background image

GEOLOGICA CARPATHICA

, OCTOBER 2018, 69, 5, 483–497

doi: 10.1515/geoca-2018-0028

www.geologicacarpathica.com

Accessory minerals and evolution of tin-bearing  

S-type granites in the western segment  

of the Gemeric Unit (Western Carpathians)

IGOR BROSKA

 and MICHAL KUBIŠ

Earth Science Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava; 

igor.broska@savba.sk

(Manuscript received May 27, 2018; accepted in revised form October 4, 2018)

Abstract: The S-type accessory mineral assemblage of zircon, monazite-(Ce), fluorapatite and tourmaline in the cupolas 

of Permian granites of the Gemeric Unit underwent compositional changes and increased variability and volume due to 

intensive volatile flux. The extended S-type accessory mineral assemblage in the apical parts of the granite resulted in  

the formation of rare-metal granites from in-situ differentiation and includes abundant tourmaline, zircon, fluorapatite, 

monazite-(Ce), Nb–Ta–W minerals (Nb–Ta rutile, ferrocolumbite, manganocolumbite, ixiolite, Nb–Ta ferberite,  

hübnerite), cassiterite, topaz, molybdenite, arsenopyrite and aluminophosphates. The rare-metal granites from cupolas in 

the western segment of the Gemeric Unit represent the topaz–zinnwaldite granites, albitites and greisens. Zircon in these 

evolved rare-metal Li–F granite cupolas shows a larger xenotime-(Y) component and heterogeneous morphology 

 compared to zircons from deeper porphyritic biotite granites. The zircon Zr/Hf

wt

 ratio in deeper rooted porphyritic granite 

varies from 29 to 45, where in the differentiated upper granites an increase in Hf content results in a Zr/Hf

wt

 ratio of 5. 

The cheralite component in monazite from porphyritic granites usually does not exceed 12 mol. %, however, highly evolved 

upper rare- metal granites have monazites with 14 to 20 mol. % and sometimes > 40 mol. % of cheralite. In granite cupo-

las, pure secondary fluorapatite is generated by exsolution of P from P-rich alkali feldspar and high P and F contents may 

stabilize aluminophosphates. The biotite granites contain scattered schorlitic tourmaline, while textural late-magmatic 

tourmaline is more alkali deficient with lower Ca content. The differentiated granites contain also nodular and dendritic 

tourmaline  aggregations. The product of crystallization of volatile-enriched granite cupolas are not only variable in their 

accessory mineral assemblage that captures high field strength elements, but also in numerous veins in country rocks that 

often contain cassiterite and tourmaline. Volatile flux is documented by the tetrad effect via patterns of chondrite normal-

ized REEs (T1,3 value 1.46). In situ differentiation and tectonic activity caused multiple intrusive events of fluid-rich  

magmas rich in incompatible elements, resulting in the formation of rare-metal phases in granite roofs. The emplacement 

of volatile-enriched magmas into upper crustal conditions was followed by deeper rooted porphyritic magma portion 

undergoing second boiling and re-melting to form porphyritic granite or granite-porphyry during its ascent. 

Keywords: S-type granite, zircon, fluorapatite, monazite, tourmaline, cassiterite, rare-metal granites, Gemeric Unit. 

Introduction

The presence of boron in felsic melt significantly changes  

the rheological character in density and viscosity (Dingwell et 

al. 1996), and decreases the solidus temperature (Manning 

1981; Pichavant 1981; Pollard et al. 1987). Effective melt 

 depolymerization by boron and fluorine resulted in melt 

 mobility and differentiation, which enables the concentration 

of lithophile elements, such as Rb, Li, Sn, Nb, Ta (Dingwell et 

al. 1985). F-rich source magma became more enriched in 

 incompatible elements with increase of heavy rare earth ele-

ments (O’Neill et al. 2017). The high volatile flux is an impor-

tant phenomenon with regard to easier differentiation, empla-

cement of melt to the shallow crustal level, formation of 

various rare-metal accessory mineral phases and increase in 

the metallogenetic capacity. But the behaviour of the high 

field strength elements is also strongly controlled by the ASI 

(molar Al / Na + K) parameter (Aseri et al. 2015). 

This study presents the characterization of the accessory 

mineral assemblage in the volatile-rich granite system of 

Permian granites in the Gemeric Unit (uppermost Alpine tec-

tonic nappe unit of the Western Carpathians). These granites 

crop out as small bodies in Lower Paleozoic low-grade 

metavolcano–sedimetary rocks and, according to geophysical 

data, represent cupolas of a large hidden granite massif with  

a thickness of ~ 5 km (Šefara et al. 2017). The Alpine Gemeric 

Unit was stacked onto the Veporic Unit during the Cretaceous, 

probably wedging the Hronic Unit in between (e.g., Vozár et 

al. 2015; Plašienka 2018). The tourmaline is a more typical 

accessory phase for the Gemeric granites, with its concentra-

tion increasing towards the granite cupolas (Rub et al 1977; 

Broska et al. 2002; Kubiš & Broska 2005). The apical parts of 

the Gemeric granites, due to high primary concentration of 

volatiles, contain various accessory minerals of Sn, Nb, Ta,  

W, B, F and Li and, therefore, Uher & Broska (1996) classi-

fied the Gemeric granites as “specialized S-type granites”.  

The special mineralization in granitic rocks is expressed by  

the pre sence of cassiterite, Nb–Ta oxides, wolframite, fluo-

rite (Kamenický & Kamenický 1955; Baran et al. 1970; 

Malachovský et al. 1983, 2000; Broska et al. 2002, Uher et al. 

background image

484

BROSKA and KUBIŠ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

2001) and other Li minerals (zinnwaldite, protolitionite) along 

with accessory aluminophosphates such as arrojadite, lacroi-

xite, goyazite, gorceixite and viitaniemiite (Petrík et al. 2011, 

2014). Several localities of granites in the Gemeric Unit were 

previously explored for tin. In general, the accessory Nb–Ta 

oxides are commonly concentrated in the rare-metal pegma-

tites (Černý & Ercit 2005; Duran et al. 2016) but pegmatites 

are absent in the Gemeric Unit. Kubiš & Broska (2010) sug-

gested that the formation of the special mineralization in grani-

tes comes from a volatile-rich melt or water-enriched magmas 

under a carapace of the solidified fine-grained granites. 

The goal of this contribution is to present the distribution 

and character of prominent accessory phases in both deeper 

seated (barren) and apical granites with a special focus on 

 zircon, monazite, apatite and tourmaline. 

Methods

The samples were studied from polished thin sections and 

polished single grain mounts, separated from heavy mineral 

concentrates. The isolated accessory minerals were studied by 

binocular microscope first and then some selected grains were 

fixed in epoxy, cut and polished. Mineral assemblages, asso-

ciations and textures were determined by petrographic 

 microscope and electron microprobe CAMECA SX 100 at  

the Geological Survey of the Slovak Republic and some BSE 

Hnilec  images were taken by the Field Emission Electron 

Probe Microanalyser (Jeol JXA 8530F) housed at the Earth 

Science Institute of Slovak Academy of Sciences in Banská 

Bystrica. Operating conditions for microprobe analysis were 

15 kV accelerating voltage and 20 µm beam current with  

a counting time of 10 seconds. The following natural and syn-

thetic standards were used: wollastonite (Si, Ca), MgO (Mg), 

Al

2

O

3

 (Al), albite (Na), fayalite (Fe), rhodonite (Mn), LiTaO

3

 

(Ta), CaWO

4

 (W), orthoclase (K), apatite (P), NaCl (Cl), 

TiO

2

(Ti), SrTiO

3

 (Sr), SnO

2

 (Sn), barite (Ba), PbCO

3

 (Pb), 

LiNbO

3

 (Nb), UO

2

 (U), zircon (Zr) and CaF

2

 (F). 

Characterization of host granites

The granitic rocks from the profile in the western part of  

the Gemeric unit shown on Fig. 1 are mainly biotite–muscovite 

leucogranites and porphyritic granites. The deeper part and 

apical part of the granite are contrasting in composition.  

The general composition of granite bodies are characterized 

by high SiO

2

 content, prevalence of K over Na, peraluminou-

sity with an average ASI > 1.3, low Ca, Mg, Ba, Sr and REEs. 

Granites from cupolas are characterized by high Li, Rb, Sn, Nb, 

Ta, F, B, and P (e.g. Malachovský et al. 1983; Broska et al. 2002; 

Kubiš & Broska 2010; Petrík et al. 2011). The S-type character 

according to the classification of Chappell & White (2001) is 

demonstrated by composition, accessory mineral assemblage 

Fig. 1.  Geological  sketch  map  showing  the  position  of  studied  Permian  granite  bodies  along  the  Surovec–Dlhá  Dolina  (Podsúľová) –  

Betliar – Čučma profile which intruded Lower Paleozoic turbidites (modified according to Bajaník et al. 1983).

background image

485

EVOLUTION OF TIN-BEARING S-TYPE GRANITES OF THE GEMERIC UNIT (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

and a high 

87

Sr/

86

Sr initial ratio (>

0.720 Kovách et al. 1986; 

Cambel et al. 1990). The high initial Sr isotope ratios, as well 

as Nd and S isotopic data (Kohút et al. 1999; Kohút & Reccio 

2002), indicates a melting of a mature metasedimentary mica-

rich feldspathic and pelitic protolith, which resulted in high K, 

Rb and B contents. Albitization and local greisenization took 

place in cupolas enriched in volatiles (Dianiška et al. 2002). 

