background image


, FEBRUARY 2019, 70, 1, 35–61

doi: 10.2478/geoca-2019-0003


Linkage of the Manín and Klape units with the Pieniny 

Klippen Belt and Central Western Carpathians:  

balancing the ambiguity


Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6,  

842 15 Bratislava, Slovakia;

(Manuscript received October 11, 2018; accepted in revised form January 14, 2019)

Abstract: The paper deals with the structure and evolution of the Pieniny Klippen Belt in its classic area in western 

Slovakia. The so-called Peri-Klippen Zone provides a transition from the Pieniny Klippen Belt s.s. built up by Jurassic to 

Eocene Oravic units (Šariš, Subpieniny and Pieniny from bottom to top) to the outer margin of the Central Western  

Carpathians composed of Triassic to mid-Cretaceous successions of the Fatric and Hronic cover nappe systems.  

The Peri-Klippen Zone attains a considerable width of 15 km in the Middle Váh River Valley, where it is composed of 

the supposedly Fatric Manín, Klape and Drietoma units, as well as their post-emplacement, Gosau-type sedimentary 

cover. All these units are tightly folded and imbricated. The complex sedimentary and structural rock records indicate  

the late Turonian emplacement of the frontal Fatric nappes in a position adjacent to or above the inner Oravic elements, 

whereby they became constituents of an accretionary wedge developing in response of subduction of the South Penninic–

Vahic oceanic realm separating the Central Western Carpathians and the Oravic domain. Evolution of the wedge-top 

Gosau depressions and the trench-foredeep basins of the foreland Oravic area exhibit close mutual relationships controlled 

by the wedge dynamics. The kinematic and palaeostress analyses of fold and fault structures revealed only one dominating 

stress system coeval with development of the accretionary wedge, which is characterized by the generally NW–SE  

oriented main compression axis operating in a pure compressional to dextral transpressional regime, interrupted by  

short-term extensional events related to the wedge collapse stages. Younger, Miocene to Quaternary palaeostress fields 

correspond to those widely recorded in the entire Western Carpathians. Relying on the regional tectonostratigraphic and 

structural data, the problematic issues of the palaeogeographic settings of the Manín and Klape units, presumably  

affiliated with the Fatric cover nappe system, and of the provenance of numerous olistoliths occurring at different  

stratigraphic levels are then discussed in a broader context.

Keywords: Western Carpathians, Peri-Klippen Zone, Fatric nappe system, sedimentary and structural rock record.


The Middle Váh River Valley (Stredné Považie) is the tradi-

tional area, where the Manín Unit (Andrusov 1931) and later 

also the Klape Unit (Scheibner 1968a; Marschalko & Kysela 

1980) were defined. Although generally assigned to the Pieniny 

Klippen Belt (PKB), due to some specific features these units 

have been usually treated separately as the so-called Peri- 

Klippen Zone. This was defined by Maheľ (1980) as a struc-

tural zone adjacent from SE to the “proper” PKB formed by 

the Oravic units, such as the Czorsztyn and Kysuca–Pieniny. 

In contrast, the Peri-Klippen Zone is built by units of an ambi-

guous tectonic affiliation: the Manín, Klape, Drietoma and 

Haligovce units, and possibly also some other problematic 

 elements in other PKB parts.

Palaeogeographic and tectonic settings of the Manín Unit 

and related elements (such as the Klape Unit, which was not 

distinguished until 1960-ties, and the Drietoma Unit occurring 

further to the SW) belong to the most controversial and widely 

discussed issues of the Western Carpathian geology. The Manín 

Unit has had a key place in interpretation of the structure and 

evolution of the Western Carpathians starting from early  

1930-ties when the first integrated concepts of tectonics of  

the Klippen Belt, as well as of the central Carpathian zones 

were  formulated  (Matějka  &  Andrusov  1931).  In  50-ties 

and 60-ties of the previous century, two contradictory opinions 

were developed, which are described as the Andrusov´s and 

Maheľ´s concepts below. Both views have had several relevant 

arguments, hence no generally accepted solution of the Manín 

controversy has been achieved yet.

In the ambiguous position between the PKB and the Central 

Western Carpathians (CWC), the tectonic and/or palaeogeo-

graphic affiliation of the Manín Unit has remained contentious 

until the recent times. In addition to the uncertain tectonic 

position, the controversy results from the “Central Carpathian” 

character of its Jurassic to Lower Cretaceous sedimentary suc-

cession, while the Upper Cretaceous and Palaeogene forma-

tions rather indicate the “Klippen Belt” connection. Moreover, 

the structural style of the Manín Unit was also mostly com-

pared with the Klippen Belt, owing to the presence of large 

background image




, 2019, 70, 1, 35–61

rigid “klippen”, like the Manín and Butkov hills surrounded 

by soft sedimentary formations. However, unlike most of other 

similar structures in the Klippen Belt proper, these klippen are 

structurally and stratigraphically closely related to their “klip-

pen mantle” and clearly represent cores of large brachyanti-

clines (Stur 1860; Andrusov 1938, 1968; Marschalko 1986; 

Michalík  &  Vašíček  1987;  Rakús  1997;  Mello  ed.  2005,  

2011; Plašienka & Soták 2015; Plašienka et al. 2017, 2018a). 

Consequently, from both the structural and lithostratigraphic 

points of view, the Manín Unit has been for a long time con-

sidered as a kind of an intermediary, transitional element 

between the PKB and CWC, but assigned either to the former 

or to the latter according to different authors.

In this article, for the reasons discussed below, we consider 

the units under question — namely the Manín, Klape and 

Drietoma — as representing frontal elements of the Fatric 

(Krížna) nappe system, i.e. units of the CWC origin that were 

incorporated into the PKB structure. We also express our opi-

nion about the main ambiguity that stems from the presence of 

Upper Cretaceous (Senonian) to Middle Eocene sediments 

within or adjacent to the Peri-Klippen Zone. This problem 

results from the fact that all CWC units are typically 

Austroalpine-type thrust sheets that lack, due to the “pre- 

Gosauian” tectogenesis, sediments younger than Turonian. 


theless, a possible exception was described from 


the outer most Tatric cover sequence in the Považský Inovec 

Mts. (Pelech et al. 2017).

There are several opinions regarding position of the Seno-

nian and younger strata in the Peri-Klippen Zone: (1) they are 

generally in sequence with underlying mid-Cretaceous com-

plexes, which is a feature characteristic for the Klippen Belt 

(Oravic) units, thus these units would be an integral part of  

the PKB (e.g., Andrusov 1972, 1974); (2) they belong to  

the Oravic Kysuca Unit, i.e. still belonging to the Oravic PKB, 

and appear from below the Manín-Klape units in tectonic 

 windows (Rakús & Hók 2005; Mello ed. 2005); or (3) they 

represent post-nappe, Gosau-type basins within the growing 

Carpathian accretionary wedge on top of the frontal CWC 

nappes (see discussion and references in the third chapter 

below). We present some novel arguments supporting the third 

interpretation (see also Plašienka & Soták 2015).

In general, the present paper aims at: (i) critical review of 

older and existing views and concepts regarding the lithostra-

tigraphy and tectonics of the Manín and Klape units; (ii) eva-

luation of the regional structural data; (iii) complementary 

interpretation of position of the Coniacian to Middle Eocene 

sediments as overstepping, wedge-top complexes; (iv) presen-

tation of arguments in favour of the Fatric affiliation of  

the Manín, Klape, Drietoma and analogous units.

Geological setting

The Western Carpathians form the northward-convex, W–E 

trending segment of the Alpine–Carpathian mountain chain, 

being linked to the Eastern Alps to the west and to the Eastern 

Carpathians to the east. We are using the triple overall division 

of the Western Carpathians into the southern Internal Western 

Carpathians, the Central Western Carpathians and the northern 

arc of the External Western Carpathians (for the reviews see 

Plašienka et al. 1997a; Froitzheim et al. 2008 and Plašienka 

2018a; Fig. 1). These three major Western Carpathian sections 

are separated by narrow zones with extraordinary shortening 

and intricate structure, partly recording also important along-

strike wrench movements in various time periods.

The Internal Western Carpathians (IWC), or Pelso Megaunit 

in other terminology (see e.g., Kovács et al. 2011), is com-

posed of low-grade Palaeozoic and low-grade or non-meta-

morphic Mesozoic complexes showing affinities to the South 

Alpine (Transdanubian Range) or to the Dinaridic (Bükk 

Mountains) facies belts. The main tectogenesis of the IWC 

units took place during the Late Jurassic and Early Cretaceous, 

partially showing the southern vergency of principal thrust 

structures, i.e. opposite to the other Western Carpathian zones.

The Central Western Carpathians (CWC) are separated from 

the IWC by a belt of crustal-scale discontinuities (Rába–

Hurbanovo–Diósjenő  fault  zone)  in  the  western  part,  which  

is covered by thick Cenozoic sedimentary complexes of  

the Danube and South Slovakian–North Hungarian basins, and 

by the discontinuous belt of the ophiolite- and blueschists- 

bearing complexes (Meliata Unit in a broader sense) in  

the area of the Slovak–Aggtelek Karst Mts. (Fig. 1). The CWC 

represent a pile of Cretaceous thick- and thin-skinned thrust 

sheets. From bottom to top these are the outermost Tatric base-

ment/cover sheet, overlain by the Fatric and Hronic cover 

nappe systems. The central and southern CWC zones are 

occupied by the Veporic crustal-scale thrust wedge and  

the Gemeric basement/cover nappe in the SE, both overridden 

by the Silica cover nappe system (Fig. 1). The CWC units 

largely correspond to the Austroalpine tectonic system of  

the Eastern Alps (e.g., Schmid et al. 2008). 

The Variscan high-grade metamorphic basement and grani-

toids of the Tatric thick-skinned sheet are overlain by the Upper 

Palaeozoic and Mesozoic cover deposits, mainly composed of 

Lower Triassic continental clastics and various Middle Triassic 

to Lower Cretaceous carbonates. The youngest synorogenic 

clastic sediments of the Tatric Superunit indicate the termina-

tion of the thrusting processes in the CWC during the Late 

Turonian. The overlying Fatric (Krížna) cover nappe system 

was detached along the Lower Triassic shales and evaporites 

and includes Middle Triassic shelf carbonates, Upper Triassic 

clastics and evaporites (Carpathian Keuper Fm.), various Jurassic 

and Lower Cretaceous limestones and Albian–Cenomanian 

synorogenic flysch deposits. Jurassic sediments used to be 

subdivided into the comparatively shallow-marine Vysoká–

Belá succession, but the widespread Krížna Nappe is domi-

nated by deep-water pelagic sediments (Zliechov succession). 

In the investigated area (Fig. 2), the frontal elements of  

the  Krížna  Nappe  were  detached  along  the  Upper  Triassic 

Keuper  shales  (Fig.  3).  The  Hronic  Superunit  (Choč  nappe 

sys tem in older terminology) is predominantly composed  

of Middle–Upper Triassic platform carbonates. Condensed 

background image




, 2019, 70, 1, 35–61

Jurassic to Lower Cretaceous limestone strata are confined to 

the  lowermost  Homôľka  partial  nappe  (Fig.  2),  including  

the Hauterivian siliciclastic turbidites (Fig. 3). The outer CWC 

edge is followed by the PKB, a narrow zone with intricate 

internal structure that provides a transition from the CWC to 

the External Western Carpathians (EWC; Figs. 1 and 2).

The Klippen Belt forms a backbone of the Western 

Carpathian orogen, it spreads for more than 700 km from  

the Vienna area up to north-eastern Romania. However, if only 

the characteristic Oravic units are considered, the PKB length 

attains about 600 km from westernmost Slovakia to western 

Ukraine. It is only a few kilometres wide zone with intricate 

internal structure composed of several thrust units. These  

were derived from an independent palaeogeographic ele-

ment known as the Czorsztyn Ridge, or Oravic domain in  

the palaeo tectonic meaning. During the Middle–Late Jurassic 

and Cretaceous, the Oravic continental ribbon separated two 

branches of the Pennine oceanic zones (Alpine Atlantic) — 

the northern Valais–Rhenodanubian–Magura and the southern 

Piemont–Váh oceans. The Oravic Superunit (Oravicum) con-

sists of three basic thrust sheets, from bottom to top these are 

the Šariš Unit, which is overridden by the Subpieniny Nappe 

that  underlies  the  Pieniny  Nappe  (e.g.,  Plašienka  2012a, b; 

2018a, b, and references therein). All these three units include 

strongly dismembered, but generally continuous sedimentary 

successions detached from their pre-Jurassic substratum. 


The Šariš Unit (known also as the Grajcarek or Hulina Unit in 

the Polish Pieniny Mts.), which overthrusts the EWC Magura 

elements, embraces a basinal, strongly condensed Jurassic–

Cretaceous succession passing into the Palaeocene–Middle 

Eocene synorogenic flysch complex of calcareous turbidites 

and huge olistostrome bodies carrying big olistoliths (sedi-

mentary klippen) derived from the overlying Oravic nappes. 

The Subpieniny Unit (Uhlig 1907) is dominantly composed of 

the swell-type, comparatively shallow-water Jurassic–Creta-

ceous Czorsztyn succession (e.g., Mišík 1994), but includes 

also some “transitional” (with respect to the Pieniny basinal 

unit), slope-derived elements like the Czertezik or Niedzica 

successions (cf. Birkenmajer 1977). The structurally highest 

Pieniny Nappe involves again basinal Jurassic–Cretaceous 

sediments detached from the foots of the Czorsztyn Ridge at 

the transition towards the Váh oceanic domain.

Beyond the PKB, the EWC are composed of the Flysch Belt 

and the Carpathian foredeep covering the southern margin of 

the North European Platform. The Flysch Belt corresponds to 

the Cenozoic accretionary wedge of the Carpathians orogen 

Fig. 1. Schematic map showing distribution of the principal tectonic units of the Western Carpathians. The rectangle A indicates position of  

the study area depicted in Fig. 2, ellipses show locations of other parts of the PKB mentioned in the text: B — Drietoma Unit in the Myjava–

Trenčín sector; C — Haligovce Unit in the Pieniny Mountains.

background image




, 2019, 70, 1, 35–61

consisting predominantly of the Cretaceous–Lower Miocene 

deep marine clastics detached from the subducted oceanic 

basement and intervening continental fragments of the Magura 

(North Pennine) and Silesian realms. It includes the inner belt 

of the Biele Karpaty and Magura superunits, which are con-

nected with the Rhenodanubian Flysch Belt to the west, but 

are wedging out towards the Eastern Carpathians. The outer 

Silesian–Krosno zone is linked with the Eastern Carpathian 

Moldavides (see e.g., Picha et al. 2006; Oszczypko & 

Oszczypko-Clowes 2009 and Oszczypko et al. 2015 for  

the reviews).

The Alpidic tectonic evolution of the Central and External 

Western Carpathians exhibits a distinct northward prograda-

tion of the principal compression events and nappe stacking 

processes from the late Early Cretaceous to Miocene (e.g., 

Froitzheim  et  al.  2008;  Kováč  et  al.  2016,  2017;  Plašienka 

2018a). In contrast, the IWC experienced the main defor-

mation during the “Neo-Cimmerian” (Middle Jurassic up to 

Albian) orogenic movements related to closure of the Neo-

tethyan (Meliata) oceanic domains, while structure of the CWC 

units was completed by the “Palaeo-Alpine” (Eo-Alpine), or 

“pre-Gosauian” tectogenesis in mid-Cretaceous times (before 

the Coniacian). Development of leading structures of the PKB 

and adjacent zones took place during the Senonian to Eocene, 

“Meso-Alpine” period. This was related to subduction-colli-

sion processes of the South Penninic–Vahic oceanic zone 

between the Oravic domain and the northern Austroalpine 

(CWC) margin. The final “Neo-Alpine” stage was governed 

by complex movements generated by subduction of the Magura 

Ocean and formation of its accretionary wedge (Flysch Belt) 

associated with the Miocene opening of the Pannonian Basin 

system in a back-arc position, extensive calc-alkaline volca-

nism, and the counter-clockwise rotation of the eastern 

ALCAPA domain (cf. Kováč 2000; Kováč et al. 2016, 2017 

and references therein).

The classic occurrence of the Manín Unit lies on the left side 

of Middle Váh (Waag) River Valley (so-called Púchov sector 

of the PKB; Scheibner 1968a), while the adjacent Klape Unit 

occurs on both sides of the valley (Figs. 1 and 2). In a map view 

of the Middle Váh Valley (Salaj 1995; Mello ed. 2005; Potfaj 

ed. 2008), they together form a lozenge-shaped zone some  

35 km long and up to 15 km wide (Fig. 2). From the geo-

graphic point of view, this area belongs to the NW part of  

the  Strážovské  vrchy  Mountains  and  southern  part  of  

Fig. 2. Geological map of the studied area (simplified and modified after Mello ed. 2005 and Salaj 1995). Letters with numbers indicate partial 

units  and  imbricates  described  in  the  text:  M1–5  subunits  of  the  Manín  Unit  (M1  —  Súľov  domain,  M2  —  Praznov–Jablonové  slice,  

M3  —  Butkov  domain,  M4  —  Skalica  domain,  M5  —  Manín  domain);  K1–5  slices  of  the  Klape  Unit  (K1  —  Považská  Bystrica  slice,  

K2 — Orlové slice, K3 — Nimnica–Uhry slice, K4 — Stupné–Hvozdnica slice, K5 — Hoštiná–Brvnište slice); H1–3 Hronic nappes  

(H1 — Homôľka Nappe, H2 — Ostrá Malenica Nappe, H3 — Strážov (Považie) Nappe); G1–5 Senonian (Coniacian–Maastrichtian) Gosau 

synclines (G1 — Lieskov–Praznov synform, G2 — Hlboké synform, G3 — Rašov synform, G4 — Udiča synform, G5 — Hoštiná synform); 

P1–4 Palaeogene (Palaeocene–Lutetian) Gosau synclines (P1 — Hričov–Žilina sliced zone, P2 — Prečín–Súľov synform, P3 — Pružina–

Domaniža synform, P4 — Rajec synform). Cross-sections along the profile lines A, B and C are interpreted in Fig. 4.

background image




, 2019, 70, 1, 35–61

the Javor níky Mountains. Two large and steep, mostly forested 

mountains dominate the area — the Mt. Butkov (765 m a.s.l.) 

in the southern part and the Mt. Manín (891 m) in the middle 

part of the Manín Unit. Both lens-shaped mountains are trans-

versally cut by deep and narrow antecedent valleys with cliffy 

slopes exposing Jurassic to Lower Cretaceous limestone for-

mations. Only these provide good outcrop conditions, along 

with several large quarries. On the right side of the Váh River, 

the cliffy Mt. Klape (actual geographic name is Klapy,  

654 m a.s.l.) rises above the Nosice Dam, giving name to  

the surrounding Klape Unit (Fig. 2). It is considered to be  

a mega olistolith (almost 1 km long) of Jurassic limestones 

embedded in mid-Cretaceous deep marine clastic deposits 

(e.g., Marschalko 1986). However, most of the region is 

characte rized by mildly hilly relief (peaks around 500 m) 

 variably  covered by woods, meadows and agricultural fields. 

These areas are mostly composed of soft upper Lower and 

Upper Cretaceous strata, where good outcrops are very rare. 

Units with a similar position and composition occur also in 

some other places along the PKB/CWC transitional zone 

(areas B and C in Fig. 1); these will be briefly discussed as 

well (see also Plašienka & Soták 2015).

