background image

GEOLOGICA CARPATHICA

, OCTOBER 2018, 69, 5, 498–511

doi: 10.1515/geoca-2018-0029

www.geologicacarpathica.com

Integrated stratigraphy of the Upper Barremian–Aptian 

sediments from the south-eastern Crimea

MARIA S. KARPUK

1, 

, EKATERINA A. SHCHERBININA

1

, EKATERINA A. BROVINA

1

,  

GALINA N. ALEKSANDROVA

1

, ANDREY YU. GUZHIKOV

2

,  

ELENA V. SHCHEPETOVA

1

 and EKATERINA M. TESAKOVA

1,3

 

Geological Institute of RAS, Pyzhevski Lane 7, Moscow, 119017, Russia, 

 

maria.s.karpuk@gmail.com

2

 Saratov State University, Department of General Geology and Mineral Resources, Astrakhanskaya st. 83, Saratov, 410012, Russia

3

 Moscow State University, geological department, Vorobiovy Gory 1, Moscow, 123103, Russia

(Manuscript received February 7, 2018; accepted in revised form October 4, 2018)

Abstract: Previous studies made in different parts of the world have shown that Barremian–Aptian times imply many 

difficulties in deciphering the biostratigraphy, microfossil evolution and correlation of bioevents. In an attempt to  improve 

our knowledge of this period in a particular area of the Tethyan realm, we present the first integrated study of microbiota 

(including planktonic foraminifera, calcareous nannofossils, ostracods and palynomorphs) and magnetostratigraphy of 

the upper Barremian–Aptian sediments from south-eastern Crimea. The nannofossils display the classical Tethyan chain 

of bioevents in this interval, while the planktonic foraminifera demonstrate an incomplete succession of stratigraphically 

important taxa. Our study enabled the recognition of a series of biostratigraphic units by means of four groups of 

 microfossils correlated to polarity chrons. The detailed analysis of the microfossil distribution led to a biostratigraphic 

characterization of the Barremian/Aptian transition and brought to light an interval, which may correspond to the OAE1a. 

Keywords: Crimea, Barremian, Aptian, biostratigraphy, planktonic foraminifera, calcareous nannofossils, ostracods, 

palynomorphs, magnetostratigraphy. 

Introduction

Thick Lower Cretaceous sediments are widely exposed in 

south-eastern Crimea southward of the city of Feodosia, where 

they form the eastern margin of the First Range of the Crimean 

Mountains. The Berriasian–Valanginian succession, made up 

of limestones, marlstones and mudstones, gets younger going 

from the sea-shore cliffs toward the hinterland; these deposits 

are succeeded by Hauterivian–Aptian non-calcareous and cal-

careous siliciclastics mostly devoid of or very poor in macro-

fossils. The Lower Cretaceous sediments of different intervals 

are studied in this area in varying degrees by different  methods, 

including biostratigraphical, paleomagnetic, sedimentological 

and geochemical analyses. The main recent studies were focu-

sed on the Jurassic/Cretaceous transition (e.g., Arkadiev 2004, 

2011; Guzhikov et al. 2012; Arkadiev et al. 2018) and on  

the upper Berriasian to Valanginian sediments (Arkadiev 2007; 

Guzhikov et al. 2014; Arkadiev et al. 2017, a.o.). However, 

during the last half-century the Hauterivian to Aptian sedi-

ments of this area were rarely studied (e.g., Salman & 

 Dobrovolskaya 1968; Baraboshkin 2016). In fact, in this area 

the Hauterivian and most of the Barremian sediments have 

been disturbed by anthropogenic impact during the last deca-

des and thus are now barely exposed. As a result, we had to 

limit our study to the upper Barremian–Aptian sediments, 

which crop out in the Feodosia suburban area. 

Recent bio-, magneto- and chemostratigraphic studies dea-

ling with the Barremian–Aptian interval improved calibration 

of this time period (e.g., Erba et al. 1996; Moullade et al.  

1998 a, b,  2011;  Aguado  et  al.  1999;  Erba  et  al.  1999;  

Channell et al. 2000; Ropolo et al. 2008; Coccioni et al. 2012; 

Savian et al. 2016, a.o.). The base (GSSP) of the Aptian  

stage is not yet formally ratified, however, the base of M0 

Magnetochron has been considered by many authors to  

define the Barremian/Aptian boundary since the proposition 

of the Aptian Working Group in 1996 (Erba et al. 1996).  

The classical biostratigraphy of this interval in the Tethyan 

realm includes ammonite and planktonic foraminifera (PF) 

zonations, which are still in progress mainly because of  

problems of correlation between the Tethyan and Boreal 

Realms, and standard nannofossil zonations codified with  

CC (Sissingh 1977) and NC (Roth 1978; Bralower et al. 1995) 

labels. Ammonites are scarce or absent from the upper 

Barremian to Aptian of the Crimea and thus could not be  

used in the biostratigraphy of this interval in the studied  

area. 

A developed micropaleontological study of the Lower 

Cretaceous sediments in Crimea began in the second half of 

the last century. The occurrence of abundant and diverse cal-

careous nannofossils in the Crimean Lower Cretaceous was 

shown by Vishnevsky & Menaylenko (1963) and Shumenko 

(1974), but they did not consider the possibility of their strati-

graphic application. The study of the Barremian–Aptian strati-

graphic division based on PF was pioneered by T.N. Gorbachik 

(Gorbachik 1959, 1964, 1969, 1986; Gorbachik & Krechmar 

1969). This author proposed the zonal subdivision of  

background image

499

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

the Barremian–Aptian sediments on the basis of PF study in  

the south-western Crimean sections (Fig. 1). 

Recently, new research has been carried out towards a more 

detailed subdivision and correlation of the Lower Cretaceous 

sediments from south-western and central Crimea. Calcareous 

nannofossil studies processed on several Lower Cretaceous 

sections in south-western Crimea enabled their detailed sub-

division following the CC and NC standard zonations (Shcher-

binina & Loginov 2012). The classical sections described by 

T.N. Gorbachik were revisited and PF assemblages were 

restudied (see Brovina 2017 and discussion herein; Brovina  

et al. 2017) to improve the correlation of the Crimean upper 

Barremian–Aptian subdivisions with the Tethyan PF 

zonation. 

The Crimean Barremian–Aptian ostracods were first found 

and described by T.N. Nemirovskaya (1972), but without 

stratigraphical analysis. Several decades later, Karpuk (Karpuk 

&  Tesakova  2010,  2013,  2014;  Karpuk  2016 a, b)  studied  

the species composition, stratigraphical distribution and 

paleoecological affinities of the Barremian–Aptian ostracods 

of the Crimean Mts. The succession of four ostracod zones was 

established in this interval and correlated to the PF and cal-

careous nannofossil zonation (Brovina et al. 2017). The pre-

liminary study of dinocysts in SW Crimea led to the iden   tification 

of two dinocyst assemblages in the uppermost Barremian and 

lowermost Aptian (Shurekova 2016). In the 2000s, paleomag-

netic studies of the Lower Cretaceous defined the position of 

the M0 Chron in SW Crimea (Baraboshkin et al. 2004; 

Yampolskaya et al. 2006), but magnetostratigraphy of this 

interval from E Crimea was not initiated up to now.

This paper presents the first study of the upper Barremian to 

Aptian sediments of the Zavodskaya Balka section, south- 

eastern Crimea. This work includes the stratigraphic distribu-

tion of planktonic foraminifera, calcareous nannofossils, 

ostra cods, palynomorphs and magnetostratigraphy. The obtai-

ned results enabled the first stratigraphic subdivision of  

the succession and correlation of the bioevents recognized 

among the different groups of microfossils.

Material and methods

Material

The outcrop of Zavodskaya Balka was studied and sampled 

in the upper SE part of the ravine crossing the eastern wall of 

the abandoned quarry located 1 km eastward from the city of 

Feodosia,  on  the  left  side  of  Feodosia – Ordzhonikidze  road 

(GPS data: 45°1’56” N, 35°20’14” E; Fig. 2). The 33.5 m-thick 

mid-Cretaceous muddy succession (dip azimuth — 50°, dip 

angle — 20°) with decimetre-scale intercalations of carbonate 

and hard ferruginous beds was first sampled using nearly 

equal intervals (1.3–1.5 m). 23 samples were collected and on 

the basis of a preliminary study, a few additional samples were 

taken during a recent field trip from two particular intervals: 

one which was suggested to include the OAE1a (between 15.0 

and 19.0 m) and another — the Barremian/Aptian boundary 

(between 5.3 and 9.0 m). The Barremian–Aptian succession in 

the Zavodskaya Balka section consists of light grey mudstones 

and contains irregularly intercalated reddish layers. The cal-

cium carbonate content varies throughout the section from 

3.92 to 42.85 %. The CaCO

3

 mainly comes from coccoliths, 

foraminiferal tests, ostracod valves and carapaces and rare 

fragments of macrofossils. The sediment is intensively biotur-

bated mostly by small burrows (up to 0.5 mm in diameter and 

few mm in length). The harder intercalations consist of diage-

netic limestone and marlstone concretions made of microcrys-

talline calcite aggregates. Some of these beds can be interpreted 

as hardgrounds formed during a process of non-deposition. 

They contain manganocalcite, siderite and phosphatic matter 

(apatite) (Fig. 3). The TOC content is very low in the whole 

succession and irregularly varies between 0.5 and 1.2 %.

Methods

All the samples obtained were processed for paleomagnetic 

and micropaleontological analyses using the following 

methods.

Calcareous nannofossils: Smear-slides for nannofossil 

study were prepared from raw sediment with Norland Optical 

Adhesive 61 using standard techniques (Bown & Young 

1998). Nannofossils were examined at 1250x magnification 

under light microscope Olympus BX41 and their pictures 

were made using an Unfinity X video-camera. 

Planktonic foraminifera and ostracods: The sample prepa-

ration evolved from the technique described by Sohn (1961). 

All ostracod specimens from the 0.1–1 mm fraction were 

picked. All PF specimens were picked up from the samples 

with rare PF and only the first hundred specimens from  

the samples rich in PF. Ostracods and PF images were made 

using the CamScan Electron Microscope of the Paleontological 

Institute of the Russian Academy of Sciences. 

Palynomorphs were studied from 12 samples (23, 19, 17, 

15, 14, 13, 1504, 10, 8, 6, 3, 1). Chemical preparation of sam-

ples for palynological study followed the method developed 

by the research team of the Geological Institute of the RAS 

(see, for example, Shcherbinina et al. 2016). Spores, pollen 

and microphytoplankton (dinoflagilates, algae) were exami-

ned at 400–600× magnification under a light microscope Carl 

Zeiss Axioplan and their pictures were made using a Canon 

PowerShot A640 camera and an Axiovision visualization pro-

gramme. Two hundred specimens were counted from samples 

with abundant palynomophs and all specimens from the sam-

ples with less rich palynomophs. 

Magnetostratigraphy: The field and laboratory rock-mag-

netism and paleomagnetic studies and data processing were 

 carried out by standard procedures (Khramov 1982). Oriented 

samples were sawn up into 3 to 4 cubes with 2 cm-long sides. 

They were treated with magnetic cleaning by variable field 

using  LDA-3  AF  С  outfit  under  the  temperature  obtained 

using the kiln designed by V.P. Aparin. The Lab Petromagnetic 

and magneto-mineralogical analysis includes: magnetic 

background image

500

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

susceptibility (K) and its ani so -

tropy (AMS) measurements, 

experiments  with  mag    netic 

satu 

ration, differential ther-

momagnetic analysis (DTMA). 

J

n

 measuring was done using 

spinner magnetometer JR-6, 

K — on kappabridge MFK-

1FB. The faction thermoana-

lyser TAF-2 was used for 

DTMA. Analysis of the data 

on AMS and the component 

analysis were performed 

using, respectively, Anisoft 4.2 

and Remasoft 3.0 software. 

32 samples were processed 

from the complete succes sion.

Results

Magnetostratigraphy

One or several similarly 

oriented components of nor-

mal geomagnetic polarity (N) 

were defined in all samples 

with the sole exception of 

sample 19 in which the charac-

teristic remanent magneti-

zation (ChRM) cannot be 

con fidently defined. However, 

the projection of the paleo-

magnetic vector regularly 

becomes displaced during 

magnetic cleanings along 

 

the arc of the great circle from 

the lower to upper hemisphere.

Rock magnetic and minera­

logical study: As shown by 

differential thermomagnetic 

analysis (DTMA) curves, 

magnetite is the major source 

of magnetization in the grey 

mudstones of the lower part of 

the section. This is determined 

by the drop of magnetization 

near — 578 ºC, that is the Curie 

temperature of this mineral 

(Fig. 4A–I). FeCO

3

 is detected 

by the increased magnetiza-

tion at 350 °C due to the phase 

transition of siderite into 

 

magnetite in the samples 

 

from siderite concretions and 

red beds. During the second 

Fig. 

1

Tethyan 

late 

Barremian–Aptia

n standard 

stratigraphy 

and 

PF zonati

ons of dif

ferent 

authors. 

Correlation 

of ammonite 

and 

nannofossil 

zonation

s after

 Bown et 

al. 

1998; 

Aguado et 

al. 

