background image

GEOLOGICA CARPATHICA

, DECEMBER 2018, 69, 6, 515–527

doi: 10.1515/geoca-2018-0030

www.geologicacarpathica.com

Multiphase carbonate cementation in the Miocene 

Pétervására Sandstone (North Hungary): implications  

for basinal fluid flow and burial history

EMESE SZŐCS

 and KINGA HIPS

MTA–ELTE Geological Geophysical and Space Science Research Group, 1117 Budapest, Pázmány sétány 1/C, Hungary;  

 meseszocs@gmail.com

(Manuscript received June 10, 2018; accepted in revised form November 28, 2018)

Abstract:  The paper focuses on the reservoir heterogeneity of a sandstone formation in which the main issue is  

the evaluation of diagenetic features. Integrated data from field observations as well as petrographic and geochemical 

analyses from surface and core sections from different structural settings were applied. In the shallow marine Pétervására 

Sandstone, eogenetic minerals are comprised of calcite, pyrite and siderite; mesogenetic minerals are albite, ankerite, 

calcite, quartz, mixed layer clays and kaolinite. Dissolution occurred during mesogenetic and telogenetic phases. Ankerite 

is only present in the core setting, where the sandstone is at ca. 900 m depth and diagenetic calcite predates quartz  

cementation. Based on stable isotopic values (δ

13 

C

V-PDB 

 −18.3 to −11.4 ‰ and δ

18 

O

V-PDB 

 −9.5 to −7.2 ‰), diagenetic 

calcite is of mesogenetic origin and was precipitated from fluids migrated along fault zones from the underlying, organic 

matter-rich formation. In outcrop setting, on the other hand, calcite is present in a larger quantity and postdates quartz 

cementation. Carbon isotope data (δ

13 

C

V-PDB 

= −9.9 to −5.1 ‰) indicate less contribution of light isotope, whereas more 

negative oxygen isotopic values (O

V-PDB 

= −13.1  to  −9.9  ‰)  likely  imply  higher  temperature  of  mesogenetic  fluids.   

However, carbon–oxygen isotope covariation can indicate precipitation from meteoric fluid. In this case, further analyses 

are required to delineate the final model. 

Keywords: calcite, diagenesis, sandstone petrography, stable isotopes, fluid flow, lower Miocene.

Introduction 

Studies of reservoir analogue sections provide useful data for 

subsurface reservoir modelling. In the case of clastic deposits, 

the depositional facies is commonly the major control on 

 reservoir architecture, but diagenetic cementation can be  

an effec tive modifying factor. Carbonate cement in sandstones 

plays a substantial role in reservoir quality evolution (e.g., 

Morad 1998; El-ghali et al. 2006; Gier et al. 2008; Karim et al. 

2010; Oluwadebi et al. 2018). Concretionary calcite cementa-

tion of various  origins was reported from numerous sandstone 

formations  (e.g.,  McBride  et  al.  1994;  El-ghali  et  al.  2006;  

Van Den Bril & Swennen 2008; Wanas 2008; Bojanowski et 

al. 2014). Other diagenetic carbonates, such as siderite (Mozley 

1989; Pye et al. 1990; Baker et al. 1995; Makeen et al. 2016) 

and ankerite or ferroan dolomite (Hendry et al. 2000; Hendry 

2002; Lima & De Ros 2002), can also influence the reservoir 

quality. Diagenetic carbonate minerals provide data about  

the burial history and chemistry of diagenetic fluids.

In this study, diagenetic features of the early Miocene 

Pétervására Sandstone are presented. This formation is a hydro-

carbon reservoir rock in the central part of Hungary, whereas 

in the northern part only traces of bitumen occur (Lakatos et 

al. 1991; Kázmér 2004). Sztanó (1994) described and inter-

preted the sedimentary geometries within the siliciclastic 

 succession deposited in tide-dominated shallow water. This 

paper documents the results of petrographic and geochemical 

analysis in core and outcrop samples; based on these data  

the burial history was reconstructed. The correlation of  

the studied sections revealed the spatial variability of diage-

netic processes, especially calcite cementation and its contri-

bution to the heterogeneity of the reservoir rocks. 

Geologic setting

The Pétervására Sandstone Formation can be found in  

the northern part of Hungary and the southern part of Slovakia; 

it covers an area of 1500 km

2

 (Fig. 1). It consists of medium to 

coarse-grained, cross-stratified glauconitic sandstone punc-

tuated by conglomerate beds and fine-grained, thick-bedded to 

massive sandstone (Sztanó 1994). The thickness of the forma-

tion is 200‒600 m. 

In the Oligocene, the Paratethys Basin (a large inland sea) 

formed in the Alpine‒Carpathian depositional area (Báldi 1983; 

Rögl & Steininger 1983). This basin was made up of a chain 

of basins with varying structural developments. The Péter-

vására Sandstone was formed in the North Hungarian Bay,  

an embayment of the Paratethys, where tide-influenced depo-

sition began in the Early Miocene (Eggenburgian). This bay 

was connected to the Paratethys through the Eastern Slovakian 

Seaway  (Sztanó  &  Boer  1995).  The  Late  Oligocene‒Early 

Miocene deep marine siltstone formation is overlain by shal-

low marine sandstone that reflects a shallowing-upward trend 

background image

516

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

(Báldi  &  Báldi-Beke  1985).  The  Eocene‒Lower  Miocene 

sedi mentary sequence ends with non-marine deposits fol-

lowed by a 25-m-thick coal formation (Báldi & Báldi-Beke 

1985; Sztanó & Tari 1993).

The Pétervására Sandstone is composed of four shore- 

parallel facies units (Sztanó & Tari 1993), which were formed 

in gradually shallower water depth from offshore to onshore 

from base to top. These are the following: 1) fine, rippled, silty 

sand, the transition toward the time-equivalent Szécsény Slier; 

2)  fine  to  medium-grained  sandstone  with  decimetre-scale 

cross-bedding;  3)  medium  to  coarse-grained  sandstone, 

 characterized by large-scale cross-bedding with sets up to  

10  m  in  height;  4)  conglomerate  lobes  of  1.5‒3  m  height.  

The influence of tidal motions is the most evident in facies 

units deposited in shallow water. In the decimetre-scale 

cross-bedded sandstone, the foresets are covered by mud 

drapes. The sandy material was derived from the south, 

whereas coarse-grained sand to pebble-sized components 

have the same source area as the coeval Darnó Conglomerate 

(Sztanó & Józsa 1996). The latter formation is located near  

the  Darnó  Fault  and  its  components  were  derived  from  

the Meliata‒Szarvaskő Nappe of the Bükk Unit, which con-

sists of Triassic‒Jurassic ocean-floor basalt and radiolarite.

Sandstone was studied in outcrop and core sections, 

 

located in various structural settings (Fig. 2). At Kishartyán, 

the sandstone crops out in a 32 m-high and  

300 m-long section (Fig. 2B). This section exhi-

bits an coarsening-upward and thickening sand-

stone superposed by conglomerate beds (Sztanó 

1994). A  petrographic  and  diagenetic  study  of 

the outcrop at Kishartyán was provided by Szőcs 

et al. (2015).

In the core section (Sámsonháza 16; Sh-16/a), 

the studied sandstone occurs from 842 to 1009 m 

(below  surface)  where  fine  to  coarse-grained 

sandstone is intercalated by conglomerate beds 

(Fig. 2A).

According to hydrogeologic studies, two dis-

tinct hydrologic systems were detected in 

 

the sub  surface basinal deposits of the study area: 

(1) an upper, gravity-driven meteoric water flow 

and (2) a lower, compaction-driven brine water 

flow (Tóth & Almasi 2001; Horváth et al. 2015). 

Based on pore-water data, the same systems are 

recognisable in the studied core section. The pore- 

water in sandstone (analysed at 890 m depth) is 

of the Na-HCO

3

-Cl  type  with  3104  mg/l  total 

dissolved  solids  (TDS)  at  37 

°

C  with  2.4  bar 

pressure (Hámor 1985). This indicates meteoric 

water recharge into the porous formation and  

it indicates a normal geothermal gradient. On  

the other hand, in the underlying siltstone at 

1150 m, which has much lower porosity than  

the sandstone, the pore-water temperature is 68 

°

C. 

This latter temperature indicates a much higher 

geothermal gradient that is due to the elevated 

heat flow which affected the basinal deposits during 

 

the Miocene‒Pliocene synrift phase (Horváth et al. 2015). 

Hydrocarbon system of the North Hungarian 

Palaeogene Basin

Palaeogene formations in the Pannonian Basin are consi-

dered to be a significant hydrocarbon system (Horváth &  

Tari  1999).  In  this  system  the  most  active  source  rocks  are  

the  Upper  Eocene  and  Lower  Oligocene  Tard  Clay  and  

the Lower Oligocene Kiscell Clay, with average TOC values 

of 0.5–1 wt. % which locally rise up to 4.5 wt. % (Milota et al. 

1995; Badics & Vető 2012). Maturation has likely occurred in 

the Late Miocene and/or Pliocene during maximal heat flow 

(Milota et al. 1995). The most effective traps are structural, 

stratigraphic and combination ones. Oligocene turbidite and 

the studied sandstone formation are the reservoir rocks of this 

hydrocarbon system.

In the eastern part of the basin, near the study area, a few 

hydrocarbon exploration wells encountered oil shows (Kázmér 

2004). The equivalent unit of the studied sandstone is a reser-

voir  rock  in  the  Gödöllő–Tóalmás–Tura–Jászberény  area,  

but the reservoir intervals of wells were not cored (Lakatos et 

al. 1991).