Review of fundamental opinions regarding position 

and origin of the Manín and Klape units

The Middle Váh Valley belongs, along with the Polish–

Slovak Pieniny Mountains, to the key areas where the most 

important ideas about the structure, evolution and position of 

the Carpathian Klippen Belt were invented. Initially it was stu-

died in detail by Stur (1860), who regarded the Manín–Rohatá 

skala area as the third, innermost belt of klippen, in addition  

to the external two, which were later known as the “Outer” 

(Moravian–Silesian) and “Inner” (Pieniny) Klippen Belts. He 

distinguished, stratigraphically determined and named several 

type formation of the area (e.g., the Orlové sandstone, Púchov 

marls, Praznov beds, Súľov conglomerate). He also correctly 

depicted the structure of the Manín belt in two cross-sections 

showing its steeply south-dipping thrust and fold structure. 

Later on, this view was largely taken over by Uhlig (1903), 

who considered the Manín–Rohatá skala zone as a special 

transitional element between the Klippen Belt and the Central 

Western Carpathian zones. Rohatá skala is a hill southeast of 

Mt. Butkov (Fig. 2), where Jurassic to Lower Cretaceous 

 sediments fill in a syncline within Triassic carbonates, which 

have been later affiliated with the Choč nappe system, i.e. with 

the Hronic Homôľka Nappe in the current regional tectonic 

terminology (Mello ed. 2005; Havrila 2011; cf. Figs. 2 and 3).

Starting from the late 1920-ties, the Middle Váh Valley and 

the Orava region became the favourite research areas of  

the dis tinguished Carpathian geologist and the ever-best 

expert in the PKB geology, Dimitrij Andrusov. From the very 

 beginning of his investigations, Andrusov (1931; Matějka & 

Andrusov 1931) correlated palaeogeographically the Manín 

Unit with the High Tatra zone as the outermost CWC element. 

This opinion was mainly based on the presence of some cha-

racteristic facies, such as the shallow-marine character of 

Jurassic sequences and, particularly, the Aptian–Barremian 

Urgon-type limestones occurring in both. On the other hand, 

the Manín zone includes also Upper Cretaceous sediments of 

the “Klippen Belt type”, which are absent in the CWC to  

the SE, therefore the Manín unit would be a PKB element at 

the same time. From the tectonic point of view, Andrusov 

 unified the currently separated Manín and Klape units into  

the single Manín Nappe that overrides the Pienidic units: 

Subpieniny–Czorsztyn, Pieniny–Kysuca and the transitional 

ones, which are currently designated as the Oravic units 

(Maheľ  1986).  During  his  long-termed  research,  Andrusov 

corrected several aspects of this conception, however. His 

modifications concerned mainly the timing of the principal 

thrusting events — initially he inferred the Late Aptian “Pieniny 

(Austrian) phase” (later renamed as the “Manín phase”) as  

the main nappe-forming tectonic event (with the Subpieniny, 

Pieniny and Manín nappes — Andrusov 1931, 1938), after-

wards he stressed the role of the pre-Gosauian “Subhercynian” 

folding (Andrusov & Scheibner 1960), and finally the end- 

Cretaceous “Laramian” tectogenesis (Andrusov 1968, 1972, 

1974). The latter view led Andrusov (1972) to affiliate the Manín 

Unit with the PKB Pienidic units, it means to the “Laramian” 

tectonic system of the PKB that is sharply separated from  

the “Subhercynian” tectonic system of the CWC.

Andrusov´s model of the Manín–High Tatra “geanticlinal” 

belt as the outermost palaeogeographical zone of the Central 

Carpathian (Tatric) domain, which at the same time shows 

close structural relationships to the PKB, has had a number of 

supporters  (e.g.,  Scheibner  1968a;  Rakús  1975;  Rakús  & 

Marschalko 1997; Rakús & Hók 2005). A remarkable corol-

lary of this model is that most of its advocates assumed an auto-

chthonous position of the Tatricum as a whole-crustal element 

and underrated the degree of shortening along its outer edge. 

As a result, they also doubted the prolongation of the Ligurian–

Piemont (South Penninic–Vahic) Ocean into the Western 

Carpathian area (e.g., Rakús & Hók 2005).

In the second half of 20


 century, the Andrusov´s concep-

tion has got a strong opposition from Michal Maheľ and his 

followers. While Andrusov looked upon the Manín Unit as  

a marginal and peculiar, but still integral component of the PKB, 

Maheľ´s opinion was based strictly on a view from the Central 

Carpathian side. In the western part of the Strážovské vrchy 

Mountains, Maheľ (1978, 1986) identified a prolongation of 

the Manín Unit (its Jurassic–Lower Cretaceous complexes) 

farther to the south, where it is closely related to the Belá 

Subunit of the Krížna Nappe, i.e. it would be clearly an alloch-

thonous element overriding the Tatric substratum. From  

the palaeo geographical point of view, he still connected  

the Manín Unit with the Tatric ridge area characterized by 

prevalence of shallow-marine Jurassic and Early Cretaceous 

facies, but located its sedimentary zone on the southern slopes 

of this ridge that were flanking the large Zliechov Basin —  

the main depositional area of the later Fatric Krížna Nappe.  

In this conception, the Manín, Belá, or Vysoká subunits are all 

background image




, 2019, 70, 1, 35–61

Fig. 3.


hostratigraphic synopsis 

of units forming the PKB 

and adjacent 

zones in the Middle 



. Note that the Fatric units are arranged according to their present structural position and not 







Note also 



to a 



not all 









. G1–5 are 

Gosau synforms (Senonian–Early 





























Oligocene deposits. Further details in the text.

background image




, 2019, 70, 1, 35–61

the frontal constituents of the large Krížna nappe system that 

overthrust the Tatric Superunit in the outer CWC zones. This 

opinion has also got numerous followers from both the litho-

stratigraphic–palaeogeographic (e.g., Borza et al. 1979; Borza 

1980;  Michalík  &  Vašíček  1987;  Žítt  &  Michalík  1988; 

Michalík 1994; Plašienka et al. 1997b; Michalík et al. 2012; 

partially also Marschalko 1986), as well as from the structural–

palaeotectonic  viewpoints  (Plašienka  1995a, b;  Prokešová  et 

al.  2012). According  to  Maheľ  (1980,  1989)  and  Plašienka 

(1995a, b),  the  Manín  and  related  units  (Klape,  Drietoma, 

Haligovce) form the so-called Peri-Klippen Zone along the inner 

side of the Klippen Belt s.s., while the PKB proper with its 

palaeogeographically independent Oravic units and with 


a typical klippen “block-in-matrix” tectonic style build the outer, 

rather narrow PKB periphery (Fig. 2). Thus the Peri-Klippen 

Zone is composed of the Fatric units (Krížna nappe system), 

which originated as thrust sheets in the Late Turonian. 

Subsequently, in the latest Cretaceous and Palaeogene, they 

were partly incorporated into the PKB structure, along with 

superimposed Senonian to Eocene piggyback basins. The aban-

doned chronostratigraphic term “Senonian” (Coniacian to 

Maastrichtian) is used throughout the following text for  

the sake of simplicity when distinguishing between the pre- 

Senonian sediments of the CWC units affected by pre- 

Gosauian tectogenesis and the superimposed Senonian 

through Middle Eocene deposits of the Gosau Supergroup.

Regarding the position of Senonian to Eocene deposits 

occurring within the Peri-Klippen Zone, three variants have 

been considered in general: 

•  Senonian sediments are an integral part of the Manín Unit 

and lie in a stratigraphic continuity above the Cenomanian–

Turonian Praznov Fm. This view was hold for a long time by 

numerous authors, e.g., Salaj & Began (1963), Salaj (1962, 

1990,  1994a, b),  and  Kysela  et  al.  (1982)  who  ranged  all 

Albian through Maastrichtian sediments to their continuous 

Podmanín Group. However, this opinion was questioned 

because of lack of Senonian sediments in the uppermost 

structural levels of the Manín Unit, just at the contact with 

the overlying Krížna Nappe (Rakús & Hók 2005).

•  Senonian sediments do not belong to the Manín and/or  

the Klape Unit at all, but they occur in tectonic windows 

exposing  the  underlying  Oravic  units  of  the  PKB  (Rakús 

1975). They were assigned to the special Podháj succession 

of the Kysuca Unit (Rakús & Hók 2005; Mello ed. 2011). 

Originally, Salaj (1990) defined the Podháj Unit as a transi-

tional element between the Klape and Manín units, strati-

graphically ranged to the Early Cretaceous; later on Salaj 

(1995) redefined it as a partial Manín development 

(Tithonian–Santonian). Thus the third redefinition by Rakús 

& Hók (2005) has very little in common with the original 

Salaj´s meanings of the Podháj Unit or succession. 

Moreover, the Podháj Unit is shown in totally different areas 

in the published maps of Salaj (1995) and Mello ed. (2005). 

Therefore, the term Podháj Unit seems to be superfluous 

and is not used in this paper — in sense of Salaj the Podháj 

Unit is merely the innermost partial structure of the Klape 

Unit at the contact with the Manín Unit (K1 in Fig. 2), while 

the second concept is misleading in our view.

•  Senonian sediments represent an independent sedimentary 

cycle deposited after the tectonic emplacement of the Manín 

Unit and its overthrusting by the Krížna Nappe (both events 

should have happened during the Late Turonian — see e.g., 

Prokešová et al. (2012 and references therein). Hence they 

would be elements of the Gosau Supergroup, i.e. fillings of 

post-nappe, piggy-back basins (Plašienka 1995a, b, 2012a; 

Plašienka & Soták 2015; Plašienka et al. 2018a). The gene-

rally transgressive character of all Senonian sediments within 

the PKB was originally envisaged by Andrusov & Scheibner 

(1960, their “second sedimentary cycle”) and Scheibner 

(1968a), but this concept was abandoned later, since conti-

nuous Cretaceous successions were postulated in the Oravic 

units of the PKB. Seemingly this applies also for the “non- 

Oravic” Klape and Manín units in the Peri-Klippen Zone, 

because of frequent contact of Turonian and Senonian strata 

in the map view. Nevertheless, continuous stratigraphic 

 profiles across the Turonian/Coniacian boundary have never 

been thoroughly documented there. In contrast, it was 

declared from time to time that the Klape–Manín Senonian 

deposits are akin to the “proper Gosau” of the Brezová 

Group, distinguished from it by the clear transgressive 

 character of the latter only (Salaj & Began 1963; Began & 

Salaj 1978). Others claimed that there is an Upper Turonian 

hiatus present (Marschalko & Kysela 1980); there is a polar 

change in palaeocurrent directions of the mid-Cretaceous 

vs. Senonian turbidites (Marschalko 1986), or that there is 

an abrupt boundary (unconformity?) between the Ceno ma-

nian–Turonian Praznov Fm. and Senonian deposits (Salaj 

1994b).  According  to  Maheľ  (1980,  1981,  1986,  1989),  

the Peri-Klippen Zone with its piggy-back, Gosau-type 

basins  (Brezová,  Myjava–Hričov)  represented  the  “upper 

(Meso-Alpine) structural stage” above a “false accretionary 

complex” (Plašienka 1995a, b) with respect to the subduc-

tion of the underlying South Penninic–Vahic oceanic litho-

sphere (cf. Plašienka 2012a and references therein). Finally, 

Salaj (2006) regarded the Coniacian to Lower Eocene sedi-

ments  of  the  Rašov  and  Udiča  synclines  in  the  southern 

zones of the Klape Unit neighbouring the Manín Unit as 

transgressive Gosau developments — the view accepted 

here and applied also for the Senonian sediments occurring 

in synclines within the Manín zone itself. This concept of 

the wedge- top, Gosau-type basins located within the Peri-

Klippen Zone has been recently elaborated in detail by 

Plašienka & Soták (2015).

There were also some other, occasionally somewhat strange 

views on the Manín Unit. Salaj (1962) and Salaj & Samuel 

(1963) supposed its facies transitions to the Zliechov (Krížna) 

Unit on one side and to the Pienidic Kysuca Unit on the other. 

This opinion was developed ad absurdum later (Salaj 1982; 

Salaj & Began 1983) in the fixistic concept of an auto-

chthonous position of all units present at the Central/Outer 

Carpathian transitional zones, including even the Hronic 

(Choč) nappes. In contrast, some other authors (e.g., Rakús 

background image




, 2019, 70, 1, 35–61

1975) postulated a specific position of the Manín Unit, which 

occurs in a particular Manín zone independent from both  

the PKB and CWC. At last, we can mention Golonka et al. 

(2015), who consider the Manín Unit as part of a huge 

Cretaceous–Palaeogene olistostrome that originated in the fore-

arc basin (so-called Złatne Basin) on the inner PKB side loca ted 

inside the subduction-related accretionary prism. Accor dingly, 

the large Manín and Butkov klippen would also be megaolis-

toliths — however, this unsubstantiated view was not supported 

by any field evidence and it is in a sharp contradiction with  

the regional tectonic situation, therefore it has been profoundly 

criticised by Plašienka et al. (2017).

Until 1980-ties, all units resting in a tectonic superposition 

above the Kysuca–Pieniny Unit in the PKB were assigned to 

the large-scale Manín Nappe that was, as a supposedly frontal 

Tatric element, emplaced in pre-Senonian times (pre-Gosauian 

or older Subhercynian phase — e.g., Andrusov & Scheibner 

1960), or during the Laramian phase (Andrusov 1972, 1974). 

Afterwards, the Klape Unit was differentiated first as a special 

“Klape series” of the Manín Unit (Began et al. 1965; Salaj  

& Samuel 1966; Scheibner 1968a; Began 1969). Later on,  

the Klape Unit was defined as an independent element from 

the point of view of lithostratigraphic content, sedimentolo-

gical features and tectonic position (Marschalko & Kysela 

1980). At present, the Manín and Klape units are treated as 

separate units with an equal order of importance. Consequently, 

the tectonic affiliation of some units in other PKB regions had 

to be redefined as well — for example the overthrust sheet 

overriding the Kysuca Unit in the Varín (Kysuca) sector of  

the PKB, which was originally described as the Manín Nappe 

by Haško (1978), is now assigned to the Klape Unit (cf. Polák 

ed. 2008).

In the modern tectonic map of Slovak Republic (Bezák ed. 

2004), the Manín Unit is designated, along with the Klape and 

Drietoma units, as the “Neoalpine structurally modified Palaeo-

alpine or Mesoalpine tectonic units of Klippen Belt”. Similarly, 

in the legend and explanations to the Geological map of  

the Middle Váh Valley 1:50,000 (Mello ed. 2005, 2011),  

the Manín and Klape units are described as “units with  

Central-Carpathian affinity”, but still ranged to the Klippen 

Belt. In the legend to the general geological map of Slovakia 

1:200,000  (sheet  25  —  Bytča),  the  Manín  and  Klape  units  

are included in the Klippen Belt sensu lato, too (Potfaj ed. 


Lithostratigraphy of the Manín and Klape units 

and related Gosau deposits

The generalized lithostratigraphic content of the Manín Unit 

in the Middle Váh Valley includes almost complete Jurassic to 

Lower Cretaceous succession forming large anticlinal cores of 

the Manín and Butkov “klippen” and several smaller lens-

shaped slices. These are composed mostly of relatively com-

petent, but usually well stratified limestone formations prone 

to large-scale folding (cf. Plašienka et al. 2018a). From the Late 

Albian onward, mostly incompetent marls, shales and flysch 

deposits accumulated and form the so-called “klippen mantle” 

in older concepts. A questionable occurrence of Rhaetian  

dark limestones and shales was mentioned by Andrusov & 

Scheibner (1960) from the Butkov klippe. However, this fin-

ding was not confirmed later. Despite of this, it might be infer-

red that in lower structural levels, not exposed on the current 

surface, the Manín Unit was detached from its pre-Jurassic 

substratum along some weak décollement horizon, presumably 

formed by the Norian variegated shales and evaporites of  

the Carpathian Keuper Fm., similarly as other frontal Fatric 

elements (cf. Prokešová et al. 2012). 

Relying  on  the  earlier  opinion  of  Matějka  (1932),  Maheľ 

(1978, 1985, 1986) supposed the continuation of the Manín 

Unit southwards in the surroundings of Trenčianske Teplice 

and Soblahov in the eastern part of the Strážovské vrchy Mts. 

and in the northern part of the Považský Inovec Mts. (Dubodiel 

area). There, the inferred Manín Unit includes also the Middle 

Triassic carbonates, Upper Triassic Carpathian Keuper Fm. 

and Rhaetian fossiliferous limestones (Fatra Fm.; Fig. 3). 

Nowadays, these occurrences are correlated with the Belá 

Subunit of the Fatric Vysoká facies zone — e.g., Bezák ed. 

(2004) in the Strážovské vrchy Mts. and Pelech et al. (2012) in 

the Dubodiel area.

In the Manín and Butkov areas, the continuous Jurassic 

sequence (Fig. 3) begins with dark grey to black sandy-crinoi-

dal, cherty limestones and marly shales of the early Hettangian 

age (Holiak Fm. defined by Rakús & Hók 2005). Starting from 

the Sinemurian, successions in these two areas differ to some 

extent. The Manín klippe has a more shallow-water character 

with sandy biodetrital limestones passing to coarse grained, 

quartz-dolomitic sandstones and conglomerates, while the But-

kov succession is more basinal with grey sandy-crinoidal 

lime stones with chert nodules (Late Hettangian–Pliensbachian 

Trlenská Fm.) followed by pink and grey-green glauconitic, 

cherty crinoidal limestones containing early Toarcian ammo-

nites (Tunežice Fm.). The overlying Toarcian–Aalenian grey 

sandy-crinoidal, cherty limestones of the Brts Formation are 

intercalated by dark shales in the upper part. The Middle–

Upper Jurassic sequence is characterized by red nodular lime-

stones (Klaus Fm.) ranging from the Toarcian (Manín area)  

or from the Bajocian (Butkov) up to Tithonian, inserted by  

a layer of the Bathonian, so-called “banana” radiolarites in  

the Butkov domain (Rakús & Ožvoldová 1999).

The Lower Cretaceous sequence includes several forma-

tions (Fig. 3). According to Borza et al. (1987) and Michalík et 

al. (2012, 2013; see also references therein), the Butkov suc-

cession consists of the maiolica-type Ladce Fm. (topmost 

Berriasian–Early Valanginian), dark-grey marly limestones 

(Mráznica Fm., Valanginian), cherty limestones (Kališčo Fm., 

Hauterivian), marly cherty, partly brecciated limestones 

(Lúčkovská  Fm.,  Early  Barremian)  and  massive  bioclastic, 

Urgon-type limestones (Podhorie Fm., uppermost Aptian–

Early Albian). Much thicker (at least 100 m), massive Urgonian 

limestones occur in the Manín succession (Manín Fm.; Fekete 

et al. 2017). In smaller slices between the large Manín and 

background image




, 2019, 70, 1, 35–61

Butkov anticlines (Skalica Subunit), the Late Aptian substage 

is represented by mass-flow breccias composed of clasts of 

Urgonian limestones (Skalica Breccia — Borza et al. 1979; 

Michalík & Vašíček 1984) and the Early Albian substage by 

grey cherty limestones (Jelenia skala Fm. — Rakús & Hók 

2005; Mello ed. 2011). The latter limestones are partly also 

brecciated and mixed with hyalobasanitic volcaniclastic mate-

rial (Hovorka & Spišiak 1988 and references therein). Both 

the Manín and Butkov successions are terminated by the Lower 

Albian hardground indicating a rapid drowning of the Urgo-

nian carbonate platform (Boorová & Salaj 1992). Originally, 

Andrusov (1938) considered this drowning event as the main 

nappe-forming “Pieniny folding phase” in the PKB and later 

as the “Manín emersion phase” (Andrusov 1965). An analo-

gous drowning event following emersion affected also the Oravic 

Czorsztyn Ridge (Aubrecht et al. 2006), but large Tatric and 

Fatric palaeogeographic realm as well (Plašienka 2018a and 

references therein).