1999; 

Szives et al. 2018.

background image

501

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

heating, magnetite becomes the only magnetic mineral left 

(Fig. 4A-II). 

The effect of Fe hydroxides, such as hydrogoethite (peak 

around 100–150 ºC on the second derivative), on thermomag-

netic curves is negligible (Fig. 4A-I). However, the magnetic 

saturation curves demonstrate a magnetically rigid phase, 

 featured for ferric oxides, in the red sediments of sample 8. 

This is proved by non-saturation in the high fields (up to  

700 mT; Fig. 4B-I). In all other samples (Fig. 4B-II), mainly 

the magnetically soft phase, featured for the fine magnetite, is 

detected. 

The average values of K and J

n

 in the grey mudstones are 

66*10

−5

 of SI units and 23*10

−3

 A/m, respectively, which 

 indicates high concentrations of magnetite (Fig. 3). The sam-

ples rich in siderite are characterized by abnormally high 

 values  of  J

n

 — 179–1080*10

−3

 A/m (Fig. 3) and nearly 

reversed magnetic fabric with the long axes projections of  

the magnetic ellipsoids (K1) approaching the centre of stereo-

projection (Fig. 4C-I). The AMS in the grey mudstones tends 

towards classic sedimentary magnetic fabric, where short axes 

(K3) are vertical and K1 projections lie along the stereogram 

margin (Fig. 4C-II). The ranking of the long axes of the mag-

netic ellipsoids along the NW–SE direction (Fig. 4C-II) is 

similar to the arrangement of K1 in the studied earlier 

Berriassian mudstones that outcrop 1 km east of the studied 

section (Guzhikov et al. 2014; Fig. 4C-III). The similarity  

of this parameter throughout the whole territory of 

 

the Crimean Mts. is likely to be caused by large-scale tectonic 

compression (Bagaeva & Guzhikov 2014). The shape of  

the magnetic particles is defined from the Flinn diagram (Flinn 

1965; Fig. 4C). Both elongated and flattened forms of the mag-

netic ellipsoids are characteristic for samples containing side-

rite (Fig. 4C-I); the flattened form of the magnetic ellipsoids 

dominates in other mudstones (Fig. 4C-II). This is likely to be 

related to the aggregation of sub-micrometer sized ferromag-

netic grains on the flakes of clay minerals.

The age determination of magnetization components, asso-

ciated with siderite or iron hydroxides, is difficult or invalid 

because the components are more likely to be of the chemical 

genesis. The samples containing these minerals, marked by 

anomalously high J

n

 values (> 100*10

−3

 A/m; Fig. 3), should 

be excluded from  consideration. This does not imply signi fi-

cant variations in the structure of the paleomagnetic column.

Paleomagnetic study: All magnetization components are 

defined with high accuracy (maximal angle of deviation 

(MAD) is less than 10°). Only one magnetization component 

C

1

 is determined in some samples (Fig. 5A-I). Both low-coer-

civity or low-temperature component (C

L

) and high-coercivity 

or high-temperature characteristic component magnetization 

(ChRM) are recognized in most of the samples (Fig. 5A-II). 

The projections of all components (C

1

C

L

 and ChRM) are loca-

ted in the northern rhumbs of the lower hemisphere (Fig. 5B) 

that characterizes the magnetization of normal polarity. 

A different pattern of the paleomagnetic vectors is observed 

during magnetic cleanings of sediments sampled between  

the levels 3129-3 and 3129-9: the J

n

 projections displace along 

the arcs of the great circles (GC; Fig. 5C). Not less than 4 

(mainly 5–8) points were used for the approximation of the 

tracks of the changing J

n

 directions during the magnetic clea-

nings (the MAD is less than 10°). 

Dating of paleomagnetic components: In the single-compo-

nent samples, the mean C

1

 vector has normal polarity direc-

tion and corresponds to the magnetic inclination near the city 

of  Feodosia  (I = 63.4°;  Fig.  5-I).  More  likely,  the  sediments  

of these intervals were completely remagnetized by the pre-

sent-day geomagnetic field, and C

1

 is a viscuous remanent 

magnetization (VRM). In the two-component samples, the mean 

C

L

 and C

1

 vectors statistically coincide (Fig. 5B-I, II, IV), 

while the mean direction of ChRM and C

1

 (and ChRM and 

C

L

) significantly differ (Fig. 5B-I–IV). This pattern is in good 

accordance with the hypothesis of the secondary (viscous) 

nature of the C

L

 and C

1

 components, related to the modern 

magnetic field, and primary nature of the ChRM component.

The regular displacement of the J

n

 projections along 

 

the arcs of GC from lower to upper hemisphere is featured  

for reversely magnetized deposits, which were partially 

remagnetized by the modern magnetic field. The recognition 

of the zones of reverse polarity in the paleomagnetic column 

of the section (Fig. 3) is based on the suggestion that the pre-

sence of the ancient reverse polarity component caused  

the displacement of the paleomagnetic vectors along the arcs 

of great circles. 

Since the primary J

n

 components were not reliably identi-

fied, their orientational and/or chemical genesis is still poorly 

Fig. 2. Location of the studied section in the general geography (A

and the sketch-map of the vicinity of the city of Feodosia (B).

background image

502

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

understood and standard field tests and other criteria elabo-

rated by different researchers for estimation of the validity  

of the paleomagnetic results cannot be used. Nevertheless,  

the biostratigraphic age determination, detailed sampling  

and thorough magnetic cleanings caused reliable values of  

the index of paleomagnetic consistency of the results obtained: 

5 from 10 using Opdyke and Channell’s method (1996) and  

3 from 7 using Van der Voo’s method (1993). Since the M0 

Chron is the unique interval with reversed polarity at the 

Barremian/Aptian transition (Ogg et al. 2016), the reverse 

polarity zone found between samples 3129/9 and 3129/3 is, 

more likely, its analogue and the associated Barremian– Aptian 

boundary can be assigned at the level of the sample 3129/9.

Planktonic Foraminifera

The numerous researches published since the 1960-s in dif-

ferent Tethyan areas enabled the detailed zonal subdivision of 

the late Barremian to Aptian interval (Moullade 1966, 1974; 

Gorbachik 1986; Moullade et al. 1998 a, b, 2005, 2015; Risch 

1971; Coccioni et al. 2007, a.o.; Fig. 1). Our study of PF from 

the Zavodskaya Balka section led to identification of the levels 

of zonal markers used in zonations of Moullade et al. (2011, 

2015), Coccioni et al. (2007) and GTS (Ogg & Hinnov 2012). 

H. trocoidea Zone is defined here sensu Moullade (1966), that 

was used later by Gorbachik (1986) in the Crimea and thus 

falls within the interval, which corresponds to the H. infra­

cretacea Zone of Ogg & Hinnov (2012). 

The PF assemblages of the studied succession show signi-

ficant variations in total abundance, species diversity and 

planktonic/benthic (P/B) ratio. A total of 15 species are identi-

fied in the whole succession (Table S1). Hedbergella infra­

cretacea (Glaessner, 1937) dominates the PF assemblage 

throughout the section. The total abundance widely varies, 

increasing above the level of sample 16 (12.2 m) and dropping 

dramatically above sample 6 (26.3 m). The species diversity 

Fig. 3. Magnetostratigraphic characteristics of the Barremian–Aptian sediments of the Zavodskaya Balka section. D, I — palaeomagnetic 

declination and inclination, respectively; K — magnetic susceptibility; J

n

 — natural remanent magnetization. Symbols: 1 — calcareous mud-

stones, 2 — diagenetic concretions of limestones and marlstones, 3 — beds containing manganocalcite, siderite and, sometimes, impure of 

phosphatic matter, 4 — normal polarity, 5 — reverse polarity.

background image

503

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Fig. 4. The results of magnetic and mineralogical analysis: A — DTMA curves from the first and the second heatings: thermomagnetic curves 

(blue (black) colour) and second-order derivatives from them (red (grey) colour); B – magnetic saturation plots; C — anisotropy of the mag-

netic susceptibility characteristics (distribution of projections of AMS ellipsoid axes over the sphere in the paleogeographic coordinate system 

and the relationship of L and F parameters, n — the number of samples in a set): III — samples with siderite and grey clays in the studied 

section; III — grey carbonate clays in the upper Berriasian from the Zavodskaya Balka section (Guzhikov et al. 2014). Symbols: 1, 2 — long 

(K1) and short (K3) axes of AMS ellipsoids, respectively; 3, 4 — average values for K1 and K3, respectively; 5, 6 — confidence ellipse for K1 

and K3, respectively; 7 — sketch of the AMS ellipsoid forms.

background image

504

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

gradually increases from two species in the lower part of the 

section (0–7.0 m, samples 23–19) to 9 species in the middle of 

the section (17.0–18.3 m, samples 1503–1505), with a small 

decrease between 14.0 and 16.5 m (samples 15–13). The inter-

val between samples 10 and 6 (20.2–26.3 m) is characterized 

by the occurrence of abundant H. infracretacea, together with 

rare H. trocoidea (Gandolfi, 1942) in the restricted interval of 

21.8–23 m. Poor and low-diversity PF assemblages are found 

in the uppermost part of the section. 

We identified six PF zones in the studied succession. The 

Blowiella blowi Zone is defined in the lower part of the section 

(samples 23–18) by the occurrence of the index species (Fig. 6). 

We should emphasize that we accept the view suggesting  

the differentiation of two genera: Blowiella Kretchmar and 

Gorbachik, 1971 and Globigerinelloides Cushman and ten Dam, 

1948. According to this concept, Blowiella specimens have 

smooth planispiral tests mainly with few chambers (up to 5), 

while  Globigerinelloides  usually  have  more  chambers  (˃ 6) 

and coarser sculpture (for more detailed taxonomic discussion 

see Brovina 2017).

The successive FOs of Hedbergella ruka (Banner, Copestake 

and White, 1993) and Hedbergella excelsa Longoria, 1974 (in 

samples 18 and 17, respectively) are very characteristic in 

many Crimean sections (Brovina 2017). This enabled us to 

establish the H. ruka Bed

1

 in the lowermost Aptian. The FO of 

H. excelsa marks the base of an overlying zone (Coccioni et al. 

2007). It should be mentioned that the stratigraphic range of 

this zone in the studied section differs from the H. excelsa 

Zone of Coccioni et al. (2007), where it ranges from the latest 

Barremian to the earliest Aptian, while the FO of the marker is 

shown in the Deshayesites weissi  ammonite  Zone  (=Des. 

forbesi Zone according to Reboulet et al. 2014), which means 

Fig. 5. The results of the magnetic component analysis: A and C (from left to right) — stereographic presentation of J

n

 changes in the process 

of magnetic cleaning, Ziderweld diagrams, sample demagnetization plots (I — single-component sample, II — two-component sample);  

B — stereographic projection of J

n

 components before (left) and after (right) tectonic correction: C

(VRM) (I), C

L 

(VRM) (II), ChRM (III) 

(D

av

, I

av

 — average paleomagnetic declination and inclination, respectively, n — number of samples in a set, k — interbedded paleomagnetic 

precision parameter, α

95

 — radius of the vector confidence circle); D — angles formed by mean directions of ChRMC

1

C

L

. The angles 

between paleomagnetic vectors are given with inaccuracy (±) determined by the statistics of these vectors according to Debiche & Watson 

1995. If the angle is greater than the inaccuracy, the vectors differ greatly. If the angle is smaller than the inaccuracy, the vectors statistically

 

match (Debiche & Watson 1995). Legend: 1, 2 — J

n

 projections on the lower semisphere and the upper semisphere, respectively; 3 — line 

segments corresponding to the J

n

 components; 4 — great circles; 5 — MAD for each component, 6 — average direction of J

n

 components with 

confidence circle, 7 — direction determined by GC intersection with confidence circle.

1

 According  to  the  Russian  Stratigraphic  Сode,  a  faunistic  Layer  or  Bed  is  

an informal biostratigraphic unit, which is characterized by a specific fossil 

assemblage, but is inconsistent with any type of biozone, because its boundaries 

cannot be clearly defined by any reasons.

background image

505

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

above the interval of the H. excelsa Zone (Coccioni et al. 

2007: fig. 2, p. 217). In the Zavodskaya Balka section, the FO 

of this species is found in the early Aptian, on the basis of  

the paleomagnetic results, which lead us to assume that  

the Barremian/Aptian boundary is close to sample 19 (see 

above). The absence of stratigraphically important species in 

the interval between samples 17 and 1503, lower than the FO 

of Hedbergella luterbacheri Longoria, 1974, caused the larger 

stratigraphic interval of H. excelsa Zone in the studied section, 

which covers the lower part of Leupoldina cabri Zone of 

Coccioni et al. (2007). The non-occurrence of L. cabri (Sigal, 

1952) in the Zavodskaya Balka section can be caused by both 

ecological factors and/or the hiatus between samples 13 and 

1503. The FO of H. luterbacheri in the sample 1503 marks  

the base of the eponym zone and this species disappears in  

the sample 1505. Although the FO of H. luterbacheri is found 

much earlier in Spain (lower Barremian) by Coccioni et al. 

2007, the level of its FO in France and Crimea is likely iso-

chronous and this provides a good reason to distinguish here 

the H. luterbacheri Zone as defined by Moullade et al. (2015).