Fig. 1. Location of the study area. Surface distribution map of the Pétervására 

Sandstone Formation (Sztanó 1994) and geologic map of the area (Márton & Fodor 

1995) showing locations of the studied outcrop and a core section.

background image

517

FLUID FLOW ACTIVITY DURING BURIAL (PÉTERVÁSARA SANDSTONE, NORTH HUNGARY)

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

Methods

Thirty-two sandstone samples were collected 

from the outcrop at Kishartyán (Fig. 2B) by ham-

mer and by drilling horizontally from the rock 

surface to 30 cm depth with 3 and 5-cm-diametre 

cores  (Fig.  2C, D).  The  samples  were  collected 

along vertical and horizontal sections. Five sand-

stone samples from the core section of the bore-

hole  Sámsonháza  16  (Sh-16/a)  were  collected 

from  the  depth  interval  of  840  to  1000  m  

(Fig.  2A).  Samples  from  outcrop  and  borehole 

represents the following facies unit of the Péter-

vására  Sandstone:  2)  fine  to  medium-grained 

sand stone with decimetre-scale cross-bedding;  

3) medium to coarse-grained sandstone, charac-

terized by large-scale cross-bedding with sets up 

to  10  m  in  height  (cf.  Sztanó  1994).  Samples 

were impregnated in blue epoxy under vacuum 

and 30 µm-thick thin sections were prepared. 

Thin sections were stained with Alizarin Red S 

and K-ferricyanide as described by Dickson 

(1966) in order to determine carbonate minerals. 

They were examined by conventional micro-

scopic petrographic methods. Point counting was 

performed on 18 samples to investigate quantita-

tive composition and pore volume. In each sample, 

350 points were counted. Catho doluminescence 

(CL)  studies  were  performed  using  a  MAAS-

Nuclide ELM-3 cold-cathode CL device on 

 polished thin sections. A microscope equipped 

with an Hg vapour lamp and filters for blue light 

excitation (450–490 nm) was used to detect orga-

nic matter in the samples. The filter set was com-

posed of a diachromatic beam splitter (510 nm) 

and a barrier filter (515 nm). 

 X-ray diffraction analysis of ˂ 2 µm fractions 

was carried out using a Siemens D 5000-type dif-

fractometer (Cu Kα). The sandstone was crushed 

and treated with 10 % C

2

H

4

O solution and then 

washed with distilled water. Oriented XRD 

mounts were prepared by pipetting the clay suspension onto 

glass slides and were analysed after air-drying and after vapour 

saturation with ethylene glycol at 60 °C for 12 hours. An Amray 

1830i-type Scanning Electron Microscope equipped with 

INCA Energy-dispersive X-ray spectrometer was used in  

the  secondary  electron  (SE),  backscatter  electron  (BE)  and 

cathodoluminescent (CL) modes on polished thin sections and 

in broken surfaces. The chemical composition of minerals was 

established  with  JXA-8530F-type  Electron  Probe  Micro-

analyses. Stable carbon and oxygen isotopic analyses were 

carried out by a Finnigan MAT delta S-type mass spectrometer 

after samples being pulverized and using a conventional 

 anhydrous phosphoric acid digestion method under vacuum. 

The  results  are  expressed  in  δ-notation  on  the Vienna  PDB 

standard.

Results

Sandstone petrography of detrital grains

The studied intervals consist of fine to very coarse-grained 

sandstone, in which sorting ranges from moderate to well, 

with angular to well-rounded detrital grains. The sandstone  

is classified as litharenite and feldspathic litharenite, with  

the average framework of Q

43

F

11

L

46

  (outcrop  samples)  and 

Q

42

F

7

L

49

 (core samples; Fig. 3) according to the Folk (1974) 

classification. 

Quartz is the most abundant detrital mineral. Monocrystalline 

quartz usually exhibits straight, occasionally sweeping extinc-

tion. Polycrystalline quartz is slightly less abundant than 

monocrystalline quartz. Chert and radiolarite fragments are 

Fig 2.  A — Lithology of the core section Sh-16/a. Only three calcite-cemented  

beds (LF3) are present. B — Lithology in the outcrop section at Kishartyán. Due to 

high variability, lithofacies distribution is not marked here. C, D — Distribution of 

lithofacies in outcrop samples.

background image

518

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

also common, and these are generally more rounded than 

quartz grains. The total amount of quartz and chert varies 

between 23 and 43 %. The total feldspar content is around 5 % 

in core samples and 7 % in outcrop ones. K-feldspar is often 

associated with kaolinite and is more abundant than 

plagioclase. 

The amount of metamorphic lithic fragments ranges 

between 11 and 39 %. They are composed of micaschists with 

muscovite, quartz, chlorite, gneiss, and quartzite. Plutonic 

rock  fragments  (granitoids,  microdiorites),  volcanic  and 

ophio litic ones are also common (average 7 %). Detrital dolo-

mite averages 5 % (outcrop samples) and 11 % (core samples). 

Limestone fragments and bioclasts are scarce. Muscovite, 

chloritized biotite, glauconite group minerals, and fragments 

of metamorphic minerals such as garnet, rutile, and staurolite, 

are also present. The matrix content of sandstone can reach  

25 %. However, some of the samples are totally matrix-free. 

Pseudomatrix represented by mica and clay-rich rock frag-

ments is also present. 

Lithofacies types and distribution

Based on point counting and microscope observations, three 

main lithofacies types were distinguished. Porous sandstone 

(LF1) with porosites of 10‒25 % is the most common one in 

the outcrop as well as in the core (Fig. 4A). Matrix-rich sand-

stone (LF2) has high detrital and diagenetic clay mineral con-

tent and includes clay laminae located between the foresets 

(Fig  4B).  Cement-rich  sandstone  (LF3)  has  porosity  lower 

than 10 % and calcite content is between 12 and 27 % (Fig. 4C). 

Sandstone in these lithofacies can be classified as graywacke. 

In addition, in the core section a semi-consolidated sand was 

classified  as  LF4.  This  lithofacies  was  not  analysed  in  this 

study. The spatial distribution of these lihofacies is irregular in 

the outcrop, and gradual transitions are observed in both out-

crop and core sections (Fig. 2C, D). Both in core and outcrop 

sections the porous sandstone (LF1) is the predominant litho-

facies,  whereas  matrix-rich  sandstone  (LF2)  is  subordinate. 

The cement-rich sandstone (LF3) is relatively widespread in 

the outcrop section. In the core, three calcite-cemented layers 

with a thickness of 10 cm can be found in the lower part of  

the section (Fig. 2A).

Petrography of diagenetic components 

Deformation of ductile grains such as mica, glauconite and 

lithoclasts are common in both studied sections. In calcite-free 

intervals  (LF1,  LF2)  of  core  section,  linear  contacts  are 

observed and selective fracturing of rigid grains such as dolo-

mite,  quartz  and  feldspar  also  occurs  (Fig.  4A).  In  calcite- 

cemented sandstone (LF3) of core section, point contacts are 

dominant.  In  outcrop  section  (LF1,  LF2,  LF3),  linear  or 

 concavo-convex grain contacts are more abundant than point 

contacts; in addition, microstylolite is also encountered 

 

(Fig.  4C).  Accordingly,  the  grade  of  compaction  is  low  to 

moderate in calcite cemented sandstone (LF3) of core section 

and high in every other lithofacies.

The observed diagenetic minerals are various carbonates, 

quartz, albite, K-feldspar, kaolinite, mixed-layer illite/smec-

tite, framboidal pyrite and glauconite. Pyrite occurs as fine 

framboidal crystals (< 2 µm). The pyrite crystals are scattered 

around mottles of clay minerals or mica, or engulfed by coarse 

carbonate crystals. Glauconite is present as peloids and 

pore-filling of bioclasts. The latter case suggests diagenetic 

origin. Diagenetic albite is present as a replacive phase in 

Fig. 3.  Ternary  diagram  for  the  detrital  components.  Q = quartz,  

F = feldspar, L = lithoclasts / rock fragments after Folk (1974).

Fig. 4. Photomicrographs (PPL) of sandstone from various lithofacies. A — Porous sandstone (LF1) with abundant inter-granular and secon-

dary skeletal pores (thin section impregnated with blue-dye epoxy). Pre-compactional grain-rimming siderite cement around dolomite grains 

is present. B — Matrix-rich sandstone (LF2) where authigenic siderite is scattered in matrix. C — Tightly-cemented sandstone (LF3). Post-

compactional blue-stained, iron-bearing replacive (Cal2K) and cement calcite (Cal3K) is ubiquitous (thin section stained by Dickson solution). 

(A, B samples from core, C sample from outcrop.) Dol = dolomite, Fsp = feldspar, Qz = detrital quartz, Sd = siderite, Sp = secondary porosity.

background image

519

FLUID FLOW ACTIVITY DURING BURIAL (PÉTERVÁSARA SANDSTONE, NORTH HUNGARY)

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

detrital K-feldspar grains along fractures or as euhedral over-

growth cement. These are non-luminescent and have a chemi-

cally  pure  albite  composition  (Fig.  5A, B).  K-feldspar  over-  

  growth  cement  appears  in  porous  sandstone  (LF1)  as  thin, 

non-luminescent rims and it is present only in those sides of 

detrital grains which are not in contact with other grains  

(Fig. 5C). Both diagenetic albite and K-feldspar are common 

in the outcrop samples, whereas these minerals are scarce or 

totally missing in the core section. Small quantities of quartz 

overgrowth cement can be found in calcite-cement free (LF1) 

intervals of the core section and both in calcite-cemented 

(LF3) and calcite cement-free (LF1, LF3) intervals of the out-

crop (Fig. 5D). Kaolinite is the most common clay mineral. 

