of oligotrophic, stratified waters and 

cold/eutrophic deep-dwellers as Gt. scitula indicative of 

 mixing water suggest a seasonal succession of assemblages 

(Drinia et al. 2007). Abundant UvigerinaBuliminaBolivina 

and  Nonion typify regions of high organic productivity and  

a sustained flux of organic matter to the seafloor (Thomas et 

al. 1995). Based on the high abundance of dysoxic and sub-

oxic taxa and the lack of oxyphylic taxa, a bottom water with 

relatively low-oxygen content, can also be assumed for this 

group (Pippèrr & Reichenbacher 2010). A marked decrease in 

species diversity of foraminifera was observed in the upper-

most layers. Planktonic foraminifera associations are typified 

by shallow, surface-dwelling such as O. suturalis, O. bilobata 

and small forms of Globigerinoides spp. The sparse benthic 

Supplement

background image

ii

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Planktonic foraminifers:

Trilobatus trilobus (Reuss), Trilobatus immaturus (LeRoy), Trilobatus bisphericus (Todd), Trilobatus quadrilobatus (d'Orbigny), Globigerinoides 
altiaperturus 
Bolli, Globigerinoides diminutus Bolli, Globigerinoides parawoodi Keller, Globigerinoides sacculifer (Brady), Globigerinoides 
conglobatus 
(Brady), Globoturborotalita nepenthes (Todd), Globoturborotalita connecta (Jenkins), Globoquadrina tapuriensis Blow & Banner, 
1962, Globoquadrina dehiscens (Chapman, Parr & Collinns), Dentoglobigerina pseudovenezuelana (Blow & Banner), Globigerina bulloides 
d`Orbigny, Cassigerinella chipolensis (Cashman & Ponton), Globigerinella obesa (Bolli), Hastigerina aequilateralis (Brady), Globigerina calida 
(Parker), Globigerina ruber (d’Orbigny), Globigerina brazieri Jenkins, Globigerina falconensis Blow, Globigerina eamesi Blow, Globorotalia 
obesa 
Bolli, Globorotalia mayeri Cushman & ellisor, Globorotalia scitula (Brady), Praeorbulina sicana Di Stefani, Praeorbulina glomerosa 
(Blow), Orbulina bilobata (d’Orbigny), Orbulina suturalis Bronnimann

 Larger benthic foraminifers: 

1. perforate
Amphistegina sp., Miogypsina globulina (Michelotti), Heterostegina sp., Operculina complanata (Defrance), Neorotalia sp., 

2. imperforate
Peneroplis evolutus Henson, Dendritina rangi (d’Orbigny), Sorites sp., Meandropsina anahensis Henson, Meandropsina iranica Henson, Borelis 
melo
 (Fichtel & Moll) curdica Reichel, Borelis melo (Fichtel & Moll, 1798).
 

Smaller benthic foraminifers:

1. perforate
Nonion fabum (Fichtel & Moll),  Bulimina  inflata  Seguenza, Bulimina costata d'Orbigny, Bolivina spathulata (Williamson), Uvigerina sp.,  
Eponides 
sp., Cibicidoides sp., Cibicides sp., Heterolepa dutemplei (d’Orbigny), Textularia sp., Bigenerina sp., Haddonia sp., Miniacina sp., 
Planorbulina 
sp., Ammonia beccarii (Linne), Discorbis sp., Sphaerogypsina sp., Gypsina sp., Elphidium crispum (Linne)

2. imperforate
Triloculina tricarinata d’Orbigny, Triloculina trigonula (Lamarck), Pyrgo sp., Quincueloculina sp.

Table  S1: Relative abundance of coralline algal components in the eleven facies.