The highly evolved felsic melt differentiated in-situ in cupolas 

forms tourmaline-bearing Li-biotite granite at the bottom, 

topaz–zinnwaldite granite in the middle, and quartz-albitite to 

albitite at the top of the cupola (Breiter et al. 2015). 

The porphyritic granites contain more then 1 cm large sub-

hedral crystals of K-feldspar with perthitic structure and large 

grains of quartz. Strongly sericitized albite with An

30

 cores and

 

biotite flakes with accessory phases correspond to magmatic 

origin. The fine-grained rare-metal granite contains almost 

pure albite. All granites contain ubiquitous tourmaline. 

 

The upper parts of stocks contain medium-grained protolithio-

nite granite with local K-feldspars up to 1 cm, topaz and acces-

sory Sn–W–Nb–Ta phases are in the matrix. Topaz–zinnwaldite 

granites are found in cupolas below the albite part with fissu-

res of greisens (Fig. 2a). The uppermost part contains quartz–

mica veinlets with some ore phases like Nb–Ta oxides or 

cassiterite (Fig. 2b). 

The Permian ages of these granites were confirmed by dating 

of monazite (Finger & Broska 1999), MS TIMS method 

(Poller et al. 2002), SHRIMP geochronology (Radvanec et al. 

2009) and LA–ICP–MS (Kubiš & Broska 2010). Kohút and 

Stein (2005) dated molybdenite in the Hnilec area by Re–Os 

isotopes  and  obtained  ages  of  262 ± 0.9  and  264 ± 0.8  Ma, 

clearly demonstrating a link between granite evolution and 

associated metallogenetic processes. SHRIMP dating, indi-

cates the presence of separate granite bodies in the Gemeric 

Unit because of the time span for their genesis, ~ 275 Ma for 

southern Betliar area vs ~ 258 Ma  for the northern Hnilec area 

(Radvanec et al. 2009; Radvanec & Grecula 2016). Granite 

bodies are overprinted by Alpine metamorphism making  

it hard to evaluate their composition (Breiter et al. 2015).  

The calculated PT conditions of medium-grade Alpine meta-

morphism reached 600 –700 MPa at a temperature of 400 °C 

(Petrasova et al. 2007). The talc deposit exploited in Gemerská 

Poloma near Betliar probably originated by fluid activity from 

the Permian Gemeric granites, which led to the steatitization 

of carbonate roof rocks and talc formation (Radvanec et al. 

2004; see also Grecula et al. 2000). 

Results

Characteristics of principal accessory minerals such as 

 zircon, monazite, tourmaline and Sn–W–Nb–Ta-oxides are 

present in terms of distribution in the two granite settings:  

(1) porphyritic deep-seated and (2) rare-metal-rich cupolas. 

The rare-metal granites from cupolas are carriers of economic 

mineral phases, the deep-seated porphyritic granites are barren 

and contrast in composition. 

 

Zircon

Zircon morphology according to Pupin’s classification 

(Pupin 1980) typically shows a high amount of S

8

 zircon sub-

types where pyramid and prismatic faces are equal (see Pupin 

1980).  Partial zircon edge corrosion is typical, resulting from 

percolated alkali fluids. Other typical zircon morphological 

subtypes are S

3

,

 

S

4

, S

7

, S

9

 (see also

 

Jakabská  &  Rozložník 

1989). The late magmatic zircon generation consists mainly of 

metamict crystals with prevalence of G

1

 and P

1

 subtypes.  

The less evolved porphyritic granites show higher I.T. values, 

as in sample GK-6 where I.A. = 480 and I.T. = 364, but inten-

sively differentiated rare-metal granites show more heteroge-

neous zircon morphology and often high I.A parameter, as in 

sample GK-7 where I.A. = 524 and I.T. = 342 (Fig. 3).

The Zr/Hf

wt

 zircon ratio varies from 29 to 45 in biotite gra-

nite, but fractionated granites in cupolas have a typical increase 

in Hf content towards a smaller Zr/Hf

wt

 ratio, as much as 5. 

Rims of some zircon grains from highly fractionated Li–F 

Fig. 2. Microphotos from optical microscope: A — topaz and Li-mica in the granite (DD3 570 m); B — cassiterite in the greisenized albitite 

(DD3 489 m). 

background image

486

BROSKA and KUBIŠ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

Fig. 3. Representative zircon typological diagrams from specialized S-type granites in the Gemeric Unit. Hummel and Zlatá Idka are  

the granites form eastern part of the Gemeric Unit, note the differences in zircon  morphology from barren deep-seated porphyric biotite granites 

and apical rare-metal granites.

background image

487

EVOLUTION OF TIN-BEARING S-TYPE GRANITES OF THE GEMERIC UNIT (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

granites have very high Hf concentrations 

 

with more than 9 wt. % HfO

2

, increased P 

 content (0.1–2.5 wt. % P

2

O

5

), up to 2 wt. % 

UO

2

 and 0.9 wt. % Y

2

O

(Table 1). Substitution 

mechanisms, except typical HfZr

-1

 substitution, 

suggests a wide acceptance of the xenotime 

mole cule  (Y,REE)

3+

P

5+ 

Zr

4+

-1

, Si

4+

-1

 

(Fig. 4 a, b). 

Phosphates

Fluorapatite (typically up to 3.5 wt. % Mn) 

and less monazite and xenotime-(Y) are phos-

phate phases in deeper-seated barren granites. 

Fluorapatite may not to be stable enough in  

the upper rare-metal granites, where low Ca 

and high F granites stabilize aluminophos-

phates such as arrojadite, lacroixite, goyazite, 

gorceixite and viitaniemiite (see Petrík et al. 

2011, 2014). Fluorapatite in the upper rare-

metal granites precipitated mainly as a secon-

dary, tiny, pure phase exsolved from alkali 

feldspars (Fig. 5a). In addition Sr-rich fluor-

apatite is present, from percolated fluids from 

country rocks, with a rim of the secondary 

fluor apatite (Fig. 5b). Upper evolved granites 

concentrate P into feldspars via the berlinite 

molecule where mainly the rims of alkali feld-

spars are P-enriched (Fig. 6). 

Monazite-(Ce) only exists with enlarged 

cheralite molecules in the evolved granites.  

The most important cheralite component in 

monazite — CaTh(PO

4

)

2

 — from Gemeric gra-

nites, usually does not exceed 12 mol. %, how-

ever, highly evolved rare-metal granites in  

the Betliar and Dlhá dolina valley contain 

monazites with 14 to 20 mol. % and sometimes 

> 40 mol. % of the cheralite molecule (Table 2). 

Sample

DD3-594/2

DD3-594/7

GK-8A/2

GK-9/1 

ZK-31/2-2

ZK-31/1-2

Rock

rare metal 

granite

rare metal 

granite

rare metal 

granite

Ms granite

Ms granite

Ms granite

Locality Dlhá dolina

Dlhá dolina

Hnilec

Hnilec

Čučma

Čučma

P

2

O

5

1.79

0.60

n.a.

n.a.

0.21

0.09

SiO

2

31.65

32.37

33.38

31.12

32.49

32.57

ZrO

2

53.99

58.82

63.71

66.05

65.19

65.07

HfO

2

9.31

6.34

1.83

1.62

1.46

1.01

ThO

2

bdl

0.08

0.01

0.02

bdl

bdl

UO

2

0.69

0.35

0.05

n.a.

bdl

0.04

Y

2

O

3

bdl

bdl

0.03

0.21

0.01

bdl

La

2

O

3

0.10

bdl

n.a.

n.a.

n.a.

n.a.

Ce

2

O

3

0.15

bdl

n.a.

0.02

0.01

0.01

Pr

2

O

3

bdl

0.02

n.a.

n.a.

n.a.

n.a.

Nd

2

O

3

bdl

0.05

n.a.

n.a.

n.a.

n.a.

Sm

2

O

3

0.11

0.05

n.a.

n.a.

0.06

bdl

Er

2

O3

0.78

bdl

n.a.

n.a.

0.04

0.04

Yb

2

O

3

0.13

0.01

0.04

0.10

0.05

0.02

CaO

0.01

bdl

bdl

bdl

0.03

0.01

Total

98.71

98.69

99.05

99.14

99.55

98.86

Formulae based on 4 oxygen atoms

0.050

0.016

n.a.

n.a.

0.006

0.002

Si

1.005

1.018

1.027

0.974

0.999

1.006

Zr

0.836

0.902

0.956

1.008

0.977

0.980

Hf

0.084

0.057

0.016

0.014

0.013

0.009

Th

bdl

0.001

bdl

bdl

bdl

bdl

U

0.005

0.003

bdl

n.a.

bdl

bdl

Y

bdl

bdl

0.010

0.004

bdl

bdl

La

0.001

bdl

n.a.

n.a.

n.a.

n.a.

Ce

0.002

bdl

n.a.

bdl

bdl

bdl

Pr

bdl

bdl

n.a.

n.a.

n.a.

n.a.

Nd

bdl

0.001

n.a.

n.a.

n.a.

n.a.

Sm

0.001

0.001

n.a.

n.a.

0.001

bdl

Er

0.008

bdl

n.a.

n.a.

0.001

0.001

Yb

0.001

bdl

bdl

0.001

0.001

bdl

Ca

bdl

bdl

bdl

bdl

0.001

bdl

Sum cat.

1.993

1.999

2.001

2.001

1.999

1.998

n.a. — not analysed, bdl — below detection limit

Table 1: Representative zircon analyses from the specialized S-type granites (in wt. %). 