The pore-filling kaolinite, in the largest quantity, appears as 

well-developed blocky and vermicular crystals of several tens 

of  microns  (Fig. 5D, E).  Kaolinite  associated  with  detrital 

muscovite is also abundant and it is localised between 001 

 surfaces  that  had  been  separated  by  expansion  (Fig.  5F).  

In the intragranular and compaction-reduced intergranular 

pores, along with abundant microporosity a limited quantity of 

small blocky kaolinite crystals is attached to the surface of 

plagioclase grains (Fig. 5G). Kaolinite can be found in calcite 

cement-free intervals (LF1) of the core section and in every 

lithofacies of the outcrop section. Other clay minerals in  

the outcrop and the core section consist of mixed layer 

illite-smectite (I/S), smectite, illite and chlorite (Fig. 5H, I).

Fig. 5. Diagenetic minerals. A, B — Replacive non-luminescent albite in mottles of light-blue luminescent detrital K-feldspar. The majority of 

detrital grains are non-luminescent, whereas pore-occluding and replacive calcite exhibit bright orange luminescent colour. (A: CL image and 

B: BSE image, sample from outcrop). C — Detrital K-feldspar grain with post-compactional overgrowth cement (SE image, sample from 

outcrop). D — Quartz cement (Qo), diagenetic vermicular kaolinite (Kln), and siderite cement (Sd) in open pore space (SE image, sample from 

borehole).  E — Siderite cement exhibits flattened rhombohedral shape around dolomite grains. Siderite is partially replaced by ankerite 

(arrow). Secondary skeletal porosity is formed by dissolution of K-feldspar grains whereas pore-reducing kaolinite cement is also present (BSE 

image, sample from core). F — Diagenetic, pore-filling kaolinite (Kln) localised between 001 surfaces of detrital mica (Ms), separating them 

by expansion (BSE image, sample from outcrop). G — Pore-filling kaolinite booklets (arrows) which overlap the linear contact of quartz grains 

(Q) (SEM–SE, sample from outcrop). H — Mixed-layer grain-coating smectite-illite. I — Showing a detail of H in higher magnification where 

mixed-layer clays are covered by calcite plates of micron size (Cal3S) (SEM–SE, sample from core). Abbreviations: Ab = albite, Ank = ankerite, 

Dol = dolomite, I/Sm = mixed layer illite-smectite, Kfs = K-feldspar, Kfs au = authigenic K-feldspar, Kln = kaolinite, Ms = muskovite, Qz = detrital 

quartz, Qzau = quartz overgrowth cement, Sd = siderite, Sp = secondary porosity.

background image

520

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

Diagenetic carbonate minerals

Carbonate minerals, including siderite, ferroan dolomite/

ankerite, ferroan and non-ferroan calcite, are present in both 

studied sections. In outcrop samples these minerals are present 

in a higher amount, but in lower variability than in samples 

from core. Calcite is the volumetrically most abundant diage-

netic mineral phase, varying between 0 and 25 %. The propor-

tion of siderite and ferroan dolomite/ankerite is less than 5 %. 

In the outcrop, calcite-cemented lenses appear in every 30‒50 cm 

interval and they also form continuous cemented layers.  

In the core, calcite cement is encountered only in a few layers, 

which are less than 10 cm in thickness. Ferroan dolomite/

ankerite is only present in the core section. The petrographic 

features of diagenetic carbonates are different in the outcrop 

and in the core; therefore, they are described separately. 

Core section

The majority of diagenetic carbonate minerals are equally 

distributed in every lithofacies. Calcite phases (Cal1S, Cal2S) 

are only present in cement-rich sandstone (LF3), while tiny 

crystal plates (Cal3S) are confined to LF1 and LF2. Siderite 

crystals exhibit small, flattened rhombs (10‒30 µm). They are 

commonly associated with detrital dolomite grains as 

grain-rimming cement (Figs. 5E; 6A, B, C). Locally they are 

also scattered in the matrix. Siderite ranges from 1 to 6 %, and 

is non-luminescent. 

A thin alteration rim on dolomite grains exhibits bright 

orange luminescence colour and is slightly enriched in Fe 

(Fig. 6B). Ferroan dolomite/ankerite (sensu Nickel & Grice, 

1998) is present in small quantity (< 5 %). The detrital dolo-

mite as well as the siderite cement are partially replaced by 

anhedral crystals of ferroan dolomite/ankerite that can achieve 

several  tens  of  microns  in  size  (Fig.  6B, C).  They  are  non- 

luminescent, and are characterized by mottled BSE image. 

These crystals include remnants of siderite of small size.  

In porous-sandstone (LF1), ankerite is rarely present within 

detrital dolomite grains, as irregular mottles arranged in  

the network (Fig. 5E) or as vertical hairline veins (Fig. 6C).  

In cement-rich sandstone (LF3) the amount of siderite is lower 

than in porous sandstone.

Calcite-cemented sandstone (LF3) is present only in the lower 

part  of  the  section.  Calcite  (Cal1S  and  Cal2S)  occurs  as  

a pore-occluding phase in the form of mosaic spar or micro-

spar crystals (Fig. 6D, E). In the porous sandstone (LF1), on 

the other hand, calcite occurs as micron-sized plates (Cal3S), 

which cover the surface of smectite and smectite/illite 

 

(Fig. 5H, I).

In calcite-cemented sandstone, the cement crystals com-

monly  exhibit  two  zones.  The  first  one  (Cal1S)  stains  pink  

and  shows  bright  orange  luminescence  colour  (Fig.  6D, E).  

On the other hand, the second zone (Cal2S) stains blue and 

shows dull red luminescence (Fig. 6D, E). The calcite crystals 

also replace detrital dolomite grains and diagenetic minerals, 

such  as  siderite  and  ferroan  dolomite/ankerite  (Fig.  6B).  

The calcite cement surface is occasionally covered by residual 

organic matter.

Outcrop section

Pseudomorph of flattened rhombohedral crystals composed 

of iron oxides are present around dolomite grains and scat-

tered in the matrix. These crystals show voluminous micro-

porosity and, as the crystal shape suggests, they were formed 

via alteration of siderite. Calcite is present exclusively in  

the calcite-cemented sandstone lithofacies (LF3). The crystals 

exhibit various petrographic characters and occur as replacive 

and cement phases. Calcite spars, which occlude the intergra-

nular pore space where the framework grains have mainly point 

contacts, have a very thin, non-luminescent first growth band 

(Cal1K). This zone occurs as an uneven rim around grains.  

In  other  cases,  calcite  crystals  (Cal2K,  Cal3K)  commonly 

engulf detrital grains having linear contacts or microstylolitic 

surfaces (Fig. 6F, G, H, I). The replacive calcite (Cal2K) stains 

mauve to blue and exhibits mottled to dull red luminescence 

colour (Fig. 6F, G). The cement phase (Cal3K), which occurs 

in compaction-reduced intergranular pore space and as 

 

a second growth band of mosaic crystals following Cal1K, 

exhi bits growth zonation via mauve and blue staining and 

bright orange and dull red luminescence colour (Fig. 6F, G).

The replacive calcite (Cal2K) occurs as either mosaic crys-

tals (and among them, the remnants of various minerals can be 

commonly found), or as poikilotopic crystals which include 

remnants of detrital and diagenetic minerals (Fig. 6H). These 

remnants are detrital plagioclase, K-feldspar, quartz, dolomite, 

rock fragments of magmatic and volcanic origin, as well as 

diagenetic minerals, such as altered siderite (Fig. 6I). The size 

and shape of the mosaic crystal sets, as well as of the poikilo-

topic crystals among the framework grains, are similar to 

detrital grains (Fig. 6G, H). 

Porosity

Intergranular porosity, modified by compaction and minor 

cement precipitation, is observed in LF1 (Fig. 7A). Secondary 

intragranular porosity is associated with detrital K-feldspar 

and plagioclase (Fig. 7B, C). In addition, very small remnants 

of feldspar and scattered flattened rhombohedral cement occur 

in oversized pores, suggesting secondary pore formation via 

enlargements  of  the  primary  one  (Fig.  7A).  In  the  outcrop 

samples, the intragranular dissolution pores are cemented by 

kaolinite (Fig. 7B) or calcite (Fig. 6I). In the core samples, 

these pores are open and the partially dissolved feldspar grains 

are engulfed by calcite (Fig. 7C). The porosity of the studied 

sandstone ranges from <1 % to 25 %. In the porous sandstone 

from the outcrop, the average value of the modified inter-

granular porosity is 13 %, whereas intragranular porosity is 

around 3.5 %. These values are 7 % and 2 % in the core.  

In  calcite-cemented  sandstone  (LF3)  and  matrix-rich  sand-

stone (LF2), the total value of porosity is generally below 5 %, 

and it is slightly lower in the core than in the outcrop.

background image

521

FLUID FLOW ACTIVITY DURING BURIAL (PÉTERVÁSARA SANDSTONE, NORTH HUNGARY)

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

Carbon and oxygen isotopic composition of calcite

Due to the small size and close petrographic association of 

calcite phases, their separate measurement was not possible. 

The tiny size of Cal3S did not allow the measurement of this 

phase. The isotopic values of the calcite from the core repre-

sent a bulk composition of Cal1S and Cal2S. Cal1K is only 

present in a very small quantity, so the isotopic values of out-

crop calcite represent a bulk composition of Cal2K and Cal3K. 