Facies

Hapalidiales

Corallinales

Corallina

unidentified

Paleodepth (m)

Lithothamniom

Mesophyllum

Phymatholithon

Neogoniolithon

Lithopor

ella

Spongites 

C1

100

10–15 (Mateu-Vicens et al. 2008)

C2

21

77

2

10–20 (Brandano et al. 2005)

C3

100

10–20 (Aguirre et al. 2000)

C4

86

1

4

6

3

10–25 (Adey 1986)

C5

66

34

10–20 (Brandano et al. 2005)

C6

5

95

20 (Riegl & Piller 1997; 1999)

C7

100

25 (Riegl & Piller 1997; 1999)

C8

8

92

25 (Riegl & Piller 1997; 1999)

C9

7

15

8

30–50 (Martindale 1992)

C10

31

65

4

40–80 (Adey 1979)

C11

100

˃80

Table S2: Foraminifera assemblage in the Asmari Formation at the studied area.

background image

iii

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

community is dominated by Bulimina spp. reflecting an unstable, 

stressed environment. The presence of infaunal and low oxy-

gen tolerant species such as Bulimina spp. points to high nutrient 

supply and decrease of the oxygen content in to the deepest 

sediment levels inhabited by the infaunal benthic foraminifera 

(Drinia et al. 2004). Orbulina spp. which thrive in relatively 

warm and oligotrophic surface waters (Bé & Tolderlund 1971; 

Hemleben et al. 1989), were found to tolerate high salinity 

conditions (Bijma et al. 1990), and are common, often domi-

nant taxon in pre-evaporitic assemblages (e.g., Sprovieri et al. 

1996; Blanc-Valleron et al. 2002; Sierro et al. 2003). Small 

forms of Globigerinoides spp. also indicate warm oligotrophic 

season with variable salinity (e.g., Schmuker 2000; Di Stefano 

et al. 2010; Holcová 2017). Therefore, the dominance of 

Orbulina spp. and Globigerinoides spp. throughout this 

interval provides evidence for the development of hypersaline 

conditions also in the near-surface waters. These changes in 

foraminifera association and environmental conditions would 

be related to limited bottom circulation caused by progressive 

isolation of the bottom-waters of basin. The isolation of basin 

could have been caused by the presence of a sill and or by 

internal basement uplifts, which divided the foreland into  

a series of isolated to semi-connected, fault-bounded basins 

(e.g., Rodgers 1987). This caused a slowdown of the vertical 

circulation, favouring stratification of surface and interme-

diate waters and stagnation at depth (Di Stefano et al. 2010; 

Kováč et al. 2017a, b). As a result, the proportional abundances 

of epifaunal and oxyphylic forms abruptly decreased whereas 

infaunal taxa became more abundant. With enhanced stratifi-

cation of water column, deep-water stagnation associated to 

Mediterranean area

SBZ 25

15.97

SBZ 26

15.1Ma

14.7Ma

17Ma

16.27Ma

16.1Ma

16.6Ma

N5/M2

N6/M3

N7/M4

N8/M5

N9/M6

N10/M7

Langhian

Burdigalian

18

17

16

15

14

19

20

SBZ 25

N7/M4

N8/M5

N9/M6

T

ime (Ma)

Standard stage

Planktonic foraminiferal zones

Benthic foraminiferal zones

Stratigraphical ranges

of index species

Orbulina suturalis

Praeorbulina glomer

osa

T

rilobatus tilobus

Miogypsina globulina

Recorded species

Associated fauna

Praeorbulina sicana

(Standard/Subtropical)

Ber

ggren et al. 1995, Blow 1969

Epoch

Cahuzac & Poignant (1997)

Biostratigraphical correlation of studied section

Miocene

O. suturalis

Range Zone

P.glomerosa

Interval zone

T.trilobus

Interval zone

Miogypsina globulina Zone

Stratigraphical ranges of index species

world oceans Berggren et al. 1995, Lourens et al. 2004

(

)

O. bilobata, T. trilobus,

,

, Gt. mayeri,

Gt.scitula,

T. trilobus, P. sicana, Gq. dehiscens

G. eamesi, Gs. diminutus, Gs. parawoodi,

T. immaturus, T. bisphericus, T. succulifer, Gs. diminutus,
G. falconensis, Gs. altiaperturus, G. bulloides,

Gs. conglobatus,

, Gr. obesa

sp.,

Sphaerogypsina

,

, Amphistegina sp.,

Operculina complanata, Heterostegina

Miniacina

sp.,

sp.,

Planorbulina sp.,

Meandropsina anahensis,Meandropsina iranica

Peneroplis evolutus,

, Sorites sp.,

Elphidium crispum,Ammonia beccarii,

Ditrupa

Haddonia

Bigenerina

sp.,                  sp.,

sp.,

Textularia sp.