Fig. 4. Substitution diagrams for documented zircon significance:  A — HfZr

-1

 substitution; B — xenotime substitution.

background image

488

BROSKA and KUBIŠ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

Tourmaline

 

Representative compositions of tourmalines from all known 

granite bodies in the Gemeric Unit are presented in Table 3. 

The tourmaline crystals in granites occur as scattered colum-

nar crystals and 0.x mm aggregates (Fig. 7a). The most 

evolved granite parts also contain tourmaline nodules, nodules 

with dendrites on their rims (Fig. 7b) and dendrites. Nodular 

and dendritic tourmaline is locally common, mainly in 

 

the Betliar and Čučma area. Nodular tourmaline is intercalated 

with alkaline feldspars and quartz, and local light halos forms. 

Scattered tourmaline from the granites is predominantly 

schorlitic and alkalic, and typically shows Fe/(Fe + Mg) = 0.73 

and 0.95, tourmaline in the rare-metal granites commonly 

have even higher ratios of 0.95 to 1.0 (Fig. 8). The calcium 

content in tourmaline from the Betliar body decreases from 

less differentiated to evolved rare-metal equigranular 

granites.

Sn–W–Nb–Ta-oxides

From a metallogenetic point of view, the most common 

accessory mineral phases in the specialized S-type granites are 

Sn–W–Nb–Ta-oxides. They are present only in rare-metal 

granite cupolas or within their altered parts, and in veins 

emplaced on the hanging wall. Typical evolved granites are 

topaz- and Li-bearing granites (or zinnwaldite granite) where 

the accessory mineral paragenesis includes tourmaline (schor-

litic to foititic), almandine, topaz, zircon, apatite, monazite-

(Ce), xenotime-(Y) and carbonates, but also cassiterite, 

wolframite, and Nb–Ta oxides (e.g., Malachovský et al. 1983, 

2000; Faryad & Dianiška 1989; Broska et al. 1998; Uher et al. 

2001). The most important metallogenetic mineral is cassite-

rite, which occurs mostly in the veinlets of granite apical parts. 

The granite-related cassiterite-bearing quartz veins and 

 

the greisen crop out as a prominent cliff in the upper Dlhá 

dolina valley. 

Ferrocolumbite to manganocolumbite are the most wide-

spread Nb–Ta phases. They often form large euhedral to 

 anhedral, up to 0.3 mm, crystals in association with cassiterite 

and Nb–Ta rutile. Ferrocolumbite and manganocolumbite 

often show oscillatory zonality corroded along the margins  

of  crystals  with  atomic  ratios  of  Mn / (Mn + Fe) = 0.18–0.85;  

Ta / (Ta + Nb) = 0.05  and  0.35.  Rutile  forms  20–60  μm  

anhedral, strongly zoned crystals in rare-metal granite. It con-

tains up to 9 wt. % Nb

2

O

5

 and 9–27 wt. % Ta

2

O

5

Ta / (Ta + Nb) =  0.20–0.76.

Minerals of the wolframite series (ferberite, rarely hübne rite) 

with  Mn /(Mn + Fe) = 0.38–0.58  and  Ta /(Ta + Nb) = 0.04–0.25 

occur as platy crystals and fan aggregates, 0.1 mm to 1 cm  in 

size, in rare-metal parts of granites, greisenized parts of albi-

tites and quartz veins (Fig. 9a). 

Fig. 5. Backscattered electron image to illustrate P behaviour  

in the rare-metal granites: A — spots represent tiny pure secondary 

 apatites exsolved from the albite; B — Sr-rich apatite in veinlets 

 precipitated from vadose fluids contain a secondary generation of 

pure apatite on rim.

Fig. 6. Berlinite substitution in albite from rare-metal granites. P from 

berlinite molecule and Ca from anorthite are the main sources for 

precipitation of secondary apatite. Due to P extraction is its content in 

feldspars lower in the rare-metal granite.

background image

489

EVOLUTION OF TIN-BEARING S-TYPE GRANITES OF THE GEMERIC UNIT (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

Cassiterite is the most prominent ore mineral 

phase in rare-metal granites, greisens and quartz 

veins  in  Podsúľová  (Dlhá  dolina  valley)  and 

Betliar, as well as in Hnilec, Zlatá Idka and 

Poproč. It forms euhedral 0.1–5 mm crystals or 

aggregates, and veinlets (Fig. 9b). Cassiterite 

contains up to 1.2 wt. % Nb

2

O

and 2.2 wt. % 

Ta

2

O

5

. Disseminated magmatic cassiterite and 

Nb–Ta oxides crystallize in the albitic segments 

of granite cupolas, whereas disseminated wol-

framite appears mainly in lower topaz-zinnwal-

dite granite. Cassiterites from the uppermost 

parts contain a lower amount of minor elements.

High fluid activity is necessary for the effective 

accumulation of Sn–W–Nb–Ta-oxides into 

 

the fluid phase. Mutual compositional relation-

ships in the rare-metal phases are documented by 

the Nb+Ta−Ti+Sn+W−Fe+Mn multi-cation dia-

gram (Fig. 9); selection of analyses are shown in  

Table 4. These rare-metal mineral phases can 

commonly form individual grains several 

micrometers in size. 

Discussion

Interpretation of phosphorus mobility

The fluorapatite evolution is important for 

understanding the phosphorus behaviour in 

 

the evolved granite system. Fluorapatite is 

develo ped in three generations: (1) magmatic 

with high Mn (2) secondary as a pure fluorapatite 

exsolved from alkalic feldspars and (3) in vein-

lets from circulated fluids from country rock;  

the mechanism of P incorporation into alkali feld-

spars is well known, as well as the phenomenon 

of its exosolution (London et al. 1990; Breiter et 

al. 2002, 2017). The absence or low amount of 

primary apatite at low CaO/P

2

O

5

 ratios in 

 

the granite apical parts and high F activity during 

late granite crystallization result in a P increase in 

granite melts and P being incorporated in feld-

spars. Increasing P is buffered by precipitation of 

lacroixite and topaz, which become stable at the 

expense of apatite and albite (Petrík et al. 2011). 

A probable decrease of pressure during the em-

placement of granite along with high fluid acti-

vity led to the P exsolution from the alkali 

feldspars and formation of tiny pure secondary 

apatites. The secondary apatite exsolved from 

feldspars by corrosive fluids indicate the general 

Sample

GK-6/2

GK-8/14 DD3-808/3-1 DD3-908/3-2 GK7-2-2

GK7-2-9 GK-8/17-1

Rock

Bt granite Bt granite

Bt granite

Bt granite

rare metal 

granite

rare metal 

granite

Ms granite

Locality Betliar

Hnilec

Dlhá dolina Dlhá dolina

Betliar

Betliar

Hnilec

Mineral

Mnz

Mnz

Mnz

Mnz

Mnz-Cher Mnz-Cher

Xtm

SiO

2

0.64

0.55

0.53

0.63

0.51

0.52

0.74

P

2

O

5

28.41

29.17

29.37

29.92

27.23

28.51

32.66

CaO

0.55

0.52

2.09

1.10

5.55

5.88

0.13

Y

2

O

3

2.23

0.49

3.28

3.62

1.90

2.44

42.19

La

2

O

3

12.10

11.03

8.59

10.85

7.11

5.63

bdl

Ce

2

O

3

27.23

30.08

22.00

24.60

16.42

14.63

0.15

Pr

2

O

3

3.27

3.99

2.35

3.02

1.82

1.78

0.06

Nd

2

O

3

12.15

13.28

9.32

10.19

5.85

5.92

0.70

Sm

2

O

3

2.76

3.12

2.20

2.12

1.46

1.72

0.94

Eu

2

O

3

n.a.

n.a.

0.06

bdl

n.a.

n.a.

n.a.

Gd

2

O

3

2.24

1.97

3.51

3.29

2.23

2.40

3.00

Tb

2

O

3

n.a.

n.a.

bdl

bdl

0.20

0.20

n.a.

Dy

2

O

3

0.88

0.48

1.33

0.59

0.47

0.79

6.85

Ho

2

O

3

n.a.

n.a.

0.28

0.61

0.39

0.78

n.a.

Er

2

O

3

0.02

bdl

bdl

0.45

0.22

0.11

2.83

Tm

2

O

3

n.a.

n.a.

0.34

0.25

n.a.

n.a.

n.a.

Yb

2

O

3

0.09

0.07

0.14

0.16

0.07

0.10

1.84

Lu

2

O

3

n.a.

n.a.

0.34

bdl

bdl

bdl

n.a.

ThO

2

7.07

4.57

11.54

7.58

25.93

26.19

0.56

UO

2

0.22

0.09

0.69

0.07

2.16

2.78

2.62

Al

2

O

3

0.04

0.09

bdl

bdl

bdl

bdl

bdl

TiO

2

n.a.

n.a.

bdl

bdl

n.a.

n.a.

n.a.

MnO

0.06

0.14

0.09

0.05

n.a.

n.a.

0.08

FeO

0.10

bdl

0.40

0.28

n.a.

n.a.

0.12

PbO

bdl

0.01

0.15

0.04

0.37

0.38

0.37

F

bdl

bdl

1.48

0.47

n.a.

n.a.

n.a.

Cl

0.05

0.02

0.04

0.04

n.a.

n.a.

n.a.