In the overlying interval of the outcrop (18.5–21.5 m, 

 samples 11–10), the usual PF Tethyan markers were not found. 

Above (sample 9, 21.5 m), the FO of Hedbergella trocoidea 

marks the base of the eponym zone. As a result, all zones 

Fig. 6. The bio- and magnetostratigraphy and the stratigraphic ranges of the main markers of PF, nannofossils, ostracods and dinocysts of  

the Zavodskaya Balka section. Zonal markers are shown in bold.

background image

506

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

based on the well-known Globigerinelloides phyletic lineage 

(Gl. ferreolensis heptacameratus Moullade et al., 2008, Gl. 

ferreolensis ferreolensis (Moullade, 1961), Gl. barri (Bolli, 

Loeblich and Tappan, 1957), Gl. algerianus Cushman and ten 

Dam, 1948) used in the zonation of Moullade et al. (2015) 

cannot be applied here due to the absence of these species in 

the studied succession. The absence of these multichambered 

species, assumed to be deeper water dwellers (Leckie 1987) 

might be caused by the low paleodepth of the SE Crimean 

basin. 

Despite the diachroneity in the FO of H. trocoidea in many 

areas (Spain: in Gl. ferreolensis Zone (Coccioni et al. 2007); 

South France: in Gl. algerianus Zone (Moullade 1966); 

Bavarian calcareous Alps: uppermost Aptian (Risch 1971) 

a.o.), this bioevent seems to be the useful regional zonal 

marker for the Crimea, as was already shown by previous 

studies (Gorbachik 1986; Brovina 2017).

The specimens with few (5–6) chambers in the last whorl, 

coalesced perforation cones and cover-plates (Supplementary 

Fig. S1:19–22) found in Zavodskaya Balka section can be 

attributed to Paraticinella rohri according to the species defi-

nition given by Premoli Silva et al. (2009): “umbilical area is 

covered by large flaps from the ultimate and penultimate 

chambers that form a cover-plate”, while the inner whorl of 

Hedbergella is always exposed. We consider these tests as  

Pt. rohri juveniles, as there are only 5–6 chambers, while  

adult  Pt. rohri have 9 chambers in the last whorl. The FO  

of these specimens in sample 6 (25.3 m) is considered  

here as the base of the eponym zone. The rare adult 

 

specimens of Pt. rohri are found at the higher level (sample 4, 

29.0 m).

In the uppermost part of the outcrop (samples 3–1, 30.8–

33.2 m), PF are very rare and agglutinated benthics widely 

dominate the foraminiferal assemblage. Based on a previous 

study (Gorbachik 1986), such an assemblage likely corre-

sponds to the lower Albian interval; however, we have no 

other indication for an Albian age of this part of the section.

Calcareous nannofossils

The calcareous nannofossils of the Zavodskaya Balka 

 section show moderate to good preservation and significant 

fluctuations in both total abundance and species diversity. 

Different species of Watznaueria largely dominate the assem-

blages in the whole studied interval. The warm-water 

Rhagodiscus are common, showing minor variations in rela-

tive abundance. In addition, generally rare specimens of 

ZeugrhabdotusFlabellites oblongus and cool-water Assipetra 

permanently occur in most of the succession (Supplementary 

Figs. S2, S3, Table S2). 

The more abundant and diverse nannofossil assemblage is 

found in the lower part of the succession (0–14 m, samples 

23–15), where it includes Micrantholithus obtusus Stradner, 

1963,  M. hoschulzii (Reinhardt, 1966), Conusphaera rothii 

(Thierstein, 1971), Hayesites irregularis (Thierstein in Roth & 

Thierstein, 1972) and common nannoconids. Nannofossils 

dramatically reduce their abundance and species diversity at 

the level of 15.0 m (sample 14) and disappear in the short 

interval comprising samples 1501–1502 (15.5–16.0 m). Above 

this interval, nannofossil abundance and species diversity pro-

gressively increase again, but without attaining their former 

representativity. The upper part of the section contains only 

rare nannofossil specimens, which dramatically decline at 

29.0 m (sample 4), but then slightly recover at 33.2 m.

Several nannofossil bioevents were identified in the studied 

succession. The occurrence of Hayesites irregularis at the very 

base of the section suggests that this interval belongs to  

the NC6A Subzone (Fig. 6). In many areas worldwide, the FO 

of H. irregularis is documented prior to the base of magnetic 

Chron M0 (e.g., Channell et al. 2000; Ogg & Hinnov 2012; 

Patruno et al. 2015, a.o.). In the Zavodskaya Balka section, 

this species occurs at least at 7.0 m below the Chron M0.  

The nannofossil assemblage of NC6A Subzone is distin-

guished by common and diverse nannoconids, which dramati-

cally decline at the top of this subzone interval (sample 16, 

12.2 m, Fig. 7). Such nannoconid decline evidently corre-

sponds to widely known events named “nannoconid crises”, 

preceding the global Oceanic Anoxic Event 1a (OAE1a; Erba 

1994; Aguado et al. 1999; Erba et al. 1999; Habermann & 

Fig.  7.  Upper Barremian to Aptian nannofossil bioevents in 

 

the Zavodskaya Balka section.

background image

507

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Mutterlose 1999; Erba & Tremolada 2004; Luciani et al. 2006; 

Bottini et al. 2015). 

The LO of Conusphaera rothii in the sample 15 (14.0 m) 

marks the base of the NC6B Subzone (Roth 1978; Bralower et 

al. 1995). The nannofossil abundance tends to impoverish 

toward the middle of this subzone and the interval 15.5–16.0 m 

(samples 1501–1502) is even nannofossil-free. This interval is 

made up of non-calcareous mudstone and might correspond to 

OAE1a. However, this assumption needs much more evidence 

(e.g., stable isotope analyses) because of low contents of both 

TOC and CaCO

at this level. The FO of Eprolithus floralis 

(Stradner, 1962) is found above this interval at the level  

17.0 m (sample 1503); this event corresponds to the base of 

the NC7 Zone (Roth 1978; Bralower et al. 1995). The division 

of this interval into subzones is quite difficult, since the LO of 

M. hoschulzii, which defines the base of the NC7B Subzone, 

is documented much earlier in the Crimea — in the NC6A 

Subzone (E. Shcherbinina, personal observations). Although 

few specimens of this species are found in sample 1504 

(~17.5 m, bottom of NC7 Zone) in the Zavodskaya Balka 

 section, the inconsistent occurrence of M. hoschulzii in  

the section and the diachronicity of its LO in the area make  

the location of this boundary rather tentative. The short-time 

re-occurrence of rare nannoconids at the level of 17.5 m (sam-

ple 1504) likely corresponds to the episode of “nannoconid 

abundance pulse” documented in Italy (Patruno et al. 2015). 

The FO of typical Rhagodiscus achlyostaurion (Hill, 1976) 

(small  Rhagodiscus with bright birefringent spine filling  

the central area) is found at the level of 21.5 m (sample 9), 

which can suggest the base of the NC7C Subzone. However, 

similar specimens with smaller spine occur earlier in some 

sections of the Crimea (Brovina et al. 2017), in the lower part 

of NC7 Zone, and equivocation of problems in the definition 

of this species also leads to some uncertainty on the recogni-

tion of its FO. 

Ostracoda

Ostracod assemblages show an uneven distribution through-

out the section. Their total abundance and species diversity are 

relatively high in the lower part of the succession (0–12.5 m, 

sample 23–16). Their abundance progressively decreases at 

the level 14.2 m (sample 15) up to a total elimination in  

the interval 15.2–16.0 m (samples 14–1502). Above this inter-

val, the ostracod amount is restored between 16.0–21.5 m 

(samples 1503–9), but it never reaches its former abundance 

and finally declines in the interval 30.5–33.5 m (samples 3–1) 

(Supplementary Fig. S4, Table S3). The species composition 

of Lower Cretaceous ostracod assemblages of Crimea appears 

to be affected by a marked endemism and thus none of  

the proposed zonations (Neale 1978; Wilkinson & Morter 

1981; Damotte et al. 1981; Babinot et al. 1985; Lott et al. 

1985, 1986; Wilkinson 1988, 2008; Vivers et al. 2000; Woods 

et al. 2001; Coimbra et al. 2002; Bachmann et al. 2003) can be 

applied in this area. Nevertheless, the recent study of ostracod 

stratigraphic distribution in the upper Barremian–Aptian 

sediments of the SW Crimea enabled the recognition of  several 

correlative  ostracod  Zones  (Karpuk  2016 b;  Brovina  et  al. 

2017), which were also found in the Zavodskaya Balka 

section. 

The diverse assemblage of the lower part of section (sam-

ples 23 to 15) includes up to 35 species. The co-occurrence  

Loxoella variealveolata Kuznetsova, 1956 and Robsoniella 

minima Kuznetsova, 1961 allows the identification in this sec-

tion of the L. variealveolata – R. minima Zone of Karpuk 

(2016 b) (Fig. 6). 

Several eurybiontic species, such as different cytherellas,  

Bairdia projecta,  Bythocypris sp., Cytheropteron ventriosum

reappear at the level of sample 1503, but with few specimens. 

Monoceratina bicuspidata (Gründel, 1964) and Dorsocythere 

stafeevi Karpuk et Tesakova, 2013 show their FOs at this level 

and they gradually tend to dominate the assemblage along 

with R. minima, which disappears above sample 9 (16.5 m). 

The FO of M. bicuspidata corresponds to the base of 

 

the  M.  bicuspidata – R.  minima Zone, which is defined by  

the co-occurrence of these two species. The FO of Saxocythere 

omnivaga  (Lyubimova,  1965)  in  sample  10  (~ 20.5  m)  

marks the base of the S. omnivaga Zone, where this species 

represents its most characteristic feature. Protocythere sp. is  

an additional marker of this zone, because it becomes common 

in this interval and co-occurs with S.  omni

 vaga in many sec-

tions  studied  in  Crimea  (Karpuk  2016 b).  Above  the  level 

~ 24.5 m (sample 7), many ostracod species become extinct 

and only a few cytherellas, D. stafeevi,  C. ventriosum and 

some other species persist but in small amounts. Further 

upsection, in the interval 27.5–29.0 m (samples 5–4) only  

a few specimens of the genus Cytherella (C. ovata (Roemer, 

1841),  C. dilatata Donze, 1964, C. infrequens Kuznetsova, 

1961) and one valve of Dolocythere rara Mertens, 1956 were 

found.  The  uppermost  part  of  the  section  (above  ~ 30.5m, 

 sample 3) is ostracod free. 

Palynomorphs

All the samples studied contain a high amount of fragments 

from plant tissue and coal particles. The palynomorph assem-

blages are dominated by spores and pollen grains, while the 

dino cysts percentage is relatively low (at most 10 % of the total 

of palynomorphs; Supplementary Table S4). The total abun-

dance of palynomorphs is highest in the middle part of the sec-

tion (16.0–20.2 m, samples 15–10) and progressively decreases 

toward the top of the section. 

On the basis of the changes in taxonomical composition and 

taxa proportions, two spore-pollen assemblages (PA) are dis-

tinguished (Fig. 6). PA1 corresponds to the lower part of  

the section (samples 23 and 19). It is dominated by pollen of 

the genus Classopollis (60 to 80 %), while fern and bryophyte 

spores are scarce. 

The PA2 is defined in the interval from 10.7 m (sample 17) 

to the top of the studied succession. It is dominated by bisac-

cate pollens of gymnosperms and spores of Gleicheniaceae, 

while  Classopollis  become scarce. The level 16.5 m 

 

background image

508

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

(sample 13) is the unique episode of relatively increased 

Classopollis abundance (45 %) in this interval. Among 

 

the spores, species diversity and abundance of Schizaeaceae 

decreases, but  several new taxa of Gleicheniaceae appear.  

The latter are repre 

sented by Gleicheniidites,  Clavifera

Ornamentifera granulata and gradually tend to dominate  

the spore assemblage. 

The dinocyst assemblages are characterized by low abun-

dance but high species diversity (>80 taxa) (Supplementary 

Table S5). They are mostly badly preserved possibly as  

a result of unfavourable habitat and/or burial. Three dinocyst 

assemblages have been recognized. 

The D1 assemblage is identified in the lowermost part of  

the section (0–7 m, samples 23, 19; Fig. 6). It is characterized 

by the occurrence of Surculosphaeridium sp. III sensu Davey, 

1982, Taleisphaera hydra subsp. elongata (late Barremian of 

Germany, Heilmann-Clausen & Thomsen, 1995) (Supple-

mentary Fig. S5, Table S5) and Prolixosphaeridium parvi­

spinum, which has its FO in the late Barremian in both Boreal 

and Tethyan realms (Oosting et al. 2006). In the Zavodskaya 

Balka section, the D1 assemblage corresponds to the upper-

most part of the B. blowi Zone and H. ruka Bed, and the greater 

part of the NC6A nannofossil Subzone. 