Borelis melo curdica, Gypsina sp.

Schlumbergerina sp.,

Triloculina trigonula

Triloculina tricarinata,

Cibicides

,

sp.

T. bisphericus

, H. aequilateralis

T. immaturus,

Gs. altiaperturus

,

Gq. dehiscens,

Glla. obesa

Glla. obesa

Glla. obesa

, G. ruber, G.brazieri

, G.bulloides

, G.bulloides,

Fig. S1. Biostratigrapic correlation of the Asmari Formation at the studied area

background image

iv

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Fig. S2. Photomicrograph of some selected planktonic foraminifera of the Asmari Formation. A, B — Trilobatus quadrilobatus (d’Orbigny); 

C, D — Globigerinoides altiaperturus Bolli; E, F — Trilobatus trilobus (Reuss); G, H — Trilobatus immaturus (LeRoy); I — Globoquadrina 

tapuriensis  Blow & Banner; J, K — Globigerinella obesa (Bolli);  L, M — Globoquadrina dehiscens (Chapman, Parr, & Collinns);  

N, O — Hastigerina sp.; P, Q — Praeorbulina glomerosa (Blow); R, S — Orbulina bilobata (d’Orbigny); T — Orbulina suturalis Bronnimann.

background image

v

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Fig. S3. Foraminiferal assemblage of MF1: A, B — Cibicidoides sp.; C, D — Heterolepa dutemplei (d’Orbigny). Foraminiferal assemblage of 

MF2: A — Siphoninoides cf. echinata (Brady); B — Uvigerina sp.1; C — Bulimina inflata Seguenza; D — Bolivina spathulata (Williamson); 

E — Uvigerina sp. 2; F — Nonion fabum (Fichtel & Moll); G — Neoeponides sp.; H — Eponides sp.. Foraminiferal assemblage of MF3:  

A — Praeglobobulimina sp.; B — Bulimina costata d’Orbigny. Scale bars = 200 μm.

background image

vi

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

oxygen depletion and salinity increased, reaching intermediate 

depth, resulting in the dominance of stress-tolerant benthic 

species and the disapparence of intermediate-dweller plank-

tonic foraminifers. This increased salinity also caused the pre-

cipitation of evaporitic deposits intercalated with marly 

deposits contain opportunistic foraminifera.

Sequence stratigraphy

 One deepening upward third-order sequence was recog-

nized (Figs. S4 and S5). Considering the facies and deposi-

tional geometries, this sequence can be grouped into trans gressive 

system tract and lowstand system tract. The lower boundary of 

this sequence is defined by sedimentation of Asmari Formation 

over dolomitic Shahbazan Formation. The sequence boundary 

reflects a large hiatus between the middle Eocene and early 

Burdigalian (SB1). The basal part of the sequence predomi-

nantly consists of lagoonal and shoal microfacies. These facies 

constituted the early TST. The late TST represents a domi-

nance of middle and outer ramp facies and a deepening upward 

trend. The mfs is marked by hemipelagic grey marls with 

dominance of deep dwellers of planktonic foraminifera (e.g., 

Globorotalia scitula, Gt. obesa and Hastigerina spp.) and 

infauna–epifauna benthic foraminifera (e.g., Bulimina,  Uvi­

gerina and Cibicidoies). LST reveals a relative sea-level fall 

and a prevailing restricted and stressful environment. LST is 

characterized by nodular anhydrite rich in deep infaunal ben-

thic foraminifera (e.g., Bulimina). The studied section record  

a transgressive event which coincides with the global sea level 

curve of Haq et al. 1987 (Fig. S5). This transgressive event 

might be also related to a tectonic influence. During the early 

Burdigalian in response to the eastward developing of Asmari 

foredeep system, an increase of tectonic subsidence caused 

new flooding of the platform (e.g., Vaziri-Moghaddam et al. 

2010; Kavoosi & Sherkati 2012). As the result of this tectonic 

event, the northeastern region rapidly subsided and was 

flooded by the sea.

