background image

GEOLOGICA CARPATHICA

, OCTOBER 2018, 69, 5, 467–482

doi: 10.1515/geoca-2018-0027

www.geologicacarpathica.com

Miocene fan delta conglomerates in the north-western part 

of the Danube Basin: provenance, paleoenvironment, 

paleotransport and depositional mechanisms

TAMÁS CSIBRI

1, 

, SAMUEL RYBÁR

1

, KATARÍNA ŠARINOVÁ

2

, MICHAL JAMRICH

1

,  

ĽUBOMÍR SLIVA

3

 and MICHAL KOVÁČ

1

1

Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 

842 15 Bratislava, Slovakia; 

 

tamas.csibri@gmail.com

2

Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 

842 15 Bratislava, Slovakia

3

NAFTA a.s., Plavecký Štvrtok 900, 900 68 Plavecký Štvrtok, Slovakia

(Manuscript received February 19, 2018; accepted in revised form August 8, 2018)

Abstract: The Blatné Depression located in the NW part of the Danube Basin represents the northernmost sub-basins of 

the Pannonian Basin System. Its subsidence is associated with oblique collision of the Central Western Carpathians with 

the European platform, followed by the back-arc basin rifting stage in the Pannonian domain. The conglomerates 

 recognized in the Cífer-2 well document the latest Burdigalian–early Langhian deposition in fan delta lobes situated 

above the footwall and hanging wall of a WSW–ENE trending fault system, the activity of which preceded the opening 

of the late Langhian–Serravallian accommodation space with a NE–SW direction. The provenance area of the “Cífer 

conglomerate” was linked to the Tatric Super-unit complexes. Similar rocks crop out in the southern part of the Malé 

Karpaty Mts. and are also present in the pre-Cenozoic basement of the Danube Basin. Documented extensive erosion  

of the crystalline basement and its sedimentary cover lasted until the early/middle Miocene boundary. The “Cífer  

conglomerate” has distinct clast composition. The basal part consists of poorly sorted conglomerate with sub-angular 

clasts of metamorphic rocks. Toward the overlying strata, the clasts consist of poorly sorted conglomerates with 

sub-rounded to well-rounded carbonates and granitoids. The uppermost part consists of poorly sorted conglomerates with 

sub-rounded to rounded clasts of carbonate, granitoid and metamorphic rock. Within the studied samples a transition from 

clast to matrix supported conglomerates was observed. 

Keywords: Danube Basin, Blatné Depression, lower/middle Miocene, fan delta, conglomerates, sedimentary petrology.

Introduction

The Danube Basin, located at the junction of the Eastern Alps, 

Western Carpathians and Transdanubian Range, represents  

the NW part of the Pannonian Basin System. The investigated 

Cífer-2 well (48°19’52.68” N, 17°28’45.44” E) is situated  

in the central part of the Blatné Depression (NW Danube 

 Basin). It is bordered by the Malé Karpaty Mts. in NW and  

by  the  Považský  Inovec  Mts.  in  the  NE  and  passes  into  

the Gabčíkovo–Győr Depression in the south (Fig. 1). 

The basin fill consists of marine to freshwater deposits 

reaching  up  to  3000  m  (Adam  &  Dlabač  1969;  Kilényi  & 

Šefara 1989; Rybár et al. 2016). The early Miocene marine 

sediments are situated mostly in the north. The main part of 

the basin fill is represented by the middle Miocene deposits of 

the Central Paratethys Sea, which are overlain by sequences of 

the late Miocene Lake Pannon, and the late Miocene to 

Pliocene alluvial to fluvial sediments (e.g., Kováč et al. 2011; 

Sztanó et al. 2016). The prevailingly fine grained sedimentary 

fill is intercalated with sandy to gravely facies, often at  

the base of Transgression–Regression (T–R) cycles (e.g., 

Kováč 2000). 

The Cífer-2 well (Fig. 2) was drilled to confirm natural gas 

capacity  at  the  Trnava–Sereď  basement  elevation  located 

northeast of Cífer village. The pre-Cenozoic basement rocks 

are formed by crystalline complexes of the Tatric Super-unit 

(Fusán et al. 1987). The original description of the well was 

done by Pagáč (1959), and the data were later summarized by 

Biela (1978). The deepest part of the well yielded conglome-

rates originally included in the Paleogene (1885–2031 m). 

These coarse-grained strata are covered by more conglomerate 

layers originally ranked to the Karpatian/lower Badenian 

(upper Burdigalian/Langhian) time span (1553–1885 m; Biela 

1978). The conglomerates are overlapped by offshore mud-

stones and sandstones of the upper Badenian (lower 

Serravallian) Báhoň Fm. (Vass 2002). The sequence ends with 

the Pannonian lacustrine to alluvial sediments of the Ivanka, 

Beladice and Volkovce fms. (Šujan et al. 2017). 