The new, mid-Cretaceous sedimentary cycle is represented 

by hemipelagic to deep-marine clastic deposits of the Podmanín 

Group (Kysela et al. 1982; redefined by Rakús & Hók 2005; 

Mello ed. 2011 and Plašienka & Soták 2015). The former 

authors included in their Podmanín Group the entire 



Albian–Maastrichtian succession of the Manín Unit, assuming 

an uninterrupted sedimentation across the Turonian/Coniacian 

boundary. On contrary, the latter authors correctly argued that 

the Turonian sediments of the Manín Unit are tectonically 

overridden by the Krížna Nappe, thus the Senonian sediments 

in the Manín–Butkov area cannot be in a normal stratigraphic 

continuity with the Turonian strata.

The Lower Albian hardground is covered by dark, biotur-

bated hemipelagic marlstones of the “Zementmergel” type, 

Middle Albian to Early Cenomanian in age (Butkov Fm.,  

Fig. 3). Upwards, the marlstones are intercalated by distal 

 calcareous turbidites of the Cenomanian to Middle Turonian 

Praznov Fm. (Stur 1860; Scheibnerovci 1958; Mello ed. 2011; 

Salaj 1994b). This shows a thickening-and-coarsening-upward 

trend (Belušské Slatiny Member dominated by thick-bedded 

sandstones), interfingering with more shallow-water sand-

stones rich in bioclastic material (including macrofauna like 

oysters — Kvašov Mbr). Upper parts of the Praznov Fm. are 

intercalated and terminated by boulder conglomerates and 

pebbly mudstones with partially “exotic” pebble material 

(Hradná Mbr.). The innermost structural zone of the Manín 

Unit (Praznov–Jablonové slice according to Marschalko & 

Kysela 1980) is composed of thick prisms of predominantly 

Cenomanian flysch deposits containing chaotic boulder beds 

and olistoliths of the Jurassic–Lower Cretaceous limestones, 

which is known as the Kostolec Unit. Formerly these lime-

stone klippen, along with the Klape klippe, were interpreted as 

outliers of some higher Central Carpathian unit, possibly  

the Strážov Nappe (Andrusov 1938). However, later on Rakús 

(1965), Borza (1970) and Rakús & Marschalko (1997) argued 

that the strata succession of the Kostolec klippen are rather 

similar to that of the Manín Unit, especially by the presence  

of Urgon-type limestones and Lower Albian hardground 

 followed by Butkov-type marlstones. Being surrounded by  

the mid-Cretaceous flysch, the Kostolec klippen are presently 

considered to represent olistoliths, which opinion was corro-

borated also by some technical works (Rakús 1997; Rakús & 

Marschalko 1997; Rakús in Mello ed. 2011).

The most important, and at the same time the most challen-

ging problem with the Manín Unit is the presence of Upper 

Cretaceous (“Senonian”, i.e. Coniacian through Maastrichtian) 

sediments and their relationships to the underlying mid-Creta-

ceous deposits (the Lieskov–Praznov G1 and Hlboké G2 

 synforms in Figs. 2 and 3). However, the situation is compli-

cated due to poor outcrop conditions and tectonic overprint, 

therefore the contact of Turonian and Coniacian sediments has 

never been directly exposed and documented. In the Manín 

zone, the Senonian deposits of the Podmanín Group consist of 

alternating deep- and shallow-marine clastics — neritic sand-

stones and shales containing sandy slump bodies with littoral 

fauna (Coniacian–Santonian Žadovec Fm., see Kysela et al. 

1982; Mello ed. 2011), hemipelagic variegated marls of  

the “couches rouges” facies (Hrabové Fm., Early Campanian), 

calcareous turbidites with exotic conglomerates (Hlboké Fm., 

Late Campanian–Maastrichtian), and Orbitoides-bearing bio-

clastic limestones, sandstones and conglomerates with local 

rudist reef bodies (Hradisko Fm., Late Maastrichtian to 

?Danian). Following the opinion of Plašienka & Soták (2015), 

the Podmanín Group is assigned to the Gosau Supergroup, 

which was deposited in the post-nappe, late synorogenic 

wedge-top basins developed atop the growing accretionary 

wedge prograding from the CWC toward the Oravic realm of 

the future PKB. Propagation of this accretionary complex, 

which included also the frontal CWC units, was associated 

with and enhanced by subduction of the underlying Vahic 

 oceanic lithosphere below the outer CWC margin (Plašienka 


In the northern part of the Klape Unit, between Upohlav, 

Brvnište and Hvozdnica villages, a narrow stripe of Jurassic to 

Lower Cretaceous limestones amidst Cretaceous clastic for-

mations occurs (Fig. 2). This has been known as the Upohlav 

tectonic window, even described as “protrusion diapirs” of  

the underlying Kysuca Unit piercing though the overlying 

 flysch complexes of the Manín (Klape) Unit (Andrusov & 

Scheibner 1960; Andrusov 1974). A similar window concept 

has been adopted also in the modern geological map of  

the area (Mello ed. 2005). On the other hand, Salaj (1994a) 

included a part of these Jurassic and Lower Cretaceous rocks 

into his Drietoma succession of the Drietoma Unit, which may 

be correlated with the Klape Unit to some extent. Based on our 

own field experience and the general structure of the area, we 

adopt the Salaj´s interpretation for the whole “Upohlav win-

dow” (Fig. 2) with the exception that we range it to the Klape 

Unit and not to the Drietoma Unit. Consequently, no windows 

in the tectonic sense do exist in this area.

Taking this into consideration, the Klape Unit includes  

a sedimentary succession from the Early Jurassic up to early 

Late Cretaceous. The oldest recognized rocks are dark grey 

spotted marlstones of the “Fleckenmergel” facies (Allgäu Fm., 

background image




, 2019, 70, 1, 35–61

Pliensbachian–?Aalenian), followed by siliceous limestones 

and calcareous radiolarites (Ždiar Fm.) and then by thin-bed-

ded dark-grey marly limestones with occasional chert nodules, 

strongly bioturbated in the upper part (akin to the Mráznica 

Fm, Tithonian to Barremian). This Jurassic–Lower Cretaceous 

succession is very similar to the deep-water Zliechov succes-

sion of the Krížna Nappe. It is noteworthy that these Jurassic 

sediments are considerably different from sediments of 


the Mt. Klapy klippe that gave the name to the whole unit, 

which is a blocky megaolistolith formed by a comparatively 

shallow-marine Jurassic sequence of massive or thick-bedded, 

variegated sandy-crinoidal, cherty and nodular limestones.

The lithostratigraphic succession of the Klape Unit conti-

nues with the mid-Cretaceous (Aptian–Turonian) clastic for-

mations that were included in the Šebešťanová succession of 

the Klape Unit (Mello ed. 2005, 2011) and/or Hoštiná succes-

sion of the Drietoma Unit (Salaj 1994a). These include Aptian 

to Lower Albian dark hemipelagic shales of the “sphero     side-

ritic beds” (Nimnica Fm.) that are passing upwards into 

 coar sening- and thickening-upwards turbiditic sequence of  

the Albian to Early Cenomanian age (Uhry Fm.) with huge 

bodies of “exotic” conglomerates (Upohlav Fm.). This so- 

called Klape Flysch (Lexa ed. 2000), altogether more than 

thousand metres thick (Marschalko 1986), also includes 

 several olistoliths of Jurassic sandy-crinoidal and nodular 

limestones, the largest of them builds up the Mt. Klapy klippe. 

The Early Cenomanian shallowing is registered by calcareous 

sandstones  and  sandy  marls  rich  in  orbitolinas  (Považská 

Bystrica Fm). The Upper Cenomanian to Lower Turonian strata 

are represented by a terminal sequence of massive neritic to 

littoral sandstones with oyster banks (Orlové Fm., Fig. 3).

There are three synclines filled with the Coniacian– 

Lower Eocene sediments that separate individual Klape slices 

(the Rašov G3, Udiča G4 and Hoštiná G5 synclines from SE 

to NW in Fig. 2). They have been assigned to the Hoštiná suc-

cession, originally regarded as being in a continuous series 

with underlying Cretaceous Šebešťanová or Drietoma succes-

sions of the Klape or Drietoma Unit, respectively (Salaj 

1994a), but later as a new transgressive sedimentary cycle of 

the Gosau Supergroup (Salaj 2006; Plašienka & Soták 2015). 

In contrast, Mello ed. (2005, 2011) connected the Hoštiná suc-

cession (together with the Podháj succession, see above) with 

internal parts of the Kysuca Unit, thus as appearing in tectonic 

windows from below the Klape Unit. Consequently, they 

would form anticlines, not synclines. However, according to 

our investigations, this is not the case (see also Plašienka 

2012a; Plašienka & Soták 2015).

The Hoštiná succession (synclines G3–5 in Fig. 3) embraces 

basal polymict conglomerates and rudist reef bodies of  

the Coniacian–Santonian Rašov Fm., overlain by a deepening- 

and fining-upward sequence of calcareous turbidites (Upper 

Santonian) and variegated marls of the couches rouges facies 

(Púchov Fm., Lower Campanian). The Upper Campanian to 

Maastrichtian Ihrište Fm. is composed of shallow-water cal-

careous sandstones and conglomerates, Inoceramus marls, 

Orbitoides limestones and blocks of rudists-bearing bioherms 

(Bezdedov Limestone of Salaj 1990). The Palaeocene–Ypresian 

strata consist of shallow-water sandy-bioclastic limestones 

with Thanetian algal-coral reef bodies (Kambühel Limestone 

— e.g. Buček & Köhler 2017 and references therein) and car-

bonatic conglomerates (Šafranica Fm; Salaj 1990, 1994b; 

Mello ed. 2005, 2011). The latter formation was also known as 

the “Makovec development” in older literature (e.g., Began et 

al. 1970).

The inner side of the Peri-Klippen Zone in the Middle Váh 

Valley, at the transition to the outermost CWC, embraces also 

Palaeocene to Middle Eocene strata deposited in partly inde-

pendent, highly mobile depressions. They were formerly 

known as the “Peri-Klippen Palaeogene”, later defined as  

the  Myjava–Hričov–Haligovka  zone  (Scheibner  1968b), 

Považie–Hanušovce  zone  (Samuel  1972)  and  newly  as  

the Myjava–Hričov Group (Mello ed. 2005, 2011). In the area 

concerned,  the  Myjava–Hričov  Group  occurs  in  a  zone 

 flan king the Manín Unit from the SE, named as the Hričov–

Žilina  synclinal  zone  here  (P1  in  Figs.  2  and  3).  Adjacent  

to the Praznov–Jablonové slice and Senonian sediments of  

the Hlboké syncline (G2), the Palaeocene sediments are com-

posed of variegated claystones and marlstones, sandstones and 

conglomerates (Hričovské Podhradie Fm.). Large redeposited 

blocks of Lower Thanetian bioherms and patch-reefs 

(Kambühel  Limestone)  are  very  common  (Buček  &  Köhler 

2017). The Jablonové Fm. (Thanetian–Ypresian) includes 

shallow marine biodetritic and sandy limestones overlain by 

carbonatic breccias and conglomerates of the Lower–Middle 

Eocene Súľov Fm. (Soták et al. 2017; P2-3 in Fig. 3).

Further  to  the  SE,  in  the  Prečín–Súľov  and  Pružina–

Domaniža  synforms  (P2  and  P3  in  Fig.  2,  respectively),  

the  Súľov  conglomerates  are  mostly  resting  directly  over  

the CWC units. Being composed of up to 800 metres of car-

bonatic, mainly dolomitic breccias and conglomerates derived 

predominantly from Triassic carbonates of the Hronic units, 

the  Súľov  Fm.  represents  a  new  transgressive  cycle  related  

to an extensional collapse of the developing PKB–CWC 

 orogenic wedge (Plašienka & Soták 2015; Soták et al. 2017 

and refe rences therein). Lutetian deepening of the Súľov Basin 

is  registered by an upward fining sequence of calcareous 

 sandstones  and  variegated  pelagic  shales  of  the  Domaniža 

For mation (Fig. 3).

Following the upper Lutetian compression and sedimentary 

break, a new basin developed in a forearc position above  

the CWC units — the Central Carpathian Palaeogene Basin 

(CCPB; cf. Soták et al. 2001; Gross 2008; Plašienka & Soták 

2015 and references therein). The basal member of the over-

stepping Podtatra Group of the CCPB is represented by trans-

gressive carbonate conglomerates and nummulitic limestones 

of the Borové Fm. (Bartonian–Priabonian). Overlying deepe-

ning sequence is composed of grey and black shales with 

occasional distal turbidite beds (Lower Oligocene Huty Fm.; 

P4 in Fig. 3).

In the NE part of the Rašov synform, near village Vrtižer, 

two small slices of steeply dipping dark-grey silty and clay 

shales occur. According to the personal information by Ján 

background image




, 2019, 70, 1, 35–61

Soták, they contain Oligocene microfauna. Hence the age and 

lithology of these shales indicate that they might represent  

the north-westernmost erosional remnants of the Huty Fm. in 

western Slovakia.

Notwithstanding the Quaternary fluvial and slope deposits 

and local, possibly Pliocene gravels, the youngest sediments 

of the studied area are the Lower Miocene (Eggenburgian) 

continental, brakish to shallow marine sandstones and fine-

grained conglomerates (Fig. 2). These were deposited in  

a “wrench-fault furrow” type of basin (Kováč 2000), which 

developed in the rear part of the growing External Carpathian 

accretionary wedge. Scarce remnants of this basin are present 

along the southern PKB margin in western and also in eastern 


Besides the above characterized region A (Fig. 1), the Manín 

Unit was described also from the right side of the Váh Valley 

in the Púchov sector, as well as in the more southern, Myjava–

Trenčín sector of the PKB (Began 1969) — area B in Fig. 1. 

Being affiliated with the Kysuca or Pieniny Unit formerly 

(e.g., Andrusov 1931; Andrusov & Scheibner 1960), the Manín 

Unit in this area includes a sedimentary succession ranging 

from the Upper Triassic Carpathian Keuper Fm, Rhaetian fos-

siliferous limestones, and rather deep-water Jurassic sequence 

dominated by bioturbated limestones of the “Fleckenmergel” 

facies (Allgäu Fm) and radiolarites, then Lower Cretaceous 

maiolica-type and spotted marly limestones, and Albian to 

Turonian marls and clastic flysch deposits (Began 1969). 

However, presently this unit is redefined as the Drietoma Unit 

differing from the Manín Unit especially by the deep-water 

Jurassic sediments (see Hók et al. 2009 and references therein). 

Nevertheless, some partial slices with shallow-water Jurassic 

and Urgon-type limestones might be parallelized with the Manín 

Unit  (e.g.,  the  Bošáca  Subunit  of  Maheľ  1978  a.k.a.  Belá 

Subunit of Borza et al. 1980; or Urgonian limestones encoun-

tered by the deep borehole Lubina-1 in the Myjava part of  

the Periklippen Zone — Leško et al. 1982). Recently, 


the St. Veit Klippenzone north of Vienna has been tentatively 

correlated with the Drietoma Unit, too (Wagreich et al. 2012). 

In the eastern Slovakian Pieniny Mts, the Haligovce Unit 

has been often connected with the Manín Unit (area C in  

Fig. 1). The compound Haligovce succession includes Middle 

Triassic limestones and dolomites, variegated Jurassic sandy- 

crinoidal limestones, a few metres of greenish Oxfordian radio-

larites, cherty and nodular limestones, Tithonian to Hauterivian 

 maiolica-type, bedded cherty limestones and, most typically, 

the Barremian–Aptian massive biogenic Urgonian limestones. 

In our view, the Haligovce klippen represent large tectonic 

blocks, possibly megaboudins, surrounded by siliciclastic 

 turbiditic sandstones containing Albian foraminifers (Štefan 

Józsa, personal information). These flysch-type deposits are 

correlated here with the Poruba Fm. of the Krížna Nappe, or 

with the Praznov Fm. of the Manín Unit. They are conside-

rably different from the Palaeogene calcareous sandstones 

associated with the Haligovce Unit (see below).

Based mainly on presence of Urgon-type limestones, 

Andrusov (1968, 1974) affiliated the Haligovka klippe with 

the Manín Unit, i.e. palaeogeographically with the outermost 

Tatric zones of the CWC. This view was then followed by  

a  majority  of  Slovak  researchers  (e.g.,  Potfaj  and  Rakús  in 

Janočko ed. 2000). Maheľ (1986) ranged the Haligovce Unit, 

as a constituent of the larger-scale Manín Unit, to the Krížna 

nappe system (Fatricum). On contrary, Polish authors mostly 

considered the Haligovce Unit as an integral part of the PKB, 

palaeogeographically as its innermost element deposited on 

the northern slopes of the “exotic” ridge dividing the PKB 

basins from the CWC (e.g., Birkenmajer 1977, 1986). 

Książkiewicz (1977) even supposed that the Haligovce Unit 

represents a subunit of the Pieniny Nappe. Finally, Cieszkowski 

et al. (2009) and Golonka et al. (2015) regarded the Haligovce 

Unit as a group of sedimentary klippen — olistoliths resting 

within flysch formations. However, the source of the Haligovce 

sedimentary klippen was not specified and their olistolithic 

nature was not properly documented. The “olistolithic con-

cept” would partly correspond to that of Nemčok (1980), who 

regarded all klippen of the eastern Slovakian PKB as olisto-

liths. On the other hand, also Nemčok et al. (1990) took off  

the Haligovce Unit from the PKB and supposed its post- 

Eocene emplacement to the PKB vicinity. This opinion was 

motivated by a considerably different type of Palaeogene 

 sediments  resting  on  the  Haligovka  klippe  (Myjava–Hričov 

Group) compared to other Palaeogene deposits within the PKB 

itself (Jarmuta–Proč Fm.; e.g., Plašienka 2012a and references 


The Gosau-type succession of the Haligovce Unit includes 

variegated marlstones, orbitoids- and algae-bearing sand-

stones of the Maastrichtian age (Köhler & Buček 2000; Buček 

& Köhler 2017), biodetritic limestones with Thanetian large 

foraminifers, and Palaeocene–Lower Eocene carbonatic con-

glomerates (Súľov Fm.) intercalated by calcareous sandstones 

with nummulites and partially resedimented algal-coral patch 

reefs  (Matějka  1961;  Scheibner  1968b;  Janočko  ed.  2000; 

Köhler  &  Buček  2005).  Banks  and  bedrock  of  the  Lipník 

Stream south of the Haligovka klippe, at the contact with  

the CCPB formations, exposed a narrow slice dominated by 

pelagic Senonian–Middle Eocene sediments. It was described 

as the “southern Haligovce Palaeogene development” by 

Matějka (1961). It is composed of variegated marls and clay-

stones, in places with olistostromes containing shallow-water 

bioclastic material (Scheibner 1968b). Nowadays, Plašienka 

& Soták (2015) differentiated this occurrence as an inde-

pendent unit named the Lipník Unit and correlated it with  

the Maruszyna Unit occurring in the Polish PKB sector to  

the west, and with the Šambron–Kričevo Unit toward the east.