The D2 assemblage was recognized in the interval 10.5–

23.0 m (samples 17–8) and can be correlated to the dinocyst 

assemblage of the Bedoulian (Lower Aptian) of the Aptian strato-

type sections in southern France (Davey & Verdier 1974). This 

D2 assemblage includes Pseudoceratium polymorphum

which has its FO in the lowermost part of the Aptian, and 

Pseudoceratium securigerum and Palaeoperidinium cretaceum

which show their FOs in the uppermost part of the Barremian 

(Heimhofer et al. 2007). The LO of Muderongia cf. staurota 

sensu Davey, Verdier, 1974 is found in the lower part of the early 

Aptian (Bedoulian) in the stratotype area. In the Zavodskaya 

Balka section, it occurs up to the level 10.8 m (sample 17). 

This assemblage ranges from the upper part of NC6A to  

the lower part of NC7C and the upper part of H. excelsa to  

the lower part of H. trocoidea Zones.

The D3 assemblage is found in the upper part of the section 

from 23.0 m (samples 6, 3 and 1) and is characterized by  

a decline of the majority of the species, which occurred in  

the lower part of the section. Only Protoellipsodinium spino­

cristatum, Subtilisphaera perlucida, Pterospermella sp., 

 several acritarchs and green algae phytomata persist in this 

interval. The D3 assemblage correlates to the upper part of  

the NC7C Subzone and to the interval including the upper part 

of the H. trocoidea Zone and the P. rohri Zone. 

Discussion and conclusion

The study of the upper Barremian–Aptian planktonic fora-

minifera, calcareous nannofossils, ostracods and palyno-

morphs of the Zavodskaya Balka showed similar trends in  

the distribution of these microfossil groups throughout 

 

the succession: the most abundant and diverse assemblages 

are found in the lower part of the section, all microfossils are 

progressively eliminated in the interval likely corresponding 

to OAE1a, recover part of their initial abundance above this 

event and decline again in the upper part of the section. Our 

results show the specificity of the occurrence of the late 

Barremian–Aptian microfossil markers of south-eastern Crimea 

and the correlation between the most important markers of 

different microfossil groups. The calcareous nannofossil assem-

blage of the Zavodskaya Balka section is typical for the Tethyan 

Barremian–Aptian interval, while PF, ostracods and dinocysts 

present some regional specificity. The succession of standard 

nannofossil zones and subzones was identified in the section, 

although subzonal boundaries within NC7 Zone are not certain 

due to scarcity or unreliable species definition of the markers 

(M. hoschulzii and R. achlyostaurion, respectively). The absence 

from our samples of several stratigraphically important PF 

species, such as L. cabri, G. ferreolensis and G. algerianus

caused a discontinuity in the recognition of several standard 

PF zones and thus prevented the direct correlation of the mid-

dle part of the section with the Tethyan PF zonations. The bio-

horizon characterized by the occurrence of H. ruka, recently 

established in the Lower Aptian of several sections from 

south-western Crimea, has been identified in the Zavodskaya 

Balka section in the upper half of the NC6A Subzone.  

The H. excelsa Zone, defined by the FO of the zonal marker, 

shows a larger stratigraphic range in the studied section than in 

the Tethyan area. It roughly corresponds to the upper part  

of NC6A and the greater part of NC6B and thus, covers  

the part of L. cabri Zone (Coccioni et al. 2007). The FOs of  

H. trocoidea and P. rohri are useful bioevents for subdivision 

of the late Aptian interval. The succession of ostracod bio-

events in the Zavodskaya Balka section led to identification of 

three ostracod zones (R. minima – L. variealveolata, M. bicus­

pidata – R. minima and S. omnivaga), recently established in 

south-western Crimea. The dinocyst distribution throughout 

the section showed the succession of three assemblages deter-

mined by the FOs of the marker species and dominance of 

different taxa.

The base of the Aptian in the section is based on the position 

of the magnetic reversal assumed to be the base of Chron M0. 

The upper Barremian part of the section corresponds to  

the lower half of the nannofossil NC6A Subzone, the greater 

part of the foraminiferal B. blowi Zone and the D1 dinocyst 

assemblage. The ostracod L.  variealveolata – R.  minima Zone 

approximately embraces the upper Barremian–lower Aptian 

part of the section. 

The lower Aptian is characterized by the highest resolution 

in the stratigraphic subdivision based on nannofossil and 

ostracod study. Biostratigraphic subdivision of the series is 

made still more difficult and uncertain in the upper part of  

the section (upper upper Aptian) because of the scarcity of  

the microfossils. 

One interesting result of this study is the recognition of  

an interval likely corresponding to the OAE1a, which has never 

been documented in the Aptian sedimentary record of the Crimea 

until now. It is preceded by a “nannoconid crisis” and 

background image

509

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

characterized by dramatically reduced productivity of micro-

biota. The specificity of this global event in the Crimea is the 

very low TOC content which makes its repercussion distinc-

tive compared to many other world areas, where this event is 

 featured by sediments rich in TOC (e.g., Jenkyns 1980; Arthur 

et al. 1990; Bralower et al. 1994; Föllmi 2012; Giorgioni 2015, 

a.o.). Our further study will be focused on the paleoecological 

reconstruction of the south-western Crimean basin in the late 

Barremian–Aptian with special emphasis on the OAE1a.

Acknowledgements: The authors are grateful to A.G. Manikin 

and M.I. Bagaeva, the Saratov State University and to  

I.M. Byakin for helping with the collection of samples for paleo-

magnetic study. We appreciate Prof. Michel Moullade, 

 

Dr. Milan Kohut and two anonymous reviewers a lot for their 

careful reading of the manuscript, many useful remarks and ad-

vice given to improve the paper. This study was made following 

the plans of the scientific research of the Geological Institute 

of RAS (for M. Karpuk, E. Brovina, E. Shcherbinina and  

E. Tesakova, project no. 0135-2018-0036). Field works were 

supported by RFBR projects nos. 16-35-00468 and 16-05-

00363 (M. Karpuk and E. Brovina). Analytical data were deri-

ved with partial support of the RAS presidium program (for  

E. Shcherbinina and E. Shchepetova no. 0135-2018-0050).

References

Aguado R., Castro J.M., Company M. & De Gea G.A. 1999: Aptian 

bio-events—an integrated biostratigraphic analysis of the Alma-

dich Formation, Inner Prebetic Domain, SE Spain. Cretaceous 

Res. 20, 663–683.

Arkadiev V.V. 2004: The first record of a late Tithonian ammonite in 

the Feodosiya section of Eastern Crimea. Paleontol. J. 38, 3, 

265–267.

Arkadiev V.V. 2007: Zonation of the Berriasian sediments of the 

Mountain Crimea. Vestnik of Saint Petersburg University, Earth 

sciencesser. 7, 2, 27–43 (in Russian).

Arkadiev V.V. 2011: New data on ammonoids of the genus Paraula­

cosphinctes from the upper Tithonian of the Mountainous 

Crimea.  Stratigraphy and Geological Correlation, 19, 2, 

 

238–242.

Arkadiev V.V., Grishchenko V.A., Guzhikov A.Yu., Manikin A.G., 

Savelieva Yu.N., Feodorova A.A. & Shurekova O.V. 2017: 

 

Ammonites and magnetostratigraphy of the Berriasian– 

Valanginian boundary deposits from eastern Crimea: Geol. 

 Carpath., 68, 6, 505–516.

Arkadiev V., Guzhikov A., Baraboshkin E., Savelieva J., Feodorova A., 

Shurekova O., Platonov E. & Manikin A. 2018: Biostratigraphy 

and magnetostratigraphy of the upper Tithonian–Berriasian of 

the Crimean Mountains: Cretaceous Res. 87, 5–41.

Arthur M.A., Jenkyns H.C., Brumsack H.J. & Schlanger S.O. 1990: 

Stratigraphy, geochemistry, and paleoceanography of organic 

carbon–rich Cretaceous sequences. In: Ginsburg R.N. & 

 Beaudoin B. (Eds.): Cretaceous Resources, Events and Rhythms: 

Background and Plans for Research, NATO ASI Series, C 304, 

75–119.

Babinot J.-F., Damotte R., Donze P., Grosdidier E., Oertli, H.J. & 

Scarenzi-Carboni G. 1985: Cretace Inferieur, In Oertli H.J. 

(Ed.), Atlas des ostracodes de France (Paléozoïque-Actuel): 

Bull. Centres Rech. Explor. Prod. Elf­Aquitaine, 9, 163–210.

Bachmann M., Bassiouni M. A. A., & Kuss J. 2003: Timing of 

mid-Cretaceous carbonate platform depositional cycles,  northern 

Sinai, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 200, 

131–162.

Bagaeva M.I. & Guzhikov A.Yu. 2014: Magnetic textures as indica-

tors of formation of Tithonian-Berriasian rocks of the Mountain 

Crimea.  Izvestiya of Saratov University. New Series. Series: 

Earth Sciences 14, 1, 41–47 (in Russian). 

Baraboshkin E.Yu. 2016: Geological history of the Crimea. Precam-

brian–Early Cretaceous. In: Baraboshkin E.Yu. & Yaseneva E.V. 

(Eds.): Ecological and resource potential of the Crimea. History 

of formation and prospects of development: VVM 1, 38–84 (in 

Russian).

Baraboshkin E.Yu., Guzhikov A.Yu., Mutterlose J., Yampolskaya 

O.B., Pimenov M.V. & Gavrilov S.S. 2004: New data on strati-

graphy of the Barremian-Aptian of the Mountain Crimea in 

 accordance to finding of the analogue of the magnetochron M0 

in the Verkhorechie section. Vestnik of the Moscow State Univer­

sity, Geology series 1, 10–20 (in Russian).

Bolii H. 1959: Planktonic foraminifera from the Cretaceous of 

 Trinidad.  Bull. Amer. Paleontol., 257–277.

Bolli H. 1966: Zonation of cretaceous to pliocene marine sediments 

based on planktonic foraminifera. Bol. Inform. Asoc. Venez. 

Geol., Miner., Petrol. 9, 1, 3–32.

Bottini C., Erba E., Tiraboschi D., Jenkyns H.C., Schouten S. & 

 Sinninghe Damsté J. S., 2015: Climate variability and ocean 

 fertility during the Aptian Stage. Climate of the  Past, 11,  

383–402.

Bown P.R. & Young J.R. 1998: Techniques. In Bown P.R. (Ed.). Cal-

careous Nannofossil Btostratigraphy: Kluwer Academic Press, 

Dordrecht, 16–28.

Bown P.R., Rutledge D.C., Crux J.A. & Gallagher L.T., 1998:  

Lower Cretaceous. In: Bown P.R. (Ed.): Calcareous Nanno-

fossil   Biostratigraphy:  Kluwer Academic Press, Dordrecht, 

86–131.

Bralower T.J., Arthur M.A., Leckie R.M., Sliter W.V., Allard D.J. & 

Schlanger S.O. 1994: Timing and palaeoceanography of oceanic 

dysoxia/anoxia in the late Barremian to early Aptian (early Cre-

taceous). Palaios 9, 335–369.

Bralower T.J., Leckie R.M., Sliter W.V. & Therstein H. R. 1995.  

An intergrated Cretaceous microfossil biostratigraphy. In: Berggren 

W.A., Kent D.V. & Hardenbol, J. (Eds.), Geochronology, Time 

Scales and Global Stratigraphic Correlations: SEPM Spec. Publ. 

54, 65–79.

Brovina E.A. 2017: Problems in stratigraphy of the upper Barremian 

– Aptian of the Cremia using planktonic foraminifera. Strati­

graphy and Geological Correlation, 25, 5, 41–57 (in Russian). 

Brovina E.A., Karpuk M.S., Shcherbinina E.A. & Tesakova E.M. 

2017: Stratigraphy of r. Alma basin Aptian deposits based on 

new micropaleontological data. Bulleten MOIP. Otd. Geologii

92, 6, 26–42 (in Russian).

Channell J.E.T., Erba E., Muttoni G. & Tremolada F. 2000: Early 

 Cretaceous magnetic stratigraphy in the APTICORE drill core 

and adjacent outcrop at Cismon (Southern Alps, Italy), and cor-

relation to the proposed Barremian–Aptian boundary stratotype. 

GSA Bulletin 112, 9, 1430–1443.

Coccioni R., Premoli Silva I., Marsili A. & Verga D. 2007: First 

 radiation of Cretaceous planktonic foraminifera with radially 

elongate chambers at Angles (Southeastern France) and bio-

stratigraphic implications. Revue de micropaleontologie 50, 

215–224.

Coccioni R., Jovane L., Bancalà G., Bucci C., Fauth G., Frontalini F., 

Janikian L., Savian J., Paes De Almeida P., Mathias G.L. &  

Da Trindade R.I.F. 2012: Umbria-Marche Basin, Central Italy:  

A Reference Section for the Aptian-Albian Interval at Low Lati-

tudes. Scientific Drilling 13, 42–46.

background image

510

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Coimbra J.C., Arai M. & Carreno A. L. 2002: Biostratigraphy of 

Lower Cretaceous microfossils from the Araripe basin, north-

eastern Brazil. Geobios 35, 687–698.

Damotte R., Babinot J.-F. & Colin J-P. 1981: Les Ostracodes du 

 Cretace Moyen Europeen. Cretaceous Res. 2, 287–306.