Total

100.09

99.67

99.49

99.72

99.89

100.76

95.85

Formulae based on 4 oxygen atoms
Si

0.102

0.087

0.082

0.097

0.083

0.082

0.026

P

3.837

3.914

3.839

3.915

3.742

3.816

0.970

Ca

0.095

0.089

0.346

0.182

0.965

0.996

0.005

Y

0.189

0.041

0.270

0.298

0.164

0.205

0.787

La

0.712

0.645

0.489

0.619

0.426

0.328

bdl

Ce

1.590

1.745

1.244

1.392

0.976

0.847

0.002

Pr

0.190

0.231

0.132

0.170

0.108

0.103

0.001

Nd

0.692

0.752

0.514

0.562

0.339

0.334

0.009

Sm

0.152

0.170

0.117

0.113

0.082

0.094

0.011

Eu

n.a.

n.a.

0.003

bdl

n.a.

n.a.

n.a.

Gd

0.119

0.104

0.180

0.169

0.120

0.126

0.035

Tb

n.a.

n.a.

bdl

bdl

0.011

0.010

n.a.

Dy

0.045

0.024

0.066

0.029

0.025

0.040

0.077

Ho

n.a.

n.a.

0.014

0.030

0.020

0.039

n.a.

Er

0.001

bdl

bdl

0.022

0.011

0.005

0.033

Tm

n.a.

n.a.

0.016

0.012

n.a.

n.a.

n.a.

Yb

0.004

0.004

0.007

0.008

0.003

0.005

0.020

Lu

n.a.

n.a.

0.016

bdl

bdl

bdl

n.a.

Th

0.257

0.165

0.405

0.267

0.958

0.942

0.004

U

0.008

0.003

0.024

0.002

0.078

0.098

0.020

Al

0.015

0.039

bdl

bdl

bdl

bdl

bdl

Ti

n.a.

n.a.

bdl

bdl

n.a.

n.a.

n.a.

Mn

0.007

0.015

0.010

0.005

n.a.

n.a.

0.002

Fe

0.014

bdl

0.052

0.036

n.a.

n.a.

0.003

Pb

bdl

0.001

0.006

0.002

0.016

0.016

0.004

F

bdl

bdl

0.723

0.230

n.a.

n.a.

n.a.

Cl

0.014

0.005

0.010

0.010

n.a.

n.a.

n.a.

X

mnz

91.223

93.633

80.178

88.48

53.48

51.40

Xbrb

6.273

4.211

17.729

9.03

44.60

46.64

Xhut

2.505

2.157

2.093

2.49

1.92

1.96

Table 2: Representative analyses of monazite from  

the specialized S-type granites (in wt. %).

background image

490

BROSKA and KUBIŠ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

high P mobility and P penetration towards granite 

exocontacts.

Števko et al. (2015) described hydrothermal quartz veins 

hosted by topaz–zinnwaldite leucogranite from the Dlhá 

dolina area with an association of phosphates and alumino-

phosphates (fluorapatite, triplite, arrojadite-group minerals 

and viitaniemiite). Such veins in host rare-metal granites is 

additional evidence for the intensive mobilization of phos-

phate from alkali feldspars. Intensive mobilization of the P 

towards country rocks of evolved granites led to the formation 

of veins rich in apatite, monazite-(Ce), xenotime-(Y) and  

U–Th phases in the Čučma ore district. Rojkovič et al. (1999) 

suggested the host metasediments as element sources for  

the  REE–Th–P  rich  vein  in  the  nearby  Betliar  and  Čučma 

 granites (Grecula et al. 1995).

Interpretation of boron mobility

According to the recent tourmaline supergroup nomen-

clature (Henry et al. 2011), the tourmaline in the Gemeric 

granites is predominantly schorlitic and foititic. There is  

a prevalence of ferrous iron in tourmaline (Broska et al. 1998) 

indicating mostly reducing conditions during precipitation. 

The schorlitic tourmaline is more prevalent, but the later gene-

ration can be foititic and these may be related to a later stage 

of influx by low T fluids. The multistage formation of tourma-

line has been characterized in the Hnilec area by Jiang et al. 

(2008) and in the Betliar area by Kubiš & Broska (2010). Jiang 

et al. (2008) described two major generations of the schorlitic–

dravitic series: (1) the M (magmatic)-stage which forms zoned 

tourmaline crystals with the cores enriched in Fe, Al, and Mn, 

and (2) the L (late)-stage which is more Mg-rich and Fe, Al, 

Mn depleted. The L-stage occurs in small veins or irregular 

patches along fractures and cracks and in the contact 

metapelites. The boron isotopic compositions of the M-stage 

tourmalines vary from −10.3 ‰ to −15.4 ‰; the L-stage tour-

malines have lower δ

11

B value of −16.0 ‰ to −17.1 ‰ (Jiang 

et al. 2008). Kubiš & Broska (2010) recognized four tourma-

line types in the Betliar granite body: (1) disseminated mag-

matic tourmaline, (2) nodular tourmaline formed near solidus 

temperatures, (3) quartz–schorlitic tourmaline veins, and 

 

(4) metamorphic dravitic tourmaline in country rocks con-

nected with B escape from the granites. 

The tourmaline composition can be generally typomorphic 

because it reflects the host rock conditions (Dutrow & Henry 

2011; van Hinsberg et al. 2011). The schorlitic chemistry of 

the primary tourmaline in the granites of the Gemeric Unit is 

world-wide typical although the dravitic-schorlitic series as in 

the eastern Pontides are also common (Yavuz et al. 2008). 

Tourmaline from leucogranites in Zamora (Spain) is schorlitic 

and dravitic and their rare-metal pegmatites mostly belong to 

the schorl–elbaite series (Roda-Robles et al. 2004). Tourmaline 

in the rare-metal granites is schorlitic, commonly nodular and 

dendritic indicating undercooling and rapid growth. For com-

parison, tourmalines from the granites in the Poproč areas of 

the Gemeric Unit are more foititic (Fig. 8). 

The formation of nodular tourmaline is related to magmatic 

crystallization and hydrothermal fluids from penetrated gra-

nites (e.g., Samson & Sinclair 1992; Buriánek & Novák 2007). 

Balen & Broska (2012) interpreted the tourmaline nodules at 

Moslavačka Gora in Croatia as a result of decompression and 

ascent of fluids during shallow emplacement of the granite 

body or formation of vapour and boron-rich-bubbles migra-

ting through the final granite melt. In contrast, Drivenes et al. 

(2015) suggest formation of larger quartz–tourmaline orbicules 

Sample

GK6/4-7

GK6/4-8

GK17/11

GK17/1-3 DD3-908/2

Rock

porphyritic 

bt granite

porphyritic 

bt granite

rare-metal 

ms granite

rare-metal 

ms granite

rare metal 

ms granite

Locality

Betliar

Betliar

Betliar

Betliar

Dlhá Dolina

Mineral

schorl

schorl

schorl

schorl

schorl

SiO

2

34.95

34.86

35.34

34.77

35.05

TiO

2

0.80

0.45

0.77

0.40

0.01

B

2

O

3

 *

10.38

10.47

10.44

10.30

10.24

Al

2

O

3

33.26

35.19

34.37

34.11

33.93

Cr

2

O

3

bdl

bdl

bdl

bdl

0.01

FeO

12.40

11.41

12.93

15.20

13.40

MnO

0.15

0.15

0.15

bdl

0.25

MgO

2.56

2.40

1.15

bdl

0.65

CaO

0.35

0.33

0.16

0.08

0.04

Na

2

O

2.12

1.95

1.80

1.98

1.89

K

2

O

0.05

0.08

0.03

0.04

0.02

H

2

O *

3.38

3.30

3.44

3.55

3.34

F

0.54

0.67

0.35

bdl

0.40

Cl

bdl

bdl

bdl

bdl

0.01

O = F

−0.23

−0.28

−0.15

bdl

−0.17

O = Cl

bdl

bdl

bdl

bdl

bdl

Total

100.30

100.61

100.78

100.43

99.07

Formulae normalised on 31 anions, B = 3 and OH+F = 4 atoms
Si

4+

5.850

5.786

5.882

5.867

5.947

Al T

0.150

0.214

0.118

0.133

0.053

Sum T

6.000

6.000

6.000

6.000

6.000

B

3+

3.000

3.000

3.000

3.000

3.000

Al Z

6.000

6.000

6.000

6.000

6.000

Ti

4+

0.101

0.056

0.096

0.051

0.001

Al Y

0.411

0.670

0.625

0.651

0.733

Cr

3+

bdl

bdl

bdl

bdl

0.001

Fe

2+

1.685

1.584

1.800

2.145

1.902

Mn

2+

0.021

0.021

0.021

bdl

0.036

Mg

2+

0.639

0.505

0.285

bdl

0.164

Sum Y

2.857

2.836

2.827

2.847

2.837

Al

tot

6.561

6.884

6.743

6.784

6.786

Ca

2+

0.063

0.059

0.029

0.014

0.007

Na

+

0.688

0.628

0.581

0.648

0.622

K

+

0.011

0.017

0.006

0.009

0.004

Sum X

0.762

0.704

0.616

0.671

0.633

Vac X

0.238

0.296

0.384

0.329

0.367

OH V

3.000

3.000

3.000

3.000

3.000

OH 

tot

3.714

3.648

3.816

4.000

3.782

OH W

0.714

0.648

0.816

1.000

0.782

F 

0.286

0.352

0.184

bdl

0.215

Cl 

bdl

bdl

bdl

bdl

0.003

Sum W

1.000

1.000

1.000

1.000

1.000

Fe/(Fe+Mg)

0.73

0.76

0.86

1.00

0.92

Table 3: Selected analyses of tourmaline from the specialized S-type 

granites from Betliar and Dlhá dolina. 

background image

491

EVOLUTION OF TIN-BEARING S-TYPE GRANITES OF THE GEMERIC UNIT (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

in Land’s End granite (SW England) from 

immiscible hydrous borosilicate melts pro-

duced during late-stage crystallization. 