Map-scale structures of the Peri-Klippen Zone in 

the Middle Váh Valley

Manín Unit

The belt of the Manín Unit trends SW–NE, being truncated 

by subparallel, but anastomozing in the map view, faults into 

background image




, 2019, 70, 1, 35–61

several strips and lenses with partially distinct composition 

and internal structure. Along the NW margin, the Manín Unit 

adjoins the Klape Unit, which is predominantly composed of 

mid-Cretaceous deep-marine clastics of the Klape Flysch.  

The westernmost part of this contact is covered by Lower 

Miocene marine sandstones and Quaternary fluvial deposits of 

the Váh River (Fig. 2). The SE boundary of the Manín belt is 

followed by a complex imbricated zone composed of narrow 

slices of mainly mid-Cretaceous flysch sediments assigned by 

various authors either to the Manín Unit, or to the frontal 

 elements  of  the  adjacent  Krížna  Nappe  (Praznov–Jablonové 

slice according to Marschalko & Kysela 1980; Nozdrovice 

imbricates  according  to  Michalík  &  Vašíček  1979;  Maheľ 

1983, 1985, 1986). Further SE-ward, the Palaeogene synclines 

unconformably seal the Cretaceous thrust structures of 


the under lying CWC nappe systems.

From SE to NW, five structural domains are differentiated 

within the Manín Unit in the Middle Váh Valley: (1) the Súľov 

domain (abridged as M1 in Figs. 2 and 4) in the north-eastern 

part of the area; (2) the Praznov–Jablonové slice (M2) as a nar-

row strip rimming the Manín Unit from the SE; (3) the Butkov 

pericline (M3) in the south-west; (4) the Skalica folded- 

imbricated domain (M4) north of the Butkov pericline; and  

(5) the Manín fold-thrust domain (M5) further north. From  

the S and SE, the Manín Unit is put side by side by the frontal 

Nozdrovice imbricated zone of the Krížna Nappe and the sli-

ced Hričov–Žilina synclinal zone filled with Palaeogene sedi-

ments in the NE (P1, Figs. 2 and 4). The M2 vs. M3 and  

M4 vs. M5 zones are juxtaposed and partly interchanged in  

a coulisse-like mode, along with intervening brachysynforms 

G1 and G2.

On the surface, the Súľov  domain  M1 is cropping out 

within the Súľov “window” in the NE part of the area (Fig. 2), 

where it is surrounded by Palaeogene deposits of the Myjava–

Hričov  Group.  Despite  lateral  relationships  to  other  Manín 

subunits are obliterated by these deposits, the Súľov domain is 

probably the most internal element of the Manín Unit (see  

Fig. 4A). It is prevailingly composed of Albian–Cenomanian 

“flysch” deposits including numerous bodies of exotic conglo-

merates (Hradná Mbr.) and several large, Kostolec-type olisto-

liths of Jurassic–Lower Cretaceous limestones (Vrchteplá, 

Súľov  —  Borza  1970).  Still  within  the  Súľov  window,  

the Manín Unit is overthrust from the SE by the frontal ele-

ments of the Fatric Krížna Nappe.

The  Praznov–Jablonové slice M2 is laterally connected 

with the Butkov domain in the southwest and extends in  

an about 0.5 km wide strip NE-ward. It is mainly composed of 

mid-Cretaceous synorogenic deep-marine clastics (Praznov 

Fm.). The zone is tightly imbricated and steeply SE-dipping 

under  the  Krížna  Nappe  (Fig.  4).  In  the  Kostolec  area,  

the Albian turbidites contain several huge blocks of Jurassic to 

Lower Cretaceous limestones, which are presently considered 

to  be  olistoliths  (e.g.,  Marschalko  &  Kysela  1980;  Rakús 

1997;  Rakús  &  Hók  2005).  On  the  other  hand,  some  other 

authors (e.g., Maheľ 1985) regarded the Praznov–Jablonové 

slice as a frontal element of the overriding Krížna Nappe. 

The Butkov domain M3 is dominated by a large, 5 km long 

and 1.5 km wide brachyanticline (pericline, i.e. doubly-plun-

ging anticline — see the detailed description by Plašienka et 

al. 2018a) composed of the Jurassic to Lower Albian lime-

stone formations. The Butkov pericline is slightly asymmetric, 

with steeply N-dipping to vertical northern limb and mode-

rately to steeply S-dipping southern limb, affected also by 

S-dipping low-angle normal faults (e.g., Michalík et al. 2012). 

The periclinal closures are indicated by moderately west- and 

east-plunging fold axes. The anticline is transversally trun-

cated by a deep incised valley, apparently developed along  

a vertical transfer fault (Plašienka et al. 2018a). The southern 

limb of the Butkov pericline submerges to the south to south-

east  below  the  frontal  Nozdrovice  imbricates  of  the  Krížna 

Nappe (Figs. 2 and 4).

North of the Butkov pericline, the complexly folded Skalica 

domain M4 consists of two segments axially plunging 

NE-ward, separated by the nearly isometric lens-shaped 

Manín domain M5. The SW segment tightens NE-ward and 

wedges out near Kostolec village. This is also the general 

trend of the axial plunge of the whole domain — the SW part 

exposes the deeper structural levels, which are composed of 

tight antiforms and imbricates of Jurassic–Lower Cretaceous 

limestones surrounded by mid-Cretaceous clastic formations, 

while the tapering NE part is dominantly composed of 

Senonian deposits filling the complicated Lieskov–Praznov 

synform G1 (Figs. 2 and 4). According to Borza et al. (1979), 

the Lower Cretaceous strata of this domain are akin to the Belá 

Subunit  of  the  Fatric  Krížna  Nappe.  Marschalko  &  Kysela 

(1980) described this area as the “Podmanín development” 

with megabreccias of Urgonian limestones within the Lower 

Albian pelagic marlstones and considered them as frontal 

slices or olistoliths of the Fatric Belá Subunit. Structural 

 pattern of this domain and development of the Lieskov–

Praznov synform was presented in the paper by Plašienka et 

al. (2018a).

The Manín domain M5 to the north of the Skalica domain 

includes two large brachyanticlines (Veľký and Malý Manín 

and Drieňovka and Kavčia hills incised by narrow gorges of 

the Manínsky potok stream). The large Manín “klippe” is  

an elongated (ca. 5 km long, 1.5 km wide) brachyantiform 

with SW–NE trending axis and with strongly asymmetric 

 profile — its NW limb is reduced and truncated by a steep 

reverse fault, which provides contact with the adjacent 


Klape Unit (Figs. 2 and 4B). In contrast, the satellite Drieňovka 

pericline to the east is a smaller (1.5 × 0.5 km on the surface), 

sym metric upright open macrofold with moderately dipping 

limbs (Plašienka et al. 2018a). Both antiforms are supported 

by a thick competent layer of massive Urgonian limestones. 

After an interruption by the anticlinal Manín domain, the syn-

clinal zone filled with Senonian sediments forms the NE seg-

ment of the Manín Unit (Hlboké synform  G2; Figs. 2 and 

4A). The synform is squeezed between the backthrust K1–2 

slice of the Klape Unit to the NW and the steeply SE-dipping 

Praznov–Jablonové slice M2 to the SE. It is tightened toward 

NE, where it merges with the P1 Hričov–Žilina sliced zone 

background image




, 2019, 70, 1, 35–61

affected by dextral strike-slipping along the W–E striking 

Bytča–Varín fault zone.

Klape Unit

The Klape Unit consists of five subparallel, lozenge-shaped 

imbrications that are gradually merging and wedging out 

toward the north-east: (1) the southernmost Považská Bystrica 

slice (K1 in Figs. 2 and 4) is adjacent to the Manín Unit;  

(2) the Orlové slice (K2) occupies the central position within 

the Klape Unit, but rapidly wedges out NE-ward; (3) the Nim-

nica–Uhry slice (K3) spreads across meanders of the Nosice 

Dam and disappears underneath fluvial deposits of the Váh 

Valley north-eastward; (4) the Stupné–Hvozdnica slice (K4) 

widens eastward, but probably wedges out below the Váh 

Valley as well; (5) the northernmost, rather wide and complexly 












































































K 5









10 km







Fig. 4. Geological cross-sections of the area. For their location and legend see Fig. 2. Note that sections are vertically exaggerated.

background image




, 2019, 70, 1, 35–61

imbricated Hoštiná–Brvnište zone (K5) also narrows east-

wards. These slices or imbricates may be treated as partial 

units (subunits) of the Klape Unit at the same time, since they 

embrace more-or-less complete lithostratigraphic successions. 

They all join together somewhere below the Váh River depo-

sits  between  Bytča  and  Žilina  (Fig.  4A)  and  then  continue 

eastward into the PKB Kysuca sector NE of Žilina as a single, 

undifferentiated unit.

The  Považská  Bystrica  slice  K1, about 15 km long and  

2 km wide, neighbours the NW margin of the Manín Unit and 

approximates also its macrofold structural style. The southern 

rim of this slice is moderately up to steeply NW-dipping, i.e. 

opposite as a majority of strata dips in the Manín Unit. This 

indicates backthrusting of the Klape Unit, which seems to 

postdate development of NW-verging fold-and-thrust struc-

tures that are characteristic for the Manín Unit. Tight imbri-

cates of Lower Cretaceous marly limestones appear in the area 

SW of Považská Bystrica town, but the K1 domain is predo-

minantly composed of the Klape Flysch deposits dipping 

NW-ward in a normal position. The K1 Klape subunit corre-

sponds to the Podháj Unit in the original meaning of Salaj 


The fault-bounded Rašov synform G3 filled with Senonian–

Lower Eocene sediments occurs along the contact of 


the Považská Bystrica slice with the Orlové slice to the NW. 

The syncline is up to 4 km wide in the area SW of Považská 

Bystrica, but rapidly wedges out towards the NE (Figs. 2  

and 4). The Rašov syncline is the only of the area, to which also 

the Oligocene and Lower Miocene deposits are confined. 

The next Orlové slice K2 is ca 10 km long and up to 4 km 

wide. Its pre-Senonian strata are overturned, with a steep 

monoclinal dip to the NW. Considering their opposite facing 

(younging) directions towards the central Rašov syncline,  

the K1 and K2 slices are interpreted as limbs of a large-scale 

syncline, i.e. they would represent only one partial unit of  

the Klape Unit (Figs. 2, 4B, C).

The  Nimnica–Uhry slice K3 is some 10 km long and  

2.5 km wide. It contains steeply NW-dipping overturned strata 

of the Klape Flysch, including megaolistolith of the Mt. Klapy. 

From the next Stupné–Hvozdnica slice it is separated by  

the narrow Udiča synform G4 filled with Senonian to Lower 

Eocene sediments.

The  Stupné–Hvozdnica K4 and Hoštiná–Brvnište K5 

slices show en echelon arrangement and might be unified in 

one belt, being separated by a narrow antiform exposing  

the Jurassic to Lower Cretaceous strata of the Klape Unit.  

The antiform trends obliquely to the general trend of the belt, 

causing a lateral coulisse-like replacement of both slices, 

which are together some 12 km long and 4 km wide. The wes-

tern Púchov–Brvnište slice carries also the wide Hoštiná syn-

form G5 with Senonian–Palaeogene infill, while the eastern 

Stupné–Hvozdnica slice is attached to the Udiča synform G4 

(Figs 2 and 4). Thus this outer Klape belt may be characterized 

as a complex fold-thrust zone, unlike other Klape subunits 

with typically steeply NW-dipping homoclines, though inter-

nally imbricated and overturned. Being affected by an oblique 

backthrust to strike-slip fault to the NE and E, both K4 and K5 

slices are probably wedging out somewhere near town Bytča.

The contact of the Manín-Klape zone with the External 

Carpathian Flysch Belt is followed by a narrow discontinuous 

zone with slices and lenses of the Oravic units of the PKB s.s. 

(Fig. 2). Both the Subpieniny (Czorsztyn) and Pieniny (Kysuca) 

units occur there with complex mutual relationships. The con-

tact zone appears to be nearly vertical or steeply N-dipping, 

probably affected by important along-strike horizontal or 

oblique movements (Fig. 2). Further to NW, small occurrences 

of Oravic units occur within the Biele Karpaty and Magura 

units. The most spectacular is the Dolná Mariková klippen 

area (Figs. 2 and 4B), which has been interpreted as a nappe 

outlier of the Oravic Kysuca and Czorsztyn units affected by 

superimposed reverse faults and strike-slips (Plašienka et al. 


Between Dolná Mariková and Hvozdnica villages, rock 

complexes of the Šariš Unit as the outermost Oravic element 

of the PKB occur (Brvnište slice of Potfaj in Mello ed. 2005, 

2011). It is formed by the Maastrichtian to Ypresian Jarmuta–

Proč Formation — calcareous sandstones, breccias and seve-

ral olistoliths of Jurassic and Lower Cretaceous limestones 

derived from the overriding Subpieniny Unit (cf. Plašienka 

2012a). South-west of Hoštiná village, the Šariš Unit is late-

rally replaced by the eastward wedging out Javorina Nappe of 

the Biele Karpaty Superunit composed of Campanian red 

shales and Maastrichtian turbiditic sandstones. The underlying 

Bystrica Unit of the Magura Superunit mostly includes calcite- 

poor grey mudstones and siliciclastic turbidites of the Eocene 

Zlín Formation.

Palaeogene synforms

The inner SE margin of the Manín–Klape Peri-Klippen Zone 

is adjoined by several subparallel synclines filled exclusively 

with Palaeogene sediments. In the north, the Hričov–Žilina 

sliced zone P1 (Figs. 2, 3 and 4A) includes Palaeocene–Lower 

Eocene, steeply NW- to N-dipping, often overturned and 

strongly imbricated sediments of the Myjava–Hričov Group. 

Together with the reduced Senonian Hlboké syncline, this 

imbricated zone provides connection to analogous rocks in  

the Varín (Kysuce) PKB sector towards the east (cf. Plašienka 

& Soták 2015).

Southeast of the Praznov–Jablonové slice, the Prečín–

Súľov synform P2 is located (Figs. 2, 3 and 4B). It is 1 to 3 km 

wide, asymmetric syncline filled with mostly massive carbo-

natic  conglomerates  of  the  Lower  Eocene  Súľov  Fm.  and 

Middle Eocene pelagic shales of the Domaniža Fm. (Soták et 

al. 2017). These transgressively, but in general conformably 

overlie Lower Eocene sediments of the Hričov–Žilina imbri-

cated zone in the northern part of the syncline, where the strata 

are overturned, steeply NW-dipping. Toward the SW, bedding 

is subvertical, or steeply to moderately SE-dipping, uncon-

formably overlying steep structures of Cretaceous rocks of  

the Praznov–Jablonové slice (Marschalko & Kysela 1980). 

The south-eastern limb is moderately dipping to the NW, or 

background image




, 2019, 70, 1, 35–61

truncated by NW-vergent reverse faults (Fig. 4A, B). In places 

along  this  eastern  limb,  the  coarse  Súľov  conglomerates 


formably cover the Manín Unit (M1 domain) in 


the northern part and the frontal elements of the Krížna Nappe 

in the southern part (Fig. 2). Apparently, the SSW–NNE trend 

of Palaeogene synclines is slightly oblique with respect to  

the underlying Cretaceous SW–NE structures of the Manín 

and Krížna units.

To the south, the Prečín synform is divided from the adja-

cent Pružina–Domaniža synform P3 by the NE-ward plun-

ging  Malenica–Roháč  antiform  composed  of  the  Fatric  and 

Hronic complexes. The southern periclinal closures of both 

synforms display a coulisse-like arrangement (Figs. 2 and 4). 

The Pružina–Domaniža synform is up to 5 km wide, gentle 

and only slightly asymmetric, though partly fault-bounded 

from the SE side.

The eastward located Rajec synform P4 is already a part of 

the extensive CCPB filled with Bartonian–Oligocene sedi-

ments of the Podtatra Group. Its transgressive Borové Fm. 

unconformably overlies Mesozoic complexes of the Fatric and 

Hronic nappes (Figs. 2 and 4A). In the northern part, SW of 

Žilina, the Podtatra Group covers discordantly younger forma-

tions of the northern parts of the P2 and P3 synforms (Fig. 2). 

The CCPB synforms are wide, gentle and generally sym-

metric, but affected by younger normal faulting.

Tectonic evolution

The PKB proper and the Peri-Klippen Zone are located at 

the backstop of the ancient accretionary wedge that developed 

during the Senonian to Eocene. The wedge was buttressed by 

the CWC basement/cover complexes reinforced by the grani-

toid plutons of the Tatric basement along its outer margin.  

As the wedge grew by frontal accretion, the frontal CWC units 

were gradually transferred from the wedge toe to its rear parts. 

In the final backstop position, the Klape and Manín units were 

strongly compressed and attained their current complicated 

deformation structures. 

Growth stages of the accretionary wedge as revealed by 

 evolution of the Senonian and Palaeogene wedge-top basins

In their synthesis of Cretaceous to Palaeogene syntectonic 

deposits of the Manín and Klape units in the Middle Váh 

Valley, Marschalko & Rakús (1997) distinguished three depo-

sitional megacycles: (1) Albian–Cenomanian progradational 

proximal turbidites with olistoliths (Klape Flysch) terminated 

by paracyclic shallow water sandstones (Orlové Fm) indica-

ting filling-up of the basin; (2) Coniacian–Santonian retrogra-

dational conglomerates and olistostromes with reef bodies; 

and (3) Campanian–Palaeocene megacycle exhibiting progra-

dation  from  hemipelagic  marls  (Púchov  Fm)  into  bioclastic 

allodaps, tempestites and conglomerates with reef bodies. 

Recently, Plašienka & Soták (2015) have differentiated up to 

seven Senonian through Palaeogene sedimentary sequences 

within the second and third megacycles of Marschalko & 

Rakús  (1997). At  the  same  time,  these  sequences  represent 

evolutionary stages of the Gosau basins positioned above  

the developing accretionary wedge (Fig. 3):

Stage 1: following the Late Turonian emplacement event of 

the Fatric (Klape, Manín, Krížna) and later of the Hronic cover 

nappe systems, the Coniacian–Early Santonian fining-upward 

sequence includes basal polymict conglomerates with reef 

bodies, overlain by calcareous sandstones, olistostromes with 

littoral fauna and hemipelagic marls; these sediments are 

interpreted as deposited in the piggyback wedge-top depres-

sions of the accretionary wedge composed of the frontal Fatric 


Stage 2: Late Santonian to Middle Campanian variegated 

hemipelagic marlstones of the “couches rouges” facies 

(CORB-type) record sudden deepening due to an extensional 

collapse of the wedge;

Stage 3: sediments of the Middle Campanian to Cretaceous/

Palaeogene boundary age are represented by neritic marls, 

shallow-water bioclastic limestones, tempestites, calcareous 

sandstones and conglomerates with exotic pebbles and blocks 

of rudists-bearing bioherms; this coarsening- and shallowing- 

upward sequence registers shortening of the wedge by frontal 

accretion of the Oravic units and internal out-of-sequence 


Stage 4: Danian to Early Ypresian period is characterized by 

sedimentary gaps and erosion of older deposits indicating 

transient emersion of the overthickened wedge; terrestrial or 

shallow-marine sediments rich in terrigenous material or olis-

toliths of Thanetian reefs were deposited in the wedge-top 


Stage 5: the base of the new Late Ypresian–Lutetian trans-

gressive cycle involves coarse-grained carbonate breccias and 

conglomerates (Súľov Fm.), which are followed by calcareous 

turbiditic sandstones and bathyal variegated claystones; this 

fining-upward sequence records a gravitational collapse of  

the wedge; 

Stage 6: Bartonian to Early Rupelian — after the Late 

Lutetian gap caused by the renewed shortening and thickening 

of the wedge, a new transgressive cycle is represented by  

a sequence of continental to shallow-water calcareous clastics 

and nummulitic limestones at the base of the extensive CCPB, 

which covered most of the CWC area; then starved sedimenta-

tion of anoxic shales prevailed during the Late Priabonian–

Early Rupelian;

Stage 7: Late Rupelian to Aquitanian — the terrigenous 

input into the CCPB increased gradually, but considerably and 

the basin was probably overfilled during the earliest Miocene. 