Davey R. J. & Verdier J. P. 1974: Dinoflagellate cysts from the Aptian 

type sections at Gargas and La Bédoule, France. Palaeontology 

17, 3, 623–653.

Debiche M.G. & Watson G.S. 1995: Confidence limits and bias cor-

rection for estimating angles between directions with applica-

tions to paleomagnetism. Journal of Geophysical Research, 100, 

B12, 24405–24430.

Erba E. 1994: Nannofossils and superplumes: The early Aptian 

 “nannoconid  crisis”.  Paleoceanography 9, 3, 483–501.

Erba E., & Tremolada F. 2004: Nannofossil carbonate fl uxes during 

the Early Cretaceous: Phytoplankton response to nutrifi cation 

episodes, atmospheric CO2 and anoxia. Paleoceanography 19, 

PA1008.

Erba E., Aguado R., Avram E., Baraboschkin E.J., Bergen J.A., 

Bralower T.J., Cecca F., Channell J.E.T., Coccioni R., 

 

Company M., Delanoy G., Erbacher J., Herbert T.D., 

 

Hoedemaeker P., Kakabadze M., Leereveld H., Lini A., 

 

Mikhailova I.A., Mutterlose J., Ogg J.G., Premoli Silva I.,  

Rawson P.F., Von Salis K. & Weissert H. 1996: The Aptian  

stage: Bulletin de l’institut Royal des sciences naturelles 

 

de Belgique. Proceedings “Second International Symposium on 

Cretaceous Stage Boundaries”. Brussels 8 ­ 16 September 1995

31–43.

Erba E., Channell J.E.T., Claps M., Jones C., Larson R., Opdyke B., 

Premoli Silva I., Riva A., Salvini G., & Torricelli S. 1999: 

 Integrated stratigraphy of the Cismon Apticore (southern Alps, 

Italy); a “reference section” for the Barremian-Aptian interval  

at low latitudes. J. Foram. Res. 29, 4, 371–391.

Flinn  D.,  1965:  Оn  the  symmetry  principle  and  the  defоrmatiоn  

ellipsоid. Geоl. Mag. 102, 36–45.

Föllmi K.B. 2012: Early Cretaceous life, climate and anoxia. 

 

Cretaceous Res. 35, 230–257.

Gorbachik T.N. 1959: New foraminifera species from the lower 

 Cretaceous deposits of the Crimea and SW Caucasus. Paleonto­

logical Journal 1, 78–83 (in Russian).

Gorbachik T.N. 1964: Variability and mircosturcture of the test wall 

of the Globigerinelloides algerianus Cushman et Dam. 

 Paleontological Journal 4, 32–37 (in Russian). 

Gorbachik T.N. 1969: Peculiarity of foraminifer distribution of in the 

Berriassian and Valanginian sediments of the Crimea. Vestnik 

MSU, ser. 4, Geology 4, 56–67 (in Russian).

Gorbachik T.N. 1986: Jurassic and Early Cretaceous planktonic 

 foraminifera of the south of USSR. Nauka, Moskva, 1–239  

(in Russian).

Gorbachik T.N. & Krechmar V. 1969: Stratigraphical subdivision of 

the Aptian and Albian sediments of the Crimea using planktonic 

foraminifera. Vest. MSU, Ser. 4, Geology 3, 46–56 (in Russian). 

Giorgioni M., Keller C.E., Weissert H., Hochuli P.A. & Bernasconi S.M. 

2015: Black shales — from coolhouse to greenhouse (early 

 Aptian).  Cretaceous Res. 56, 716–731.

Guzhikov A.Yu., Arkadiev V.V., Baraboshkin E.Yu., Bagaeva M.I., 

Piskunov V.K., Rudko S.V., Perminov V.A. & Manikin A.G. 

2012: New sedimentological, bio-, and magnetostratigraphic 

data on the Jurassic–Cretaceous Boundary Interval of Eastern 

Crimea (Feodosiya). Stratigraphy and Geological Correlation

20, 3, 261–294.

Guzhikov A., Bagayeva M. & Arkadiev V. 2014: Magnetostrati-

graphy of the Upper Berriasian “Zavodskaya Balka” section 

(East Crimea, Feodosiya). Volumina Jurassica XII, 1, 175–184.

Habermann A. & Mutterlose J. 1998. Early Aptian blackshales from 

NW Germany: calcareous nannofossils andtheir palaeoceano-

graphic implications. Neues Jahrb. Geol. Paläontol. 212, 1–3, 

379–400. 

Heilmann-Clausen C. & Thomsen E. 1995: Barremian-Aptian dino-

flagellates and calcareous nannofossils in the Ahlum 1 borehole 

and the Otto Gott clay pit, Sarstedt, Lower Saxony Basin, 

 Germany. In Kemper E. (Ed.): The Barremian-Aptian Boundary. 

A Study of profiles from the Boreal Cretaceous. Geologisches 

Jahrbuch Reihe A, 141, 257–365. 

Heimhofer U., Hochuli P.A., Burla S. & Weissert H. 2007: New 

 records of Early Cretaceous angiosperm pollen from Portuguese 

coastal deposits: Implications for the timing of the early angio-

sperm radiation. Review of Palaeobotany and Palynology, 144, 

39–76.

Jenkyns H.C. 1980: Cretaceous anoxic events: from continents to 

oceans: J. Geol. Soc. 137, 171–188. 

Karpuk M.S. 2016a: New Protocytherines (Ostracods) from the Low-

er Cretaceous sequences of the Crimean Peninsula. Revue de 

micropaléontologie 59, 180–187.

Karpuk M.S. 2016b: Biostratigraphy of the upper Barremian–Aptian 

of the Mountain Crimea based on Ostracodes. In: Baraboshkin 

E.Yu. (Ed.): Proceedings of 8-th All-Russian Symposium on the 

Cretaceous system, Simferopol, 142–145 (in Russian). 

Karpuk M.S. & Tesakova E.M. 2010: Lower Cretaceous ostracodes 

of the Verkhorechie section (SW Crimea). In: Baraboshkin E.Yu. 

(Ed.): Proceedings of 5-th All-Russian Symposium on the Creta-

ceous system, Ulianovsk, 188–191 (in Russian).

Karpuk M.S. & Tesakova E.M. 2013: New ostracods of the Family 

Cytheruridae G. Mueller from the Barremian-Albian of the 

Southwestern Crimea. Paleontological Journal (Moscow), 47, 

6, 588–596.

Karpuk M.S. & Tesakova E.M. 2014: New ostracods of the families 

Loxoconchidae and Trachyleberididae from the Barremian-Al-

bian of southwestern Crimea. Paleontological Journal 48, 2, 

177–181.

Khramov A.N. (Ed.) 1982: Paleomagnetology: Nedra, St. Petersburg, 

1–312 (in Russian).

Leckie R.M. 1987: Paleoecology of mid-Cretaceous planktonic fora-

minifera: A comparison of open ocean and Epicontinental Sea 

assemblages. Micropaleontology 33, 2, 164–176.

Lott G.K., Ball K.C. & Wilkinson I.P. 1985: Mid-Cretaceous strati-

graphy of a cored borehole in the western part of the Central 

North Sea Basin. Proceedings of the Yorkshire Geological 

 Society 45, 4, 235–248.

Lott G.K., Fletcher B. N. & Wilkinson I.P. 1986: The stratigraphy of 

the Lower Cretaceous Speeton Clay Formation in a cored bore-

hole off the coast of north-east England. Proceedings of the 

Yorkshire Geological Society 46, 1, 39–56.

Luciani V., Cobianchi M. & Lupi C. 2006: Regional record of  

a global oceanic anoxic event: OAE1a on the Apulia Platform 

margin, Gargano Promontory, southern Italy. Cretaceous Res. 

27, 754–772.

Moullade M. 1966. Etude stratigraphique et micropaléontologique du 

créetacé inférieur de la “fosse vocontienne”. Stratigraphy. 

 

Université de Lyon, 1–369.

Moullade M. 1974: Zones de foraminiferes du cretace inferieur 

 mesogeen.  Comptes Rendus Hebdomadaires des Séances de 

l’Académie des Sciences de Paris D278, 1813–1816.

Moullade M., Tronchetti G., Busnardo R. & Masse J.-P. 1998a. 

 Description lithologique des coupes types du stratotype his-

torique de l’Aptien inférieur dans la région de Cassis-La Bédoule 

(SE France). Géologie Méditerranéenne 25, 15–29.

Moullade M., Masse J.-P., Tronchetti G., Kuhnt W., Ropolo P., Bergen 

J.A., Masure E. & Renard M. 1998b. Le stratotype historique de 

l’Aptien inférieur dans la région de Cassis-La Bédoule (SE 

France): Synthèse stratigraphique. Géologie Méditerranéenne 

25, 289–298.

background image

511

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Moullade M., Tronchetti G. & Bellier J.-P. 2005: The Gargasian 

(Middle Aptian) strata from Cassis-La Bédoule (Lower Aptian 

historical stratotype, SE France): Planktonic and benthic fora-

miniferal assemblages and biostratigraphy. Carnets de Géologie

Article 2005/02, 1–20.

Moullade M., Granier B. & Tronchetti G. 2011: The Aptian Stage: 

Back to fundamentals. Episodes 34, 3, 148–156.

Moullade M., Tronchetti G., Granier B., Bornemann A., Kuhnt W. & 

Lorenzen J. 2015: High-resolution integrated stratigraphy of the 

OAE1a and enclosing strata from core drillings in the Bedoulian 

stratotype (Roquefort-La Bedoule, SE France). Cretaceous Res. 

56, 119–140.

Neale J.W. 1978: A stratigraphycal index of British Ostracoda. In: 

Bate R. & Robinson E. (Eds.): Geol. J. Spec. Iss. 8, 325–384.

Nemirovskaya T.N. 1972: About the Barremian and Aptian ostracods 

of the South-Western Crimea. In: Questions about the geology  

of the sedimentary basins of the Ukraine. Kiev, 15–20 (in Rus-

sian).

Ogg J.G. & Hinnov L.A. 2012: Cretaceous. In: Gradstein F.M.,  

Ogg J.G., Schmitz M.D. & Ogg G.M. (Eds.): Geological Time 

Scale. Elsevier, 793–853.

Ogg J.G., Ogg G.M. & Gradstein F.M. 2016: A Concise Geologic 

Time Scale, Elsevier, Amsterdam, 1–230.

Oosting A.M., Leereveld H., Dickens G.R., Henderson R.A. & 

Brinkhuis H. 2006. Correlation of Barremian-Aptian (mid- 

Cretaceous) dinoflagellate cyst assemblages between the Tethyan 

and Austral realms. Cretaceous Res. 27, 6, 792–813.

Opdyke N.D. & Channell J.E.T. 1996: Magnetic Stratigraphy. 

 Academic pr

ess. N.Y., 1–344.

Patruno S., Triantaphyllou M.V., Erba E., Dimiza M.D., Bottini C. & 

Kaminski M.A. 2015. The Barremian and Aptian stepwise 

 development of the ‘Oceanic Anoxic Event 1a’ (OAE 1a) crisis: 

Integrated benthic and planktic high-resolution palaeoecology 

along the Gorgo a Cerbara stratotype section (Umbria–Marche 

Basin, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 424, 

147–182.

Premoli Silva I., Caron M., Leckie R.M., Petrizzo M.R., Soldan D. & 

Verga D. 2009. Paraticinella n. gen. and taxonomic revision of 

Ticinella bejaouaensis Sigal, 1966. The Journal of Foraminiferal 

Research 39, 2, 126–137.

Reboulet S., Szives O., Aguirre-Urreta B., Barragán R., Company M., 

Idakieva V., Ivanov M., Kakabadze M.V., Moreno-Bedmar J.A, 

Sandoval J., Baraboshkin E.J., Çaglar M.K., Fozy I., 

González-Arreola C., Kenjo S., Lukeneder A., Raisossadat S.N., 

Rawson P.F. & Tavera J.M. 2014: Report on the 5th International 

Meeting of the IUGS Lower Cretaceous Ammonite Working 

Group, the Kilian Group (Ankara, Turkey, 31st August 2013). 

Cretaceous Res. 50, 126–137.

Risch H. 1971: Stratigraphie der höheren Unterkreide der bayerischen 

Kalkalpen mit Hilfe von Mikrofossilien. Palaeontographica 

Abteilung A138, 1–80.

Roth P.H. 1978: Cretaceous nannoplankton biostratigraphy and 

oceanography of the northwestern Atlantic Ocean. In: Benson W.E., 

Sheridan R.E. et al. (Eds.): Init. Repts. DSDP 44, Washington 

(U.S. Govt. Printing Office), 731–759.

Salman G.B. & Dobrovolskaya T.I. 1968: The Valanginian–Barremian 

conglomerates of the eastern Crimea. Proceedings of the Aca­

demy of Sciences of USSR, 133, 6, 1432–1434 (in Russian). 

Savian J., Trindade R., Janikian L., Jovane L., Paes de Almeida P., 

Coccioni R., Frontalini F., Sideri M., Figueiredo M., Tedeschi L.R. 

& Jenkins J. 2016: The Barremian-Aptian boundary in the 

 Poggio le Guaine core (central Italy): Evidence for magnetic 

 polarity Chron M0r and oceanic anoxic event 1a. The Geological 

Society of America Special Paper 524, 57–78. 