The aim of this work is to revise the conglomerates from  

the Cífer-2 well in respect to their age, petrography and 

 provenance. The definition of transport mechanisms and  

the character of depositional paleoenvironment will be derived 

from facies analysis, well-logs study, and seismic facies inter-

pretation. The acquired knowledge should contribute to 

background image

468

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Fig. 1. Location of the Cífer-2 well in the Danube Basin. Map of the pre-Cenozoic basement depth modified from Horváth et al. (2015) and 

Fusán et al. (1987). 

background image

469

MIOCENE FAN DELTA CONGLOMERATES IN THE NORTH-WESTERN PART OF THE DANUBE BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

confirmations of the geodynamic development model of the 

area at the Eastern Alpine–Western Carpathian junction during  

the rifting phase of the Danube Basin (Kováč et al. 2018a).  

It should also contribute to paleogeographic models before 

and during the maximal flooding of the Central Paratethys Sea 

in the back-arc basin system (e.g., Kováč et al. 2017b; Sant et 

al. 2017). 

Material and methods

Well core samples were obtained from the repository of 

Nafta a.s. — Oil and Gas Company (Gbely). From six well 

cores twelve samples were taken (spot sampling). For the pur-

poses of provenance and facies analysis the cores were cut  

in half and scanned. Individual clasts from the sampled con-

glomerates were divided into 4 grain size fractions (0.2 to 0.8 

cm, from 0.8 to 1.5 cm, 1.5 to 3 cm and >3 cm) and 1 was used 

for the matrix composition (0–0.2 cm). The clasts were 

measured on the polished side of the well core. It needs to be 

noted, that the measurements reflect the original clast size 

only partially. The clast composition was confirmed by seven-

teen thin sections studied under a polarizing microscope. 

Abbreviations of minerals follow Whitney & Evans (2010). 

Grain size classification of clasts follows Wentworth (1922) 

and the shape classification of clasts follows Powers (1953). 

The sedimentary structures of the individual well cores were 

evaluated in the sense of Boggs (2006) and Nichols (2009). 

The conglomerates classification follows the work of Pettijohn 

(1975). Carbonate classification follows the work of Flügel 

(2010).

Two reflection seismic lines were used for the purposes of 

seismic facies analysis: the NNE–SSW oriented 554/77 line 

and the line 558/77 with a NW–SE orientation (Fig. 1). Inter-

pretations were made in the Schlumberger Petrel software using 

the standard methods described by Mitchum & Vail (1977), 

Brown & Fisher (1980). The well log data was eva luated 

based on Rider & Kennedy (2011) and Emery & Myers (1996).

Fig. 2. Lithostratigraphic chart of the study area (time range of NN Zones according to Hohenegger et al. 2014).

background image

470

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Petrography of the conglomerates of the Cífer-2 well

The conglomerate in the core 26 (1999–2005 m; Fig. 3) 

 represents the basal part of the sedimentary succession.  

The clast supported conglomerate is poorly sorted with  chaotic 

orientation of clasts. This core sample consists only of meta-

morphic ?cobbles (Qz-mica schists and biotitic paragneisses; 

Fig. 3). The clasts of biotitic paragneisses are sub-angular and 

occasionally deformed; the Qz-mica schists are sub-rounded 

to rounded. In the polarizing microscope chloritic-sericitic and 

graphitic schists were observed. Segregated clasts of quartz 

and lydites can also be found. The mineral composition of  

the paragneisses involves: Qz, Pl, Kfs, Bt (commonly chlori-

tized) and Ms (Fig. 4; with heteroblastic texture). Accessory 

minerals are represented only by Zrn and Grt. The paragneiss 

clasts, together with the surrounding matrix are cut and offset 

by calcite veins (Fig. 4 a, b). The clayey-sand matrix is built up 

by crushed monocrystalline Qz, clasts of metamorphic rocks 

(medium sand fraction), clay minerals and mica (Fig. 3).

The clast composition of core 25 (1947–1959 m) is more 

variegated (Fig. 5), but the texture is still clast supported.  

The matrix is micritic (microsparite), and occasionally clayey– 

carbonatic. The clasts of metamorphic rocks are represented 

by paragneisses. Heavily weathered granitoids are also present 

and are built up by Qz, altered Fs and mica. The majority of 

clasts represent micritic carbonate rock fragments represented 

by three types: (i) pale carbonates, (ii) dark carbonates cut by 

calcite veins (Fig. 6) and (iii) laminated carbonates. Red quartz 

arenites and clastic quartz were also distinguished. The round-

ness of carbonate and paragneiss clasts is generally sub-

rounded. The dark carbonates are well rounded (fraction 

0.2–0.8 cm). The grain size of granitoids and red quartz 

 are nites varies from medium sand to granule; carbonate rocks 

vary in size from medium sand to pebble/cobble; clastic quartz 

vary in size from coarse sand to very coarse sand (Fig. 5). 

Core 24 (1900–1905 m), was not available in the repository 

but abundant carbonate clasts and rare Qz-mica schists were 

described (Pagáč 1959). 

The conglomerates from core 23 (1857–1882 m; Fig. 7) are 

poorly sorted. They consist of pale and dark carbonate rocks, 

biotitic paragneisses and chloritic-sericitic schists. Carbonates 

and paragneisses are rounded to well rounded. The amount of 

granitoids increases, comparing to the red quartz arenites.  