As inferred by Plašienka & Soták (2015), these depositional 

cycles closely correspond to those recognized in the coeval 

trench-foredeep basins of the Oravic units that were gradually 

accreted to the wedge tip, despite of partial differences in  

the sedimentary record (Fig. 3). Applying the critical taper 

theory of accretionary wedges, the supercritical, overthickened 

wedge states are recorded by shallow-water sedimentation in 

the wedge-top areas, even with emergence and erosion of 

background image




, 2019, 70, 1, 35–61

older strata, especially when simultaneous global sea-level 

lowstand occurred. Coeval foredeeps were filled mostly with 

coarse-grained gravity deposits produced by increasing erosion 

of the prograding wedge. This scheme concerns the stages  

1, 3, 4 and 6 in particular. On the other hand, the subcritical 

wedge generated by the extensional collapse of overthickened 

wedge gave way to deposition of deep-water pelagic strata  

and equalization of sedimentary environments in both 


the trench-foredeep and wedge-top basins. The subcritical 

wedge states are characteristic for the stage 2 with CORB-type 

sediments, stage 5 with variegated pelagic shales in sedi-

ment-starved basins, and stage 7 characterized by a marked 

subsidence and accumulation of thick clastic deposits in  

the fore-arc CCPB with material derived from the elevated axial 

orogenic zones and from rear parts of the EWC accretionary 

wedge  (Kováč  et  al.  2016).  The  transitional  periods  from  

the subcritical to supercritical wedge are characterized by  

the coarsening-upward sequences, while the fining and 

 dee  pe ning-upward sequences are typical for the contrary 


Structural development

In this chapter a tentative correlation of tectono-sedimentary 

cycles with development of macrostructures of the area and 

mesoscopic deformation stages, which were distinguished on 

the basis of the structural rock record (e.g., Bučová et al. 2010; 

Prokešová et al. 2012; Bučová 2013; Šimonová & Plašienka 

2017; Plašienka et al. 2018a), is attempted. Considering the wide 

age span of various syn-tectonic sediments preserved in  

the area (Albian–Early Miocene), at least the early stages of 

the structural evolution of units present in the area should have 

overlapped in time with the depositional phases obviously 

controlled by tectonics to a great extent. Nevertheless, it is 

problematic to relate the depositional cycles and correspon-

ding wedge states discerned above with the deformation stages 

and their respective structural rock record, because of no direct 

and unequivocal relationships can be postulated.

In general, the supercritical wedge stages would have been 

connected with contractional deformation within the wedge, 

whereas extensional structures are expected for periods with 

the subcritically tapered wedge conditions. However, only  

the uppermost structural levels of the accretionary wedge can 

be analysed, where deformation took place in the brittle field 

exclusively. Under such conditions, the overprinting criteria 

are not always clear and the “absolute” timing of individual 

deformation stages is only possible by precise dating of sedi-

ments affected, and by correlations with other neighbouring 

regions. This was done for the brittle structural record and its 

palaeostress interpretation, but merely from the Oligocene 

onward at the appropriate level of confidence. We can only 

hypothesize that the oldest discerned palaeostress states with 

the generally NW–SE oriented main horizontal compression 

axis might have corresponded to a rather long period of  

the wedge deformation during the Senonian up to the Early 


The Manín and Klape units, treated here as the frontal 

 elements of the CWC Fatric nappe system, were emplaced in 

the present Peri-Klippen position supposedly in the Late Turo-

nian times. Thus they carry also their own pre- and syn-empla-

cement structural record attained during their detachment, 

thrust stacking and final emplacement. This structural asso-

ciation, which can be grouped as the non-genetic D



tion stage, can be correlated with the structural evolution of 

the Krížna Nappe in the CWC areas (cf. Prokešová et al. 2012; 

Plašienka et al. 2018a). In terms of deformation stages, which 

were discerned based on overprinting criteria and changes in 

the operating deformation mechanisms, Plašienka (2012b) and 

Plašienka & Soták (2015) discriminated five main events that 

affected the PKB units in post-emplacement times of the CWC 


•  Deformation stage D


 was related to detachment of the higher 

Oravic units (Pieniny and Subpieniny) from the subducted 

substratum and their accretion to the tip of the prograding 

Western Carpathian orogenic wedge. On the basis of  

the synorogenic sedimentary record, this process lasted 

from the Coniacian stage (Vahic Belice Unit — cf. Plašienka 

2012a) and from the Campanian (Pieniny Unit) up to  

the Maastrichtian (Subpieniny Unit; Fig. 5). In the accre-

tionary wedge formed by the frontal CWC units and their 

piggyback Gosau basins, the D


 stage shortening was pro-

bably accommodated by synsedimentary large-scale folding 

and out-of-sequence thrusting during the wedge taper states 

growing from critical to supercritical, interrupted by occa-

sional extensional collapse events resulting in the subcriti-

cally tapered wedge.

Based on interpretation of the sedimentary record, exten-

sional events occurred three times during the Senonian–

Palaeogene times (Fig. 5). However, this was not really 

recognized in the structural record of the investigated 

region. Supposedly extensional structures of the first 

Campanian event were mostly obliterated or reactivated 

during the superimposed strong compressional deformation. 

In general, the post folding/tilting extensional faults are 

quite common in the investigated region, but they are inter-

preted as accompanying the late, Miocene–Pliocene exten-

sional events. In spite of the absence of good stratigraphic 

markers, it is inferred that a part of these extensional faults 

might have accompanied also older post-folding distension 

phases. Considering data from the Middle Váh Valley, this 

pre-Miocene extensional event can be related to the Lutetian 

collapse in particular.

•  The D


 stage is represented by the so far poorly constrained 

event with structures like minor folds with the NW–SE to 

N–S trending axes and faults developed under the SW–NE 

to W–E operating compression — i.e. the D2 structures 

trend across the older and also younger structures, therefore 

they are sometimes designated as the “cross-folding” event. 

This event should have occurred still before development  

of the dominant macrofold structures in the Manín zone 

(Plašienka et al. 2018a). Its broad-scale kinematic meaning 

remains unclear, however. Possible relationship with the PKB 

background image




, 2019, 70, 1, 35–61

and outer CWC arc formation seems feasible. Tentatively,  

it could have been associated with the incipient oblique col-

lision of the orogenic wedge front with the Oravic conti-

nental ribbon in present western Slovakia. This took place 

around the Cretaceous/Palaeogene boundary, then the overall 

NW–SE to N–S compression and shortening renewed. 

Accordingly, the “cross-folding” D


 stage might have repre-

sented a short-termed, collision-related event during the long- 

time uniform progression of the orogenic wedge. This 

inter pretation is to some extent corroborated by the likely 

absence of these structures in the Šariš Unit accreted during 

the Late Palaeocene–Early Eocene and in the coeval deposits 

of the piggyback Myjava–Hričov Group. Vojtko et al. (2010) 

and Sůkalová et al. (2011) indicated lack of structures gene-

rated by the W–E compression in the CCPB deposits, too.

•  Deformation stage D


 is defined as the main phase of  

the NW–SE to N–S compression (Shmax). Although 


the post-emplacement contraction could have been initiated 

in the Senonian, the analysed structural record suggests that 

the main shortening and development of the general imbri-

cated structural pattern of the area was reached during  

the Palaeocene and Early Eocene. It was related to the accre-

tion of the Šariš Unit during the Palaeocene in western 

Slovakia and to the subsequent enormous growth of 


the EWC wedge during the Eocene–Oligocene times 


(Fig. 5). In the Middle Váh Valley, this is recorded by pre- 

and  syn-tilting  small-scale  structures  (Bučová  2013),  and 

then by development of the principal macrostructures such 

as the Butkov, Manín and Drieňovka periclines and Lieskov 

and Hlboké brachysynforms (Plašienka et al. 2018a). 


The episodic growth of these synclinal basins was mirrored 

by presumably contemporaneous intermittent growth of 

adjacent periclinal elevations, as it is indicated by structural 

analysis of the Butkov fold. After the maximum contraction 

was achieved purely by folding, the subsequent horizontal 

shortening and vertical lengthening was accomplished by 

development of tight imbricates. Steeply SE-dipping reverse 

faults are cutting preferably the northern limbs of slightly 

asymmetric anticlines, like the Butkov and Manín periclines 

(Fig. 4; deformation substage D



Probably after the Lutetian extensional episode, prolonged 

contraction resulted in backthrusting–backtilting, whereby 

most of strata were steepened up to overturned towards  

the south-east (deformation substage D


). At the same time, 

synforms P1–3 in the southerly adjacent Palaeocene–

Lutetian basin formed (Figs. 2 and 4). Both the backthrusts 

Fig. 5. Synopsis of the main deformation stages with their respective palaeostress orientation and relationships to the accretionary wedge 

growth. Palaeostresses are shown by circles with directions of Shmax (black triangles) and Shmin (empty triangles); general vergency of 

syn-emplacement D


 structures is indicated by arrows. Note that the presently measured palaeostress orientations (left column) are corrected 

for the Middle Miocene counter-clockwise block rotation of the Western Carpathians.

background image




, 2019, 70, 1, 35–61

and axes of these synforms are slightly oblique to older D



structural trends. The deformation stage D


 culminated in 

the Late Eocene–Early Oligocene by dextral transpression 

along W–E trending wrench zones with eastward-increasing 

manifestations in the northern and particularly in the eastern 

PKB branch (cf. Ratschbacher et al. 1993; Plašienka 2012b).

After the next, Late Rupelian–Chattian extensional phase 

with the subcritical wedge situation and marked subsidence 

of the CCPB, the general NW–SE orientation of the maxi-

mum horizontal compression axis still persisted. This palaeo-

stress field controlled also the dextral transpression and 

development of Eggenburgian (Early Burdigalian) basins of 

the  wrench-fault  furrow  type  (Kováč  2000)  in  western 

Slovakia. Remnants of Eggenburgian sediments are present 

in the studied area, too, being confined to the underlying 

Rašov syncline G3 (Figs. 2 and 4C).

•  During the late Early and early Middle Miocene, the princi-

pal compression direction gradually rotated into the N–S 

orientation. Deformation stage D


 is characterized by sinis-

tral transpression–transtension along the western, SW–NE 

trending  PKB  branch  (Marko  et  al.  1995;  Kováč  &  Hók 

1996; Pešková et al. 2009; Bučová et al. 2010; Šimonová & 

Plašienka 2011, 2017). This stage was largely coeval with 

the post-Eggenburgian CCW block rotation of the Western 

Carpathian  domain  (see  e.g.,  Kováč  2000  and  references 

therein). It means that all the preceding palaeostress fields 

also rotated CCW during this stage. Consequently, assu-

ming the 50° CCW block rotation of the entire Western 

Carpathian domain (e.g., Márton et al. 2013), the original 

position of the main compression axis was consistently 

orien ted in the N–S direction for a long period from  

the Senonian up to the Lower Miocene epoch (Fig. 5).

•  After the CCW block rotation of the Western Carpathian 

segment of ALCAPA was completed, its NW margin was 

firmly attached to the SE edge of the Bohemian Massif, but 

its NE front still progressed to fill up the space released by 

the retreating subduction of the EWC oceanic lithosphere. 

As a result, the early Middle Miocene period is characte-

rized by the overall N–S to SSW–NNE oriented principal 

horizontal compression axis Shmax giving way to wide-

spread sinistral transtension in western Slovakia (Vienna 

Basin, Blatné and Ilava basins) — stage D


 (Fig. 5).

•  The late Middle Miocene to Pliocene–Quaternary time is cha-

racterized by rifting and general extension (e.g., the Danube 

Basin) with generally NW–SE oriented Shmin in the Middle 

Váh Valley area (stage D


 in Fig. 5).


Present tectonic position of Fatric units in the Peri-Klippen 

Zone and their tentative palinspastic arrangement 

Taking apart the Senonian and younger formations, which 

have been interpreted to represent the post-nappe, Gosau-type 

cover (Plašienka & Soták 2015), the Manín and Klape units 

could represent the integral, though distant frontal elements of 

the Fatric cover nappe system of the CWC. However, the pre-

sent facies distribution of Jurassic to Lower Cretaceous for-

mations does not correspond to the expected palinspastic 

arrangement in the original Fatric depositional area. In a majo-

rity of models going back to Biely & Fusán (1967) and 

Andrusov (1968), the Fatric Krížna nappe system was derived 

from a basinal sedimentary area located between the present 

southern Tatric and northern Veporic margins. The basin 

developed by Early Jurassic rifting of the epi-Variscan conti-

nental crust (e.g., Plašienka 2003a, b) and included the pre-rift 

Permian and Lower Triassic continental clastics, Middle 

Triassic carbonate platform and Upper Triassic clastics and 

evaporites (Carpathian Keuper Formation), syn-rift Lower 

Jurassic shallow marine carbonates with important terrigenous 

input, then Middle Jurassic to Lower Cretaceous post-rift 

sequence of mostly deep marine pelagic and slope deposits, 

and finally mid-Cretaceous synorogenic “flysch” clastics  

(Fig. 3). Orogenic progradation from the south seized the Fatric 

realm in the Albian, when its southern margin against the nor -

t hern Veporic domain was inverted and the attenuated Fatric 

crust was gradually underthrust below the Veporic basement 

wedge during the Late Albian – Early Turonian. Simultaneously, 

the basin fill was detached along the horizon of Lower Triassic 

shales and evaporites and then thrust forward on the foreland 

Tatric domain, until the whole Fatric crust was eliminated 

from the surface and the northern Veporic and southern Tatric 

margin came into collision along the so-called Čertovica Line. 

The structural history and tectonic model of origin of the Fatric 

nappes was presented in papers by Plašienka (1983, 1995c, 

1997, 2003a), Plašienka & Prokešová (1996) and Prokešová et 

al. (2012).

The original configuration of the Fatric domain and archi-

tecture of its sedimentary infill was reconstructed by analyses 

of lithostratigraphic sections in various, presently allochtho-

nous parts of Fatric units, namely the Krížna Nappe, and its 

former Tatric and Veporic margins (e.g., Michalík & Vašíček 

1979; Michalík 1993, 2007; Plašienka 2003a; Prokešová et al. 

2012 and references therein). In general, the central, up to 50 km 

wide zone was occupied by the Zliechov Basin characterized 

by deep marine pelagic sedimentation during the post-rift 

stage, while its margins are outlined by various slope facies 

grading into swell elevations. The cover sediments of the latter 

remained solitary with their basements and currently they 

occur in the northern Veporic (Veľký Bok Unit) and southern 

Tatric  zones  (in  the  Tribeč,  Tatry  and  Nízke  Tatry  Mts.). 

Without going into details, this situation can be illustrated by 

the distribution of some diagnostic formations. For example, 

the Barremian–Aptian shallow water, Urgon-type platform 

development can be followed from the autochthonous position 

(in both depositional and tectonic aspects) in the Tatry Mts. 

(Wysoka Turnia Formation of Lefeld et al. 1985) towards  

the prograding platform edge (Manín and Skalica fms. already 

detached and transported at the tip of the Fatric nappe system 

in the Manín Unit), typical prograding delta and slope facies of 

resedimented platform material (Lúčkovská and Podhorie fms. 

background image




, 2019, 70, 1, 35–61

of the Butkov succession; Muráň Fm. of the Havran partial 

nappe in the Belianske Tatry Mts. — Michalík et al. 1990), up 

to slope-toe proximal to distal calciclastic turbidites occurring 

in the frontal partial units of the Krížna Nappe (Vysoká Unit in 

the Malé Karpaty and Belá Unit in the Strážovské vrch Mts. 

— for the reviews see Michalík & Soták 1990, Michalík 1994 

and Pečeňa & Vojtko 2011). On the other hand, the distinctive 

eupelagic deposits like radiolarites (Ždiar Fm. in Fig. 3) are 

typical for the Zliechov Basin bottom and are widespread in 

the Krížna Nappe (Zliechov succession), whereas they dimi-

nish in thickness and become more calcareous towards the slope 

Butkov succession and completely disappear in the Manín s.s. 

succession (Fig. 6).

As can be seen in Figs. 2 and 3, the Klape Unit does not 

respect this facies polarity, since it crops out in front of  

the Manín Unit, which should otherwise be the outermost ele-

ment according to the above described rules. Despite scarce 

surface occurrences, the Jurassic to Lower Cretaceous sequence 

of the Klape Unit corresponds rather to the deep water Zliechov 

succession, similarly as that of the Drietoma Unit further 

SW-ward. A hypothetic explanation was provided by Plašienka 

(1995a, 2003a), Plašienka & Prokešová (1996) and Prokešová 

et al. (2012) by a diverticulation tectonic model — the Klape 

Unit was derived as the first from the top of the growing Fatric 

accretionary pyramid in the primary area and glided north-

wards over the unconstrained basinal Tatric foreland and 

finally beyond the northern Tatric edge. Subsequently, but still 

during the Late Turonian, the slope-derived Manín, Belá, 

Havran  and Vysoká  units  of  the  Krížna  nappe  system  were 

emplaced,  followed  by  the  main  body  of  the  Krížna  Nappe 

with its typical basinal Zliechov succession. This model of  

the present and original palinspastic settings of the Klape and 

other Fatric units is schematically depicted in Fig. 6.

The thick prisms of the Albian–Cenomanian, Upohlav-type 

conglomerates of the Klape Flysch contain large quantities of 

“exotic” pebble material derived from unrecognized sources, 

traditionally interpreted as the (Ultra)Pieniny Cordillera a.k.a. 