Shcherbinina E.A. & Loginov M.A. 2012: Lower Cretaceous nanno-

fossilstratigraphy of the Sw Crimea. In: Vishnevskaya V.S., 

 Goreva N.V. & Filimonova T.V. (Eds.): Proceedings of XVth 

Allrussian micropaleontological symposium, Gelendzhik, 

 

324–327 (in Russian).

Shcherbinina E., Gavrilov Yu., Iakovleva A., Pokrovsky B., 

 Golovanova O. & Aleksandrova G., 2016. Environmental dyna-

mics during the Paleocene–Eocene thermal maximum (PETM) 

in the northeastern Peri-Tethys revealed by high-resolution 

 micropalaeontological and geochemical studies of a Caucasian 

key section. Palaeogeogr. Palaeoclimatol. Palaeoecol. 456, 

60–81.

Shumenko S.I. 1974: Lower Cretaceous calcareous nannofossils of 

the Crimea. Bulletin of the High Scools, Geology and Explora­

tion Series N9, 52–60 (in Russian).

Shurekova O.V. 2016: Stratigraphical scale based on dinocysts for 

lower Cretaceous of the Crimea. In: Tolmacheva T.Yu. (Ed.) 

: Proceedings of the workshop: Stratigraphical scale and metho-

dical problems in regional Russian stratigraphical scales deve-

lopment, 188–190.

Sigal J. 1977: Essai de zonation du cretace mediterranean a l’aide des 

foraminiferes planctoniques. Géologie méditerranéenne 4, 

 

49–108.

Sissingh W. 1977: Biostratigraphy of Cretaceous calcareous nanno-

plankton. Geol. Mijnbouwn, 56, 37–50.

Sohn I.G. 1961: Techniques for preparation and study of fossil ostra-

cods. In: Treatise on Invertebrate Paleontology. Part Q, Arthro-

poda 3, Crustacea, Ostracoda, 64–70.

Szives O., Fodor L., Fogarasi A. & Kövér Sz. 2018: Integrated calca-

reous nannofossil and ammonite data from the upper Barremian 

– lower Albian of the northeastern Transdanubian Range 

 

(central Hungary): Stratigraphical implications and conse-

quences for dating tectonic events. Cretaceous Research 91, 

229–250.

Van Der Voo R. 1993: Palaeomagnetism of the Atlantic, Tethys,  

and Iapetus oceans, Cambridge. Cambridge University Press

1–412 .

Vishnevsky A.V. & Menaylenko P.A. 1963: Coccolithoforids of  

the lower Cretaceous (Aptian) clays of the Bakhchisaray area. 

Bulletin of the High Scools, Geology and Exploration Series 11, 

47–53 (in Russian).

Viviers M.C., Koutsoukos E.A.M., da Silva-Telles A.C. Jr. & 

 Bengtson P. 2000: Stratigraphy and biogeographic affinities of 

the late Aptian–Campanian ostracods of the Potiguar and   

Sergipe basins in northeastern Brazil. Cretaceous Res. 21,  

407–455.

Wilkinson I.P. 1988: Ostracoda across the Albian/Cenomanian 

Boundary in Cambredgeshire and Western Suffolk, Eastern  

England. Evolutionary Biology of Ostracoda its fundamentals 

and applications. In: Hanai T., Ikeya N. & Ishizaki K. (Eds.): 

Developments in Palaeontology and Stratigraphy, 11, 

 1229–1244.

Wilkinson I.P. 2008: The effect of environmental change on early 

 Aptian ostracods faunas in the Wessex Basin, southern England. 

Revue de micropaleontology 51, 259–272.

Wilkinson I.P. & Morter A.A. 1981: The biostratigraphical zonation 

of the East Anglian Gault by Ostracoda. In: Neale J.W. &  

Brasier M.D. (Eds.): Microfossils from Recent and Fossil Sherf-

Seas. Ellis Horwood, Ltd., Chichester. 163–176.

Woods M.A., Wilkinson I. P., Dunn J. & Ridingl J. B. 2001: The bio-

stratigraphy of the Gault and Upper Greensand formations 

 (Middle and Upper Albian) in the BGS Selborne boreholes, 

Hampshire. In: BGS Selborne boreholes, Hampshire. Proceed­

ings of the Geologists’ Association 112, 211–222.

Yampolskaya O.B., Baraboshkin E.Yu., Guzhikov A.Yu., Pimenov M.V. 

& Nikulshin A.S. 2006: Paleomagnetic column of the Lower 

Cretaceous of the South-Western Crimea. Vestnik of the Moscow 

State University, Geology series 1, 3–15.

background image

i

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Supplement

Fig. S1. SEM images of planktonic foraminifera from Zavodskaya Balka section: 1 — Blowiella blowi Bolli, 1959, sample 18;  

2–4 —Hedbergella infracretacea (Glaessner, 1937): 2 — sample 14, 3 — sample 5, 4 — sample 19; 5 — Hedbergella ruka (Banner, Copestake 

and White, 1993), sample 17; 6 — Hedbergella excelsa Longoria, 1974, sample 17; 7–8 — Hedbergella aptiana Bartenstein, 1965, sample 16; 

9 — Hedbergella sigali Moullade, 1966, sample 16; 10 — Hedbergella similis Longoria 1974, sample 16; 11 — Hedbergella primare 

(Kretchmar and Gorbachik, in Gorbachik, 1986), sample 14; 12 — Hedbergella luterbacheri Longoria, 1974, sample 15; 13 — Hedbergella 

roblesae (Obregon, 1959), sample 1504; 14 — Hedbergella kuhryi Longoria, 1974, sample 1503; 15–16 — Leupoldina reicheli (Bolli, 1957), 

sample 1504; 17 — Hedbergella trocoidea (Gandolfi, 1942), sample 09; 18 — Planomalina cheniourensis (Sigal, 1952), sample 08;  

19–21 — Paraticinella rohri Bolli, 1959, juvenile tests: 19, 21 — sample 4, 20 — sample 5; 22–24 — Paraticinella rohri Bolli, 1959, adult 

tests, sample 4.

background image

ii

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Fig. S2. Microphotographs of nannofossils from Zavodskaya Balka section. All images are made under cross-polarization of light microscope. 

1 — Assipetra terebrodentarius terebrodentarius Applegate et al., 2007, sample 20; 2 — A. terebrodentarius youngii Tremolada et Erba, 2002, 

sample 17; 3 — Axopodorhabdus dietzmannii (Reinhardt, 1965) Wind & Wise, 1983, sample 19; 4 — Calcicalathina oblongata (Worsley, 

1971) Thierstein, 1971, sample 18; 5 — Chiastozygus litterarius (Górka, 1957) Manivit, 1971, sample 5; 6 — Conusphaera rothii (Thierstein, 

1971) Jakubowski, 1986, sample 17; 7 — Cretarhabdus conicus Bramlette et Martini, 1964, sample 7; 8 — C. striatus (Stradner, 1963) Black, 

1973, sample 8; 9 — Crucibiscutum bosunensis Jeremiah, 2001, sample 8; 10 — Eiffellithus hancockii Burnett, 1997, sample 10; 11 — Eprolithus 

 floralis  (Stradner, 1962) Stover, 1966, sample 1503; 12 — Farhania varolii (Jakubowski, 1986) Varol, 1992, sample 8; 13 — Flabellites 

oblongus (Bukry, 1969) Crux in Crux et al., 1982, sample 20; 14 — Haquis cyrcumradiatus (Stover, 1966), sample 15; 15 — Hayesites irregu­

laris  (Thierstein in Roth & Thierstein, 1972) Applegate et al. in Covington & Wise, 1987, sample 16; 16 — Micrantolithus hoschulzii 

(Reinhardt, 1966) Thierstein, 1971, sample 23; 17 — M. obtusus Stradner, 1963, sample 20; 18 — Nannoconus bucheri Brönnimann, 1955, 

sample 23; 19 — N. circularis Deres et Achéritéguy, 1980, sample 23; 20 — N. inornatus Rutledge et Bown, 1996, sample 23;  

21, 22 — N. kamptneri Brönnimann, 1955, sample 23; 23 — N. elongatus Brönnimann, 1955, sample 18; 24 — N. vocontiensis Deres et 

Achéritéguy, 1980, sample 1504; 25 — N. donnatensis Deres et Acherit, sample 1504; 26 — N. globulus Brönnimann, 1955, sample 17;  

27 — N. quadriangulus Deflandre et Deflandre-Rigaud, 1962, sample 1504; 28, 29 — N. steinmannii Kamptner, 1931: 28 — sample 18,  

29 — sample 19; 30 — N. wassallii Brönnimann, 1955, sample 23; 31 — N. truitti truitti Brönnimann, 1955,, sample 1504; 32 — N. truitti frequence 

Deres et Achéritéguy, 1980, sample 1504; 33 — N. truitti rectangularis Deres et Achéritéguy, 1980, sample 23; 34 — Nannoconus sp., sample 17.

background image

iii

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Fig. S3. Microphotographs of nannofossils from Zavodskaya Balka section. All images are made under cross-polarization of light microscope.  

1 — Percivalia fenestrata (Worsley, 1971) Wise, 1983, sample 23; 2 — Radiolithus planus Stover, 1966, sample 8; 3 — Retecapsa angustiforata 

Black, 1971, sample 20; 4 — R. crenulata (Bramlette & Martini, 1964) Grün in Grün and Allemann, 1975, sample 10; 5 — Pickelhaube? sp., sample 

8;  6 — Rhagodiscus  cf.  achlyostaurion  (Hill, 1976) Doeven, 1983, sample 20; 7 — R. achlyostaurion (Hill, 1976) Doeven, 1983, sample 9;  

8 — R. amplus Bown, 2005, sample 18; 9 — R. asper (Stradner, 1963) Reinhardt, 1967, sample 22; 10 — Rotelapillus laffitei Caratini, 1963, sample 

21; 11 — Staurolithites crux (Deflandre et Fert, 1954) Caratini, 1963, sample 5; 12 — S. mutterlosei Crux, 1989, sample 18; 13 — S. siesseri Bown 

in Kennedy et al., 2000, sample 1503; 14 — Stoverius acutus (Thierstein in Roth & Thierstein, 1972) Young & Bown 2014, sample 10;  

15 — Tegumentum stradneri Thierstein in Roth & Thierstein, 1972, sample 8; 16 — Tubodiscus burnettiae Bown in Kennedy et al., 2000, sample 

21; 17 — Watznaueria barnesiae (Black in Black and Barnes, 1959) Perch-Nielsen, 1968, sample 9; 18 — W. biporta Bukry, 1969, sample 11;  

19 — W. britannica (Stradner, 1963) Reinhardt, 1964, sample 1504; 20 — W. cynthiae Worsley, 1971, sample 23; 21 — W. fossacincta (Black, 1971) 

Bown in Bown & Cooper, 1989, sample 8; 22 — W. manivitae Bukry, 1973, sample 9; 23 — W. ovata Bukry, 1969, sample 8; 24 — Zeugrhabdotus 

embergeri  (Noël, 1959) Perch-Nielsen, 1984, sample 8; 25 — Z. erectus (Deflandre in Deflandre & Fert, 1954) Reinhardt, 1965, sample 19;  

26 — Z. diplogrammus (Deflandre in Deflandre & Fert, 1954) Burnett in Gale et al., 1996, sample 7; 27 — Z. howei Bown in Kennedy et al., 2000, 

sample 21; 28 — Z. noeliae Rood et al., 1971, sample 10; 29 — Z. streetiae Bown in Kennedy et al., 2000, sample 9; 30 — Z. xenotus (Stover, 1966) 

Burnett in Gale et al., 1996, sample 22.

background image

iv

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Fig. S4. SEM images of ostracodes from Zavodskaya Balka section: 1 — Robsoniella minima Kuznetsova, 1961. Adult carapace, right external 

view, sample 17; 2–3 — Cytheropteron  sp. 3: 2 — Exterior view of adult RV, sample 15, 3 — Exterior view of adult LV, sample 15;  

4–6 — Loxoella variealveolata Kuznetsova, 1956: 4 — Exterior view of adult LV, sample 16, 5 — Exterior view of adult RV, sample 15,  

6 — Interior view of adult RV, sample 15; 7–8  — Monoceratina bicuspidata (Gründel, 1964), 1964: 7 — Exterior view of adult LV, sample 

1504, 8 — Exterior view of juvenile LV, sample 8; 9 — Protocythere sp. Adult carapace, right external view, sample 9; 10–11 — Saxocythere 

omnivaga (Lyubimova, 1965). 10 — Exterior view of adult LV, sample 9, 11 — Exterior view of adult RV, sample 9; 12 — Cytheropteron 

latebrosum Kuznetsova, 1962. Exterior view of adult LV, sample 9; 13–14 — Eucytherura mirifica (Kuznetsova, 1961): 13 — Exterior view 

of adult LV, sample 17, 14 — Interior view of adult LV, sample 17; 15 — Eucytherura  sp. 1. Exterior view of adult RV, sample 15;  

16–17 — Dorsocythere stafeevi Karpuk et Tesakova, 2013: 16 — Exterior view of adult RV, sample 7, 17 — Exterior view of adult LV, sample 