The δ

13 

C

V-PDB 

values for calcite in the core vary from −18.3 to 

Fig. 6. Diagenetic carbonate minerals. A — Detrital dolomite grain is partially replaced by ankerite along irregular network (stained blue) and 

it is surrounded by siderite cement (optical photomicrograph; sample from core). B — Detrital dolomite with ferroan alteration rim. Siderite 

cement and replacive ankerite crystals are partially replaced by calcite (SEM–BSE image from core). C — Detrital dolomite grain, with 

grain-rimming siderite cement, fractured and partially replaced by ankerite (SEM–BSE sample from core). D, E — Grain-rimming calcite 

cement stained pink and exhibiting bright orange luminescent colour (Cal1S) is post-dated by calcite cement stained blue and exhibiting dull 

red luminescent colour. (Optical photomicrograph and CL, sample from core). F — Purple-stained replacive calcite (Cal2K, delineated by 

dotted line) with scattered, tiny remnants of brownish precursor minerals. The first phase of cement crystals (Cal2K) has a straight crystal face 

(dotted line), whereas the second phase (Cal3K) fills the pore space. (Optical photomicrograph, sample from outcrop.) G — Calcite, replacive 

and cement crystals, among the framework detrital grains exhibit two generations: dull red luminescent colour calcite (Cal2K) and a second 

zone of cement crystals of bright orange luminescent colour (Cal3K) (CL, sample from outcrop). H, I — Details of (G) in SEM-BSE. Replacive 

calcite contains no (H) or few (I) remnants of detrital grains. Secondary, enlarged intergranular and intragranular porosity suggest a dissolution 

event (SEM–BSE sample from core). Ab = albite, Ank = ankerite, Dol = dolomite, Glt = glauconite, Kfs = K-feldspar, Kln = kaolinite, Qz = detrital 

quartz, Sd = siderite.

background image

522

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

−11.4  ‰,  whereas  the  δ

18 

O

V-PDB 

values  range  between  −9.5 

and −7.2 ‰. Calcite in the outcrop yielded δ

13 

C

V-PDB 

values 

ranging from −9.9 to −5.1 ‰ and δ

18 

O

V-PDB 

values of −13.1 to 

−9.9 ‰, respectively (Fig. 8).

Geochemical composition of carbonate minerals

The chemical composition of diagenetic carbonates shows 

slight or moderate variations. Siderite is relatively rich in 

MgCO

3

  (4.2‒18.7  %)  and  CaCO

3

  (7‒12  %)  and  poor  in 

MnCO

3

 (0.3‒1.3 %), whereas FeCO

3

 content varies between 

68.5 and 81.9 %. In ankerite/ferroan dolomite crystals, 

 

the FeCO

3

/MgCO

3

 proportion commonly decreases from core 

to  edge,  varying  between  0  and  1.4. The  MnCO

content is 

below 0.6 %. The bright orange luminescent alteration rim  

of detrital dolomite grains is enriched in iron compared to  

the grains.

In core samples, the first-generation calcite crystals (Cal1S) 

are free of, or very poor in, Mn and Fe. The second-generation 

crystals  (Cal2S)  have  variable  Mn  and  Fe  content.  In  core 

samples, FeCO

3

 varies between 0 and 1.9 %, MnCO

3

 between 

0 and 0.5%, and MgCO

3

 between 0.3 and 2.4%. In outcrop 

samples, dull red luminescent calcite (Cal2K) stains blue and 

it is Fe-rich, while, mauve-stained calcite of bright orange 

luminescent  colour  (Cal3K)  is  Mn-rich.  FeCO

3

 content of 

 calcite varies between 0.5 and 2.8 %, whereas that of MnCO

3

 

is between 0.3 and 1.6 %. The MgCO

3

 content of the calcite  

in outcrop samples is below 0.8 %; however, the majority of 

the calcite does not contain measurable Mg. It was not possi-

ble to measure Cal1K due to its small size.

Discussion

Paragenetic sequence

Based on petrographic and geochemical observations 

 

the paragenetic sequence was established (Fig. 9). Diagenetic 

realms are adapted from the model by Morad et al. (2000). 

Eogenesis and early mesogenesis

The early diagenetic components are recognised in terms of 

their relation to mechanical compaction. 

Interpretation of peculiar calcite phases

In the outcrop section, where Cal1K is present, point-con-

tacts are characteristic; otherwise, linear contacts occur. Since 

Fig. 7. Porosity types in sandstone. A — Skeletal and enlarged intergranular porosity. The dissolved grain was likely dolomite, indicated by 

remnants of siderite crystals (optical photomicrograph, sample from core). B — Secondary porosity and microporous kaolinite inside a detrital 

feldspar grain (SEM–BSE, sample from outcrop.). C — Open secondary porosity within euhedral albite. The grain is surrounded by diagenetic 

calcite (Cal2K) which indicates that the feldspar dissolution post-dated the calcite cementation (SEM–BSE, sample from core). Dol = dolomite, 

Kfs = K-feldspar, Kln = kaolinite, Qz = detrital quartz, Sd = siderite, Sp = secondary porosity.

Fig. 8. Cross-plot of the stable isotope values of the studied calcite. 

Arrows show the influence of methanogenic fermentation, bacterial 

sulphate reduction, salinity and temperature after (Allan & Wiggins 

1993).

background image

523

FLUID FLOW ACTIVITY DURING BURIAL (PÉTERVÁSARA SANDSTONE, NORTH HUNGARY)

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

the Cal3K phase occurs in crystallographic continuity with 

non-luminescent Cal1K, the latter is interpreted as replace-

ment of a precursor carbonate cement. The compactional fea-

tures of the grains and the textural relationship of the crystals 

suggest that the precursor phase of Cal1K was precipitated 

during an early stage of diagenesis, and was replaced by 

Cal3K during mesogenesis.

In  core  section  (LF3),  calcite  cement  (Ca1S)  can  also  be 

inferred as pre-compactional from point contacts and linear 

contacts of neighbouring grains.

Other components

These components are similar in core and outcrop sections. 

In the studied samples, glauconite formed in the intragra-

nular pores of bioclasts during early marine diagenesis by  

a bacte rially catalysed process likely similar to what was 

described by Odin & Matter (1981). In matrix-rich sandstone, 

fram boidal pyrite was precipitated via the alte ration pro-

cesses of organic matter in the zone of bacterial sulphate  

reduction, likely during the early stage of diagenesis (e.g., 

Berner  et  al.  1985).  Early  calcite  phases  and  siderite  were 

 precipitated in the primary pore space, indicating eogenetic 

origin. Later on, illitisation of smectite as well as albitisation 

of K-feldspar and plagioclase occurred in the studied sand-

stone, as discussed by (Land & Milliken 1981) in the Oligocene 

Frio Formation. 

Late mesogenesis in core section

In the core section, ankerite and albite formation pre-dated 

calcite (Cal2S), since ankerite and albite crystals are engulfed 

by Cal2S spars. Quartz cement is only present in calcite-free 

intervals  (LF1,  LF2),  which  indicates  that  quartz  formation 

post-dated that of calcite. Later on, kaolinite replaced the 

feldspar grains and partial dissolution of feldspars led to for-

mation of secondary intragranular porosity. The amount of 

secondary porosity and kaolinite is much higher in LF1 and 

LF2, suggesting that diagenetic calcite hindered this process. 

In LF1 and LF2 a micron-sized calcite phase (Cal3S), present 

in small quantities in the euhedral surfaces of kaolinite and 

quartz, is the latest diagenetic mineral. 

Late mesogenesis and telogenesis in outcrop section

In the outcrop section, quartz cement precipitation, forma-

tion of the kaolinite via feldspar replacement and secondary 

porosity were widespread in LF1, LF2 and LF3. These pro-

cesses were post-dated by the volumetrically significant cal-

cite  formation  (Cal2K  and  Cal3K)  in  LF3.  As  K-feldspar 

cementation occurs only in calcite-free sandstone (LF, LF2), 

this suggests that K-feldspar cementation probably post-dated 

calcite cementation. 

Origin and sources of diagenetic carbonates

Siderite

Siderite is one of the earliest diagenetic carbonate forms 

present in each lithofacies in both core and outcrop section. 

Substitution of Mg and Ca for Fe in crystals suggests marine 

pore-waters and eogenetic precipitation (Mozley 1989). 

The penecontemporaneous formation of siderite and pyrite 

was documented by several studies (Pye et al. 1990; Moore et 

al. 1992; Karim et al. 2010). Pyrite formation could occur in  

a bacterial sulphate reduction zone. Formation of iron-sulphide 

in small amounts in these environments allows the increase of 

Fe

2+

, necessary for siderite formation (Morad 1998). The for-

mation of siderite requires reducing, non-sulphidic pore- 

waters, usually evolving in suboxic and microbial 

Fig. 9. Paragenetic sequence.

background image

524

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

methanogenetic  zones  (Morad  1998).  Fe  in  siderite  usually 

originates from alteration of iron rich detrital minerals (Zhang 

et al. 2001).

Ankerite — core section

Ankerite formation in sandstone was documented in asso-

ciation with thermal decarboxylation of organic matter 

(Kantorowicz  1985;  Calvo  et  al.  2011;  Khalifa  et  al.  2017) 

where the Mg originated from clay mineral transformations 

(e.g.,  Hendry  2002).  In  the  studied  sandstone,  the  chemical 

heterogeneity which was observed in the composition of 

ankerite reflects the geochemistry of both pore-water and 

 precursor siderite mineral phase (Fig. 6E, F). Diagenetic reac-

tions in neighbouring lithologic units can be a possible 

extrernal source of ankerite through cross-formational fluid 

flow.