Comparison of the studied area with the Central 

Paratethys

The deposits studied here exhibit differences and simila-

rities to the Early–Middle Miocene sediments from Central 

Paratethys. Hence, we compared the studied section with 

Robulus Schlier, Rzehakia Beds, Laa and Grund Formations 

of  Austrian  Molasse  Basin  (Spezzaferri  &  Ćorić  2002; 

Spezzaferri et al. 2002; Ćorić & Rögl 2004). Key differences 

between the Burdigalian of study area with Eggenburgian–

Ottnangian (Robulus Schlier), Ottnangian (Rzehakia Beds) 

and Karpatian (Laa Formation) are the dominant biota, 

 

biostratigraphical markers and environmental conditions. 

 

The Burdigalian skeletal assemblage is dominantly composed 

of larger benthic foraminifera and coralline red algae, whereas 

mollusks, echinoids and scarce small benthic foraminifera 

characterize the lower part of the Ottnangian Robulus Schlier; 

fish remains are common in their upper part (Ćorić & Rögl 

2004). The Rzehakia Beds are obviously contain reworked 

foraminifera and the stratigraphical position is not very clear 

(e.g., Holcová 2001). The biostratigraphical markers for 

Early–Middle Burdigalin are LBF (i.e. Miogypsina  globu­

lina), whereas the calcareous nannofossils are the most 

important for the Eggenburgian–Ottnangian Austrian Molasse 

Basin  (Ćorić  &  Rögl  2004;  Kováč  et  al.  2018).  The  biotic 

association in Early–Middle Burdigalian represents a domi-

nance of inner–middle ramp settings with meso–oligotrophic 

conditions in studied section, whereas during the Early 

Ottnangian, paleoecological conditions were more eutrophic 

conditions that changed into intermediate between eutrophic 

and oligotrophic conditions (outer shelf) in Molasse Basin 

(Ćorić & Rögl 2004; Kováč et al. 2017

a, b

). During the Late 

Burdigalian, a distinct faunal change is observed in studied 

section, with an increase of planktonic foraminifera and 

appearance of deep epifana benthic foraminifera and disap-

pearance of LBF. This indicates water depth of outer shelf 

with good oxygenated bottom-water. In Central paratethys,  

the Karpatian Laa Formation is dominated by Calcareous 

nanoplankton, planktonic and small benthic foraminifera 

(Spezzaferri  et  al.  2002;  Ćorić  &  Rögl  2004;  Schlögl  et  al. 

2012

 

). This assemblage indicates a greater depth (outer shelf 

to upper bathyal settings) with suboxic to dysoxic conditions, 

occurrence of high primary production and high surface water 

fertility (Spezzaferri et al. 2002). There is a hiatus between  

the Ottnangian and Karpatian deposits in Central Paratethys 

(Ćorić & Rögl 2004; Kováč et al. 2017b). A major sedimen­

tation break also occurs between the Lower and Upper Bur-

digalian in the Zagros Basin, but not in the studied section, due 

to local tectonic activity and increased subsidence. The Langhian 

sediments from the studied area can be correlated with  

the Badenian sediments of the Lower and Upper Lagenidae 

zones, including the sediments of Grund Formation. The Early– 

Middle Miocene boundary in the Central Paratethys is charac-

terized by a significant sea-level drop (Haq et al. 1987; 

Hardenbol  et  al.  1998,  Kováč  et  al.  2017a, b),  expressed  as  

a hiatus traceable throughout the basin (frequently called  

the “Styrian unconformity”; Rögl et al. 2002; Latal & Piller 

2003). After this gap, a first Badenian transgression was 

recorded within nannoplankton Zone NN4 with rare 

Praeorbulina sicana (Hohenegger et al. 2009). The main 

Badenian transgression covering all the Central Paratethys 

followed in the NN5 Zone. This transgression is also recorded 

in the studied area, with sediments containing Praeorbulina 

(conformably in this case) covering the Late Burdigalian 

deposits (Kováč et al. 2018). In both areas, the benthic assem-

blage is characteristic of outer shelf setting. In the studied 

area, the foraminiferal assemblages suggest a shift from more 

oxygenated bottom waters towards eutrophic conditions and 

oxygen depletion. Similarly, an increase in primary production 

and consequently a decrease in oxygen level also occurred 

during the Middle Badenian of the Austrian Molasse Basin 

(Ćorić  &  Rögl  2004).  Formation  of  carbonate  facies 

background image

vii

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Fig. S4. Vertical facies distribution and sequence of the Asmari Formation at Tang-e-Shabikhon area, Zagros Basin. The vertical distributions 

of these facies indicate a deepening upward trend from the shallow water, euphotic, inner ramp to meso-oligophotic, middle ramp and into deep, 

aphotic, outer ramp.