7; 18 — Pleurocythere costaflexuosa (Kuznetsova, 1961), 1957. Exterior view of adult RV, sample 18.

background image

v

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

Fig. S5. Microphotographs of dinocysts from Zavodskaya Balka section: 1 — Pareodinia sp., sample 23; 2 — cf. Circulodinium deflandrei 

Alberti, 1961, sample 23; 3–4 — Prolixosphaeridium parvispinum (Deflandre, 1937) Davey et al., 1966, sample 23; 5–6 — Taleisphaera hydra 

subsp. elongata Heilmann-Clausen, 1995, sample 19; 7 — Stiphrosphaeridium anthophorum (Cookson et Eisenack, 1958) Davey, 1982, sam-

ple 17; 8 — Pseudoceratium securigerum (Davey et Verdier, 1974) Bint, 1986, sample 17; 9 — cf. Pseudoceratium retusum Brideaux, 1977, 

sample 12; 10 — Pseudoceratium pelliferum Gocht, 1957, sample 17; 11— Tanyosphaeridium sp., sample 23; 12 — Pseudoceratium polymor­

phum (Eisenack, 1958) Bint, 1986, sample 12; 13 — Cassiculosphaeridia sarstedtensis Below, 1982, sample 12; 14 — Muderongia cf. staurota 

sensu Davey et Verdier, 1974, sample 19; 15 — Cleistosphaeridium sp., sample 15; 16 — Subtilisphaera perlucida (Alberti, 1959) Jain et 

Millepied, 1973, sample 8; 17 — Oligosphaeridiumasterigerum (Gocht, 1959) Davey et Williams, 1969, sample 19; 18 — Dingodinium

albertii Sarjeant, 1966, sample 23; 19 — Subtilisphaera perlucida (Alberti, 1959) Jain et Millepied, 1973, sample 8; 20 — Protoellipsodinium 

spinocristatum  Davey et Verdier, 1971, sample 6; 21 — Protoellipsodinium spinocristatum Davey et Verdier, 1971, sample 12;  

22–23 — Odontochitina operculata (Wetzel, 1933) Deflandre et Cookson, 1955, 22 — sample 15, 23 — sample 12; 24–25 — Subtilisphaera 

perlucida (Alberti, 1959) Jain et Millepied, 1973, sample 3; 26 — Subtilisphaera perlucida (Alberti, 1959) Jain et Millepied, 1973, sample 6.

background image

vi

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

23

22

21

20

19

18

17

16

15

14

1501

1502

1503

13

1504

1505

11

10

9

8

7

6

5

4

3

2

1

Hedber

gella infracr

etacea

Blowiella blowi Hedber

gella ruka

Hedber

gella excelsa

Hedber

gella sigali

Hedber

gella aptiana

Hedber

gella similis

Hedber

gella primar

e

Hedber

gella luterbacheri

Hedber

gella r

oblesae

Hedber

gella kuhryi

Leupoldina r

eiche

li

Hedber

gella tr

ocoidea

Planomalina cheniour

ensis

Paraticinella r

ohri

Sample nos.

U. Barremian

Lower 

Aptian

Upper 

Aptian

Substages

Species

f
f
f
f
f

a
a
a
a
a
a
c
c

r

f

r

c

r

c

r

f
f
f
f
f
f
f f

f

f

f

f

f r

r r

r

r

f

f

f

f f f

f

c c

r r

r r

r

r

r

r

r

f

f

r
r
r
r

f

f
r
r

f
f
f f

f

r

r

r

r f

r

r

f

r

B. blowi

*

**

f

H. excelsa

H.

trocoidea

P. r

ohri

Foraminifera zones

*

**

- H. luterbacheri

H. ruka Bed

Table S1. The PF range chart of Zavodskaya Balka section. Symbols: a – abundant (20 specimens in the picked up material, p.m.), с – common (10–20 

specimens in the p.m.), r – rare (3–10 specimens in the p.m.), f – few (1–2 specimens in the p.m.).

Table S1: The PF range chart of Zavodskaya Balka section. Symbols: a — abundant (20 specimens in the picked up material, p.m.), с — com-

mon (10–20 specimens in the p.m.), r — rare (3–10 specimens in the p.m.), f — few (1–2 specimens in the p.m.).

background image

vii

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

23

22

21

20

19

18

17

16

15

14

1501

1502

1503

13

1504

1505

11

10

9

8

7

6

5

4

3

2

1

Sample nos.

U. Barremian

Lower Aptian

Upper Aptian

Substages

Nannofossils species

Assipetra terebr

odentarius terebr

odentarius

Conusphaera rothii

Flabellites oblongus

Hayesites irregularis

Lithraphidites carniolensis

Micrantolithus hoschulzii

Micrantolithus obtusus

Nannoconus bonetii

Nannoconus circularis

Nannoconus inornatus

Nannoconus kamptneri

Nannoconus steinmannii

Nannoconus truittii

Percivalia fenestrata

Retecapsa angusiphorata

Retecapsa crenulata

Rhagodiscus asper

Rotelapillus laffittei

Watznauria barnesae/fossacincta

Zeugrhabdotus diplogrammus

Zeugrhabdotus ember

geri

Zeugrhabdotus er

ectus

Zeugrhabdotus howei

Zeugrhabdotus xenotus

Haquis circumradiatus

Watznaueria britannica

Axopodorhabdus diettzmannii

Tubodiscus burnettiae

Assipetra terebr

odentarius youngii

Nannoconus vocontiensis

Rhagodiscus amplus

Watznaueria manivitae

Manivitella pemmatoidea

Cretar

habdus striatus

Nannoconus elongatus

Staurolithites mutterlosii

Zygrhabdotus noeliae

Biscutum constans

Nannoconus globulus

Cretar

habdus conicus

Crucibiscutum bosunensis

Tegumentum stradneri

Grantarhabdus cor

onadventis

Repagulum parvidentatum

Staurolithites sciesseri

Zeugrhabdotus str

eetiae

Eiffellithus hankockii

Stoverius acutus

Watznaueria biporta

Eprolithus  floralis

Radiolithus planus

Rhagodiscus achlyostaurion

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

r

f

f

r

f

f

f

f

f

f

r

f

r

r

r

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

r

f

f

f

f

f

f

f

r

f

r

r

c

f

f

c

f

c

r

f

f

f

f

f

f

f

f

f

r

f

f

f

f

f

f

f

f

f

f

f

f

f

r

r

c

r

c

c

r

c

r

f

f

f

f

f

f

f

a

a

a

c

c

a

c

c

a

f

f

f

f

f

r

f

f

f r

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

c

f

f

r

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

r

f

f

f

f

f

f

f

f

f

f

f

f

c

f

f

f

f

f

f

r

f

a

f

f

f

f

f

f

r

f

f

a

f

f

f

f

f

f

f

f

f

f

f

f

f

f

r

f

f

a

f

f

f

f

f

f

c

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

c

f

c

r

f

f

c

f

f

f

a

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

c

f

c

f

r

f

f

f

f

f

f

f

f

c

c

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

c

f

f

f

f

f

f

f

f

f

f

f

f

f

f

r

f

f

f

f

f

f

Nannofossils zones

NC6A

NC6B

NC7A

NC7B

NC7C

?

?

Nannoconus wassalii

Nannoconus bucheri

f

c

f

f

f

f

f

Chiastozygus litterarius

f

f

f

f

f

Farhania var

olii

Nannoconus donatensis

Nannoconus quadricanalis

f

f

f

f

f

f

Calcicalathina erbae

Pickelhaube furtiva

f

f

f

f

Nannofossils are absent

TABLE S2. – The nannofossil range chart of Zavodskaya Balka sec

tion. Symbols: a - abundant ( 5 specimens per field of view, f

.v.), с - common (1-4 specimens per 

f.v.), r - rare (several specimens per the row of the smear-sli

de), f - few (several specimens in the smear-slide). 

Table S2:

 The 

nannofossil 

range 

chart

 of 

Zavodskaya 

Balka 

section. 

Symbols: 

— 

abundant 

( 5 

specimens 

per 

field 

of 

view

, f.v

.), 

с 

— 

common 

(1–4 

specimens 

per 

f.v

.), 

r — 

rare 

(several 

specimens 

per the row of the smear

-slide), f — few (several specimens in the smear

-slide).

background image

viii

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

23

22

21

20

19

18

17

16

15

14

1501

1502

1503

13

1504

1505

11

10

9

8

7

6

5

4

3

2

1

Cyther

ella ovata

Cyther

ella dilatata

Gen. 21 sp. Eucytherura mirifica

1
1

12

2

7

2

13

13

3

2

9

5

7

1
1

1

2

5 1

11

3

14

1

18

12

7

4

3

2

5

1

Bair

dia pr

ojecta

Cyther

opter

on latebr

osum

Robsoniella minima Robsoniella obovata Bythocypris

 sp.

Exophthalmocyther

e poster

opilosa

Bair

dia

 sp. 2

Eucytherura

 sp. 15

Paracypris acuta

Loxoella variealveolata

2
1

1

1

29
33
25

11

8
2

13

32

1

1

3

10

1
2
2
1
3

90
78

11

6
4

1

1

40
32
26
15
19

1
1

10 1

2

4

1

14

7
2
5

1
1 1

6

1

12

14

10

10

27

7

7

2 4

3

2 1

8

5

1

1

14

2

3
2

47
27

2

6

2
2 1

5

1

12

5

3

4

2

1

3
3
4

2
2
4
1

8

5

1

2

12

21

2

1

2

2

"Macr

ocypris

" sp. 2

Pontocypris explorata

Gen. 6 sp.

Eucytherura

 sp. 7

Loxoconcha

 sp. 1

Gen. 23 sp. Gen. 9 sp. Gen. 25 sp. Monoceratina tricuspidata

2

2

1

1

2

2 2

1

4 2 1 2 1 1

2

2

6

14

4

1

4

1

3

2

1

1

Sigillium pr

ocerum

Gen. 40 sp. Gen. 39 sp. Paracypris

 cf. 

alta

Gen. 2 sp. Loxoella ? macr

ofoveata

Pedicyther

e longispina

Pleur

ocyther

e costaflexuosa

Bair

dia

 sp. 4

Pseudocyther

e sp. 1

13

6

12

4

11

3 2

1

1

1

4

1

6

10

1

1 1

2

1
1

1 9

8

7

6

4

3

8

1

Gen. 3 sp.

4

10

14

3
6

2

5

2

1

2

1

4

3

1

3

1

Pontocypris

 sp.

Pr

ocytherura

 sp. 5

Gen. 13 sp. Pedicyther

e sp. 2

Gen. 28 sp.

1

1

1

1

Gen. 27 sp. Gen. 45 sp. Gen. 31 sp. Cyther

opter

on ventriosum

Cyther

ella infr

equens

Gen. 8 sp.

1

2

1

1 8

4

6

7

2

11

3

10

2
1

19

2

15

4

3

4
1
6

1

11

8

10

10

1 1

1

1

Pr

ocyther

opter

on 

sp. 1 

Pr

ocytherura

 sp. 7

Cyther

opter

on

 sp. 3

Pr

ocytherura

 sp. 6

Pr

ocyther

opter

on

 sp. 2

Cyther

ella

 cf. 

eosulcata

1

2

5

6

12

10

1

3

1

1

1

8

1 1

1

4

5

12

1 1

3

1

1

4

1

Pr

ocytherura

 sp. 2

Cyther

ella lubimovae

Gen. 42 sp.

Pr

ocytherura

 aff. 

beerae

Aratr

ocypris

 sp.

1

3

2

2

1 4

2

8

2

3

1

Sample nos.

U. Barremian

Lower 

Aptian

Upper 

Aptian

Substages

Ostracod species

2

R. minima - L. variealveolata

M. bicuspidata -  R. minima

S. omnivaga

Ostracoda zones

23

22

21

20

19

18

17

16

15

14

1501

1502

1503

13

1504

1505

11

10

9

8

7

6

5

4

3

2

1

Eucytherura 

sp. 16

1 1

Amphicytherura

 cf. 

roemeri

Gen. 17 sp.

1

Gen. 1 sp. 1 Pontocypr

ella

 rara

Asciocyther

e poster

or

otunda

Eucytherura

 sp. 1

Gen. 1

1 sp.

Shuleridea der

ooi

2

3

1

1
1

12

4

17

8

1
4 1

1

1

3

2

1

2

5

2

7

1 3 2 2

4

1
1

Eucytherura

  sp. 13

Pr

ocytherura

 sp. 4

Gen. 30 sp. Gen. 10 sp. Gen. 12 sp.

Gen. 35 sp.

Cyther

ella exquisita

Gen. 44 sp. Pseudocytherura 

sp. 2

Gen. 24 sp. "Macr

ocypris

" sp. 1

22

2 2

1

1 1 2 7 2

1 1

6 2

8

3

1

39

59

1

4 3

4

Pseudocyther

e sp. 3

Eucytherura

 sp. 8 

Ovocytheridea

 sp.

Robsoniella longa Pontocypr

ella maynci

Pr

ocyther

opter

on

 sp. 3

Pr

ocytherura

 sp. 1

Eucytherura

 sp. 1

1

Eucytherura monstrata Dolocytheridea vinculum Gen. 51 sp.  Eocyther

opter

on

 sp.