The granitoid clasts are sub-rounded and formed by Qz, serici-

tized Fs and weathered mica. The size of all rock types varies 

from fine sand to pebble. The texture is clast supported and  

the matrix is carbonatic. 

The conglomerate in core 22 (1794–1799 m; Fig. 8) has 

similar grain size and roundness of clasts as in core 23, but 

macroscopically only two clast types were observed: altered 

granitoids to granitoids and metasandstones. The proportion 

of granitoids to altered granitoids is 3:1. Carbonates were 

observed only in the thin sections (Fig. 9). One packstone clast 

contains thin-valued bivalves and uniserial foraminifers, other 

clasts are micritic. Compared to all other conglomerates,  

the main difference is that the conglomerate from core 22 is 

matrix supported (clayey-carbonatic) and red in colour. In small 

parts of both samples indistinct normal gradation is observed.

The conglomerates in core 21 (1746–1752 m; Figs. 10, 11) 

are characterized by variegated clast composition. The texture 

is matrix supported. The binding material is sparitic, and indis-

tinct normal gradation is observed. Clasts of metamorphic 

rocks are still present and are accompanied by clasts of grani-

toides, red quartz arenites to minor carbonates. The clasts of 

biotitic paragneisses are predominantly cut by calcite veins. 

However, in contrast to the conglomerates from core 26,  

the calcite veins are located only inside the clast. One piece of 

a red chert was found. The carbonate rocks are represented by 

(i) dark and (ii) laminated carbonates which are micritic or 

recrystallized. The grain size of biotitic paragneisses, grani-

toids and carbonates clasts varies from medium sand to   

pebble. Qz-mica schist clasts vary from medium sand to 

 granule, and red quartz arenites vary from medium sand to 

coarse sand.

Interpretation of provenance, paleoenvironment, 

paleotransport and depositional mechanism

The deepest part of the Cífer-2 well (Fig. 12) was previously 

assumed  to  be  of  Paleogene  to  Karpatian  age  (Pagáč  1959; 

Biela 1978; Fig. 13). However, this ranking was not suffi-

ciently constrained. The new data from the Trakovice-1 and 

Špačince-5 wells (Rybár et al. 2016) allowed the creation of 

biostratigraphicaly defined horizons, which were then corre-

lated throughout the selected seismic lines. This enabled 

 ran king of the studied “Cífer conglomerate” (2031–1565 m) to 

the latest Burdigalian to early-middle Langhian (Karpatian/

lower Badenian) time span. This can be interpreted from  

the available seismic lines 554/77 and 558/77 (Figs. 1, 13).  

The early Serravallian (late Badenian) age of the overlying 

mudstones (1565–1000 m) is based on the correlation with 

Cífer-1 well (2 km to the south; Fig. 1). Correlations were 

made by using SP and RT logs and the age data are derived 

from the presence of calcareous nannofossil zone NN6 

(Ozdínová 2008).

Provenance

The provenance of all processed conglomerates points to  

the Central Western Carpathian source. The source of grani-

toids can be associated with biotitic granodiorites exposed in 

the Modra Massif of the Malé Karpaty Mts. The described 

clasts of metamorphic rocks (chloritic-sericitic schists, graphitic 

schists and biotitic paragneisses) are exposed in the upper part 

of the crystalline complexes of the Pezinok Group in the Malé 

Karpaty Mts. The protolith of chloritic-sericitic schists was  

a psammitic rock together with some rare pelitic sediment 

(Cambel  &  Čorná  1974). The  closest  occurrence  is  situated 

around  the  Mešťanková  elevation  (Modra–Harmónia  area; 

Polák et al. 2012). Minor occurrences of such rocks are also 

found in the south-eastern part of the Tribeč Mts. (e.g., Badice; 

background image

471

MIOCENE FAN DELTA CONGLOMERATES IN THE NORTH-WESTERN PART OF THE DANUBE BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Fig. 3. Well core 26, macroscopic analysis: a — clast composition; b, c — proportion of individual lithological types in various grain size 

classes: (b) biotitic-paragneisses, (c) Qz-mica schists; d — samples from core 26. 

Fig. 4. Microscopic analyses from the depth of 1999–2005 m (core 26): a, b — brittle deformation of a Qz-mica schists clast in: (a) plane 

polarized light (II), (b) in crossed nicols (X); c, d — biotitic-paragneisses; e, f — clast of biotitic-paragneisses with garnet. 

background image

472

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Fig. 5. Well core 25, macroscopic analysis: a — clast composition; b–h — proportion of individual lithological types in various grain size 

classes: (b) biotitic paragneisses, (c) granitoids, (d) pale carbonates, (e) dark carbonates, (f) laminated carbonates, (g) quartz arenite, (h) clastic 

quartz; i — samples from core 25.