Trumbull et al. (2008) presented a similar 

evolution, where the tourmaline-rich 

orbicules were formed late in the crystal-

lization history from an immiscible 

 

Na–B–Fe- rich hydrous melt. Flat dendritic 

tourmaline supports the importance of 

hydrothermal processes in the evolution of 

the Gemeric granites, as well as rapid coo-

ling by pressure drop resulting in the escape 

of fluids of a partly solidified magma 

(Petrík et al. 2011). On the other hand, 

according to Perugini & Poli (2007), den-

dritic tourmaline crystallizes due to limited 

B diffusion. The decrease in the melting 

point of boron-rich magma probably led to 

late tourmaline precipitation of scattered 

tourmalines in local gra 

nite segments, 

 followed by origin of tourmaline nodular 

dendrites.  

Tourmaline precipitation occurs in open 

systems with bulk contributions from dif-

ferent sources. According to London et al. 

(1990), tourmaline is particularly abundant 

in sites with mixing magmatic and wall-

rock fluid systems with a tourmaline–bio-

tite antagonism. Therefore, the presence of 

both biotite and tourmaline in the granite  

of the Betliar area can be explained by  

Fig. 7.  Tourmaline in the specialized S-type granites from the Betliar area: A — scattered grains in porphyritic biotite granite (note fine-grained 

matrix); B — tourmaline nodules from rare-metal granite with a detailed view on the dendritic rims. 

Fig. 8. Classification diagrams of tourmaline 

according to Henry et al. (2011): A — Fe/(Fe+Mg) 

vs. vacX/(vacX+Na); B — Na+K vs X-vac vs 

Ca. For comparison, the tourmaline compositon 

from the Poproč and Hummel area (eastern part 

of the Gemeric Unit) is shown.

background image

492

BROSKA and KUBIŠ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

Rutile
Fe-columbite
Ferberite
Hubnerite

Fe+Mn

Ti+Sn+W

Nb+Ta

(FeMn)

3+

(NbTa)O

4

(FeMn)

2+

(NbTa)

2

O

6

(FeMn)WO

4

Sample

DD3-577/1-4

DD3-577/1-6

DD3-577/1-10

DD3-577/1-11

DD3-577/6-6

DD3-577/8-1

DD3-577/1-13

DD3-577/4-2

Locality

Dlhá dolina

Dlhá dolina

Dlhá dolina

Dlhá dolina

Dlhá dolina

Dlhá dolina

Dlhá dolina

Dlhá dolina

Mineral

Rutile

Rutile

Fe-columb.

Fe-columb.

Ferberite

Ferberite

Hubnerite

Hubnerite

WO

3

bdl

0.26

4.80

2.31

67.78

71.52

72.25

71.34

Nb

2

O

s

7.37

6.84

47.60

40.39

5.96

3.08

1.02

2.28

Ta

2

O

5

12.52

13.11

23.98

35.06

0.94

0.19

0.44

0.54

TiO

2

73.90

73.18

3.64

4.00

0.32

0.22

0.72

0.70

SnO2

1.23

1.04

1.14

1.83

0.55

0.37

0.19

0.35

ThO

2

bdl

bdl

bdl

bdl

bdl

0.07

bdl

bdl

UO

2

bdl

bdl

bdl

bdl

0.09

0.04

bdl

bdl

Sc

2

O

3

bdl

0.04

0.16

0.09

0.16

0.37

0.30

0.57

Sb

2

O

3

bdl

bdl

bdl

0.15

0.10

bdl

bdl

bdl

Fe

2

O

3

1.62

1.80

bdl

bdl

1.17

1.05

1.57

0.69

FeO

3.22

3.18

14.56

11.97

12.95

13.36

7.85

9.04

MnO

0.04

0.05

3.21

4.66

9.07

8.89

13.85

13.00

ZnO

0.05

bdl

0.12

bdl

bdl

bdl

bdl

bdl

Total

99.95

99.5

99.21

100.46

99.09

99.16

98.19

98.51

Formulae based on 24 oxygens and 12 cations
Fe

3+

 and Fe

2+

  calculated by charge-balancing

W

bdl

0.012

0.313

0.155

5.196

5.543

5.666

5.558

Nb

0.599

0.560

5.413

4.716

0.797

0.416

0.140

0.310

Ta

0.612

0.646

1.640

2.462

0.076

0.015

0.036

0.044

Ti

9.987

9.966

0.689

0.777

0.071

0.049

0.164

0.158

Sn

0.088

0.075

0.114

0.188

0.065

0.044

0.023

0.042

Th

bdl

bdl

bdl

bdl

bdl

0.005

bdl

bdl

U

bdl

bdl

bdl

bdl

0.006

0.003

bdl

bdl

Sc

bdl

0.006

0.035

0.020

0.041

0.096

0.079

0.149

Sb

bdl

bdl

bdl

0.016

0.012

bdl

bdl

bdl

Fe

3+

0.219

0.246

bdl

bdl

0.260

0.235

0.358

0.157

Fe

2+

0.483

0.481

3.063

2.585

3.203

3.341

1.985

2.272

Mn

0.006

0.008

0.684

1.019

2.273

2.252

3.550

3.310

Zn

0.007

bdl

0.022

bdl

bdl

bdl

bdl

bdl

Total

12.001

12.000

11.973

11 .938

12.000

11 .999

12.001

12.000

Mn/(Mn+Fe)

0.008

0.011

0.183

0.283

0.396

0.386

0.602

0.577

Ta/(Ta+Nb)

0.505

0.536

0.233

0.343

0.087

0.035

0.205

0.124

 bdl — below detection limit

Fig. 9.  A — Nb+Ta−Ti+Sn+W−Fe+Mn diagram from accessory mineral phases in the specialized S-type granite (rare-metal type).  B — BSE 

of zonal cassiterite from a veinlet in the albitite associated with Nb–Ta oxide (drillcore DD3, depth 474 m).

Table 4: Analyses of Sn, W, Nb, Ta-minerals from rare-metal granites (specialized S-type granites from locality Dlhá dolina).

background image

493

EVOLUTION OF TIN-BEARING S-TYPE GRANITES OF THE GEMERIC UNIT (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

the emplacement of granite from a deeper seated magma 

chamber and contamination by boron, which probably took 

place during the magma ascent. The fluid influence from 

country rock is indicated by the presence of Sr-rich apatite 

(Fig. 5b). The dolomite crystals in granite cupolas are further 

a pro duct of mixing volatiles from the contact zone with 

Mg-rich phases (talc, magnesite). Similar Sr mobility from 

country rock into Sr-poor differentiated granites is known, for 

example also in the Beauvoir massif (Charoy et al. 2003) and 

in the San Elias pegmatite from Argentina (Galliski et al. 2012).

Scenario of granite evolution in the Gemeric Unit

The high flux regime in the granite cupolas also demon-

strates the tetrad effect on REE’s chondrite normalized pat-

terns (Fig. 10). According to Bau (1996) the tetrad effect is 

formed by the complexation of the REEs with H

2

O, CO

2

, F

and Li

+

. The behaviour of the REEs when the tetrad effect 

occurs is no longer dependent on the ionic radii, but rather on 

filling stages of 4f orbitals (Irber 1999). Thus, REEs with 0/4 

(La), 1/4 (Nd, Pm), 2/4 (Gd), 3/4 (Ho, Er) and 4/4 (Lu) filling 

4f orbitals can be fractionated from the other REEs resulting in 

the tetrad pattern. The tetrad effect occurs in highly evolved 

igneous rocks as an indicator of the transition between mag-

matic to high-temperature hydrothermal systems. The separa-

tion of F-rich hydrosaline melt in granite cupolas possibly 

caused the tetrad effect as described Badanina et al. (2006), 

however, the REE tetrad effect may also develop before 

magma evolved from a crustal source (Lee et al. 2018). 

Due to high volatile flux, the evolution of the specialized 

S-type granites is different from other Variscan granites in the 

Western Carpathians. The preserved granite cupolas of larger 

hidden granite body (Plančár et al. 1977; Šefara et al. 2017), 

intensive in-situ differentiation and percolation of fluids 

resulted in  formation of various accessory phases in cupolas, 

including those with metallogenic significance. The tin bea-

ring granite was described in detail by Malachovský et al. 

(1992); Dianiška et al. (2002); Kubiš & Broska (2010); Breiter 

et al. (2015) on results from a drilling programme in the Dlhá 

dolina or Podsúľová area in the Gemeric Unit. The granite out-

crops in Betliar and granite emplacement in the Čučma ore 

district (porphyritic and fine grained granites along minera-

lized fault — see Grecula et al. 1995) facilitates the proposed 

scenario for evolution of rare-metal granites as a phase derived 

from water-rich magma in granite apical part under a carapace 

of host rock and underlying coarse-grained biotite granites. 

These composite granite  bodies comprise from the bottom  

(1) a lower coarse-grained barren biotite granite system and 

(2) mobile apical Li-bearing and topaz–zinnwaldite rare-metal 

gra nites associated with greisenized albitites (Fig. 11). 

Comparison with rare-metal (element) granites

 

The rare-metal granites belongs to the S- and A-type gra-

nites and usually form composite bodies. A-type granite 

 systems are known from Egypt (Gaafar & Ali 2015), and  

the Erzgebirge (Breiter 2012) or Slavkovský les (Breiter et al. 