Andrusov  Ridge  (e.g.,  Mišík  &  Sýkora  1981;  Birkenmajer 

1988; Mišík & Marschalko 1988; see also the latest review by 

Mišík & Reháková 2004 and references therein). However, 

some characteristic rocks like Permian granitoids and bimodal 

volcanic rocks with Early Cretaceous cooling ages (Uher & 

Pushkarev 1994; Kissová et al. 2005; Poprawa et al. 2013; 

Krobicki et al. 2018), Middle–Upper Triassic basinal carbo-

nates (Mišík et al. 1977; Birkenmajer et al. 1990), Upper 

Jurassic  shallow-water  limestones  (Mišík  &  Sýkora  1981), 

glaucophanites and other HP/LP metamorphic rocks with  

Late Jurassic isotopic ages (Šímová 1982; Dal Piaz et al. 1995; 

Faryad & Schreyer 1997; Ivan et al. 2006), Urgonian lime-

stones with ophiolitic and blueschist detritus (Mišík & 


Sýkora 1981; Plašienka et al. 2018b), as well as abundance of 

Cr-spinels in heavy mineral fractions of sandstones (Mišík et 

al. 1980; Jablonský et al. 2001; Bellová et al. 2018) all indicate 

the provenance of this material in the southern Carpathian 

zones, where such rocks are only known from the present 

structure. An analogous pebble inventory occurs also in  

the  coeval  conglomerates  of  the  Fatric  (Krížna  Nappe)  and 

Tatric Poruba Fm. (Mišík et al. 1981). On the other hand, no 

such rocks can be found in situ in zone adjacent to the PKB, 

moreover the structure and evolution of the northern Tatric 

margin, which should have neighboured the “exotic ridge”, is 

completely different from what is recorded in the pebble mate-

rial. Therefore Plašienka (1995a, b, 2012a) proposed a model 

of the Fatric affiliation of the Klape Unit, whereby the exotic 

material was derived from the thrust stack in the southern 

CWC zones (including the Meliata-type, ophiolite-bearing 

units) and deposited in the adjacent trench basin filled with 

synorogenic, coarse-grained clastics. This “wildflysch” basin 

was most probably located in the southern part of the Zliechov 

Basin that was gradually shortened and deformed in time of 

synorogenic sedimentation (Albian–Cenomanian) due to under-

thrusting of its attenuated crust below the North Veporic 

wedge tip (see also Plašienka & Prokešová 1996; Kissová et 

al. 2005; Jeřábek et al. 2012; Plašienka 2018a). Another pos-

sible model by Rakús & Marschalko (1997) assumes a large-

scale sinistral strike-slipping along the outer CWC margin that 

brought the Klape and related units to the present position 

from the far eastern areas where the exotic sources were closer 

to the present PKB. Nevertheless, since the latter model is not 

supported by structural or regional tectonic evidence, we are 

still maintaining the hypothetical concept of the southern Fatric 

derivation of the Klape Unit and its Klape Flysch (Fig. 6).

Provenance of olistoliths and distribution of Urgon-type 

 carbonate  platforms 

Olistoliths are treated here as angular sedimentary slide 

blocks, often solitary “klippen”, with dimensions exceeding  

ca. 2–3 m, which are embedded in a much finer-grained matrix 

of different character. Concerning the composition, there are 

several different types of olistoliths existing in the investigated 

area, but basically they occur in four stratigraphic and tectonic 

settings in the Manín and Klape zones of the Middle Váh 

Valley (see also Plašienka  2018a, b):

•  The Palaeocene–Lower Eocene deposits of the Myjava–

Hričov Group contain several conspicuous, deca- to hecto-

metric blocks and numerous smaller boulders of Thanetian 

Kambühel-type algal-coral bioherms (e.g., Buček & Köhler 

2017 and references therein) that were derived from tempo-

rary, later completely destroyed marginal and patch reefs 

(Fig. 3; see also Plašienka & Soták 2015 and references 

therein). Blocks of Urgonian limestones, obviously derived 

from the encircling Manín Unit, are also common.

•  Senonian Gosau formations also include variously sized, 

mostly allochthonous blocks of rudist and algal-coral reefs 

of the same period. Clasts of Urgonian limestones are 

 particularly frequent in the Hlboké synform G2. North  

of  Púchov,  the  Coniacian–Santonian  conglomerates  of  

the Rašov Fm. filling the most external Hoštiná synform  

G5 contain also two decametric olistoliths and numerous 

smaller blocks of Middle Triassic, Wetterstein-type plat-

form limestones. They could have originated only from  

background image




, 2019, 70, 1, 35–61

the Hronic units, although the possible sources are quite 

remote at present (see Fig. 2). It is inferred that they were 

torn off the advancing front of the overthrusting Hronic 

nappes (e.g., the Strážov Nappe dominated by the massive 

Wetterstein carbonates; cf. Havrila 2011) and transported 

towards the foreground depressions.

•  The  Kostolec  Unit  (Súľov  and  Praznov–Jablonové  slices  

of the Manín Unit) is mainly composed of Cenomanian 

Praznov Fm. that carries ten large olistoliths and a number 

of smaller blocks of Jurassic to Lower Cretaceous lime-

stones  (Rakús  &  Marschalko  1997;  Rakús  in  Mello  ed. 

2011). Their lithology is similar to that of the Manín succes-

sion, therefore their local provenance from the Manín Unit 

is very probable. However, unlike the above in situ Gosau 

complexes, derivation and emplacement of the Kostolec 

olistoliths must have occurred in the original sedimentary 

area of the Manín Unit, i.e. far from its actual place, since 

they are surrounded by early Late Cretaceous synorogenic 

flysch deposits. Most probably they represent blocks 

released from the edge of the Urgonian platform that slid 

downslope into bathyal depths of the slope toe, or a mélange-

like complex developed in front of the Krížna Nappe (Belá–

Vysoká Subunit; Fig. 6).

•  The Klape Unit contains only few, but big olistoliths of 

 variegated, mainly Jurassic limestones. The Mt. Klapy 

klippe is the largest one with its long axis measuring almost 

1000 metres. These olistoliths are typical solitary slide 

blocks embedded in hemipelagic or distal turbiditic deposits 

(lower Albian Nimnica and Uhry fms.). Their provenance is 

unknown, a possible solution is proposed in Fig. 6B, based 













Manín s.s.





Krížna – Zliechov








M A N Í N – V Y S O K Á  S L O P E

Z L I E C H O V – K L A P E  B A S I N


Manín s.s.










Veľký Bok


often detached












Fig. 6. The latest Cretaceous (post-D


) arrangement of individual Fatric units in the Peri-Klippen Zone (A) and their inferred palinspastic 

position in the former Fatric sedimentary area (B) shown in approximately NW–SE trending, schematic sections. Not to scale (vertically 

exaggerated). Notice the different types of olistoliths in the Klape and Kostolec units (A). Section (B) depicts a time slice at around 100 Ma 

(Albian/Cenomanian boundary) with onset of shortening at the southern, Veporic margin of the Zliechov Basin. STR — South Tatric Ridge; 

NVM — North Veporic margin; r — radiolarites (Ždiar Fm.). Note that the main part of the Zliechov Basin was much broader, approximately 

50 km wide. Note also that considerable lateral variations occurred along strike the margins of the Zliechov Basin, which cannot be shown in 

one section (cf. Michalík 2007).

background image




, 2019, 70, 1, 35–61

on the inferred southern position of the Klape succession in 

the original Zliechov Basin and similarity of the Jurassic 

olistoliths with the coeval deposits of the Lučatín succession 

of the Veľký Bok cover unit of the northern Veporicum as 

the potential source area (see Plašienka 1995c; Soták & 

Plašienka 1996).

Assuming the proposed palinspastic arrangement of units 

described above, we infer existence of three different domains 

with Upper Barremian–Aptian to Lower Albian platform 

limestones (Urgon-type) in the CWC: (1) the southern, totally 

eroded platform that provided “exotic” pebbles of limestones 

with ophiolitic and blueschist detritus occurring in the Upohlav 

conglomerates of the Klape Flysch (cf. Méres et al. 2015; 

Plašienka et al. 2018b); (2) the central platform was confined 

to the South Tatric Ridge, which separated the Zliechov and  

the  northern  Tatric  Šiprúň  basins,  is  largely  preserved  in  

an autochthonous position in the Tatry (High Tatra) Mts.  

(e.g., Masse & Uchman 1997) and its slope to slope-toe detri-

tus in the northern Fatric units (Manín–Belá–Havran–Vysoká, 

see Fig. 6B); (3) existence of the independent, probably rather 

small northern platform was related to the North Tatric Ridge, 

as indicated by allodapic limestones and olistostromes with 

northern sources occurring in the Tatric Šiprúň-type succes-

sions in the Malé Karpaty Mts. (Solírov Formation — 

Jablonský et al. 1993). 

Still more northern Urgonian platform was indicated in  

the Orava sector of the PKB, where the Nižná Unit was distin-

guished mainly based on the presence of Urgon-like allodapic 

limestones in otherwise deep-water, Kysuca-type succession 

(Scheibner  1967;  Mišík  1990;  Józsa  &  Aubrecht  2008). 

However, there are no signs of Barremian–Aptian allodaps 

with shallow-water bioclastic detritus present in all other 

Pieniny or Kysuca–Branisko successions of the PKB, even 

more there is a general absence of Urgonian platforms on 

flanks of the elevated Czorsztyn Ridge (see e.g., Birkenmajer 

1977).  The  only  exception  might  be  the  Beňatina  klippe  in 

easternmost  Slovakia  (Schlögl  et  al.  2004),  where  Aptian 

allodapic limestones with shallow-water detritus accompany  

a Czorsztyn-like succession. However, it is only a small, tec-

tonically separated exposure with problematic relationship to 

the surrounding formations. In light of this, there seems to be 

no place for an independent Urgonian platform in the Oravic 

domain. In our opinion, the Nižná succession is to a certain 

extent comparable to some Fatric, more distal slope succes-

sions deposited at the foot of the Manín–Vysoká slope facing 

the Zliechov Basin, like for example the Havran succession of 

the Krížna Nappe (Fig. 6B).

Summing up, overview of the results presented in this arti-

cle basically confirms the conception of Michal Maheľ and his 

supporters about the Fatric (Krížna) affiliation of the Manín 

and analogous units and their interpretation as far-travelled 

gliding nappes that were afterwards incorporated into struc-

tures along the northern Tatric edge. There, welded with  

the subsequently accreted Oravic elements, these units attained 

the present complex structural pattern within the Carpathian 

Klippen Belt. Nevertheless, the distant palaeogeographic 

provenance and pre-emplacement history of the Manín and 

other Fatric units with respect to the “classic” PKB Oravic 

units (or PKB s.s.) validate their affiliation to a special PKB 

zone  defined  as  the  Peri-Klippen  Zone  by  Maheľ  (1980).  

The author is aware that this terminology becomes a bit tricky, 

therefore it was proposed to use only one unifying term for 

both the Pieniny Klippen Belt s.s. and the Peri-Klippen Zone 

— the Považie—Pieniny Belt (Plašienka in Froitzheim et al. 

2008). This name combines two areas where the main ideas 

about the lithostratigraphy, structure and evolution of the PKB 

were  developed  —  the  Považie  region  in  western  Slovakia 

(Váh River Valley) with dominating Peri-Klippen Zone, and 

the Polish–Slovak Pieniny Mts. built up of widely and almost 

completely preserved Oravic units.


Referring to the aims of this paper formulated in the intro-

duction, it is concluded that results of the field research, inter-

pretation of kinematics and evolution of observed deformation 

structures, and analyses of sedimentary successions together 

with an inevitable portion of generalization and hypothesizing 

collectively indicate that:

•  The Lower Jurassic to Cenomanian lithostratigraphic suc-

cessions of the Manín and Klape units largely correspond to 

those of other Fatric units, being generally characterized  

by (Fig. 3): (1) early Lower Jurassic syn-rift, mostly shal-

low-water sedimentation influenced by terrigenous input;  

(2) late Early Jurassic up to Early Cretaceous (Hauterivian) 

post-rift pelagic sedimentation controlled by the thermal 

subsidence of a thinned continental lithosphere; (3) growth 

of the Barremian–Aptian, Urgon-type carbonate platform in 

the northern Manín domain and hemipelagic dysoxic 

 sedimentation in the southern Zliechov Basin (including  

the Klape Unit); (4) deposition of syn-orogenic, coarsening- 

upward deep marine clastics in mid-Cretaceous times 

(Albian– Cenomanian) and common cessation of sedimenta-

tion in the Turonian due to commencing orogenic shorte-

ning and nappe thrusting. This evolution and timing of  

the principal tectonostratigraphic events is very much dif-

ferent from those of the PKB Oravic units. Accordingly,  

the palaeogeographic positions of the Fatric and Oravic 

domains were different and remote throughout the Jurassic 

and Early Cretaceous up to the Turonian stage.

•  The Senonian to Lower Eocene formations within the Peri-

Klippen Zone are interpreted as having been deposited in 

wedge-top basins developing in a piggyback position atop 

the developing accretionary wedge composed of the frontal 

Fatric units (Manín, Klape, Drietoma) as a response to sub-

duction of the underlying oceanic lithosphere of the Vahic 

(South Penninic) Ocean. Hence they represent a post-nappe, 

new sedimentary cycle of the Carpathian Gosau-type basins, 

notwithstanding that the time lag between the youngest 

sedi ments of the Manín and Klape units and the oldest over-

stepping sediments is very short, probably representing only 

background image




, 2019, 70, 1, 35–61

the latest Turonian time period (probably less than 1 Myr). 

Coeval synorogenic sediments in the Oravic units form con-

tinuous successions with their underlying Jurassic and 

Cretaceous strata and the late Turonian thrusting event is not 

recorded at all (Fig. 3). Nevertheless, the Senonian to 

Eocene evolution of the trench/foredeep Oravic and 

 wedge-top Gosau basins exhibit close mutual relationships 

control led by the accretionary wedge dynamics, sub duc-

tion–accretion–collision processes and the global sea-level 

changes (cf. Plašienka & Soták 2015).

•  Analyses of macro- and mesostructural rock records reveal 

the polystage structural evolution with the overall NW–SE 

to N–S shortening (deformation stages D


 and D


) during 

the long Meso-Alpidic tectonic period lasting from 


the Seno nian until the Lower Miocene. This period was 

 preceded by the D


 stage related to the nappe emplacement 

of the Manín and Klape units, and interrupted by the kine-

matically different D


 stage. After the Lower-Middle 

Miocene CCW block rotation, the western PKB branch and 

adjacent zones were further affected by sinistral transten-

sion and extension (deformation stages D


, D


 and D


respectively) controlled by the gradually clockwise rotation 

of the palaeostress field.

•  The newly proposed evolutionary tectonic model of 


the inves tigated area assumes that the Manín, Klape and 

other analogous units of the PKB represent frontal elements 

of the Fatric nappe system. During the latest Turonian, these 

nappes glided beyond the northern Tatric edge in a diver-

ticulation manner and reached position of a “false” accre-

tionary wedge above the Vahic oceanic crust that began  

to subduct during the Early Senonian. In this position,  

the Manín and Klape units suffered strong post-emplacement 

deformation, both compressional and extensional triggered 

by the supercritical vs. subcritical wedge taper dynamics. 

Frontally accreted Oravic units (latest Cretaceous–Early 

Eocene) and subsequently also units of the current Flysch 

Belt (Biele Karpaty Superunit during the Middle Eocene; 

the Magura units during the Late Eocene to Early Miocene) 

brought about transfer of the Oravic and Manín–Klape units 

from the wedge front to its rear accompanied by steepening 

up to overturning of pre-existing structures, backthrusting 

and wrench faulting. The PKB remained in this backstop 

position also later, during the complex Miocene orogenic 

movements, including the large-scale CCW rotation of  

the whole Western Carpathian orogenic system with respect 

to the North European Platform.

Acknowledgements and dedication: The authors are indeb-

ted to the Slovak Research and Development Agency for  

the financial support (projects APVV-0212-12 and APVV-17-

0170). This paper is dedicated to Academicians Dimitrij 

 Andrusov (1897–1976) and Michal Maheľ (1920–1999), two 

prominent Carpathian geologists, in honour of their outstan-

ding life-long works which have sown the seeds of our current 

knowledge about the structure and evolution of the Carpathian 

Klippen Belt, particularly in the Middle Váh River Valley. 

Thanks are due to reviewers Edyta Jurewicz, Jozef Michalík 

and  Michał  Krobicki  for  their  valuable  comments  and  sug-

gestions that substantially improved the earlier version of  

the manuscript.


Andrusov D. 1931: Étude géologique de la zone des Klippes internes 

des Carpathes Occidentales, I-iére partie: Introduction, II-iéme 

partie: Stratigraphie (Trias et Lias). Rozpravy Státního geolo­

gického ústavu ČSR 6, 1–167.

Andrusov D. 1938: Étude géologique de la zone des Klippes internes 

des Carpathes Occidentales, IIIe partie: Tectonique. Rozpravy 

Státního geologického ústavu ČSR 9, 1–135.

Andrusov D. 1965: Geologie der tschechoslowakischen Karpaten II. 

Akademie Verlag, Berlin; Verlag der Slowakischen Akademie der 

Wissenschaften, Bratislava, 1–443.

Andrusov D. 1968: Grundriss der Tektonik der Nördlichen Karpaten. 

Verlag der Slowakischen Akademie der Wissenschaften, Brati-

slava, 1–188.

Andrusov D. 1972: Sur l’ampleur de la nappe du Manín (Zone des 

Klippes Piénines, Carpathes Occidentales, Slovaquie). Geolo­

gický zborník — Geol. Carpath. 23, 227–234.

Andrusov D. 1974: The Pieniny Klippen Belt. In: Maheľ M. (ed.), 

Tectonics of the Carpathian-Balkan regions. Dionýz Štúr 

 Geological Institute, Bratislava, 145–158.

Andrusov D. & Scheibner E. 1960: An outline of the present state of 

knowledge about the geology of the Klippen Belt between River 

Vlára and town Tvrdošín. Geologický sborník 11, 239–279  

(in Slovak with English summary).

Aubrecht  R.,  Krobicki  M.,  Sýkora  M.,  Mišík  M.,  Boorová  D.,  

Schlögl J., Šamajová E. & Golonka J. 2006: Early Cretaceous 

hiatus in the Czorsztyn succession (Pieniny Klippen Belt,  

Western Carpathians): submarine erosion or emersion? Annales 

Societatis Geologorum Poloniae 76, 161–196.

Began A. 1969: Geologische Verhältnisse des mittleren Waagtales. 

Zborník geologických vied, rad ZK 11, 55–103 (in Slovak with 

German summary).

Began A. & Salaj J. 1978: New paleogeographical knowledge in  

the Upper Cretaceous and Paleogene of Western and Central  

Slovakia. In: Vozár J. (ed.): Paleogeographical evolution of  

the West Carpathians. Konferencie, Sympóziá, Semináre, Geo­

logical Institute of D. Štúr, Bratislava, 161–174 (in Slovak with 

English summary).

Began A., Borza K., Salaj J. & Samuel O. 1965: On the age of 

 Upohlava  conglomerates.  Geologické práce, Zprávy 36, 123–138.

Began A., Borza K., Köhler E. & Samuel O. 1970: Stratigraphical–

lithological characteristics of the well-log MS-1 (to the NW of 

Považská  Bystrica).  Geologické práce, Správy 53, 131–143  

(in Slovak with English summary). 

Bellová S., Aubrecht R. & Mikuš T. 2018: First results of systematic 

provenance analysis of the heavy mineral assemblages from the 

Albian to Cenomanian exotic flysch deposits of the Klape Unit, 

Tatricum, Fatricum and some adjacent units. Acta Geologica 

Slovaca 10, 45–64.

Bezák V. (ed.) 2004: Tectonic map of Slovak Republic 1:500,000  

+ Explanations. State Geological Institute of D. Stur,  


Biely A. & Fusán O. 1967: Zum Problem der Wurzelzonen der sub-

tatrischen Decken. Geologické práce, Zprávy 42, 51–64.

Birkenmajer K. 1977: Jurassic and Cretaceous lithostratigraphic units 

of the Pieniny Klippen Belt, Carpathians, Poland. Studia 

 Geologica  Polonica 45, 1–159.

background image




, 2019, 70, 1, 35–61

Birkenmajer K. 1986: Stages of structural evolution of the Pieniny 

Klippen Belt, Carpathians. Studia Geologica Polonica 88, 7–32.