Calcite — core section

The calculated precipitation temperature of calcite is 

 

55–65 

°

C, based on the measured oxygen isotope values 

(Cal1S and Cal2S), using the oxygen isotopic composition of 

Early Miocene sea water of the Central Paratethys (Abreu & 

Anderson 1998) and the oxygen isotope fractionation factor of 

calcite-water  (Friedman  &  O’Neil  1977).  The  measured  δ

13 

C

V-PDB 

data show strong negative values (−18,3 to −11,4 ‰), 

which indicate an addition of isotopically light carbon from  

an organic source. Isotopically light carbon was likely released 

during thermal decarboxylation of organic matter, since 

 

the calculated temperature corresponds to that process (cf. 

Lonoy et al. 1986; Wang et al. 2016). This is in accordance 

with the presence of residual organic matter as mineral cement 

covering the calcite crystals. Accordingly, only a minor 

amount of hydrocarbons migrated from underlying shales 

after  thermal  maturation.  Grundtner  et  al.  (2017)  reported 

 similar  isotopic  values  in  calcite  cement  of  Upper  Eocene 

sandstone  from  the  North  Alpine  Foreland  Basin  (Austria)  

and concluded that cementation occurred during advanced 

stage of sulphate reduction. The possible source of Mg in  

this calcite can be the ankerite which was replaced by these 

calcite phases. Ankerite filled hairline fractures of com-

pactional origin in dolomite grains in calcite-free sandstone 

(LF1,  LF2),  and  the  lack  of  this  phenomenon  in  cemented 

sandstone  (LF3)  indicates  that  uneven  calcite  cement  

(Cal1S)  was  precipitated  in  primary  pore  space  prior  to  

the compaction. 

Micron-sized calcite plates (Cal3S) post-date kaolinite and 

secondary porosity on feldspar and occur only in calcite-free 

intervals  (LF1,  LF2).  This  represents  the  latest  diagenetic 

event that differs from the previous calcite-precipitating 

stages. Considering that the chemistry of present-day pore- 

water is characteristic for evolved meteoric waters, the rock- 

water interaction likely resulted in dissolution of unstable 

minerals,  and  precipitation  of  minor  calcite  cement  (Cal3S) 

(Yuan et al. 2017; Wang et al. 2018).

Calcite — outcrop section

Volumetrically  significant  calcite  phases  (Cal2K,  Cal3K) 

post-date quartz cementation in the outcrop section. As 

reported  by  McKinley  et  al.  (2002),  quartz  formation  gene-

rally requires a minimum temperature of 80 

o

C, suggesting 

that in calcite, formation occurred after the sandstone reached 

the burial depth necessary for this temperature. The measured 

oxygen isotope values of calcite are enriched in light isotope. 

These data suggest precipitation either from formation water 

of elevated temperature or from meteoric water. In the first 

case,  the  calculated  formation  temperature  is  75‒90 

°

C, by 

using the equation of Friedman & O’Neil (1977) and consi-

dering isotopic values of Early Miocene sea water of Central 

Paratethys  (Abreu  &  Anderson  1998).  In  the  second  case,  

the calculated temperature of calcite formation is 15‒20 

°

C, 

where isotope values of Pleistocene meteoric water are taken 

into account for comparison (Siklósy et al. 2011; Virág et al. 

2013). Carbon isotopic values (from −9,9 to −5,1 ‰) are less 

enriched in light isotopes compared to the core samples. 

Source rocks in the underlying formation are present in  limited 

quantity, and their thickness increases toward the cored sec-

tion (Kázmér 2004; Badics & Vető 2012). This can explain  

a smaller contribution of light isotope from the organic source. 

A comparable carbon isotopic ratio can occur in the case of 

meteoric water recharge, when the light carbon was derived 

from the soil zone through decay of plant remnants (e.g., 

El-ghali et al. 2006). Accordingly, in the case of the outcrop 

section, two possible scenarios can be described for the origin 

of Ca12K and Cal3K calcites. These volumetrically signifi-

cant calcite phases were either precipitated in the mesogenetic 

realm from a formational fluid enriched in light isotopes 

through organic matter maturation, or in the telogenetic zone 

from meteoric water recharge during basin inversion. 

The studied sandstone is relatively poor (<2 %) in bioclast 

and limestone rock fragments; tightly calcite-cemented zones 

are not restricted to layers with abundant fossils or carbonate 

rock fragments (cf. Grundtner et al. 2016). These indicate that 

such grains cannot be considered as an internal source for dia-

genetic calcite. Other possible internal source of calcite can be 

feldspar dissolution and clay mineral transformations (Dutton 

2008). The relatively high quantity of diagenetic calcite sug-

gests an external source, which could be the underlying calca-

reous marl or overlying bioclastic limestone.

Origin and sources of other diagenetic minerals

The distribution and petrographic features of diagenetic 

minerals, except for carbonates, are very similar in each litho-

facies of the core and outcrop sections. The diagenetic realms 

and origin of these minerals were interpreted based on litera-

ture data.

In the realm of mesogenesis the partial albitisation of detri-

tal feldspar and illitisation of smectites were widespread in 

both  sections  (cf.  Saigal  et  al.  1988; Aagaard  et  al.  1990). 

Given the similar quantity of diagenetic albite, quartz, and 

background image

525

FLUID FLOW ACTIVITY DURING BURIAL (PÉTERVÁSARA SANDSTONE, NORTH HUNGARY)

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

illite in the studied sandstone, the sources of ions for these 

reactions were most likely internal or from the clay-rich layers 

of the sandstone. Post-compactional K-feldspar overgrowth 

cement, present only in the outcrop section, could have been 

precipitated from evolved meteoric water at near-surface  

p/T condition. K

+

 was possibly sourced from the alteration of 

clay  minerals  (Morad  et  al.  1989;  Maraschin  et  al.  2004). 

Diagenetic kaolinite was probably sourced from the weathe-

ring of feldspars (Marfil et al. 2003; Waldmann & Gaupp 

2016; Yuan et al. 2017)

Thermal history and fluid flow

Core section

Limited pore-water data available from the Sh-16/a core 

section suggest a complex hydrogeologic system. Elevated 

temperature values (68 

°

C  at  1100  m)  in  calcareous  marls, 

directly underlying the Pétervására Sandstone, are characte-

ristic for the formation water of those deposits which were 

affected by the high heat flow in the Pannonian Basin  

(95 mW/m

2

;  Lenkey  et  al.  2001).  High  heat-flow  values 

 originated from the Middle Miocene extension and thinning of 

the lithosphere (Royden & Baldi 1988). Accordingly, the fluid 

originating from the underlying formation could have been  

the source of calcite cement. Moreover, together with these 

fluids, minor hydrocarbons also migrated from marls. 

Significant negative shift of carbon isotopic values of calcite, 

and additionally the residual bitumen on crystal surfaces, sug-

gest that calcite was precipitated from formation fluids con-

nected to organic matter maturation.

The present day pore-water of the studied sandstone in  

the core section at ~880 m has a much lower temperature  

(37 

°

C) and a composition characteristic for evolved meteoric 

waters (cf. Yuan et al. 2015). Based on the geodynamic evolu-

tion of the basin, the studied sandstone formation was also 

affected  by  the  high  heat  flow  (Lenkey  et  al.  2001),  but  

later on was recharged by gravity-driven, regional meteoric 

flow  sys   tems  (Tóth  &  Almasi  2001;  Horváth  et  al.  2015).  

The evol ved meteoric fluid is likely responsible for dissolution 

and kaolinite formation. Micron-sized calcite plates (Cal3S) 

could also have been precipitated from the meteoric fluid. 

Outcrop section

The studied section is located at the proximity of a large-

scale normal fault, in a hanging wall setting (Püspöki et al. 

2017 ). The diagenetic minerals association suggests that cal-

cite cementation (Cal2K, Cal3K) post-dated quartz cementa-

tion, which  approximately took place when the Pétervására 

Sandstone reached its maximum burial depth around 8–11 Ma 

(Petrik et al. 2014; Beke 2016). Accordingly, calcite cementa-

tion either occurred during late mesogenesis (75–90

 °

C),  or 

later on, in relation to uplift and telogenesis (15–20

 °

C). During 

basin inversion, progressive recharge of meteoric water led to 

the precipitation of telogenetic minerals such as K-feldspar.

Conclusions

•  The diagenetic history of the Lower Miocene Pétervására 

Sandstone in outcrop and borehole setting was 

reconstructed. 

•  In litharenite and feldspathic litharenite, the most significant 

eogenetic minerals, precipitated in a marine environment, 

are siderite, calcite, pyrite; the mesogenetic minerals are 

replacive albite, ankerite, calcite, quartz, mixed layer clays 

and kaolinite. Minerals of telogenetic origin are kaolinite, 

K-feldspar and possibly a minor amount of calcite. 

•  Mesogenetic ankerite occurs only in the core section, 

whereas telogenetic K-feldspar is characteristic solely for 

the outcrop section. 

•  The geochemical composition of diagenetic carbonate 

 minerals shows a wide variability. Elemental composition 

of siderite is characteristic for marine pore-water. Calcite in 

core samples is relatively enriched in MgCO

3, 

probably due 

to replacement of ankerite. 

•  In the core section, sandstone is at ca. 900 m depth and 

 diagenetic calcite pre-dates quartz cementation. Based on 

stable  isotopic  values  (δ

13 

C

V-PDB 

  −18.3  to  −11.4  ‰  and  

δ

18 

O

V-PDB 

  −9.5  to  −7.2  ‰)  the  diagenetic  calcite  is  of 

mesogenetic origin and was precipitated from fluids 

migrated along fault zones from the underlying, organic 

matter-rich formation. The formation temperature calcu-

lated for calcite is of 55‒65 °C.