1999). The S-type rare-metal systems are more widespread, 

including the Gemer granites (see overview Romer & Kroner 

2016). The early Permian S-type Cornubian Batholith is  

a composite pluton formed from 5 pulses, including granites 

rich-in-tourmaline (Simons et al. 2017). The western Erz-

gebirge rare-metal granites show S-type characteristics (e.g., 

Podlesí), where the eastern part is an A-type (Breiter 2012). 

The eastern Erzgebirge locality at Cínovec is formed of two 

different geochemical and mineralogical granites — the rare-

metal Sn–W–Nb–Ta–Li-bearing granite intruded after 

emplacement of deeper seated barren biotite granite and fluid 

escape from the rare-metal phase causing explosive breccia-

tion of the country rocks (Breter et al. 2017). The rare-metal 

granites in Cínovec were emplaced into a subvolcanic level 

(Müller et al. 2005). Breiter et al. (2017) suggested hydrofrac-

turing in the cupola of the rare-metal granite and F and Li par-

titioning to the fluids, which caused greisenization followed 

by albitization. The residual melt represents a dry and mica-

poor por tion. Mineralization in the cupo las of the Gemeric 

S-type granites is also connected with 

partitioning of F, Li, and high field 

strength elements to fluids, although 

the Cíno vec granite is without signi-

ficant B content. The S-type Geme ric 

granites reached the upper crustal 

level, forming a contact aureola of 

biotite + andaluzite ± cordierite ± 

corundum  at  450–560  °C  and  P 

 100–150 MPa (Faryad in Krist et al. 

1992), and cannot trigger the breccia-

tion of country rock in such condi-

tions. The comparison of thickness of 

rare-metal granites in the Gemeric 

cupolas, which reached less than 

 

several hundred m from the surface, 

with other rare-metal granite systems 

in the Varis can orogeny in Europe is 

Fig. 10. Tetrad effect in chondrite normalized granites indicates the high flux of volatiles in  

the rare-metal granite system. The pattern from albitite is for comparison. 

background image

494

BROSKA and KUBIŠ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

described in detail by Breiter et al. (2015). Such rare-metal 

granites are exploited in France, Portugal and Spain as sources 

of feldspar, columbite–tantalite and cassiterite, but Li separa-

tion is still not efficient. The Beauvoir Massif (France) shows 

disseminated rare-metal mineralization (e.g., Charoy et al. 

2003). In general, Nb–Ta mineral phases are recovered from 

rare-metal granites and granitic rare-element pegmatites 

(Melcher et al. 2017).

The magmatic evolution of the F-, Li-, B-, H

2

O-enriched 

Kymi topaz granite system is similar in evolution to 

 

the gra nites in the Gemeric Unit. The Kymi zoned stock is  

a result of intrusion of highly evolved melt from the deeper 

part of the magma chamber along the fractured contact 

between the porphyritic granite and the country rock. 

 

This evolution was proven by the melt inclusions (Lukkari  

et al. 2009).  The evolution of tin-bearing granites from 

Eurajoki stock in Finland resulted from similar evolution of 

F-enriched late-stage peraluminous leucocratic granite 

(Haapala 1997).   

Conclusion

The Permian granites in the Gemeric Unit evolved differen-

tiated cupolas affected by magmatic fluids. This process 

resulted in the formation of a wider special accessory mineral 

assemblage that extended former S-type granitic associations.  

The typical S-type accessory mineral paragenesis in 

 

deep-seated barren biotite–muscovite granites contains mainly 

tourmaline, zircon, apatite, monazite-(Ce), xenotime-(Y), 

ilmenite, rutile, titanite, thorite, garnet and pyrite. The highly 

evolved apical rare-metal granites form a more variable acces-

sory assemblage which includes abundant tourmaline, zircon, 

apatite, monazite-(Ce), Nb–Ta–W minerals (Nb–Ta rutile, 

 ferrocolumbite, manganocolumbite, ixiolite, Nb–Ta ferberite, 

hübnerite), cassiterite, topaz, molybdenite, arsenopyrite and 

rare accessory aluminophosphates (arrojadite, lacroixite, 

goya zite, gorceixite and viitaniemiite). 

Acknowledgements: The research was supported by projects 

APVV 14-0278 and VEGA 2/0084/17. Authors are grateful to 

Viera Kollárová for measurements using the microprobe at 

 Dionýz Štúr Geological Institute and to Tomáš Mikuš at  

the Earth Science Institute of the Slovak Academy of Sciences, 

Banská Bystrica.

References

Aseri A.A., Linnen R.L., Che X.D., Thibault Y. & Holtz F. 2015: 

 Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf 

 minerals in highly fluxed water-saturated haplogranite melts. 

Ore Geol. Rev. 64, 736–746.

Badanina E.V., Trumbull R.B., Dulski P., Wiedenbeck M., Veksler I.V. 

& Syritso L.F. 2006: The behaviour of rare-earth and lithophile 

trace elements in rare-metal granites: a study of fluorite, melt 

inclusions and host rocks from the Khangilay complex, Trans-

baikalia, Russia. Can. Mineral. 44, 667–692. 

Fig. 11.  Idealized cross-section of granite bodies in the profile from Fig. 1 (not to scale) shows a geological evolution prior to superimposed 

Alpine north vergent thrusting and imbrications (see e.g., Németh 2002; Lexa et al. 2003). The tentative sketch is based on data and interpre-

tation of Dianiška et al. (2002), Kubiš & Broska (2010), Breiter et al. (2015), Pecho et al. (1980) and the geological profile form the Henclová–

Surovec area shown by Malachovský (1992) in Grecula et al. (1995). 

background image

495

EVOLUTION OF TIN-BEARING S-TYPE GRANITES OF THE GEMERIC UNIT (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

Bajaník Š., Hanzel V., Ivanička J., Mello J., Pristaš J., Reichwalder P., 

Snopko L., Vozár J. & Vozárová A 1983: Explanation to geolo-

gical map 1:50,000 — Slovak Ore Mountains Eastern part. 

 Dionýz Štúr Inst. Geol. Monogr., 1–223 (in Slovak with English 

summary).

Balen D. & Broska I. 2011: Tourmaline nodules: products of devola-

tilization withon the final evolutionary stage of granite melt? 

Geol. Soc. London, Spec. Paper 350, 53–68.

Baran J., Drnzíková L. & Mandáková K. 1970: Sn–W ore mineralisa-

tion related to Hnilec granite. Mineralia Slovaca 2, 159–164 (in 

Slovak).

Bau M. 1996: Controls on the fractionation of isovalent trace  elements 

in magmatic and aqueous systems : evidence fromY/Ho, Zr/Hf, 

and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123, 

 323–333. 

Breiter K. 2012: Nearly contemporaneous evolution of the A- and 

S-type fractionated granites in the Krušne Hory/Erzgebirge Mts. 

Central Europe.  Lithos 151, 105–121.

Breiter K., Förster H. & Seltmann R. 1999: Variscan silicic magma-

tism and related tin-tungsten mineralization in the Erzgebirge–

Slavkovský les metamollgenic province. Miner. Deposita 34, 

505–521. 

Breiter K., Frýda J. & Leichmann J. 2002: Phosphorus and rubidium 

in alkali feldspars: case studies and possible genetic interpreta-

tion. Bull. Czech Geol. Survey 77, 93–104.

Breiter K., Broska I. & Uher P. 2015: Intensive low-temperature 

 

tectono–hydrothermal overprint of peraluminous rare-metal 

granite: a case study from the Dlhá dolina Valley (Gemericum, 

Slovakia). Geol. Carpath. 66, 19–36.

Breiter K., Ďurišová J., Hrstka T., Hlošková Vaňková M., Vašinová 

Galiová M., Kanický V., Rambousek P., Knésl I., Dobeš P. & 

Dosbaba M. 2017: Assessment of magmatic vs. metasomatic 

processes in rare metal granites: A case study of the Cínovec/

Zinnwald Sn-W-Li deposit, Central Europe. Lithos 292–293, 

198–201.

Broska I. & Uher P. 2001: Whole-rock chemistry and genetic typo-

logy of the West-Carpathian Variscan granites. Geol. Carpath

52, 79–90.

Broska I., Uher P. & Lipka J. 1998: Brown and blue schorl from the 

Spiš–Gemer granite, Slovakia: composition and genetic rela-

tions. J. Czech Geol. Soc. 43, 9–16.

Broska I., Kubiš M., Williams C. & Konečný P. 2002: The composi-

tions of rock-forming and accessory minerals from the Gemeric 

granites (Hnilec area, Gemeric Superunit, Western Carpathians). 

Bull. Czech Geol. Survey 77, 147–155.

Buriánek D. & Novák M. 2007: Compositional evolution and substi-

tutions in disseminated and nodular tourmaline from leucocratic 

granites: examples from the Bohemian Massif, Czech Republic. 

Lithos 95, 148–164.

Cambel B., Kráľ J. & Burchart J. 1990: Isotopic geochronology of 

crystalline rock of the Western Carpathians. Veda, Bratislava, 

1–183. 

Chappell B.W. & White A.J.R. 2001: Two contrasting granite types: 

25 years later. Austrian J. Earth Sci. 48, 489–499.

Charoy B., Chaussidon M., de Veslud L.C. &  Duthou J.L. 2003: 

 Evidence of Sr mobility in and around the albite-lepidolite-topaz 

granite of Beuvoir (France): an in situ ion and electron probe 

study of secondary Sr-rich phosphates. Contrib Mineral. Petrol. 