Birkenmajer K. 1988: Exotic Andrusov Ridge: its role in plate-tectonic 

evolution of the West Carpathian Foldbelt. Studia Geologica 

 Polonica 91, 7–37.

Birkenmajer K., Kozur H.  & Mock R. 1990: Exotic Triassic pelagic 

limestone pebbles from the Pieniny Klippen Belt of Poland:  

a further evidence for early Mesozoic rifting in West Carpathians. 

Annales Societatis Geologorum Poloniae 60, 3–44.

Boorová D. & Salaj J. 1992: Remarks on the biostratigraphy on the 

Butkov Formation in the Manín Sequence. Geol. Carpath. 43, 


Borza  K.  1970:  Neue  Erkenntnisse  über  Stratigraphie  der  Súľov-

Klippe. Geologické práce, Správy 51, 135–147 (in Slovak with 

German summary).

Borza K. 1980: Lithological–microfacial characteristic of Upper 


Jurassic and Lower Cretaceous sediments of Belá Group 

(Strážovské  vrchy  Mountains).  Geologické práce, Správy 74, 

33–56 (in Slovak with English summary).

Borza K., Köhler E. & Samuel O. 1979: New stratigraphic and tecto-

nic data on Skalica klippe. Geologické práce, Správy 72,  

97–112 (in Slovak with English summary).

Borza K., Köhler E., Began A. & Samuel O. 1980: Belá Group west 

of Bošáca. Geologické práce, Správy 74, 57–63 (in Slovak with 

English summary).

Borza  K.,  Michalík  J.  &  Vašíček  Z.  1987:  Lithological,  biofacial  

and geochemical characterization of the Lower Cretaceous 

 pelagic carbonate sequence of Mt. Butkov (Manín Unit, Western 

Carpathians).  Geologický zborník — Geol. Carpath. 38, 



Buček S. & Köhler E. 2017: Palaeocene reef complex of the Western 

Carpathians. Slovak Geological Magazine 17, 3–163. 

Bučová  J.  2013:  Geological  structure  and  structural  evolution  

of the western part of the Pieniny Klippen Belt. Unpublished 

PhD Thesis, Comenius University in Bratislava, 1–147 


(in Slovak).

Bučová J., Plašienka D. & Mikuš V. 2010: Geology and tectonics of 

the Vršatec klippen area (Pieniny Klippen Belt, western Slova-

kia). In: Christofides G., Kantiranis N., Kostopoulos D.S. & 

Chatzipetros A.A. (eds): Proceedings of the XIX Congress of the 

CBGA, Thessaloniki, Greece. Scientific Annals, School of 

 Geology, Aristotle University of Thessaloniki, Special Volume 

100, 197–207.

Cieszkowski M., Golonka J., Krobicki M., Ślączka A., Oszczypko N., 

Waśkowska A. & Wendorff M. 2009: The Northern Carpathians 

plate tectonic evolutionary stages and origin of olistoliths and 

olistostromes. Geodin. Acta 22, 101–126.

Dal Piaz G.V., Martin S., Villa I.M., Gosso G. & Marschalko R. 1995: 

Late Jurassic blueschist facies pebbles from the Western Car-

pathian orogenic wedge and paleostructural implications for 

Western Tethys evolution. Tectonics 14, 874–885.

Faryad S.W. & Schreyer W. 1997: Petrology and geological signifi-

cance of high-pressure metamorphic rocks occurring as pebbles 

in the Cretaceous conglomerates of the Klippen Belt (Western 

Carpathians, Slovakia). Eur. J. Mineral. 9, 547–562.

Fekete K., Soták J., Boorová D., Lintnerová O., Michalík J. & 

Grabowski J. 2017: An Albian demise of the carbonate platform 

in the Manín Unit (Western Carpathians, Slovakia). Geol.  

Carpath. 68, 385–402. 

Froitzheim N., Plašienka D. & Schuster R. 2008: Alpine tectonics of 

the Alps and Western Carpathians. In: McCann T. (ed.): The 

Geo logy of Central Europe. Volume 2: Mesozoic and Cenozoic. 

Geol. Soc. Publ. House, London, 1141–1232.

Golonka J., Krobicki M., Waśkowska A., Cieszkowski M. & Ślączka 

A. 2015: Olistostromes of the Pieniny Klippen Belt, Northern 

Carpathians. Geol. Mag. 152, 269–286. 

Gross P. 2008: Lithostratigraphy of Western Carpathians: Paleogene 

— Podtatranská Group. State Geological Institute of D. Stur

Bratislava, 1–78 (in Slovak with English summary).

Haško J. 1978: Tectonics of the Klippen Belt in the Kysucká vrcho-

vina Mts. Geologické práce, Správy 70, 123–128 (in Slovak with 

English summary).

Havrila M. 2011: Hronicum: palaeogeography and stratigraphy (late 

Pelsonian – Tuvalian), structuralization and tectonics. Geolo­

gické práce, Správy 117, 7–103 (in Slovak with English sum-


Hók J., Pešková I. & Potfaj M. 2009: Lithostratigraphy and tectonic 

position of the Drietoma Unit (Western part of the Pieniny Klip-

pen Belt, Western Carpathians). Mineralia Slovaca 41, 313–320 

(in Slovak with English summary).

Hovorka D. & Spišiak J. 1988: Mesozoic volcanism of the Western 

Carpathians. Veda Publ.,  Bratislava,  1–263  (in  Slovak).                                                                                     

Ivan P., Sýkora M. & Demko R. 2006: Blueschists in the Cretaceous 

exotic conglomerates of the Klape Unit (Pieniny Klippen Belt, 

Western Carpathians): their genetic types and implications for 

source areas. Geologia 32, 47–63. 

Jablonský J., Michalík J., Plašienka D. & Soták J. 1993: Sedimentary 

environments of the Solírov Formation and correlation with 

Lower Cretaceous turbidites in Central West Carpathians, Slova-

kia. Cretaceous Res. 14, 613–621.

Jablonský J., Sýkora M. & Aubrecht R. 2001: Detritic Cr-spinels in 

Mesozoic sedimentary rocks of the Western Carpathians (over-

view of the latest knowledge). Mineralia Slovaca 33, 487–498 

(in Slovak with English summary).

Janočko  J.  (ed.)  2000:  Explanations  to  the  geological  map  of  the 

Spišská Magura Mts 1:50,000. Geological Survey of Slovak 

 republic, D. Štúr Publishers, Bratislava, 1–174 (in Slovak with 

English summary).

Jeřábek  P.,  Lexa  O.,  Schulmann  K.  &  Plašienka  D.  2012:  Inverse 

 ductile thinning via lower crustal flow and fold-induced doming 

in the West Carpathian Eo-Alpine collisional wedge. Tectonics 

31, TC5002.

Józsa  Š.  &  Aubrecht  R.  2008:  Barremian-Aptian  erosion  of  the 

 Kysuca–Pieniny trough margin (Pieniny Klippen Belt, Western 

Carpathians). Geol. Carpath. 59, 103–116.

Kissová D., Dunkl I., Plašienka D., Frisch W. & Marschalko R. 2005: 

The Pieninic exotic cordillera (Andrusov Ridge) revisited: new 

zircon FT ages of granite pebbles from Cretaceous flysch con-

glomerates of the Pieniny Klippen Belt (Western Carpathians, 

Slovakia). Slovak Geological Magazine 11, 17–28.

Köhler E. & Buček S. 2000: Occurrence of the Maastrichtian Jarmuta 

Formation in the Haligovce succession (The Pieniny Klippen 

Belt). Geologické Práce, Správy 104, 72–75 (in Slovak with En-

glish summary).

Köhler E. & Buček S. 2005: Paleocene reef limestones near Veľký 

Lipník (Pieniny Mts., NE Slovakia): Facial environments and 

biogenic components. Slovak Geological Magazine 11, 249–267.

Kovács  S.,  Sudar  M.,  Grădinaru  E.,  Gawlick  H.-J.,  Karamata  S.,  

Haas J., Péró Cs., Gaetani M., Mello J., Polák M., Aljinović D., 

Ogorelec B., Kolar-Jurkovšek T., Jurkovšek B. & Buser S.  

2011: Triassic evolution of the tectonostratigraphic units of  

the Circum-Pannonian region. Jahrb. geol. Bundes anst. 151, 


Kováč M. 2000: Geodynamic, palaeogeographic and structural evolu-

tion of the Carpathian-Pannonian region during the Miocene: 

new view on the Neogene basins of Slovakia. Veda Publ.

Bratislava, 1–202 (in Slovak).

Kováč M., Plašienka D., Soták J., Vojtko R., Oszczypko N., Less Gy., 

Ćosović  V.,  Fügenschuh  B.  &  Králiková  S.  2016:  Paleogene 

 palaeogeography and basin evolution of the Western Carpathians, 

Northern Pannonian domain and adjoining areas. Global Planet. 

Change 140, 9–27.

background image




, 2019, 70, 1, 35–61

Kováč M., Márton E., Oszczypko N., Vojtko R., Hók J., Králiková S., 

Plašienka D., Klučiar T., Hudáčková N. & Oszczypko-Clowes M. 

2017: Neogene palaeogeography and basin evolution of the 

Western Carpathians, Northern Pannonian domain and adjoining 

areas. Global Planet. Change 155, 133–154.

Kováč P. & Hók J. 1996: Tertiary development of the western part of 

Klippen Belt. Slovak Geological Magazine 2, 96, 136–149.

Krobicki M., Poprawa P., Nejbert K., Armstrong R. & Pécskay Z. 

2018: New geochemical and geochronological data of magmatic 

and sub-volcanic exotic rocks from the Late cretaceous and 

 paleogene gravelstones (Pieniny Klippen Belt, Carpathians, 

 Poland). In Šujan M., Csibri T., Kiss P. & Rybár S. (eds): Envi-

ronmental, Structural and Stratigraphical Evolution of the Wes-

tern Carpathians. Abstract Book 11th ESSEWECA Conference, 

November 29–30, 2018, Bratislava, 54–55.

Książkiewicz M. 1977: The tectonics of the Pieniny Klippes Belt. In: 

Książkiewicz M., Oberc J. & Pożaryski W. (eds): Geology of 

Poland, Volume 4 Tectonics. Publ. House Wydawnictwa geolo­

giczne, Warsaw, 519–552.

Kysela J., Marschalko R. & Samuel O. 1982: Lithostratigraphical 

classification of Upper Cretaceous sediments of the Manín Unit. 

Geologické práce, Správy 78, 143–167 (in Slovak with English 


Lefeld J., Gażdzicki A., Iwanow A., Krajewski K. & Wójcik K. 1985: 

Jurassic and Cretaceous lithostratigraphic units of the Tatra 

Mountains. Studia Geologica Polonica 84, 5–93.

Leško  B.,  Babák  B.,  Borovcová  D.,  Boučková  B.,  Dubecký  K., 

Ďurkovič  T.,  Faber  P.,  Gašpariková  V.,  Harča  V.,  Köhler  E., 

Kuděra L., Kullmanová A., Okénko J., Planderová E., Potfaj M., 

Samuel  O.,  Slámová  M.,  Slanina  V.,  Summer  J.,  Sůrová  E., 

 Štěrba L. & Uhman J. 1982: Basic borehole Lubina-1. Regio­

nálna geológia Západných Karpát 17, 1–116 (in Slovak).

Lexa J. (ed.) 2000: Geological map of the Western Carpathians and 

adjacent areas 1:500,000. Geological Institute of D. Štúr


Maheľ M. 1978: Manín tectonic unit; relations of the Klippen Belt 

and Central West Carpathians. Geologický zborník — Geol. 

 Carpath. 29, 197–214.

Maheľ M. 1980: The Peri-klippen zone: nearer characterization and 

significance.  Mineralia Slovaca 12, 193–207 (in Slovak with 

English summary).

Maheľ M. 1981: Island character of Klippen Belt; Vahicum — conti-

nuation of Southern Penninicum in West Carpathians. Geolo­

gický zborník — Geol. Carpath. 32, 293–305.

Maheľ M. 1983: Krížna nappe, example of polyfacial and polystruc-

tural unit. Mineralia Slovaca 15, 193–216 (in Slovak with 

 English  summary).

Maheľ M. 1985: Geological structure of the Strážovské vrchy Moun-

tains. Geological Institute of D. Štúr, Bratislava, 1–221 (in Slo-

vak with English summary).

Maheľ M. 1986: Geological structure of the Czechoslovak Carpathians. 

Volume 1 Palaeoalpine units. Veda Publ., Bratislava, 1–503  

(in Slovak).

Maheľ M. 1989: The Klippen Belt from the aspect of the geodynamic 

model. Mineralia Slovaca 21, 99–108 (in Slovak with English 


Marko F., Plašienka D. & Fodor L. 1995: Meso-Cenozoic tectonic 

stress fields within the Alpine-Carpathian transition zone: 



a review. Geol. Carpath. 46, 19–27.

Marschalko R. 1986: Evolution and geotectonic significance of the 

Klippen Belt Cretaceous flysch in the Carpathian megastructure. 

Veda Publ., Bratislava, 1–140 (in Slovak with English summary).

Marschalko R. & Kysela J. 1980: Geology and sedimentology of the 

Klippen  Belt  and  Manín  Unit  between  Žilina  and  Považská 

Bystrica. Západné Karpaty, séria Geológia 6, 7–79 (in Slovak 

with English summary).

Marschalko R. & Rakús M. 1997: Development of the Cretaceous 

flysch in the Klape unit and the recyclicity problem of the clastic 

material. In: Plašienka, D., Hók, J., Vozár, J. & Elečko, M. (eds): 

Alpine evolution of the Western Carpathians and related areas. 

Geological Survey of Slovak Republic, Bratislava, 71–78.

Márton E., Grabowski J., Plašienka D., Túnyi I., Krobicki M., Haas J. 

& Pethe M. 2013: New paleomagnetic results from the Upper 

Cretaceous red marls of the Pieniny Klippen Belt, Western Car-

pathians: Evidence for general CCW rotation and implications 

for the origin of the structural arc formation. Tectonophysics 

592, 1–13.

Masse J.-P. & Uchman A. 1997: New biostratigraphic data on the 

 Early Cretaceous platform carbonates of the Tatra Mountains, 

Western Carpathians, Poland. Cretaceous Res. 18, 713–729.

Matějka A. 1932: Contribution to the geology of the left Váh riverside 

between Ilava and Trenčín. Věstník Státního geologického ústavu 

8, 107–113 (in Czech).

Matějka A. 1961: On the Haligovce Mesozoic and Paleogene. Zprávy 

o geologických výzkumech v roce 1959, ÚÚG Praha, 129–130 

(in Czech).

Matějka A. & Andrusov D. 1931: Aperçu de la géologie des Carpathes 

occidentales de la Slovaquie central et des régions avoisinantes. 

Knihovna Státního geologického ústavu 13A,  19–163.

Mello J. (ed.) 2005: Geological map of the Middle Váh Valley  

1:50,000. State Geological Institute of D. Stur, Bratislava.

Mello J. (ed.) 2011: Explanations to the geological map of the Middle 

Váh Valley 1:50,000. State Geological Institute of D. Stur

Bratislava, 1–378 (in Slovak with English summary).

Méres Š., Sýkora M., Plašienka D., Ivan P. & Lačný A. 2015: Two 

stages of blueschists exhumation in the Western Carpathians 

constrained by the sedimentary age of their erosional products 

(Klape Unit, Pieniny Klippen Belt). Abstract Book, Internat. Conf. 

CETEG 2015, Kadaň, Czech Republic, April 22–25, 2015, 60.

Michalík J. 1993: Mesozoic tensional basins in the Alpine–Carpathian 

shelf. Acta Geol. Hung. 36, 395–403.

Michalík J. 1994: Lower Cretaceous carbonate platform facies, 

 Western  Carpathians.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 

111, 263–277.

Michalík J. 2007: Sedimentary rock record and microfacies indicators 

of the latest Triassic to mid-Cretaceous tensional development of 

the Zliechov Basin (Central Western Carpathians). Geol. 

 Carpath. 58, 443–453.

Michalík J. & Soták J. 1990: Lower Cretaceous shallow marine build-

ups in the Western Carpathians and their relationship to pelagic 

facies. Cretaceous Res. 11, 211–227.

Michalík J. & Vašíček Z. 1979: To the problems with palinspastic and 

paleogeographic reconstruction of the Lower Cretaceous sedi-

mentary  basin  of  Krížna-nappe  in  the  Strážov  Mountains.  In: 

Maheľ M. (ed.): Important problems of the geological evolution 

and structure of Czechoslovakia; the key areas and methods of 

their investigations. Geological Institute of D. Štúr, Bratislava, 

265–290 (in Slovak with English summary).

Michalík J. & Vašíček Z. 1984: To the Early Mid Cretaceous West 

Carpathian development: the age and environmental position of 

the ”Skalica Breccia”. Geologický zborník — Geol. Carpath. 35, 


Michalík J. & Vašíček Z. 1987: Geology and stratigraphy of the But-

kov Lower Cretaceous limestone deposits, Manín Unit, Middle 

Váh Valley (Western Slovakia). Mineralia Slovaca 19, 115–134 

(in Slovak with English summary).

Michalík J., Soták J., Baráth I. & Vašíček Z. 1990: Remarks to the 

 lithology, stratigraphy and biofacies of the Muráň limestone for-

mation, its position both in the Lower Cretaceous sequence and 

in the West Carpathian sedimentary area. In: Sýkora M., Jablonský 

J. & Samuel O. (eds): Sedimentological problems of the Western 

Carpathians. Konf. Symp. Sem., GÚDŠ, Bratislava, 31–43.

background image




, 2019, 70, 1, 35–61

Michalík J., Lintnerová O., Reháková D., Boorová D. & Šimo V. 

2012: Early Cretaceous sedimentary evolution of a pelagic basin 

margin (the Manín Unit, central Western Carpathians, Slovakia). 

Cretaceous Res. 38, 68–79.

Michalík J., Vašíček Z., Boorová D., Golej M., Halásová E., Hort P., 

Ledvák P., Lintnerová O., Měchová L., Šimo V., Šimonová V., 

Reháková D., Schlögl J., Skupien P., Smrečková M., Soták J. & 

Zahradníková B. 2013: The Butkov Hill – a stone archive of 

 Slovakian mountains and the Mesozoic sea life history. Veda 

Publ., Bratislava, 1–164.

Mišík M. 1990: Urgonian facies in the West Carpathians. Knihov­

nička Zemního plynu a nafty 9a, 25–54.

Mišík M. 1994: The Czorsztyn submarine ridge (Jurassic–Lower 

 Cretaceous, Pieniny Klippen Belt): An example of a pelagic 

swell. Mitteilungen der Österreichischen Geologischen Gesell­

schaft 86 (1993), 133–140.

Mišík M. & Marschalko R. 1988: Exotic conglomerates in flysch se-

quences: examples from the West Carpathians. In: Rakús, M., 

Dercourt, J. & Nairn, A.E.M. (eds): Evolution of the northern 

margin of Tethys, Volume 1. Mémoires de la Société Géologique 

de France, Nouvelle Série 154, 95–115.

Mišík M. & Reháková D. 2004: Psephitic rocks (gravels, breccias, 

conglomerates) of the Western Carpathians. Veda Publ., Brati-

slava, 1–132 (in Slovak).