background image

viii

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

predominated with age reefs are recorded in the Carpathian 

Foredeep (Holcová et al. 2015) and later in the Central 

Paratethys (Pivko et al. 2017). The following evaporite event 

can also been observed in both areas. In the study area  

the evaporite deposition began in the deep part of the basin 

under dysoxic conditions gradually changing to shallow 

hyposaline environment (Gachsaran Formation). In the Car-

pathian Foredeep, mostly sulphate facies were deposited in 

shallow littoral parts of the foredeep, while chloride–sulphate 

facies developed in the deepest part of the basin, in front of  

the accretion wedge of the Outer Carpathians (Oszczypko & 

Ślączka  1989;  Oszczypko  1997;  Petrichenko  et  al.  1997; 

Andreyeva­Grigorovich et al. 2001, 2003; Bąbel 2004, 2005; 

Kováč et al. 2017a, b).

Supplementary references

Abreu V.S, Hardenbol J., Haddad G.A., Baum G.R., Droxler A.W. & 

Vail P.R. 1998: Oxygen isotope synthesis: A Cretaceous ice-

house? In: Graciansky P.-C., Hardenbol J., Jacquin T. & Vail P.R. 

(Eds.): Mesozoic and Cenozoic Sequence Stratigraphy of Euro-

pean Basins. SEPM Special Publication 60, 75–80. 

Andreyeva­Grigorovich A.S., Kováč M., Halásová E. & Hudáčková N. 

2001: Litho and Biostratigraphy of the Lower and Middle Mio-

cene sediments of the Vienna basin (NE part) on the basis of 

calcareous nannoplankton and foraminifers. Scripta Fac. Sci. 

Nat. Univ. Masaryk. Brun., Geol. 30/2000, 23–27.

Andreyeva­Grigorovich A.S., Oszczypko N., Ślączka A., Savitskaya 

N.A. & Trofimovich N.A. 2003: Correlation of the Late Bade-

nian salts of the Wieliczka, Bochnia and Kalush areas (Polish 

and Ukrainian Carpathian Foredeep). Ann. Soc. Geol. Pol. 73, 

67–89.

Bąbel M. 2004: Badenian evaporite basin of the northern Carpathian 

Foredeep as a drawdown salina basin. Acta Geol. Pol. 54,  313–337.

Bąbel M. 2005: Event stratigraphy of the Badenian selenite evapo-

rates (Middle Miocene) of the northern Carpathian Foredeep. 

Acta Geol. Pol. 55, 9–29.

Bé A.W.H. & Tolderlund D.S. 1971: Distribution and ecology of 

 living planktonic foraminifera in surface waters of the Atlantic 

and Indian Oceans. In: Funnell B.M. & Riedel W.R. (Eds.): 

 Micropaleontology of the Oceans. Cambridge University Press, 

London, 105–149.

Berggren W.A., Kent D.V., Swisher III. C.C. & Aubry M. P. 1995:  

A revised Cenozoic geochronology and chronostratigraphy. In: 

Berggren W.A., Kent D.V. & Hardenbol J. (Eds.): Geochrono-

logy, time scale and global stratigraphic correlations: A unified 

temporal framework for an historical ecology. SEPM. Spec. 

Publ. 54, 129–212.

Bijma J., Faber Jr. W.W. & Hemleben Ch. 1990: Temperature and 

salinity limits for growth and survival of some planktonic fora-

minifers in laboratory cultures. J. Foram. Res. 20, 95–116.

Blanc-Valleron M.M., Pierre C., Caulet J.P., Caruso A., Rouchy J.M., 

Cespuglio G., Sprovieri R., Pestrea S. & Di Stefano E. 2002: 

Sedimentary, stable isotope and micropaleontological records of 

paleoceanographic change in the Messinian Tripoli Formation 

(Sicily, Italy). Palaeogeogr. Palaeoclimatol. Palaeoeocol. 185, 

255–286.

Blow W.H. 1979: The Cainozoic Foraminiferida.  E.J. Brill, Leiden, 

1–1413. 