Fig. 6. Microscopic analyses from the depth of 1947–1959 m (core 25): a — clasts of limestone with calcite veins (II); b — broken clast of 

limestone (II); c, d — granitoid and micritic limestone clasts: (c) II, (d) X.

background image

473

MIOCENE FAN DELTA CONGLOMERATES IN THE NORTH-WESTERN PART OF THE DANUBE BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Kamenec — 293 m.a.s.l.). The source of quartz arenites may 

be in the Lúžna Fm. (Lower Triassic) which represents a sedi-

mentary cover of the Tatric Super-unit. Similarly, dark car -

bona tes with calcite veins without fossils may belong to  

the Guten stein Fm. (Middle Triassic) of the Tatric Super-unit 

sedimentary cover. Nonetheless sourcing from the Fatric and 

the Hronic nappe units cannot be excluded. The pale, sandy 

limestones which microscopically occur in core 22 may 

belong to the Paleogene sediments.  

Based on the clast composition the studied conglomerates 

were divided into 3 groups (Table 1). The clasts of the 1

st

 group 

(core 26, 2005–1999 m) consists only of Bt-paragneiss and 

Qz-mica schists which point to a different source area, then in 

the overlying 2

nd

 and 3

rd

 group. They may be derived from  

the southernmost part of the pre-Cenozoic basement of the 

Blatné Depression, which is built up of crystalline rocks, over-

lapped by sediments of Serravallian age (late Badenian/

Sarmatian; see Biela 1978; Fusán et al. 1987).

Beside crystalline rocks, the 2

nd

 and 3

rd

 groups contain clasts 

from the sedimentary cover or nappe units. The main diffe-

rence between these groups is the degree of weathering of 

granitoid clasts and content of carbonate clasts. Group 2  

(core 25, 1959–1947 m and core 23, 1882–1857 m) consist of 

heavily weathered granitoids (17–47 %; Figs. 5, 7) and a large 

proportion of carbonates (70–45 %; Figs. 5, 7). Group 3  

(core 22, 1799–1794 m and core 21, 1752–1746 m) comprises 

non-weathered granitoids (9–43 %; Figs. 8, 10) and a low pro-

portion of carbonates (2–8 %; Figs. 8, 10). Increase of grani-

toid clasts and decrease of their degree of weathering points to 

gradual erosion of the source area. The provenance can be 

linked to an area, which was similar in geological structure to 

the Malé Karpaty Mts. southern part. It needs to be noted, that 

in the time of denudation the eroded area was much larger and 

extended further to the east up to the Kráľová stratovolcano 

(Hrušecký 1999). 

Transport mechanism and depositional environment 

Interpretation of the transport mechanism and depositional 

environment can be drawn from the 2D seismic profile 554/77 

and from the SP (Spontaneous potential) and RT (Resistivity) 

logs (Figs. 12, 13). The seismic facies of the “Cífer conglo-

merate” are arranged in sigmoid prograding clinoforms which 

dip toward the N, NE (Fig. 13) and can be interpreted as a fan 

delta body. 

The reflexes are discontinuous with high amplitudes which 

indicates coarse-grained deposits. The negative excursions on 

the SP log and the high resistivities recorded by the RT log 

also indicate coarse grained character what is additionally 

confirmed by the physical well core samples. Moreover,  

the high excursions point to saturation by fluids and/or gas 

(cylindrical and symmetrical trends). 

The conglomerate in the deepest core, interpreted as 

 

the 1

st

 group, contains clasts which are broken together  

with their surrounding matrix. Therefore, crushing during 

drilling can be excluded. The offsets (Fig. 4) indicate that  

the conglomerate must have been lithified before further tec-

tonic events. So, we can deduce that group 1 was derived from 

the Danube Basin crystalline basement. Based on these facts, 

together with the different clast composition documented by 

the 2

nd

 and 3

rd

 groups, the 1

st

 group is interpreted as a boulder 

of an older conglomerate which was incorporated into 

 

the latest Burdi 

galian–early-middle Langhian (Karpatian/

lower Bade nian) “Cífer conglomerate”. This situation can be 

seen in recent deposits in the Gulf of Suez (Bosworth & 

McClay 2001), where uplifted rift flanks are being eroded and  

produce large boulders similar to those in the group 1 (this 

study). These are transported to a recently active alluvial fan 

(Fig. 14).  

The conglomerates in the 2

nd

 and 3

rd

 groups are poorly 

sorted with rounded to sub-rounded clasts. Moreover, indis-

tinct normal gradation is observed in all samples which indi-

cates gravity transport (Fig. 8). The conglomerates of 

 

the 3

rd 

 group are clinostratified and have higher proportions  

of matrix, in some places they are even matrix supported. 

Altogether, the 2

nd

 group can be interpreted as a proximal 

facies of a fan delta and the 3

rd

 group as a facies of a distal fan 

delta, which is supported by higher portion of carbonate matrix 

(sub-aqueous deposition). The fan delta character of both 

aforementioned groups can be backed up by the sigmoid 

clino form visible on the seismic line 554/77 (Fig. 13).