145, 673–690. 

Černý P. & Ercit T.S. 2005: The classification of granitic pegmatites 

revisited. Can. Mineral. 43, 2005–2026.

Dianiška I., Breiter K., Broska I., Kubiš M. & Malachovský P.  

2002: First Phosphorus-rich Nb–Ta–Sn-specialised granite 

 

from the Carpathians Dlhá Dolina valey granite pluton, 

 

Gemeric Super unit, Slovakia. Geol. Carpath. 53, spec. iss.,  

CD-ROM. 

Dingwell D.B., Scarfe C.M. & Cronin D.J. 1985: The effect of fluo-

rine on viscosities in the system Na

2

O–Al

2

O

3

–SiO

2

: implications 

for phonolites, trachytes and rhyolites. Am. Mineral. 70, 80–87.

Dingwell D.B., Pichavant M. & Holtz F. 1996: Experimental studies 

of boron in granitic melts.  Rev. Mineral. Geochem. 33, 330–385.

Drivenes K., Larsen R.B., Müller A., Sorensen B.E., Wiedenbeck M. 

& Raanes M.P. 2015: Late-magmatic immiscibility during 

batho lith formation: assessment of B isotopes and trace elements 

in tourmaline from the Land`s End granite, SW England. 

 Contrib. Mineral. Petrol. 169, 56–83.

Duran C.J., Seydoux-Guillaume A.M., Bingen B., Gouy S., Parseval P., 

Ingrin J. & Guillaume D. 2016: Fluid-mediated alteration of 

(Y,REE,U,Th)-(Nb, Ta,Ti) oxide minerals in granitic pegmatite 

from the Evje-Iveland district, southern Norway. Mineral. 

 Petrol. 110, 581–599.

Dutrow B.L. & Henry D.J. 2011: Tourmaline: a geologic DVD. 

 Elements 7, 301–306.

Elliott B.A., O‘Neill L.Ch. & Kyle J.R. 2017: Mineralogy and crystal-

lisation history of highly differentiated REE-enriched hypabys-

sal rhyolite: Round Top laccolith Trans-Pecos, Texas. Mineral. 

Petrol. DOI 10.1007/s00710-017-0511-5 

Faryad S. & Dianiška I. 1989: Garnets from granitoids of the Spišsko-

gemerské Rudohorie Mts. Geol. Zborn. Geol. Carpath. 40, 

 715–734.

Finger F. & Broska I. 1999: The Gemeric S-type granites in southeast-

ern Slovakia: late Palaeozoic or Alpine intrusions? Evidence 

from electron-microprobe dating of monazite. Schweiz. Mineral. 

Petrogr. Mitt. 79, 439–443.

Gaafar I.M. & Ali K.G. 2015: Geophysical and geochemical signature 

of rare metal granites, central eastern Desert, Egypt: Implica-

tions for tectonic environment. Earth Sciences 4, 5, 161–179.

Galliski M.A., Černý P., Márquez-Zavalia M.F. & Chapman R. 2012:  

An association of secondary Al–Li–Be–Ca–Sr phosphates in the 

San Elías pegmatite, San Luis, Argentina. Can. Mineral. 90, 

933–942. 

Grecula P., Abonyi A., Abonyiova M., Antaš J., Bartlaský B.,  Dianiška I., 

Drnzík  E.,  Ďuďa  R.,  Gargulák  M.,  Gazdačko  L.,  Macko  J., 

Návesňák D., Németh Z., Novotný L., Radvanec M., Rojkovič I., 

Rozložník  L.,  Rozložník  O.,  Varček  C.  &  Zlocha  J.  1995: 

 Mineral deposits of the Slovak Ore Mountains, volume 1. 

 Geocomplex, Bratislava, 1–834.

Grecula P., Radvanec M. & Németh Z. 2000: Magnesite and talc 

mine ralization in Slovakia. Mineralia Slovaca 32, 533–542.

Haapala I. 1997: Magmatic and postmagmatic processes in tin- 

bearing granites: topaz-bearing leucogranites in the Eurojoki 

rapakivi granite stock, Finland. J. Petrol. 38, 1645–1659. 

Henry D.J., Novák M., Hawthorne F.C., Ertl A., Dutrow B.L., Uher P. 

& Pezzotta F. 2011: Nomenclature of the tourmaline-supergroup 

minerals. Am. Mineral. 96, 895–913. 

Irber W. 1999: The lanthanide tetrad effect and its correlation with   

K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peralumi-

nous granite suites. Geochim. Cosmochim. Acta, 63, 489–508.

Jiang S.Y., Radvanec M., Nakamura M., Palmer M., Kobayashi K., 

Zhao H.X. & Kui D.Z. 2008: Chemical and boron isotopic 

 variations of tourmaline in the Hnilec granite-related hydrother-

mal system, Slovakia: Constrains on magmatic and metamor-

phic fluid evolution. Lithos 106, 1–11.

Jakabská K. & Rozložník L. 1989: Zircons of gemeric granites (Western 

Carpathians, Czechoslovakia). Geol. Zborn. Geol. Carpath. 40, 

141–159.

Kamenický J. & Kamenický L. 1955: Gemeric granites and ore min-

eralisation of Spiš–Gemer Ore Mountains. Geol Práce Zošit 47, 

1–73 (in Slovak).

Kohút M. & Reccio C. 2002: Sulphur isotope study of selected 

 Hercynian granitic and surrounding rocks from the Western 

 Carpathians  (Slovakia).  Geol. Carpath. 53, 3–13.

background image

496

BROSKA and KUBIŠ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

Kohút M. & Stein H. 2005: Re–Os molybdenite dating of granite- 

related Sn–W–Mo mineralisation at Hnilec, Gemeric Superunit, 

Slovakia. Mineral. Petrol. 85, 117–129.

Kohút M., Kovách V.P., Kotov A.B., Salnikova E.B. & Savatenkov V.M. 

1999: Sr and Nd isotope geochemistry of hercynian granitic 

rocks from the Western Carpathians implications for granite 

 genesis and crustal evolution. Geol. Carpath. 50, 477–487. 

Kovách A., Svingor E. & Grecula P. 1986: Rb–Sr isotopic ages of 

granitoids from the Spišsko Gemerské Rudohorie Mts. Mineralia 

Slovaca 18, 1–14.

Krist E., Korikovskij S.P., Putiš M., Janák M. & Faryad S.W. 1992: 

Geology and petrology of metamoprhic rocks of the Western 

Carpathian crystalline complex. Comenius University Press 

Bratislava, 1–324.

Kubiš M. & Broska I. 2005: The role of boron and fluorine in evolved 

granitic rock system (on the example of the Hnilec area, Western 

Carpathians). Geol. Carpath. 56, 193–204.

Kubiš M. & Broska I. 2010: The granite system near Betliar village 

(Gemeric Superunit, Western Carpathians): evolution of a com-

posite silicic reservoir. J. Geosci. 55, 131–148.

London D., Černý P., Loomis J.L. & Pan J.J. 1990: Phosphorus in 

 alkali feldspars of rare-metal granitic pegmatites. Can. Mineral. 

28, 771–786. 

Lee S-G., Ahn I., Asahara Y., Tanaka T. & Lee S.R. 2018: Geochemi-

cal interpretation of magnesium and oxygen isotopic systematics 

in granites with the REE tetrad effect. Geosci. J. 22, 697–710. 

Lexa O., Schulmann K.&  Ježek J. 2003: Cretaceous collision and 

indentation in the West Carpathians: View based on structural 

analysis and numerical modeling. Tectonics 22, 6, 1066, 

doi:10.1029/2002TC001472.

Lukkari S., Thomas R. & Haapala I. 2009: Crystallization of the 

Kymi topaz granite stock within the Wiborg Rapakivi granite 

batholith, Finland: evidence from melt inclusions. Can. Mineral. 

47, 1359–1374.

Malachovský P., Dianiška I., Matula I., Kamenický J., Kobulský J., 

Hodermarský J., Fabian M., Radvanec M., Kozáč J., Vlasák M., 

Mihalič A.,  Ščerbáková A.,  Seliga  J.  &  Novoveský  M.  1983: 

SGR — high temperature mineralization — Sn, W, Mo ores. 

 Open file report, Geofond, Bratislava, 1–248 (in Slovak).

Malachovský P., Turanová L. & Dianiška I. 1992: Final report on 

mineral exploration from Gemerská Poloma. Open file report, 

Geofond, Bratislava, 1–180 (in Slovak).

Malachovský P., Uher P. & Ďuďa R. 2000: Nb-W minerals in rare 

metal granites, Dlhá dolina Spišsko Gemerské Rudohorie Mts. 

Natura Carpatica 41, 7–14 (in Slovak).

Manning D.A.C. 1981: The efekt of fluorine on liquidus phase rela-

tionship in the system Qz-Ab-Or with excess water at 1 kbar. 

Contrib. Mineral. Petrol. 76, 206–215.

Melcher F., Graupner T., Gäbler H-E., Sitnikova M., Oberthür T., 

Gerdes A., Badanina E. & Chudy T. 2017: Mineralogical and 

chemical evolution of tantalum-(niobium-tin) mineralisation in 

pegmatites and granites. Part 2: Worldwide examples (exluding 

Africa) and an overview of global mettalogenetic patterns. Ore 

Geol. Rev. 89, 946–987.