Eustatic Curve

Haq et al. 1987

Sharland et al. 2001

100

200

Stages

Burdigalian

Aquitanian

Epoch

Rise

Fall

This Study

Rise

Fall

Hiatus

SB

1

Miocene

Aq2

Aq3/Bur1

Bur2

Bur3

Bur4

Bur5/Lan1

20

23.03

20.43

15.97

3rd Sequence

Stratigraphy

Age

(Ma)

relative sea level

sequence

stratigraphy

oxygen isotope

stratigraphy

Langhian

15

Hardenbol et al. 1998

Abreu et al. 1998

Transgresive System Tract

Lowstand System Tract

LST

Top of Asmari Formation

TST

Fig. S5. Correlation chart of the global and regional eustatic curves with the studied section.

background image

ix

ROOZPEYKAR, MAGHFOURI-MOGHADDAM, YAZDI and YOUSEFI-YEGANE

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Cahuzac B. & Poignant A. 1997: Essai de biozonation de l’Oligo- 

Miocène dans les bassins européens à l’aide des grands 

 fora minifères  néritiques.  Bull. Soc. Géol. France 168, 

 

155–169.

Ćorić S. & Rögl F. 2004: Roggendorf­1 Borehole, a key­section for 

Lower Badenian transgressions and the stratigraphic position of 

the Grund Formation (Molasse Basin, Lower Austria). Geol. 

Carpath. 55, 2, 165–178.

Gottschalk J., Riveiros N.V., Waelbroeck C., Skinner L.C., Michel E., 

Duplessy J.C., Hodell D. & Mackensen A. 2016: Carbon isotope 

offsets between species of the genus Cibicides (Cibicidoides) in 

the glacial sub-Antarctic Atlantic Ocean. Paleoceanography 31, 

1583–1602.

Haq B., Hardenbol J. & Vail P. 1987: Chronology of fluctuating sea 

level since the Triassic. Science 235, 1156–1167.

Hardenbol J., Thierry J., Farley M.B., Jacquin T., de Graciansky P.C. 

& Vail P.R. 1998: Mesozoic and Cenozoic sequence chrono-

stratigraphic framework of European Basins. In: de Graciansky 

P.C., Hardenbol J., Jacquin T. & Vail P.R. (Eds.): Mesozoic and 

Cenozoic sequence stratigraphy of European Basins. SEPM 

Spec. Publ. 60, 3–13.

Hemleben C., Spindler M. & Anderson O.R. 1989: Modern plankto-

nic foraminifera. Springer Verlag, New York, 1–363.

Hohenegger J., Rögl F., Ćorić S., Pervesler P., Lirer F., Roetzel R.  

& Stingl K. 2009:  The Styrian Basin: A key to the Middle Mio-

cene (Badenian/Langhian) Central Paratethys transgressions.  

Austrian Journal of Earth Sciences 102, 102-132. 

Holcová K. 2001: Foraminifera and calcareous nannoplankton from 

the “Rzehakia (Oncophora) Beds” in the Central Paratethys. 

Neues Jahrb. Geol. Paläontol. Abh. 220, 2, 189–223.

Holcová K. 2017: Calcareous nannoplankton and foraminiferal re-

sponse to global Oligocene and Miocene climatic oscillations:  

a case study from the Western Carpathian segment of the Central 

Paratethys. Geol. Carpath. 68, 3, 207–228.

Holcová K., Hrabovský J., Nehyba S., Hladilová Š., Doláková N. & 

Demeny A. 2015: The Langhian (Middle Badenian) carbonate 

production event in the Moravian part of the Carpathia Foredeep 

(Central Paratethys): a multiproxy record. Facies 61, 1–26.

Hottinger L. 1983: Processes determining the distribution of larger 

foraminifera in space and time. Utrecht Micropaleontological 

Bulletins 30, 239–253. 

Kavoosi M.A. & Sherkati Sh. 2012: Depositional environments  

of the Kalhur Member evaporates and tectonosedimentary  

evolution of the Zagros fold-thrust belt during Early Miocene  

in south westernmost of Iran. Carbonates and Evaporites 27, 

55–69.