Tectonic context 

The sedimentation of the coarse clastic facies is generally 

influenced by tectonic activity (Vail et al. 1977). From  

the paleo geographical point of view, the accommodation space 

of the “Cífer conglomerate” was connected with the early 

Miocene WSW–ENE oriented fault system, active until 

 

the earliest-middle Miocene (Marko et al. 1991; Fodor 1995; 

Marko & Kováč 1996; Hrušecký 1999; Hók et al. 2016; Kováč 

et al. 2018b). This process in a transtensional/extensional 

 tectonic regime, associated with the lateral extrusion of  

the ALCAPA lithosphere eastward (Ratschbacher et al. 1991), 

which led to the opening of new depocenters situated between 

the Eastern Alps and Western Carpathians (e.g., lower Miocene 

terrestrial to marine deposits of the Styrian, Eisenstadt and 

Danube Basin; Kováč et al. 2003, 2017a). It was partly coeval 

to the basin opening of Dinaride Lake System in the south-

west (Mandić et al. 2012). 

The Danube Basin pre-Cenozoic basement is built up in its 

central part by crystalline complexes of the Tatric Super-unit 

(Fusán et al. 1987). Gradual Oligocene–early Miocene uplift 

of these complexes is documented in the Malé Karpaty Mts. 

by AFT (Apatite Fission Track) cooling ages ~52 to 20 Ma 

(Králiková et al. 2016). The initial rifting at the western border 

of the Pannonian domain led to development of horsts and 

grabens within the pre-Cenozoic basement (Hók et al. 2016; 

Kováč et al. 2018b). This may have led to erosion and deposi-

tion of coarse clastics on the southern margin of the middle 

Miocene Blatné Depression in the form of the “Cífer 

background image

474

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Fig. 7. Well core 23, macroscopic analysis: a — clast composition; b – e — proportion of individual lithological types in various grain size 

classes: (b) granitoids, (c) biotitic paragneisses, (d) pale carbonates (e) dark carbonates; f — samples from core 23.

Fig. 8. Well core 22, macroscopic analysis: a — clast composition; b, c — proportion of individual lithological types in various grain size 

classes: (b) granitoids, (c) biotitic paragneisses; d — sample from core 22. 

Fig. 9. Microscopic analyses from the depth of 1794–1799 m (core 22): a, b — granitoid created by Qz, sericited Pl and mica; c, d — compo-

sition of sandy grains in the conglomerate (carb. — carbonate, Pl+Qz — granitoide clast; II). 

background image

475

MIOCENE FAN DELTA CONGLOMERATES IN THE NORTH-WESTERN PART OF THE DANUBE BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Fig. 11. Microscopic analyses from the depth of 1746–1752 m (core 21): a, b — granitoid created by Qz, Pl and Bt; c, d — clast of micritic 

limestones (carb. — carbonate, Pl+Qz — granitoide clast; II).

Fig. 10. Well core 21, macroscopic analysis: a — clast composition; b – g — proportion of individual lithological types in various grain  

size classes: (b) pale carbonates, (c) dark carbonates, (d) biotitic paragneisses, (e) Qz-mica schists, (f) quartz arenite, (g) granitoids;  

h — samples from core 21.

background image

476

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

conglomerate” during the synrift phase of the Danube Basin 

(Kováč et al. 1999, 2011; Rybár et al. 2016) 

The “Cífer conglomerate” clasts composition shows erosion 

of the basin’s pre-Cenozoic horsts during the latest 

Burdigalian–early Langhian (Karpatian–earliest Badenian) 

time. The transport direction can be deduced from dip of  

the clinoforms, which seems to be prograding from S-SW to 

N-NE (Fig. 13). This is in accordance with the above pre-

sented results of the provenance analyses. Latter, in the mid-

dle-late Langhian, the accommodation space was enlarged 

(Kováč et al. 1999). The opening of the Blatné Depression in 

its present form was a result of the oblique collision of  

the Central Western Carpathians, with a spur of the Bohemian 

Massif, representing the margin of the European platform 

(e.g., Hók et al. 2016; Kováč et al. 2017a, b). 

The stratigraphical assignment of the “Cífer 

conglomerate” and correlations with  

related conglomerates

The “Cífer conglomerate” (Table 1) is deposited directly on 

the pre-Cenozoic basement of the Tatric Super-unit crystalline 

complexes  (Trnava–Sereď  basement  elevation,  Fusán  et  al. 

1987). This is indirectly indicated by the Trnava-1 well (7 km 

to the E) which drilled the pre-Cenozoic basement to the depth 

of 959.6 m (Biela 1978), as well as by the low amplitude, 

 discontinuous seismic facies which occur below the Cífer-2 

well which can be interpreted as basement rocks (Fig. 13).  

The lateral extension of the “Cífer conglomerate” may be much 

larger, since synchronous conglomerates are recorded around 

the  Trnava–Sereď  basement  elevation.  However,  they  were 

Fig. 12. Lithostratigraphy of the Cífer-2 well showing interpretation of Biela (1978) and our reinterpretation.

background image

477

MIOCENE FAN DELTA CONGLOMERATES IN THE NORTH-WESTERN PART OF THE DANUBE BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Fig. 13. 2D reflection seismic line 554/77 tied to Cífer-2 well oriented from NNE to SSW. 

background image

478

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

not studied in detail (e.g., Sereď-2, 5; Vištuk-1 wells, Biela 

1978). 