Müller A., Breiter K., Seltmann R. & Pécskay Z. 2005: Quartz and 

feldspar zoning in the eastern Erzgebirge volcano-plutonic com-

plex (Germany, Czech Republic): evidence of multiple magma 

mixing. Lithos 80, 201–227.

Németh Z. 2002: Variscan suture zone in Gemericum: Contribution to 

reconstruction of geodynamic evolution and metallogenetic 

events of Inner Western Carpathians. Slovak Geological 

 Magazine 8, 3–4, 247–257.

Pecho  J.,  Beňka  J.,  Gargulák  M.  &  Václav  J.  1980:  Final  report.  

Geological  investigation  of  Sb  deposits,  Betliar–Čučma–

Volovec area. Open file report, Geofond, Bratislava, 1–427  

(in Slovak).

Perugini D. & Poli G. 2007: Tourmaline nodules from Capo Bianco 

aplite (Elba Island, Italy): an example of diffusion limited aggre-

gation growth in a magmatic system. Contrib. Mineral. Petrol. 

153, 493–508.

Petrasová  K.,  Faryad  S.H.,  Jeřábek  P.  &  Žáčková  E.  2007:  Origin  

and metamorphic evolution of the magnesite–talc and adjacent 

rocks near Gemerská Poloma, Slovak Republic. J. Geosci. 52, 

125–132.

Petrík I., Kubiš M., Konečný P., Broska I. & Malachovský P. 2011: 

Rare phosphates from the Surovec topaz–Li mica microgranite, 

Gemeric Unit, Western Carpathians, Slovak Republic: role of  

F/H

2

O of the melt. Can. Mineral. 49, 521–540.

Petrík I., Čík Š., Miglierini M., Vaculovič T., Dianiška I. & Ozdín D. 

2014: Alpine oxidation of lithium micas in Permian S-type gra-

nites (Gemeric unit, Western Carpathians, Slovakia). Mineral. 

Mag. 78, 507–533.

Pichavant M. 1981: An experimental study of the effect of boron on 

a water-saturated haplogranite at 1 kbar pressure. Geological 

 applications.  Contrib. Mineral. Petrol. 76, 430–439.

Plančár J., Fillo M., Šefara J., Snopko L. & Klinec A. 1977: Geophy-

sical and geological interpretations of ore deposits and magnetic 

anomalies in Slovak Ore Mountains. Západné Karpaty Geologia 

2, 7–114 (in Slovak with English summary).

Pollard P.J., Pichavant M. & Charoy B. 1987: Contrasting evolutin of 

fluorine- and boron-rich tin systems. Miner. Deposita 22, 

 315–321.

Poller U., Uher P., Broska I., Plašienka D. & Janák M. 2002: First 

Permian–Early Triassic ages for tin-bearing granites from the 

Gemeric unit (Western Carpathians, Slovakia): connection to the 

post-collisional extension of the Variscan orogen and S-type 

granite magmatism. Terra Nova 14, 41–48.

Pupin J.P. 1980: Zircon and granite petrology. Contrib. Mineral. 

 Petrol. 73, 207–220.

Radvanec M. & Grecula P. 2016: Geotectonic and metallogenetic 

evolution of Gemericum (Inner Western Carpathians) from 

 Ordovician to Jurassic. Mineralia Slovaca 48, 105–118. 

Radvanec M., Koděra P. & Procháska W. 2004: Mg replacement at the 

Gemerska Poloma talc-magnesite deposit, Western Carpathians, 

Slovakia. Acta Petrol. Sinica 20, 773–790.

Radvanec M., Konečný P., Ondrejka M., Putiš M., Uher P. & Németh Z. 

2009: The Gemeric granites as an indicator of the crustal exten-

sion above the Late-Variscan subduction zone and during the 

Early Alpine riftogenesis (Western Carpathians): an interpreta-

tion from the monazite and zircon ages dated by CHIME and 

SHRIMP methods. Mineralia Slovaca 41, 381–394 (in Slovak 

with English summary). 

Roda-Robles E., Pesquera S., Gil P.P., Torres-Ruiz J. & Fontan F. 

2004: Tourmaline from the rare-metal Pinilla pegmatite 

 

(Central Iberian zone, Zamora, Spain): chemical variation 

 

and implication for granite evolution. Mineral. Petrol. 81,  

249–263. 

Rojkovič  I.,  Konečný  P.,  Novotný  L.,  Puškelová  Ľ.  &  Streško  V. 

1999: Quartz–apatite–REE vein mineralisation in early palaeo-

zoic rocks of the Gemeric superunit, Slovakia. Geol. Carpath

50, 215–227.

Romer R.I. & Kroner U. 2016: Phanerozoic tin and tungsten minera-

lization — tectonic controls on the distribution of enriched pro-

toliths and heat sources for crustal melting. Gondwana Res. 31, 

60–95.

Rub M.G., Pavlov V.A., Cambel B. & Veselský J. 1977: Typomorphic 

properties of biotite and accessory minerals in the Gemeric 

 granites of Slovakia. Geol. Zbor. Geol. Carpath. 28, 29–310 (in 

Russian).

Samson I.M. & Sinclair W.D. 1992: Magmatic hydrothermal fluids 

and the origin of quartz-tourmaline orbicles in the Seagull 

 Batholith,  Yukon  Territory.  Can. Mineral. 30, 937–954.

background image

497

EVOLUTION OF TIN-BEARING S-TYPE GRANITES OF THE GEMERIC UNIT (WESTERN CARPATHIANS)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 483–497

Simons B., Andersen J.C.O., Shail R.B. & Jenner F.E. 2017: Fractio-

nation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the per-

aluminous Early Permian Variscan granites of the Cornubian 

Batholith: Precursor processes to magmatic-hydrothermal mine-

ralisation. Lithos  278–281, 491–512.

Šefara J., Bielik M., Vozár J., Katona M., Szalaiová V. & Vozárová A.  

2017: 3D density modelling of Gemeric granites of the Western 

Carpathians. Geol. Carpath. 68, 177–192.

Števko M., Uher P., Sejkora J., Malíková R., Škoda R. & Vaculovič T. 

2015: Phosphate minerals from the hydrothermal quartz veins in 

specialised S-type granites, Gemerská Poloma (Western Car-

pathians, Slovakia). J. Geosci. 60, 237–249.

Trumbull R.B., Krienitz M.S., Gottesmann B. & Wiedenbeck M. 

2008: Chemical and boron-isotope variations in tourmalines 

from an S-type granite and its source rocks: the Erongo granite 

and tourmalinites in the Damara Belt, Nanibia. Contrib.  Mineral.  

Petrol. 155, 1–18.

Uher P. & Broska I. 1996: Post-orogenic Permian granitic rocks in the 

Western Carpathian-Panonian area: geochemistry, mineralogy 

and evolution. Geol. Carpath. 47, 113–121.

Uher P., Malachovský P., Dianiška I. & Kubiš M. 2001: Rare-metal 

Nb–Ta–W mineralisation of the tin-bearing Spiš–Gemer grani-

tes, Eastern Slovakia. Geolines 13, 119–120.

van Hinsberg V.J., Henry D.J. & Marschall H.R. 2011: Tourmaline:  

an ideal indicator of its host environment. Can. Mineral. 49, 

1–16.

Vozár J., Spišiak J., Vozárová A., Bazarnik J. & Kráľ J. 2015: Geo-

chemistry and Sr, Nd isotopic composition of the Hronic Upper 

Paleozoic basic rocks (Western Carpathians, Slovakia). Geol. 

Carpath. 66, 3–17.

Yavuz F., Fuchs Y., Karakaya N. & Karakaya M.C. 2008: 

 

Chemical composition of tourmaline from the Asarck Pb 

 

Zn–Cu±U depo sit, Şebinkarahisar, Turkey. Mineral. Petrol. 94, 

195–208.

Sample

Rock type, location

Longitude (°E)

Latitude (°N)

Altitude (m)

GK-6

porphyritic biotite granite, natural outcrop, Betliar 

48°43’55.62”

20°31’47.71”

525

GK-7

rare metal granite, natural outcrop, Betliar

48°44’17.55”

20°31’48.89”

609

GK-8

medium grained, tourmaline granite, ore dump, Hnilec 

48°49’35.11”

20°29’15.24”

720

GK-9

fine to medium grained muscovite granite, ore dump, Hnilec 

48°49’35.11”

20°29’15.24”

720

GK-10

greisen, ore dump, Hnilec

48°49’35.11”

20°29’15.24”

720

GK-17

rare metal granite, natural outcrop, Betliar

48°44’18.87”

20°31’46.86”

640

GZ-1

medium grained, tourmaline granite, natural outcrop, Hnilec 

48°48’54.88”

20°30’46.54”

726

GZ-12

aplite, natural outcrop, Poproč

48°43’26.01”

21°02’54.96”

489

ZK-31

muscovite granite, ore dump, Čučma

48°42’57.89”

20°33’27.24”

556

DD3-577

rare metal granite, drill core DD-3; depth 577 m, Dlhá dolina

48°45’56.63”

20°32’07.49”

801

DD3-594

rare metal granite, drill core DD-3; depth 594 m, Dlhá dolina

48°45’56.63”

20°32’07.49”

801

DD3-908

porphyritic biotite granite, drill core DD-3; depth 908 m, Dlhá dolina

48°45’56.63”

20°32’07.49”

801

LIG-17

topaz–Li mica microgranite, taken from trench, Surovec (see Petrík et al. 2011)

48°47’33.04”

20°33’40.69”

766

Appendix 

Sample description and GPS location