Kováč M., Hudáčková N., Halásová E., Kováčová M., Holcová K., 

Oszczypko-Clowes M., Báldi K., Less Gy., Nagymarosy A., 

 Ruman A., Klučiar T. & Jamrich M. 2017a: The Central Para­

tethys palaeoceanography: a water circulation model based on 

microfossil proxies, climate, and changes of depositional envi-

ronment. Acta Geologica Slovaca 9, 2, 75–114.

Kováč M., Márton E., Oszczypko N., Vojtko R., Hók J., Králiková S., 

Plašienka D., Klučiar T., Hudáčková N. & Oszczypko­Clowes 

M., 2017b: Neogene palaeogeography and basin evolution of the 

Western Carpathians, Northern Pannonian domain and adjoining 

areas. Global Planet. Change 155, 133–154.

Kováč  M.,  Halásová  E.,  Hudáčková  N.,  Holcová  K.,  Hyžný  M., 

 Jamrich M. & Ruman, A. 2018: Towards better correlation of  

the Central Paratethys regional time scale with the standard geo-

logical time scale of the Miocene Epoch. Geol. Carpath. 69, 3, 

283–300.

Kuhnt T., Howa H., Schmidt S., Marié L. & Schiebel R. 2013: Flux 

dynamics of planktic foraminiferal tests in the south-eastern Bay 

of Biscay (northeast Atlantic margin). J. Mar. Systems 109, 

S169–S181.

Latal C. & Piller W.E. 2003: Stable Isotope Signatures at the Karpa-

tian/Badenian Boundary in the Styrian Basin. In: Brzobohatý R., 

Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian — a Lower 

Miocene stage of the Central Paratethys. Masaryk University

Brno, 27–34.

Lourens L., Hilgen F., Shackleton N.J., Laskar J. & Wilson D. 2004: 

The Neogene Period. In: Gradstein F.M., Ogg J.G. & Smith A.G. 

(Eds.): Geological Time Scale. Cambridge University Press

Cambridge, 409–440.

Martindale W. 1992: Calcified epibionts as palaeoecological tools: 

examples from the Recent and Pleistocene reefs of Barbados. 

Coral Reefs 11, 167–177.

Oszczypko N. 1997: The Early-Middle Miocene Carpathian periphe-

ral foreland basin (Western Carpathians, Poland). Przegl. Geol. 

45, 1054–1063.

Oszczypko  N.  &  Ślączka A.  1989:  The  evolution  of  the  Miocene 

 basin in the Polish Outer Carpathians and their foreland. Geol. 

Zbor. Geol Carpath. 40, 23–36.

Özcan E. & Lees G. 2009: First record of the co-occurrence of the 

western Tethyan and Indo-Pacific larger foraminifera in the Burdi-

galian of the Mediterranean Province. J. Foram. Res. 39, 23–39.

Petrichenko O.I., Peryt T.M. & Poberegsky A.V. 1997: Pecularities of 

gypsum sedimentation in the Middle Miocene Badenian evapo-

rite basin of Carpathian Foredeep. Slovak Geol. Mag. 3, 91–104.

Pippèrr M. & Reichenbacher B. 2010: Foraminifera from the bore-

hole Altdorf (SE Germany): Proxies for Ottnangian (early Mio-

cene) palaeoenvironments of the Central Paratethys. Palaeo­

geogr. Palaeoclimatol. Palaeoecol. 289, 62–80.

Pivko D., Hudáčková N., Hrabovský J., Sládek I. & Ruman A. 2017: 

Palaeoecology and sedimentology of the Miocene marine and 

terrestrial deposits in the “Medieval Quarry” on Devínska Kobyla 

Hill (Vienna Basin). Geol. Quarterly 61, 3, 549–568.

Reynolds L. & Thunell R.C. 1985: Seasonal succession of planktonic 

foraminifera in the subpolar North Pacific. J. Foram. Res. 15, 

282–301.

Riegl B. & Piller W.E. 1997: Distribution and environmental control 

of coral assemblages in northern Safaga Bay (Red Sea, Egypt). 

Facies 36, 141–162

Riegl B. & Piller W.E. 1999. Coral frameworks revisted-reefs and 

coral carpets in the northern Red Sea. Coral Reefs 18, 241–253.