The Langhian age of the conglomerate upper boundary can 

be deduced from the presence of the early Serravallian NN6 

nanoplankton zone (sensu Martini 1971) in the fine-grained 

deposits in overlying strata (Appendix 1), confirmed by 

Ozdínová (2008) in the neighboring Cífer 1 well respectively. 

Moreover, the southernmost part of the pre-Cenozoic base-

ment of the Blatné Depression is built up from crystalline 

rocks, which are overlapped by Miocene sediments of Serra-

valian age (Late Badenian/Sarmatian; see Biela 1978; Fusán et 

al. 1987). In addition, the core samples from depth interval 

1405–1680 m contain calcareous nannofossils of the NN5 

Zone. Further constraints come from volcanic sandstones in 

core 20, bearing nannoplankton of NN5 Zone (Appendix 1 

and Fig. 12), which are similar to tuffites from the Trakovice-4 

well, also assigned to the NN5 Zone (Rybár et al. 2016).  

Core 23 (1857–1862 m) yielded nanoplankton of the NN4 

Zone, which document the age of deposition or it was redepo-

sited from older sediments (Appendix 1).

As noted in the introduction, the Blatné Depression sedi-

mentary fill contains several conglomerate bodies, generally 

at  the  base  of  T–R  cycles  (e.g.,  Kováč  2000).  The  oldest, 

Burdigalian (Eggenburgian) Dobrá Voda conglomerates 

belong  to  the  Lužice  Fm.  (Vass  2002)  and  onlap  onto  

the pre- Cenozoic basement in the northern part of the Malé 

Karpaty Mts. In comparison to studied samples, they consist 

of mono mict carbonate pebbles and cobbles (Buday et al. 

1963). 

The younger, pebbly mudstone of middle Burdigalian age 

represents the Ottnangian Planinka Fm. (Kováč et al. 1992; 

Fordinál et al. 2012) which has a polymict character, similar  

to the early-middle Langhian (Karpatian–earliest Badenian) 

Jablonica conglomerate. 

The Jablonica conglomerate assigned to the early-middle 

Langhian is mainly found on the northern slopes of the Malé 

Karpaty Mts. and in the vicinity of the Dobrá Voda depression 

(Vass 2002; Maglay et al. 2011). The conglomerate is matrix 

supported with calcareous–sandy matrix and the depositional 

environment is linked to the littoral zone or to a deltaic envi-

ronment (Kováč 1985; Kováč et al. 1989). The conglomerates 

are composed of staurolite–garnet schists, Devonian meta-

morphic limestones, Wetterstein and Reifling limestones 

(Mišík 1986). Based on their stratigraphic position the “Cífer 

conglomerate” may be synchronous or a bit older (latest 

Burdigalian to early-middle Langhian) than the Jablonica 

conglomerate. Nevertheless, the Jablonica conglomerate from 

the Cerová–Lieskové locality yields a much lower portion of 

crystalline schists and granitoids than were documented in  

the “Cífer conglomerate” (Table 2). However, the clast com-

position in conglomerates is generally of local provenance. 

So, conglomerates may be very different in composition, but 

still synchronous.

Devínska Nová Ves Fm. occurs on the western slopes of  

the Malé Karpaty Mts. and is ranked to the Langhian (lower 

Badenian; Vass et al. 1988; Fordinál et al. 2010, 2012).  

The sediments were deposited in the terrestrial environment of 

an alluvial fan. The clasts are represented by siliciclastics, 

 carbonates, and crystalline rocks which can be derived from 

the Malé Karpaty Mts.; and their vertical distribution (MKZ-1 

well) shows gradual erosion of the provenance area. The base 

of the MKZ-1 well is mainly formed by clasts of metamorphic 

rocks with rare carbonates, and granitoids, but the highest part 

of the well is formed exclusively by granitoid rocks (Fordinál 

et al. 2012). The terminal part of the coarse-grained formation 

shows reworking by waves in the littoral zone, beyond  

the frontal part of the alluvial fans. Toward the Vienna Basin, 

the formation intercalates with the middle-late Langhian 

(lower Badenian) Jakubov Fm. (Vass 2002; Zlinská 2015) that 

contains calca reous nano plankton of the NN5 Zone. Like  

the “Cífer conglomerate”, the Devínska Nová Ves Fm. is 

 covered by mudstones contai ning the NN6 nanoplankton zone 

(sensu Martini 1971). 