•  In the outcrop setting, the calcite is present in larger quantity 

and post-dates quartz cementation. Carbon isotope data  

13 

C

V-PDB 

= −9.9  to  −5.1  ‰)  indicate  less  contribution  of 

light isotopes, whereas more negative oxygen isotopic 

 values  (O

V-PDB 

= −13.1 to −9.9 ‰) likely indicates a higher 

temperature of mesogenetic fluids. However, carbon-oxy-

gen isotope covariation can point to precipitation from  

a meteoric fluid.

•  Additionally, a minor amount of calcite of likely eogenetic 

origin was observed in the outcrop section; telogenetic 

 calcite precipitation connected to modified meteoric pore 

fluids was observed in the core section. 

Acknowledgements: This paper is based on the MSc thesis of 

E. Szőcs. We are grateful to Attila Demény for stable isotopic 

measurements, to Tibor Németh for clay mineralogical analy-

sis and to Tomáš Mikuš for electron microanalysis. Orsolya 

Sztanó,  Barbara  Beke,  László  Fodor,  Sándor  Józsa,  Zsolt 

Bendő, Gergely Surányi, Orsolya Győri, Andrea Mindszenty, 

Zsófia Poros, Balázs Szinger, István Vető, Szilvia Simon and 

Miklós Varga are acknowledged for the discussion on the topic 

and their help in field work. The cores were provided by  

the core sample storage of the Hungarian Office for Mining 

and Geology in cooperation with the Geological and Geophy-

sical Institute of Hungary. The project was partially supported 

through the New National Excellence Program of the Ministry 

of Human Capacities, Hungary (ÚNKP-17 to E. Szőcs). The 

authors appreciate the constructive comments and suggestions 

background image

526

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

of anonymous Referees, Handling Editor and Managing 

 Editor. The authors are grateful to Henry Lieberman for 

 English grammar correction.

References

Aagaard P., Egeberg Z.P.K., Saigal G.C., Morad S. & Bjorlykke K. 

1990: Diagenetic albitization of detrital K-feldspars in Jurassic, 

Lower Cretaceous and Tertiary clastic reservoir rocks from off-

shore Norway, II. Formation water chemistry and kinetic consi-

derations. J. Sediment. Petrol. 60, 575–581.

Abreu V.S. & Anderson J.B. 1998: Glacial eustasy during the Ceno-

zoic: sequence stratigraphic implications. Am. Assoc. Pet. Geol. 

Bull. 82, 1385–1400.

Allan J.R. & Wiggins W.D. 1993: Dolomite reservoirs: Geochemical 

Techniques for Evaluating Origin and Distribution. American 

Association of Petroleum Geologists Continuing Education 

Course Note Series, Tulsa, Oklahoma, 1–170.

Badics B. & Vető I. 2012: Source rocks and petroleum systems in the 

Hungarian part of the Pannonian Basin: The potential for shale 

gas and shale oil plays. Mar. Pet. Geol. 31, 53–69.

Baker J.C., Kassan J. & Hamilton P.J.O.E. 1995: Early Diagenetic 

Siderite as an Indicator of Depositional Environment in the 

 Triassic Rewan Group, Southern Bowen Basin, Eastern Austra-

lia. Sedimentology 43, 77–88.

Báldi T. 1983: The Oligocene and Lower Miocene formations of 

 Hungary.  Akadémiai Kiadó, Budapest, 1–293 (in Hungarian).

Báldi T. & Báldi-Beke M. 1985: The evolution of the Hungarian 

 Paleogene  basins.  Acta Geol. Hungarica. 28, 5–28 (in Hun-

garian).

Beke B.K. 2016: The role of deformation bands in Cenozoic structu-

ral evolution of Northern Hungary, PhD thesis. Eötvös Loránd 

University, Budapest, 1–148 (in Hungarian).

Berner, R. A., Leeuw J.W. De, Spiro B., Murchison D.G. & Eglinton G. 

1985: Sulphate Reduction, Organic Matter Decomposition and 

Pyrite Formation. Philos. Trans. R. Soc. London. Ser. A, Math. 

Phys. Sci. 315, 25–38.

Bojanowski M.J., Barczuk A. & Wetzel A. 2014: Deep-burial alte-

ration of early-diagenetic carbonate concretions formed in 

 Palaeozoic deep-marine greywackes and mudstones (Bardo Unit, 

Sudetes Mountains, Poland). Sedimentology. 61, 1211–1239.

Calvo R., Ayalon A., Bein A. & Sass E. 2011: Chemical and isotopic 

composition of diagenetic carbonate cements and its relation  

to hydrocarbon accumulation in the Heletz-Kokhav oil field 

 (Israel). 

J. Geochemical Explor. 108, 88–98.

Dickson J. 1966: Carbonate identification and genesis as revealed by 

staining. J. Sediment. Petrol. 36, 491–505.

Dutton S.P. 2008: Calcite cement in Permian deep-water sand-

stones, Delaware Basin, west Texas: Origin, distribution, and 

effect on reservoir properties. Am. Assoc. Pet. Geol. Bull. 92, 

765–787.

El-ghali M.A.K., Tajori K.G., Mansurbeg H., Ogle N. & Kalin R.M. 

2006: Origin and timing of siderite cementation in Upper Ordo-

vician glaciogenic sandstones from the Murzuq basin, SW 

 Libya.  Mar. Pet. Geol. 23, 459–471.

Folk R.L. 1974: Petrology of sedimentary rocks. Hemphill Publishing 

Company. Austin, Texas, 1–190.

Friedman I. & O’Neil J. 1977: Compilation of Stable Isotope Frac-

tionation Factors of Geochemical Interest. In: M. Fleischer 

(Ed.): Data of Geochemistry. US Geological Survey Professional 

Paper, 440-KK, Washington.

Gier S., Worden R.H., Johns W.D. & Kurzweil H. 2008: Diagenesis 

and reservoir quality of Miocene sandstones in the Vienna Basin, 

Austria. Mar. Pet. Geol. 25, 681–695.

Gradstein F. & Ogg J. 2004: Geologic Time Scale 2004 — why, how, 

and where next!. Lethaia 37, 175–181. 

Grundtner M.L., Gross D., Gratzer R., Misch D., Sachsenhofer R.F. & 

Scheucher L. 2017: Carbonate cementation in upper eocene clas-

tic reservoir rocks from the north alpine foreland basin (Austria). 

Austrian J. Earth Sci. 110, 55–75.

Grundtner M.L., Gross D., Linzer H.G., Neuhuber S., Sachsenhofer 

R.F. & Scheucher L. 2016: The diagenetic history of Oligo-

cene-Miocene sandstones of the Austrian north Alpine foreland 

basin. Mar. Pet. Geol. 77, 418–434.

Hámor T. 1985: Geological report on Sámsonháza- 16/a well. Geo-

logical Institute of Hungary, Budapest, 1–16,

Hendry J.P. 2002: Geochemical trends and palaeohydrological signi-

ficance of shallow burial calcite and ankerite cements in Middle 

Jurassic  strata  on  the  East  Midlands  Shelf  (onshore  UK). 

 Sediment. Geol. 151, 149–176.

Hendry  J.P.,  Wilkinson  M.,  Fallick A.E.  &  Haszeldine  R.S.  2000: 

 Ankerite cementation in deeply buried Jurassic sandstone reser-

voirs of the central North Sea. J. Sediment. Res. 70, 227–239.

Horváth F. & Tari G. 1999: IBS Pannonian Basin project: a review of 

the main results and their bearings on hydrocarbon exploration. 

Geol. Soc. London, Spec. Publ. 156, 195–213.

Horváth  F.,  Musitz  B.,  Balázs A., Végh A.,  Uhrin A.,  Nádor A.  & 

Koroknai B. 2015: Geothermics Evolution of the Pannonian 

 basin and its geothermal resources. Geothermics 53, 328–352.

Kantorowicz J.D. 1985: The origin of authigenic ankerite from the 

Ninian Field, UK North Sea. Nature 315, 214–216.

Karim A., Pe-Piper G. & Piper D.J.W. 2010: Controls on diagenesis 

of Lower Cretaceous reservoir sandstones in the western Sable 

Subbasin, offshore Nova Scotia. Sediment. Geol. 224, 65–83.

Kázmér  M.  2004:  Hydrocarbon  geology  o  f  northem  Hungary 

(Palaeo gene basin), in: Kázmér, M. (Ed.), General Geological 

Review Journal of the Section for General Geology Hungarian 

Geological Society. Hantken Kiadó, Budapest, 9–120.

Khalifa M.A., Mansurbeg H., Morad D., Morad S., Al-Aasm I.S., 

Spirov P., Ceriani A. & De Ros L.F. 2017: Quartz and Fe-dolo-

mite Cements Record Shifts in Formation-water Chemistry and 

Hydrocarbon Migration in Devonian Shoreface Sandstones, 

 Ghadamis Basin, Libya. J. Sediment. Res. 88, 38–57.

Lakatos L., Varadi M., Pogacsas G., Nagymarosy A., Kis B. &   

Barvitz A. 1991: Sequence stratigraphy of Paleogene Formations 

in Zagyva Trough. Hung. Geophys. 20–37 (in Hungarian).

Land L.S. & Milliken K.L. 1981: Feldspar diagenesis in the Frio forma-

tion, Brazoira County, Texas Gulf Coast. Geology 9, 314–318.

Lenkey L., Dövényi P., Horváth F. & Cloetingh S. a. P.L. 2001: Geo-

thermics of the Pannonian basin and its bearing on the neotec-

tonics. EGU Stephan Mueller Spec. Publ. Ser. 3, 29–40.