Rigual-Hernández A.S., Sierro F.J., Bárcena M.A., Flores J.A. & 

 Heussner S. 2012: Seasonal and interannual changes of planktic 

foraminiferal fluxes in the Gulf of Lions (NW Mediterranean) 

and their implications for paleoceanographic studies: Two 12-year 

sediment trap records. Deep­Sea Res.  I Oceanographic Res.  

Pap. 66, 26–40.

Rodgers J.W.W. 1987: The Appalachian–Ouachita orogenic belt. 

 Episodes 10, 259–266.

Rögl  F.,  Spezzaferri  S.  &  Ćorić  S.  2002:  Micropaleontology  and 

 biostratigraphy of the Karpatian-Badenian transition (Early- 

Middle Miocene boundary) in Austria (Central Paratethys). 

Cour. Forschungsinst. Senckenberg 237, 47–67.

Salmon K.H., Anand P., Sexton P.F. & Conte M. 2014: Upper ocean 

mixing controls the seasonality of planktonic foraminifer fluxes 

and associated strength of the carbonate pump in the oligotro-

phic North Atlantic. Biogeosci. Discus. 11, 12223–12254.

Schlögl  J.,  Chirat  R.,  Balter  V.,  Joachimski  M.,  Hudáčková  N.  & 

Quillévéré F. 2011: Aturia from the Miocene Paratethys: 

 

An exceptional window on nautilid habitat and lifestyle. Palae­

ogeogr. Palaeoclimatol. Palaeoecol. 308, 3, 330–338. 

Schmuker B. 2000: Recent Planktonic Foraminifera in the Caribbean 

Sea: Distribution, Ecology and Taphonomy. Ph.D. Thesis, ETH 

Zurich, 1–179.

Sharland P., Archer D., Casey D., Davies R., Hall S., Heward A., 

 Horbury A. & Simmons M. 2001: Arabian plate sequence stra-

tigraphy. GeoArabia special publication 2, 1–371. 

background image

x

FACIES AND PALEOENVIRONMENTAL RECONSTRUCTION OF MIOCENE DEPOSITS IN THE ZAGROS BASIN

GEOLOGICA CARPATHICA

, 2019, 70, 1, 75–87

Sierro F.J., Flores J.A., Francés G., Vazquez A., Utrilla R., Zamarreno 

I., Erlenkeuser H. & Barcena M.A. 2003: Orbitally-controlled 

 oscillations in planktic communities and cyclic changes in  

western Mediterranean hydrography during the Messinian. 

 

Palaeogeogr.Palaeoclimatol. Palaeoecol. 190, 289–316.

Sprovieri R., Di Stefano E. & Sprovieri M. 1996: High resolution 

chronology for late Miocene Mediterranean stratigraphic 

 

events.  Rivista Italiana di Paleontologia e Stratigrafia 102,  

77–104.

Spezzaferri S. & Ćorić S. 2002: Ecology of Karpatian (Early Mio-

cene) foraminifers and calcareous nannoplankton from Laa  an 

der Thaya. Lower Austria: a statistical approach. Geol. Carpath. 

52, 6, 361–374. 

Spezzaferri S., Ćorić S., Hohenegger J. & Rögl F. 2002: Basin­scale 

paleobiogeography and paleoecology: an example from Karpa-

tian (Latest Burdigalian) benthic and planktonic foraminifera 

and calcareous nannofossils from the Central Paratethys. 

 Geobios 35, Suppl. 1, 241–256.

Thomas E., Booth L., Maslin L. & Shackleton N.J. 1995: North-

eastern Atlantic benthic foraminifera during the last 45.000 years: 

productivity changes as seen from the bottom up. Paleoceano­

graphy 10, 545–562.

Vaziri-Moghaddam H., Seyrafian A., Taheri A. & Motiei H. 2010: 

Oligocene-Miocene ramp system (Asmari Formation) in the 

west-NW of the Zagros basin, Iran: Microfacies, paleoenviron-

ment and depositional sequence. Revista Mexicana de Ciencias 

Geologicas 27, 56–71.

Venturelli R., Rathburn A., Burkett A., Brendan D. & Ziebis W. 2014: 

Epifaunal taxa in an infaunal world. GSA Annual Meeting in 

Vancouver, British Columbia, paper 42-8.