The younger Doľany conglomerate Mb. (Vass 2002), occurs 

on the eastern slopes of the Malé Karpaty Mts. It is coarse-

grained, has poorly rounded clasts and calcareous–sandy 

matrix; some breccias are present as well. The clasts are com-

posed of metamorphic and carbonate rocks. Most importantly 

the  Doľany  Mb.  was  deposited  around  the  lower/upper 

Badenian boundary (Buday 1957; Cicha 1957) between 

 

the  Špačince  and  Báhoň  fms.  (Vass  2002).  According  to  

Ogg et al. (2016) this time interval corresponds to the late 

Langhian–early Serravallian. This time span can be characte-

rized by the accelerated uplift of the NE–SW orientated horst 

structure of the Malé Karpaty Mts. and synrift subsidence of 

the Blatné Depression (Kováč et al. 2018b). 

The  comparison  of  the  Doľany  and  Devínska  Nová  Ves  

conglomerates (position and petrographic composition of 

clasts) may point to their origin at the edges of the uplifting 

Malé Karpaty Mts. The provenance of the Planinka, “Cífer” 

and Jablonica conglomerates can be additionally identified as 

a source situated south of the Blatné Depression. 

Well Cífer-2

Nomenclature

Core

Texture

Composition

Source

Structure

Matrix

Paleo-environment

Group

21

Para-conglomerate

Polymict

Extraformational

matrix supported

sparitic

distal part of fan delta

3

22

Ortho-conglomerate

Polymict

Extraformational

matrix to clast supported

clayey-micritic

distal part of fan delta

3

23

Ortho-conglomerate

Polymict

Extraformational

clast supported

micritic

proximal part of fan delta

2

25

Ortho-conglomerate

Polymict

Extraformational

clast supported

microsparit/clay

proximal part of fan delta

2

26

Ortho-conglomerate

Polymict

Extraformational

clast supported

clayey-sandy

alluvial fan

1

Table 1: Sampled cores with interpreted paleoenvironment and nomenclature.

background image

479

MIOCENE FAN DELTA CONGLOMERATES IN THE NORTH-WESTERN PART OF THE DANUBE BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Conclusions

•  The conglomerates of the Cífer-2 well can be divided in 

respect to composition and structure into three different 

groups: 

1. Group 1 is represented by conglomerates from core 26 

— they are composed only of clasts of metamorphic 

rocks, which are tectonically affected, what indicates their 

older age. This group is interpreted as a conglomerate 

boulder incorporated into the “Cífer conglomerate”. 

2. Group 2 comprises conglomerates from cores 25 and 23 

which are massive or poorly graded and have a limited 

amount of matrix. The clasts of this group consist mostly 

of carbonate rocks and weathered granitoids. They are 

interpreted as deposits of the proximal fan delta.

3. Group 3 comprises conglomerates from cores 22 and 21 

— clasts of this group consist mostly of metamorphic rocks 

and non-weathered granitoid rocks. They have higher 

amounts of carbonate matrix, and therefore are interpreted 

as deposits of fan delta lobes in a distal position.

Fig. 14. Gulf of Suez (27°51’39” N, 33°17’06” E; Source: Google Earth; February 16, 2018): a — note the eroding rift shoulders and alluvial 

fans and fan deltas evolving between them; b — close up on one of the alluvial fans; c — detail of the eroded blocks incorporated in the alluvial 

fan which is equivalent to group 1 of the “Cífer conglomerate”. 

background image

480

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

•  The stratigraphic assignment of the “Cífer conglomerate” is 

based on the seismo–stratigraphic correlation (line 554/77, 

558/77) and nannofossil zonation in the Cífer-2 well with 

additionally support from the Trakovice-1, Špačince-5 and 

Cífer-1 wells. The conglomerate upper boundary was set 

within the NN5 nannoplankton zone. Considering the pro-

ve nance, transport direction and petrological composition  

of clasts the conglomerates are considered to be synchro-

nous or a bit older than the Jablonica Fm. However, the esti-

mated latest Burdigalian to lower-middle Langhian age, 

inside of the uppermost part of the NN4 and NN5 nanno-

plankton zone (sensu Martini 1971) was not sufficiently 

proved.

•  The provenance area of the “Cífer conglomerate” was 

linked to similar rock complexes to those outcropping in  

the southern part of the Malé Karpaty Mts. and vicinity 

(Tatric Super-unit — crystalline basement plus sedimentary 

cover or nappe units). 

•  The latest Burdigalian to lower-middle Langhian conglo-

merates represent deposition in fan delta lobes situated 

above the footwall and hanging wall of WSW–ENE tren-

ding fault system. The fault system activity preceded opening 

of the middle-late Langhian to Serravallian Blatné Depression 

with a NE–SW direction. Basin subsidence is associated 

with oblique collision of the Central Western Carpathians 

with the European platform and the back-arc basin synrift 

stage in the Pannonian domain. 

Acknowledgements: Our appreciation go to Nafta a.s. — Oil 

and Gas Company management for allowing access to their 

well core repositories. This work was supported by APVV 

agency under the contract No. APVV-16-0121, APVV-15-

0575, APVV-14-0118 and by UK Grant 9/2018. Special thank 

go  to  Š.  Pramuková  and  M.  Hronkovič  for  processing  of  

the well core material and for thin section assembly. 

 

We express gratitude to our editor and reviewers for insightful 

comments which significantly improved the manuscript.  