Mišík  M.  &  Sýkora  M.  1981:  Der  pieninische  exotische  Rücken, 

 rekonstruiert aus Geröllen karbonatischer Gesteine kretazischer 

Konglomerate der Klippenzone und der Manín-Einheit. Západ­

né Karpaty, sér. geológia 7, 7–111 (in Slovak with German sum-


Mišík M., Mock R. & Sýkora M. 1977: Die Trias der Klippenzone der 

Karpaten. Geologický zborník — Geol. Carpath. 28, 27–69.

Mišík M., Jablonský J., Fejdi P. & Sýkora M. 1980: Chromian and 

ferrian spinels from Cretaceous sediments of the West Carpa-

thians. Mineralia Slovaca 12, 209–228. 

Mišík M., Jablonský J., Mock R. & Sýkora M. 1981: Konglomerate 

mit exotischem Material in dem Alb der Zentralen Westkarpaten 

– paläographische und tektonische Interpretation. Acta  Geolo gica 

et Geographica Universitatis Comenianae, Geologica 37, 5–55. 

Nemčok  J.  1980:  Non-traditional  view  of  East-Slovakian  Klippen 

Belt. Geologický zborník — Geol. Carpath. 31, 563–568.

Nemčok J., Zakovič M., Gašpariková V., Ďurkovič T., Snopková P., 

Vrana K. & Hanzel V. 1990: Explanations to the geological map 

of Pieniny, Ľubovnianska vrchovina highland and Čergov Mts.  

1:50,000. D. Štúr Institute of Geology, Bratislava, 1–132 (in Slo-

vak with English summary).

Oszczypko N. & Oszczypko-Clowes M. 2009: Stages in the Magura 

Basin: a case study of the Polish sector (Western Carpathians). 

Geodin. Acta 22, 83–100.

Oszczypko N., Ślączka A., Oszczypko-Clowes M. & Olszewska B. 

2015: Where was the Magura Ocean? Acta Geologica Polonica 

65, 319–344.

Pečeňa Ľ. & Vojtko R. 2011: New knowledge about the geological 

setting of the Fatric Unit near Valaská Belá village (Strážovské 

vrchy Mts., Western Carpathians). Mineralia Slovaca 43, 19–30 

(in Slovak with English summary).

Pelech O., Soták J. & Hók J. 2012: Geological setting of the Patrovec 

block  in  the  Považský  Inovec  Mts.,  Western  Carpathians. 

 Mineralia  Slovaca 44, 231–240.

Pelech O., Hók J. & Józsa Š. 2017: Turonian–Santonian sediments in 

the Tatricum of the Považský Inovec Mts. (Internal Western Car-

pathians, Slovakia). Austrian J. Earth Sci. 110, 21–35.

Pešková  I., Vojtko  R.,  Starek  D.  &  Sliva  Ľ.  2009:  Late  Eocene  to 

Quaternary deformation and stress field evolution of the Orava 

region (Western Carpathians). Acta Geologica Polonica 59, 73–91.

Picha F.J., Stráník Z. & Krejčí O. 2006: Geology and hydrocarbon 

resources of the Outer Western Carpathians and their foreland, 

Czech Republic. In: Golonka J. & Picha F.J. (eds): The Carpa-

thians and their foreland: Geology and hydrocarbon resources. 

AAPG Memoir 84, 49–175.

Plašienka D. 1983: Kinematic assessment of some structures of the 

Northern  Veporic  in  relation  to  the  generation  of  the  Krížna 

nappe. Mineralia Slovaca 15, 217–231 (in Slovak with English 


Plašienka D. 1991: Mesozoic tectonic evolution of the epi-Variscan 

continental crust of the Western Carpathians — a tentative model. 

Mineralia Slovaca 23, 447–457.

Plašienka D. 1995a: Mesozoic evolution of Tatric units in the Malé 

Karpaty and Považský Inovec Mts.: Implications for the position 

of the Klape and related units in western Slovakia. Geol. 

 Carpath. 46, 101–112.

Plašienka D. 1995b: Passive and active margin history of the northern 

Tatricum (Western Carpathians, Slovakia). Geol. Rundsch. 84, 


Plašienka, D., 1995c. Cleavages and folds in changing tectonic 

 regimes: the Veľký Bok Mesozoic cover unit of the Veporicum 

(Nízke Tatry Mts., Central Western Carpathians). Slovak 

 Geological  Magazine 2, 95, 97–113.

Plašienka D. 1997: Cretaceous tectonochronology of the Central 

Western Carpathians (Slovakia). Geol. Carpath. 48, 99–111.

Plašienka D. 2003a: Development of basement-involved fold and thrust 

structures exemplified by the Tatric-Fatric-Veporic nappe sys-

tem of the Western Carpathians. Geodin. Acta 16, 21–38.

Plašienka D. 2003b: Dynamics of Mesozoic pre-orogenic rifting in 

the Western Carpathians. Mitteilungen der Österreichischen 

 Geologischen  Gesellschaft 94 (2001), 79–98.

Plašienka D. 2012a: Jurassic syn-rift and Cretaceous syn-orogenic, 

coarse-grained deposits related to opening and closure of the 

 Vahic (South Penninic) Ocean in the Western Carpathians —  

an overview. Geol. Quarterly 56, 601–628.

Plašienka D. 2012b: Early stages of structural evolution of the 

 Carpathian Klippen Belt (Slovakian Pieniny sector). Mineralia 

Slovaca 44, 1–16.

Plašienka D. 2018a: Continuity and episodicity in the early Alpine 

tectonic evolution of the Western Carpathians: How large-scale 

processes are expressed by the orogenic architecture and rock 

record data. Tectonics 37, 2029–2079.

Plašienka D. 2018b: The Carpathian Klippen Belt and types of its 

klippen — an attempt at a genetic classification. Mineralia 

 Slovaca 49, 1–24.

Plašienka D. & Prokešová R. 1996: Towards an evolutionary tectonic 

model of the Krížna cover nappe (Western Carpathians, Slova-

kia). Slovak Geological Magazine 3–4, 97, 279–286.

Plašienka D. & Soták J. 2015: Evolution of Upper Cretaceous — 

 Paleogene synorogenic basins in the Pieniny Klippen Belt and 

adjacent zones (Western Carpathians, Slovakia): tectonic con-

trols over a growing orogenic wedge. Annales Societatis 

Geologorum Poloniae 85, 43–76.

Plašienka D., Grecula P., Putiš M., Kováč M. & Hovorka D., 1997a: 

Evolution and structure of the Western Carpathians: an over-

view. In: Grecula, P., Hovorka, D. & Putiš, M. (eds): Geological 

evolution of the Western Carpathians. Mineralia Slovaca, Mono­

graph, Bratislava, 1–24a-i.

Plašienka D., Havrila M., Michalík J., Putiš M. & Reháková D. 

1997b: Nappe structure of the western part of the Central Car-

pathians, In: Plašienka D., Hók J., Vozár J. & Elečko M. (eds): 

Alpine evolution of the Western Carpathians and related areas. 

Geological Survey of Slovak Republic, D. Štúr Publishers

Bratislava, 139–161.

Plašienka D., Sýkora M., Aubrecht R, Krobicki M. & Józsa Š. 2010: 

Reinterpretation of the lithostratigraphy and tectonic position of 

the Mariková Klippen (Middle Váh Valley, western Slovakia). 

Acta Geologica Slovaca 2, 1–9.

background image




, 2019, 70, 1, 35–61

Plašienka D., Michalík J., Soták J. & Aubrecht R. 2017: Discussion of 

“Olistostromes of the Pieniny Klippen Belt, Northern Carpa-

thians”. Geol. Mag. 154, 187–192.

Plašienka D., Šimonová V. & Bučová J. 2018a: Nucleation and ampli-

fication of doubly-plunging anticlines: the Butkov pericline case 

study (Manín Unit, Western Carpathians). Geol. Carpath. 69, 


Plašienka  D.,  Méres  Š.,  Ivan  P.,  Sýkora  M.,  Soták  J.,  Lačný  A., 

 Aubrecht R., Bellová S. & Potočný T. 2018b: Meliatic blueschists 

and their detritus in Cretaceous sediments: New data constrain-

ing tectonic evolution of the West Carpathians. Swiss J. Geosci.

Polák M. (ed.) 2008: General geological map of the Slovak Republic 

1:200,000. Map sheet 26 – Žilina. Ministry of Evironment of Slo­

vak RepublicState Geological Institute of D. Stur, Bratislava.

Poprawa P., Krobicki M., Nejbert K., Armstrong R. & Pécskay Z. 

2013: Exotic magmatic rocks from Cretaceous and Paleogene 

pebbly mudstones of the Pieniny Klippen Belt — new geoche-

mical and geochronological data (U-Pb SHRIMP and K/Ar).  

In Krobicki M. & Feldman-Olszewska A. (eds): V Polska Kon-

ferencja Sedymentologiczna POKOS 5´2013, 16–19.05.2013, 

Żywiec, Abstracts, 211–214 (in Polish).

Potfaj M. (ed.) 2008: General geological map of the Slovak Republic 

1:200,000. Map sheet 25 – Bytča. Ministry of Evironment of Slo­

vak Republic, State Geological Institute of D. Stur, Bratislava.

Prokešová R., Plašienka D. & Milovský R. 2012: Structural pattern 

and  emplacement  mechanisms  of  the  Krížna  cover  nappe 

 (Western Carpathians, Slovakia). Geol. Carpath. 63, 13–32.

Rakús  M.  1965:  Zur  biotratigraphie  der  Jura-Schichten  in  der 

 Kostelecer  Klippe.  Geologické práce, Správy 37, 163–177 (in 

Slovak with German summary).

Rakús  M.  1975:  Variegated  Upper  Cretaceous  “couches  rouges”  

in the Manín nappe. Geologické práce, Správy 63, 211–213  

(in Slovak).

Rakús  M.  1997:  Stop  2  Manín  klippe,  In: Alpine  evolution  of  the 

Western Carpathians and related areas. International Conference 

100th anniversary of Dimitrij Andrusov, Bratislava, Programme 

and Excursion guide, 6–11.

Rakús M. & Hók J. 2005: The Manín and Klape units: Lithostratigra-

phy, tectonic classification, paleogeographic position and rela-

tionship to Váhicum. Mineralia Slovaca 37, 9–26 (in Slovak 

with English summary).

Rakús M. & Marschalko R. 1997: Position of the Manín, Drietoma 

and Klape units at the boundary of the Central and Outer Car-

pathians. In: Plašienka D., Hók J., Vozár J. & Elečko M. (eds): 

Alpine evolution of the Western Carpathians and related areas. 

Geological Survey of Slovak Republic, Bratislava, 79–97.

Rakús M. & Ožvoldová L. 1999: On the age of radiolarites from the 

Manín Unit (Butkov Klippe, Middle Váh valley, Western Car-

pathians). Mineralia Slovaca 31, 79–86. 

Ratschbacher L., Frisch W., Linzer H.-G., Sperner B., Meschede M., 

Decker  K.,  Nemčok  M.,  Nemčok  J.  &  Grygar  R.  1993:  The 

 Pieniny Klippen Belt in the Western Carpathians of northeastern 

Slovakia: structural evidence for transpression. Tectonophysics 

226, 471–483.

Salaj J. 1962: Mikrobiostratigraphische Studien der Kreide in der 

Krížna-  und  Manín-Einheit.  Geologické práce, Zošit 62, 

 245–259 (in Slovak with German summary).

Salaj J. 1982: Mesozoic palaeogeographic development in the 

north-western part of the West Carpathians of Slovakia. Palaeo­

geogr. Palaeoclimatol. Palaeoecol. 39, 302–229.

Salaj J. 1990: Geological structure of the Klippen and Periklippen 

zones in the Middle Váh river valley and lithological classi-

fication of Cretaceous sediments from the newly defined 

 sequences.  Mineralia Slovaca 22, 155–174 (in Slovak with 

 English  sum mary).

Salaj J. 1994a: Geology of Middle Váh valley, Klippen and Periklip-

pen  belt,  Súľov  Paleogene  and  Mesozoic  of  northern  part  of 

Strážovské  vrchy  hills  —  part  1.  Zemní plyn a nafta 39, 3, 

 195–291 (in Slovak with English summary).

Salaj J. 1994b: Geology of Middle Váh valley, Klippen and periklip-

pen  belt,  Súľov  Paleogene  and  Mesozoic  of  northern  part  of 

Strážovské  vrchy  hills  —  part  2.  Zemní plyn a nafta 39, 4, 

 197–395 (in Slovak with English summary).

Salaj J. 1995: Geology of Middle Váh valley, Klippen and periklippen 

belt,  Súľov  Paleogene  and  Mesozoic  of  northern  part  of 

Strážovské vrchy hills — part 3. Zemní plyn a nafta 40, 1, 3–51 

(in Slovak with English summary).

Salaj J. 2006: Microbiostratigraphy of the Gosau development in the 

Klape Unit, Western Carpathian Paleoalpine accretionary belt. 

Mineralia Slovaca 38, 1–6.

Salaj J. & Began A. 1963. Zur faziellen und mikrobiostratigra-

phischen Entwicklung der Oberkreide in der Klippenzone. Geo­

logické práce, Zprávy 30, 113–120 (in Slovak with German 


Salaj J. & Began A. 1983: Senonian and Paleogene palaeogeogra phic 

and tectonic development of the Myjavská Pahorkatina Upland 

(West Carpathians, Czechoslovakia). Zitteliana 10, 173–181.

Salaj J. & Samuel O. 1963: Contribution to the stratigraphy of Creta-

ceous of the Klippen Belt and Central West Carpathians. 

 Geologický sborník 14, 109–125.

Salaj J. & Samuel O. 1966: Foraminifera der Westkarpaten-Kreide. 

Geological Institute of D. Štúr, Bratislava, 1–231.

Samuel O. 1972: Remarks on the lithological-facial and stratigraphi-

cal division of the Paleogene of the Klippen Belt. Geologické 

práce, Správy 59, 285–299 (in Slovak with English summary).

Scheibner E. 1967: Nižná Subunit – new stratigraphical sequence of 

the Klippen Belt (West Carpathians). Geologický sborník 18, 


Scheibner E. 1968a: Carpathian Klippen Belt. In: Maheľ M. & Buday 

T. (eds): Regional geology of Czechoslovakia. Volume 2  Western 

Carpathians. Akademie, Praha, 304–371.

Scheibner E. 1968b: Contribution to the knowledge of the Palaeogene 

reef-complexes of the Myjava – Hričov – Haligovka zone (West 

Carpathians). Mitteilungen der Bayerischen Staatssammlung für 

Paläontologie und Historische Geologie 8, 67–97.

Scheibnerovci E. & V. 1958: Über das Alter der Praznowerschichten 

im Waagtal. Geologický sborník SAV 9, 40–50 (in Slovak with 

German summary).

Schlögl  J.,  Rakús  M.,  Krobicki  M.,  Matyja  B.A., Wierzbowski A., 

Aubrecht  R.,  Sitár  V.  &  Józsa  Š.  2004:  Beňatina  Klippe  — 

 lithostratigraphy, biostratigraphy, palaeontology of the Jurassic 

and Lower Cretaceous deposits (Pieniny Klippen Belt, Western 

Carpathians, Slovakia). Slovak Geological Magazine 10, 


Schmid S.M., Bernoulli D., Fügenschuh B., Matenco L., Schefer S., 

Schuster R., Tischler M. & Ustaszewski K. 2008: The Alpine–

Carpathian–Dinaridic orogenic system: correlation and evolu-

tion of tectonic units. Swiss J. Geosci. 101, 139–183.

Soták J. & Plašienka D. 1996: Upper Triassic–Lower Jurassic sedi-

ments of the Lučatín unit in the Northern Veporicum: facial di-

versity and tectonic stacking. Slovak Geological Magazine 3–4, 

96, 273–277.

Soták J., Pereszlényi M., Marschalko R., Milička J. & Starek D. 2001: 

Sedimentology and hydrocarbon habitat of the submarine-fan 

deposits of the central Carpathian Paleogene Basin (NE Slova-

kia). Mar. Petrol. Geol. 18, 87–114.

Soták J., Pulišová Z., Plašienka D. & Šimonová V. 2017: Stratigra phic 

and tectonic control of deep-water scarp accumulation in Paleo-

gene synorogenic basins: a case study of the Súľov Conglomer-

ates (middle Váh Valley, Western Carpathians). Geol. Carpath

68, 403–418.

background image




, 2019, 70, 1, 35–61

Stur D. 1860: Bericht über die geologische Uebersichts-Aufnahme 

des Wassergebietes der Waag und Neutra. Jahrbuch der k.k. 

 geologischen  Reichsanstalt 11, 17–151.

Sůkalová Ľ., Vojtko R. & Pešková I. 2011: Cenozoic deformation and 

stress field evolution of the Kozie chrbty Mountains and the 

western part of Hornád Depression (Central Western Carpa-

thians). Acta Geologica Slovaca 4, 53–64.

Šimonová V. & Plašienka D. 2011: Fault kinematics and palaeostress 

analysis in the Butkov quarry (Manín Unit, Western Carpa-

thians).  Acta Geologica Slovaca 3, 21–31 (in Slovak with 

 English  summary).

Šimonová V. & Plašienka D. 2017: Stepwise clockwise rotation of the 

Cenozoic stress field in the Western Carpathians as revealed by 

kinematic analysis of minor faults in the Manín Unit (western 

Slovakia). Geol. Quarterly 61, 252–265.

Šímová M. 1982: Eclogitoid rock in pebbles of Cretaceous conglo-

merates of Klippen Belt. 

Geologické práce, Správy 77, 55–74  

(in Slovak with English summary).

Uher P. & Pushkarev Y. 1994: Granitic pebbles of the Cretaceous 

 flysch of the Pieniny Klippen Belt, Western Carpathians: U/Pb 

zircon ages. Geol. Carpath. 45, 375–378. 

Uhlig V. 1903: Bau und Bild der Karpathen. In: Diener C., Hoernes 

R., Suess F.E. & Uhlig V. (eds): Bau und Bild Österreichs.  

F. Tempsky, Wien und G. Freytag, Leipzig, 649–911.

Uhlig V. 1907: Über die Tektonik der Karpathen. Sitzungsberichte der 

Kaiserischen Akademie der Wissenschaften, matematisch­natur­

wissenschaftliche Klasse 116, part I, 871–982.

Vojtko R., Tokárová E., Sliva Ľ. & Pešková I. 2010: Reconstruction 

of Cenozoic palaeostress fields and revised tectonic history in the 

northern part of the Central Western Carpathians (the Spišská Magura 

and Východné Tatry Mountains). Geol. Carpath. 61, 211–225.

Wagreich M., Pfersmann C., Aubrecht R. & Plašienka D. 2012:  

The westernmost end of the Pieniny Klippen belt in Austria — 

the St. Veit Klippenzone and its correlation into the Carpathians. 

In: Józsa, Š., Reháková, D. & Vojtko, R. (eds): Environmental, 

Structural and Stratigraphical Evolution of the Western Carpa-

thians.  8th ESSEWECA Confer

ence 2012, 6th–7th December, 

Abstract Book, Bratislava, 53.

Žítt J. & Michalík J. 1988: Early Cretaceous phyllocrinids (Crinoidea, 

Cyrtocrinida) in the Manín Unit (Mt. Butkov, Middle Váh Val-

ley, Central West Carpathians). Geologický zborník — Geol. 

Carpath. 39, 353–368.