Lima R.D. & De Ros L.F. 2002: The role of depositional setting and 

diagenesis on the reservoir quality of Devonian sandstones from 

the Solimões Basin, Brazilian Amazonia. Mar. Pet. Geol. 19, 

1047–1071.

Lonoy A., Akselsen J. & Ronning K. 1986: Diagenesis of a deeply 

buried sandstone reservoir; Hild Field, northern North Sea. Clay 

Miner. 497–511.

Makeen Y.M., Abdullah W.H., Ayinla A.A., Hakimi M.H. & Sia S.G. 

2016: Sedimentology, diagenesis and reservoir quality of the 

 upper Abu Gabra Formation sandstones in the Fula Sub-basin, 

Muglad Basin, Sudan. Mar. Pet. Geol. 77, 1227–1242.

Maraschin A.J., Mizusaki A.M.P. & De Ros L.F. 2004: Near-Surface 

K-Feldspar Precipitation in Cretaceous Sandstones from the 

 Potiguar Basin, Northeastern Brazil. J. Geol. 112, 317–334.

Marfil R., Delgado A., Rossi C., La Iglesia A. & Ramseyer K. 2003: 

Origin and diagenetic evolution of kaolin in reservoir sandstones 

and  associated  shales  of  the  Jurassic  and  Cretaceous,  Salam 

Field,  Western  Desert  (Egypt).  In:  Worden,  R.H.,  Morad,  S. 

(Eds.): Sandstone Diagenesis: The Evolution of Sand to Stone. 

background image

527

FLUID FLOW ACTIVITY DURING BURIAL (PÉTERVÁSARA SANDSTONE, NORTH HUNGARY)

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

International Association of Sedimentologists, Bodmin, Corn-

wall. 319–342.

Márton E. & Fodor L. 1995: Combination of palaeomagnetic and 

stress data: a case study from Northern Hungary. Tectono physics 

242, 99–114.

McBride E.F., Milliken K., Cavazza W., Cibin U., Fontana D., Picard 

M.D. & Zuffa G.G. 1994: Patterns of calcite cementation at the 

outcrop scale in Tertiary sandstones. AAPG Annu. Conv. 1–209.

McKinley J.M., Worden R.H. & Ruffell  a H. 2002: Smectite in sand-

stones: A review of the controls on occurrence and behaviour 

during diagenesis. Int. Assoc. Sedimentol. Spec. Publ. 109–128.

Milota K., Kovacs A. & Galicz Z. 1995: Petroleum potential of the 

North Hungarian Oligocene sediments. Pet. Geosci. 1, 81–87.

Moore S.E., Ferrell R.E. & Aharon P. 1992: Diagenetic siderite and 

other ferroan carbonates in a modem subsiding marsh sequence. 

J. Sediment. Petrol. 62, 357–366.

Morad S. 1998: Carbonate Cementation in Sandstones: Distribution 

Patterns and Geochemical Evolution. In: Morad S. (Ed.): Car-

bonate Cementation in Sandstones: Distribution Patterns and 

Geochemical Evolution. Special Publication 26 of the IAS

 University Press, Cambridge, 1–26.

Morad S., Márfil R. & Pena J. 1989: Diagenetic K-feldspar pseudo-

morphs in the Triassic Buntsandstein sandstones of the Iberian 

Range, Spain. Sedimentology 36, 635–650.

Morad  S.,  Ketzer  J.M.  &  De  Ros  L.F.  2000:  Spatial  and  temporal 

distribution of diagenetic alterations in siliciclastic rocks: Impli-

cations for mass transfer in sedimentary basins. Sedimentology 

47, 95–120.

Mozley P.S. 1989: Relation between depositional environment and 

the elemental composition of early diagenetic siderite. Geology 

17, 704–706.

Nagymarosy  A.  2012:  Accretion  of  the  ALCAPA  Mega-Unit.  

In: Haas J., Hámor G., Jámbor Á., Kovács S., Nagymarosy A. & 

Szederkényi  T.  (Eds.):  Geology  of  Hungary.  Springer-Verlag

Berlin Heidelberg, 81–102.

Nickel  E.H.  &  Grice  J.D.  1998:  The  IMA  Commission  on  New 

 Minerals and Mineral Names: procedures and guidelines on 

mineral nomenclature, 1998. Can. Mineral. 36, 1–14.

Odin G. & Matter A. 1981: De glauconiarum origine. Sedimentology 

28, 611–641.

Oluwadebi A.G., Taylor K.G. & Dowey P.J. 2018: Diagenetic con-

trols on the reservoir quality of the tight gas Collyhurst Sand-

stone Formation, Lower Permian, East Irish Sea Basin, United 

Kingdom. Sediment. Geol. 371, 55–74.

Petrik A., Beke B. & Fodor L. 2014: Combined analysis of faults and 

deformation bands reveals the Cenozoic structural evolution of 

the  southern  Bükk  foreland  (Hungary).  Tectonophysics 633, 

43–62. 

Püspöki Z., Hámor-Vidó M., Pummer T., Sári K., Lendvay P., Selmeczi 

I.,  Detzky  G.,  Gúthy  T.,  Kiss  J.,  Kovács  Z.,  Prakfalvi  P.,  

McIntosh R.W., Buday-Bódi E., Báldi K. & Markos G. 2017:  

A sequence stratigraphic investigation of a Miocene formation 

supported by coal seam quality parameters — Central Para-

tethys, N-Hungary. Int. J. Coal Geol. 179, 196–210.

Pye  K.,  Dickson  J.,  Schiavon  N.,  Coleman  M.L.  &  Cox  M.  1990: 

Formation of siderite-Mg-calcite-iron sulphide concretions in 

intertidal marsh and sandflat sediments, north Norfolk, England. 

Sedimentology 37, 325–343.

Rögl F. & Steininger F.F. 1983: Vom Zerfall der Tethys zu Mediterran 

und Paratethys. Wien. Ann. Naturhistorische Museum 85, 

 

135–163.

Royden L. & Baldi T. 1988: Early Cenozoic tectonics and paleogeo-

graphy of the Pannonian basin and surrounding regions. In: Roy-

den  L.R.,  Horvath  F.  (Eds.): The  Pannonian  Basin  a  Study  in 

Basin Evolution. Amer. Assoc. Petro Geol., Memoir 45, 1–16.

Saigal G.C.G., Morad S., Bjorlykke K., Egeberg P.K. & Aagaard P. 

1988: Diagenetic albitization of detrital K-feldspar in Jurassic, 

Lower Cretaceous, and Tertiary clastic reservoir rocks from off-

shore Norway; I, Textures and origin. J. Sediment. Petrol. 58, 

1003–1013.

Siklósy Z., Demény A., Leél-Őssy S., Szenthe I., Lauritzen S.-E. & 

Shen C. 2011: The dating of stalagmites and their palaeoclimato-

logical significance. Bull. Hungarian Geol. Soc. 141, 73–88.

Szőcs E., Hips K., Józsa S. & Bendő Z. 2015: Diagenetic evolution of 

the Lower Miocene Pétervására Sandstone Formation. Bull. 

Hung. Geol. Soc. 145, 351–366 (in Hungarian).

Sztanó  O.  1994:  The  tide-influenced  Petervasara  Sandstone,  early 

Miocene, northern Hungary: sedimentology, palaeogeography 

and basin development. Geol. Ultraiectina, Uthrecht, 120, 155.

Sztanó O. & Boer P. 1995: Basin dimensions and morphology as con-

trols on amplification of tidal motions (the Early Miocene North 

Hungarian Bay). Sedimentology 42, 665–682.

Sztanó  O.  &  Józsa  S.  1996:  Interaction  of  basin-margin  faults  and 

tidal currents on nearshore sedimentary architecture and compo-

sition: a case study from the Early Miocene of northern Hungary. 

Tectonophysics 266, 319–341.

Sztanó O. & Tari G. 1993: Early Miocene basin evolution in Northern 

Hungary: tectonics and eustasy. Tectonophysics 261, 485–502.

Tari G., Báldi T. & Báldi-Beke M. 1993: Paleogene retroarc flexural 

basin beneath the Neogene Pannonian Basin: a geodynamic 

model. Tectonophysics 226, 433–455.

Tóth J. & Almasi I. 2001: Interpretation of observed fluid potential 

patterns in a deep sedimentary basin under tectonic compression: 

Hungarian Great Plain, Pannonian Basin. Geofluids 1, 11–36.

Van Den Bril K. & Swennen R. 2008: Sedimentological control on 

carbonate cementation in the Luxembourg Sandstone Forma-

tion. Geol. Belgica 12, 3–23.

Virág  M.,  Mindszenty A.,  Surányi  G.,  Molnár  M.  &  Leél-Őssy  S. 

2013:  A  Búboskemence  cseppkőlefolyás.  In:  Mindszenty  A. 

(Ed.): Budapest Földtani Értékek És Az Ember. Városgeológiai 

Tanulmányok. ELTE Eötvös Kiadó, Budapest, 245–248 (in Hun-

garian).

Waldmann S. & Gaupp R. 2016: Grain-rimming kaolinite in Permian 

Rotliegend reservoir rocks. Sediment. Geol. 335, 17–33. 

Wanas H.A. 2008: Calcite-cemented concretions in shallow marine 

and fluvial sandstones of the Birket Qarun Formation (Late 

 Eocene), El-Faiyum depression, Egypt: Field, petrographic and 

geochemical studies: Implications for formation conditions. 

 Sediment. Geol. 212, 40–48.