Par

exophthalmocyther

e r

odewaldensis

1

1

1 4 4 2

5

2

1

1

1 1 1

Neocyther

e (Physocyther

e) vir

ginea

Neocyther

e vanveeni

Gen. 41 sp. Monoceratina bicuspidata Dorsocyther

e stafeevi

Loxoella? micr

ofoveata

Paraphysocyther

e 

DS

sensu

 Babinot et al.

1 1

6

3

3

1

6

2

6

13

8

10

35

30

5

2

2 1

1

1 1

Gen. 5 sp. Eucytherura

 sp. 20

Paranotacyther

e sp.

Eucytherura

 sp. 10

Eucytherura

 aff. 

kotelensis

 

Saxocyther

e omnivaga

Pr

otocyther

sp.

Pontocypr

ella harrisiana

Cyther

ella gigantosulcata

Dolocyther

e rara

Cyther

ella

 cf. 

pilicae

Gen. 32 sp.

Eucytherura

 sp. 4

2

1

1 2 1

10

11

15 15

5
4

8 1

1 1 1

1

Sample nos.

Ostracod species

U. Barremian

Lower 

Aptian

Upper 

Aptian

Substages

R. minima - L. variealveolata

M. bicuspidata -  R. minima

S. omnivaga

Ostracoda zones

Ostracods are absent

Ostracods are absent

Ostracods are absent

Ostracods are absent

TABLE S3. – The ostracod range chart of Zavodskaya Balka section. Numbers are the abundance of 

specimens found in the sample.

Table S3: The ostracod range chart of Zavodskaya Balka section. Numbers are the abundance of specimens found in the sample.

background image

ix

KARPUK, SHCHERBININA, BROVINA, ALEKSANDROVA, GUZHIKOV, SHCHEPETOVA and TESAKOVA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

23

22

21

20

19

18

17

16

15

14

1501

1502

1503

13

1504

1505

11

10

9

8

7

6

5

4

3

2

1

Sample nos.

PA

 1 

PA

 2

Substages

U. Barremian

Lower 

Aptian

Upper 

Aptian

Substages

Dictyophyllidites harrisii

 

Deltoidospora 

sp.

Bir

etisporites potoniaei 

Tripartina variabilis

Leiotriletes 

sp.

Cyathidites australis 

Gleicheniidites 

sp.

Gleicheniidites senonicus

 

Gleicheniidites laetus

Ornamentifera echinata 

Ster

eisporites antiquasporites

Concavissimosporites 

sp.

Concavisporites dubia Concavissimosporites penolaensis

Baculatisporites / Osmundacidites

Contignisporites 

sp.

Duplexisporites anagrammensis

Lycopodiumsporites mar

ginatus

 

Lycopodiumsporites 

sp.

Cicatricosisporites 

sp.

Cicatricosisporites tersus

Cicatricosisporites mediostriatus

Cicatricosisporites minutaestriatus Cicatricosisporites 

sp. cf. 

C. venustus

 

Cicatricosisporites hughesi

Appendicisporites pr

oblematicus

 

Appendicisporites baconicus

Appendicisporites 

sp.

Klukisporites 

sp.

Cor

onatispora valdensis

Foraminisporites wonthaggiensis

 

Leptolepidites

 verrucosus

Leptolepidites tumulosus

Taur

ocusporites 

sp.

Antulisporites distalverrucosus

Polycingulatisporites 

sp.

Deltoidospora  juncta

 

Triplanosporis 

sp.

Todisporites 

sp.

Cyathidites  minor 

Gleicheniidites carinatus

Clavifera triplex

 

Clavifera 

sp.

Ornamentifera

 sp.

Cyathidites punctatus 

Matonisporites 

sp. cf. 

M. phlebopter

oides

Stoverisporites lunaris

Distaltriangulisporites 

sp.

Cicatricosisporites imbricatus

Pilosisporites trichopapillosus

Sestr

osporites pseudoalveolatus

Foraminisporites asymmetricus

Undulatisporites 

sp.

1

1 1

1 1 1

1 1 1 1

1

1

1 1 1

1 1

1 1 1 1 1 1

1

1

1 1

1

1
1 1

1 1 1

1 1

1

1 1

1 1 1

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1

1

1 1

1 1 1 1

1 1

1

1

1 1 1 1 1

1

1

1

1

1 1 1 1 1

1

1

1

1

1 1 1 1 1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1

1 1

1 1

1 1

5 5

1 1 1 1 1

1 3 1

1 10

1 10

1 15

1 1

1 10

1

1
1

1

1

1 1 1

1

1

1

1

1 1 1

1

1 1

1

1 1

1 1

1

1

1

1

1

1

1

1

1
1

1

1
1 1

1 1

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

10

1 1

1 1

 Fern and bryophytes spores

23

22

21

20

19

18

17

16

15

14

1501

1502

1503

13

1504

1505

11

10

9

8

7

6

5

4

3

2

1

Sample nos.

PA

 1 

PA

 2

Substages

U. Barremian

Lower 

Aptian

Upper 

Aptian

Substages

Dictyophyllidites 

 sp.

Deltoidospora  hallii

 

Cyathidites 

sp.

Clavifera tuber

osa

Clavifera rudis 

Ornamentifera granulata

Mur

ospor

oides chlonovae

Lycopodiacidites 

sp.

Tigrisporites r

eticulatus

 

Cicatricosisporites

 angustus

Cicatricosisporites pseudotripartitus

Costatoperfor

osporites foveolatus 

Trilobosporites 

cf. 

hannonicus

Micr

or

eticulatisporites 

sp. cf. 

M. uniformis

 

Densoisporites velatus Hoegisporites 

sp.

Converr

cucosisporites 

cf. 

exguisitus 

sp.

Classopollis 

spp.

Sciadopityspollenites multiverrucosus

Cer

ebr

opollenites mesozoicus

Piceaepollenites 

spp.

Vitr

eisporites pallidus

 

Alisporites 

spp.

Parvisaccites radiatus

 

Podocarpidites 

spp.

Cedripites 

sp.

Micr

ocar

hydites 

sp.

Rugubivesiculites 

sp.

Phyllocladidites 

sp.

Pinuspollenites 

sp.

Disaccites

Inaperturpollenites 

sp.

Taxodiaceaepollenites hiatus

Araucariacites sp.

Araucariacites australis

 

Perinopollenites elatoides

 

Callaiosporites dampieri

Calliaiosporites trilobatus Callaiosporites segmentatus

Eucomiidites 

sp.

Cycadopites

Clavatipollenites 

sp.

Retimonocolpites 

sp.

Tricolpites 

sp.

Dinocysts (% of all palynomorpha)

Gymnospermae pollen

(

of all spores and pollen

)

Angiospermae pollen

(

of all spores and pollen

)

Total of palynomorpha

Spores (

of all spores and pollen

)

1

1

1

1 1

1 1 1 1

1 1

1 1

1 1 1 1 1 1

5

5

1

1

1 1

1

1

1 1 1

20 56 5 5

42 45 5

28 35 5 1 1 1 1

4018 5 5

1 1 1 1

30 15 5 10 1

1 5 5

1 5

40 15 1 5 1 1

5 1

1 1 1

1 5

1

1 31 5 1

1 1 1

1 1

1
1

1

1
1

1

7

5

5

10

1
1

1
1

1
1

23

9

10 35

15

1

30

1

4

1

5

1

1 1

1

1

1 13

60

8

7

1 1

1 5 1

1 1 5 1

1

1 1 1 1

1

1

1

1

1

1

1

1

10

30

1

1

1

1

1

1

15

1

1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

13

7

87

93

2 163

5 171

9 231

23 239

25 346

30 370

5 318

10
18

267

265

20

15

259

325

25 249

28 72

27 73

22 78

24 75

1

45 53

2

47 53
26 74

7 93

20 80

30 69

 Fern and bryophytes spores

Gymnospermae pollen

Angiospermae pollen

TABLE S4. – The spores and pollens range chart of Zavodskaya balka section. Percentage of 

the amount spores and pollen.

Table S4: The spores and pollens range chart of Zavodskaya balka section. Percentage of the amount spores and pollen.

background image

x

STRATIGRAPHY OF THE UPPER BARREMIAN–APTIAN SEDIMENTS FROM THE SOUTH-EASTERN CRIMEA

GEOLOGICA CARPATHICA

, 2018, 69, 5, 498–511

23

22

21

20

19

18

17

16

15

14

1501

1502

1503

13

1504

1505

11

10

9

8

7

6

5

4

3

2

Achomosphaera sp.

Batiacasphaera sp.

Apteodinium sp.

1

1

1

1

1

1

2

Coronifera oceanica

Fromea 

sp.

Pterospermella

 sp.

Tasmanites 

sp.

phycomata green algae

Cribroperidinium 

cf. conjunctum

Ctenidodinium elegantulum

Cometodinium sp.

Cleistosphaeridium spp.

Circulodinium 

cf. deflandr

ei

Circulodinium br

evispinatum 

Spiniferites dentatus

Subtilisphaera ventriosa

acritarchs

Pseudoceratium polymorphum

Oligosphaeridium albertense 

Rhynchodiniopsis cf. 

cladophora 

Subtilisphaera perlucida

Spiniferites spp.

Rhombodella paucispina 

Rhynchodiniopsis fimbriata

Surculosphaeridium 

sp. III 

Surculosphaeridium sp. 

Taleisphaera

 hydra 

subsp. elongata

Tanyosphaeridium boletus

Tehamadinium tenuiceras 

Trichodinium 

sp.

aff. 

Valensiella r

eticulata

aff. 

Wallodinium 

sp.

Muderongia 

sp.

Canningia colliveri 

Cassiculosphaeridia sarstedtensis 

M. cf. 

staurota

 sensu

 

Dav., V

erd., 1974

Pareodinia 

sp.

Palaeoperidinium cretaceum

Meiourogonyaulax stoveri

Pervosphaeridium cf. 

truncatum

Cribroperidinium?

 cf. edwar

dsii 

Cribroperidinium? tenuiceras

Cyclonephelium cf. 

intonsum

Cribroperidinium? 

cf. cornutum

Florentinia cooksoniae

Exochosphaeridium phragmites

Cerbia tabulata

Cribroperidinium sepimentum

Cyclonephelium sp.

Dingodinium? albertii

Dingodinium? cf. 

spinosum

Protoellipsodinium spinocristatum

Pterodinium 

spp.

Pseudoceratium cf. 

retusum

Pseudoceratium pelliferum 

Impagidinium sp.

Kalyptea 

sp.

Kallosphaeridium 

sp.

Kleithriasphaeridium eoinodes 

Cribroperidinium bor

eas 

Circulodinium

 distinctum 

Cribroperidinium? 

cf. muder

ogense

Callaiosphaeridium trycherium 

Cribroperidinium 

sp.

Pseudoceratium securigerum 

Pseudoceratium sp.

indetermined fragment

 chorate cysts

Pilosidinium sp.

Prolixosphaeridium parvispinum

Florentinia 

sp.

Florentinia mantellii

 

Protoellipsodinium 

cf. clavulus

Gardodinium eisenackii

Protoellipsodinium spinosum

Odontochitina operculata

 

Heslertonia heslertonensis

Hystrichosphaerina schindewolfii

Impagidinium alectrolophum

Impagidinium verrucosum

Chytroesphaeridia 

sp.

Chlamydophorella 

sp.

Circulodinium 

cf. attadalicum 

Oligosphaeridium prolixispinosum 

Ovoidinium incomptum 

Oligosphaeridium? asterigerum

Oligosphaeridium complex 

Oligosphaeridium sp.

Cymatiosphaera sp.

1

1

2

3

1

1

1

9

10

1

1

1

3

1

1

1

1

1

1

1

2

1

3

1

3

4

1

12

24

19

2

6

5

5

2

1

1

1

2

1

3

2

1

2

3

1

1

1

1

1

1

4

3

2

1

2

1

1

1

1

1

1

2

1

1

1

1

2

3

3

3

5

1

1

3

1

4

1

1

1

1

1

1

4

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

8

3

1

1

2

1

1

2

3

1

1

1

1

1

1

1

1

1

1

1

1

5

3

3

1

2

1

1

1

1

1

1

1

1

1

5

1

2

3

1

1

3

3

5

1

2

2

8

16

8

1

3

3

4

2

1

1

1

2

1

1

1

1

3

2

1

1

1

1

1

1

4

1

1

6

6

3

9

3

34

11

4

3

10

9

10

5

1

3

1

1

1

1

1

6

1

7

1

1

1

1

1

1

1

1

1

1

1

1

27

1

2

2

1

1

3

13

8

24

6

1

1

2

2

5

1

1

1

1

1

1

2

1

1

3

1

1

3

13

1

Sample nos.

Dinoflagellates species

D 1 

D 2

Substages

U. Barremian

Lower Aptian

Upper Aptian

Substages

D 3

TABLE S5. – The dinocyst range chart of Zavodskaya Balka secti

on. Numbers are specimen abundance in the sample.

Table S5:

 The dinocyst range chart of Zavodskaya Balka section. Numbers are specimen abundance in the sample.