Wang J., Cao Y., Liu K., Liu J., Xue X. & Xu Q. 2016: Pore fluid 

evolution, distribution and water-rock interactions of carbonate 

cements in red-bed sandstone reservoirs in the Dongying 

 Depression,  China.  Mar. Pet. Geol. 72, 279–294.

Wang J., Cao Y., Liu K., Costanzo A. & Feely M. 2018: Diagenesis 

and evolution of the lower Eocene red-bed sandstone reservoirs 

in the Dongying Depression, China. Mar. Pet. Geol. 94, 230–245. 

Yuan G., Cao Y., Cluyas J., Li X., Xi K., Wang Y., Jia Z., Sun P. & 

Oxtoby N.H. 2015: Feldspar dissolution, authigenic clays, and 

quartz cements in open and closed sandstone geochemical sys-

tems during diagenesis: Typical examples from two sags in 

 Bohai Bay Basin, East China. Am. Assoc. Pet. Geol. Bull. 99, 

2121–2154.

Yuan G., Cao Y., Zhang Y. & Gluyas J. 2017: Diagenesis and reservoir 

quality of sandstones with ancient “deep” incursion of meteoric 

freshwater —An example in the Nanpu Sag, Bohai Bay Basin, 

East China. Mar. Pet. Geol. 82, 444–464. 

Zhang C.L., Horita J., Cole D.R., Zhou J., Lovley D.R. & Phelps T.J. 

2001: Temperaturedependent oxygen and carbon isotope frac-

tionation of biogenic siderite. Geochim. Cosmochim. Acta 65, 

2257–2271.

background image

i

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

Supplement

Appendix 1: Quantitative composition of sandstone according to point counting (%).

Appendix 2: Chemical composition of diagenetic carbonate minerals in the Pétervására Sandstone.

samples from outcrop

samples from core

lithofacies

LF1 porous sandstone

LF2 matrix-rich 

sandstone

LF3 cement-rich sandstone

LF3

LF2

LF1

sample

B-7/c B-11/a D-20

A-3 B-10/a B-11/b B-9/b

A-2 B-13/e A-4 B-13/c A-5 B-12/b B-14/c B-10/b 988m 903m 873m

grains

quartz+ chert

31

36

37

36

43

37

28

29

35

23

28

27

29

37

36

33

30

33

feldspar

8

6

7

8

9

4

8

9

6

5

5

magmatic + 

metamorphic 

rock fragment

11

13

20

20

20

39

13

11

21

31

20

26

29

30

22

16

28

30

volcanic rock 

fragment

12

12

7

13

18

10

7

10

4

6

7

1

4

5

9

1

1

1

bioclast

<1

<1

<1

2

iron oxide

5

4

3

3

5

4

2

1

2

<1

1

1

1

dolomite

4

3

6

7

2

3

4

4

8

2

9

9

6

5

4

12

10

11

matrix matrix

2

1

9

4

28

19

13

1

1

6

0

18

4

cement

calcite

2

1

14

10

23

18

17

16

7

7

11

replacive 

calcite

1

8

2

5

4

1

4

3

2

17

siderite

4

4

1

3

2

3

1

1

3

4

3

2

1

2

3

6

 pores

intergranular

20

17

17

8

8

8

3

1

4

<1

5

4

<1

8

8

4

7

intragranular

5

3

1

2

1

1

2

1

1

1

1

2

2

2

4

Sample number

Mineral

CaCO

3

 %

MnCO

3

 %

 MgCO

3

 %

FeCO

3

 %

SrCO

3

 %

CO

(Mass %)

Total (Mass %)

core sample 988

calcite

98.54

0.08

0.65

1.93

0.10

44.72

101.73

core sample 988

calcite

98.35

0.30

1.39

0.03

0.00

44.20

100.26

core sample 988

calcite

100.38

0.12

0.43

1.79

0.15

45.15

102.91

core sample 988

calcite

100.73

0.22

0.88

0.11

0.06

44.93

102.06

core sample 988

calcite

98.79

0.30

1.23

0.01

0.00

44.23

100.37

core sample 988

calcite

99.57

0.14

0.34

1.35

0.02

44.55

101.45

core sample 988

calcite

99.93

0.16

1.65

0.01

0.04

44.89

101.83

core sample 988

calcite

95.23

0.03

1.40

0.08

0.09

43.07

97.50

core sample 988

calcite

99.54

0.26

0.74

0.02

0.03

44.32

100.66

core sample 988

calcite

98.01

0.23

1.33

0.13

0.00

43.97

99.76

core sample 988

calcite

101.26

0.25

2.22

0.05

0.00

45.79

103.75

core sample 988

calcite

100.03

0.29

1.71

0.00

0.00

45.00

102.04

core sample 988

calcite

99.69

0.27

1.81

0.07

0.00

45.02

102.02

core sample 988

calcite

101.20

0.05

0.88

0.02

0.03

44.97

102.12

core sample 988

calcite

97.49

0.25

2.00

0.03

0.02

44.14

99.98

core sample 988

calcite

100.43

0.27

1.20

0.22

0.07

45.04

102.25

core sample 988

calcite

96.76

0.16

0.64

0.06

0.11

43.03

97.78

core sample 988

calcite

100.01

0.46

1.34

0.28

0.00

45.01

102.20

core sample 988

calcite

100.90

0.14

1.17

0.06

0.04

45.04

102.25

core sample 988

calcite

98.98

0.26

2.44

0.10

0.00

44.92

101.75

core sample 988

calcite

101.56

0.28

1.55

0.09

0.07

45.66

103.58

background image

ii

FLUID FLOW ACTIVITY DURING BURIAL (PÉTERVÁSARA SANDSTONE, NORTH HUNGARY)

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

Sample number

Mineral

CaCO

3

 %

MnCO

3

 %

 MgCO

3

 %

FeCO

3

 %

SrCO

3

 %

CO

(Mass %)

Total (Mass %)

outcrop sample PB5b

calcite

98.90

1.11

0.37

0.65

0.05

44.39

101.12

outcrop sample PB5b

calcite

98.59

1.31

0.34

0.64

0.01

44.25

100.84

outcrop sample PB5b

calcite

99.13

1.28

0.62

0.97

0.00

44.80

102.04

outcrop sample PB5b

calcite

95.33

1.20

0.39

0.72

0.01

42.87

97.67

outcrop sample PB5b

calcite

97.12

1.28

0.69

1.08

0.05

43.99

100.25

outcrop sample PB5b

calcite

99.30

0.99

0.29

0.63

0.03

44.44

101.24

outcrop sample PB5b

calcite

95.65

1.52

0.67

1.00

0.00

43.44

98.96

outcrop sample PB5b

calcite

97.22

1.63

0.66

0.98

0.02

44.13

100.56

outcrop sample PB5b

calcite

97.66

1.25

0.39

0.91

0.00

44.00

100.27

outcrop sample PB5b

calcite

95.88

1.26

0.73

0.98

0.03

43.41

98.88

outcrop sample PB5b

calcite

97.69

1.23

0.37

0.76

0.00

43.97

100.14

outcrop sample PB5b

calcite

96.60

0.49

0.57

1.31

0.18

43.57

99.23

outcrop sample PB5b

calcite

96.34

1.12

0.31

0.55

0.03

43.19

98.38

outcrop sample PB5b

calcite

97.40

1.22

0.40

0.72

0.04

43.79

99.78

outcrop sample PB5b

calcite

98.95

0.28

0.55

2.78

0.17

45.03

102.77

outcrop sample PB5b

calcite

98.17

1.18

0.44

0.99

0.03

44.25

100.86

988 an 5

ankerite

56.54

0.53

22.35

18.42

0.08

43.75

97.91

988 an 7

ankerite

55.33

0.48

17.39

23.80

0.04

42.71

97.16

core sample 873

ankerite

55.67

0.51

18.82

22.11

0.08

43.00

97.34

core sample 873

ankerite

54.64

0.50

18.46

22.73

0.00

42.62

96.55

core sample 873

siderite

10.82

0.43

10.75

75.43

0.00

39.19

97.45

core sample 873

siderite

10.09

1.29

5.58

80.44

0.03

38.91

98.31

core sample 873

siderite

10.32

0.69

11.25

74.48

0.06

39.02

96.91

core sample 873

siderite

8.72

0.93

15.42

70.92

0.00

39.38

96.40

core sample 873

siderite

11.10

0.35

17.12

68.54

0.04

40.13

97.41

core sample 988

siderite

7.04

0.91

18.75

69.62

0.02

39.72

96.42

core sample 873

siderite

12.08

1.04

11.41

73.66

0.02

40.59

99.85

core sample 873

siderite

8.60

1.26

4.25

81.89

0.00

37.89

96.55

core sample 873

siderite

10.53

1.12

8.07

76.53

0.02

39.35

98.02

core sample 873

ankerite

55.81

0.33

19.29

21.60

0.04

43.03

97.21

core sample 988

dolomite

52.79

0.00

44.69

0.03

0.01

46.48

97.40

core sample 988

dolomite

57.89

0.06

44.31

0.20

0.00

48.64

102.40

outcrop sample PB5b

dolomite

53.80

0.00

45.57

0.27

0.02

47.49

99.54

core sample 873

dolomite

53.99

0.02

43.15

0.80

0.00

46.86

98.43

Appendix 2 (continued): Chemical composition of diagenetic carbonate minerals in the Pétervására Sandstone.

background image

iii

SZŐCS and HIPS

GEOLOGICA CARPATHICA

, 2018, 69, 6, 515–527

Appendix 3: Simplified lithostratigraphic chart of the Palaeogene formations in North Hungary (Nagymarosy 2012, modified after  

Tari et al. 1993).