References

Adam Z. & Dlabač M. 1969: Erklärungen zur Mächtigkeitskarte und 

zur lithofaziellen Entwicklung der Donau–Niederung. Západné 

Karpaty, 11, 156–171.

Biela A. 1978: Deep structural boreholes in covered areas of the Inner 

Western Carpathians, 1

st

 part-Danube Lowland. Geologický 

 Ústav Dionýza Štúra, Bratislava, 1–224 (in Slovak with English 

summary).

Boggs S. 2006: Principles of sedimentology and stratigraphy. Upper 

Saddle River, New Jersey, 1–655.

Bosworth W. & McClay K. 2001: Structural and stratigraphic evolu-

tion of the Gulf of Suez rift, Egypt: a synthesis. In: Ziegler P.A., 

Cavazza W., Robertson A.H.F. & Crasquin-Soleau S. (Eds.): 

Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and 

Passive Margins. Mémoires du Muséum national d’histoire 

 naturelle,  186, 567–606.

Brown L.F. Jr. & Fisher W.L. 1980: Seismic-Stratigraphic Interpreta-

tion of Depositional Systems and its Role in Petroleum Explora-

tion (Part 1). AAPG Continuing Education Course Note, 16, 

Tulsa, 1–65.

Buday T. 1957: Report on the Neogene outline research for the 

 General  map  of  Czechoslovakia.  Sheets:  Žilina,  Bratislava, 

Česká Třebová.  Open file report – archive D. Štúr Inst. geol. 

Bratislava, 1–106. (in Czech).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Crystalline slates

Granitoids

Clastic quartz

Silicities

Quartz arenite

Cr, Pg clasts

Carbonates

Crystalline

slates

Granitoids

Clastic

quartz

Silicities

Quartz

arenite

Cr, Pg clasts Carbonates

Cífer-2 conglomerate

51.40%

21.90%

0.30%

0.10%

3.60%

0%

22.70%

Jablonica conglomerate (loc.: Cerová-Lieskové)

3%

7%

7%

2%

3%

3%

75%

Table 2: Comparison of overall clast composition in the Cífer-2 conglomerates and in the Jablonica conglomerate from the Cerová-Lieskové 

section.

background image

481

MIOCENE FAN DELTA CONGLOMERATES IN THE NORTH-WESTERN PART OF THE DANUBE BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Buday T., Benešová E., Březina J., Cicha I., Čtyroký P., Dornič J., 

Dvořák J., Eliáš M., Hanzlíková E., Jendrejáková O., Kačura G., 

Kamenický J., Kheil J., Köhler E., Kullmanová A., Maheľ M., 

Matějka A.,  Paulí,  J.,  Salaj  J.,  Scheibner  E.,  Scheibnerová V., 

Stehlík  O.,  Urbánek  L.,  Vavřínová  M.  &  Zelman  J.  1963: 

 Ex planatory notes to geological map of Czechoslovakia in scale 

1:200,000, sheet Gottwaldov. Ústř. úst. geol. Praha, 1–238 (in 

Czech).

Cambel B. & Čorná O. 1974: Stratigraphy of the crystalline basement 

of the Malé Karpaty Mts. in the light of the palynological inves-

tigation. Geol. Zbor. Geol. Carpth., Bratislava, 25, 231–234 (in 

Russian with English abstract).

Cicha I. 1957: Microbiostratigraphic research of Neogene sediments 

in western and easter part of the Malé Karpaty Mts. In: Buday T.: 

Report on the Neogene outline research for the General map of 

Czechoslovakia. Sheets: Žilina, Bratislava, Česká Třebová. Open 

file report — archive D. Štúr, Inst. geol. Bratislava, 1–106 (in Czech).

Emery D. & Myers K.J. 1996: Sequence stratigraphy. Blackwell

 Oxford,  1–297.

Fodor  L.  1995:  From  transpression  to  transtension:  Oligocene –   

 Miocene structural evolution of the Vienna basin and the East 

Alpine–Western Carpathian junction. Tectonophysics 242, 

 

151–182.

Flügel E. 2010: Microfacies of Carbonate Rocks: Analysis, Interpre-

tation and Application. Springer, Berlin, 1–929.

Fordinál K., Baráth I., Šimon L., Kohút M., Nagy A. & Kučerová J. 

2010: New data on the Devínska Nová Ves Formation (Vienna 

Basin, Slovakia). 16

th

 Conference on Upper Tertiary Brno. Geol. 

Výzk. Mor. Slez., Brno, 32–34. 

Fordinál K., Maglay J., Elečko M., Nagy A., Moravcová M., Vlačiky 

M., Kohút M., Németh Z., Bezák V., Polák M., Plašienka D., 

Olšavský M., Buček S., Havrila M., Hók J., Pešková I., Kucharič 

Ľ., Kubeš P., Malík P., Baláž P., Liščák P., Madarás J., Šefčík P., 

Baráth I., Boorová D., Uher P., Zlinská A. & Žecová K. 2012: 

Explanatory  notes  to  the  Geological  map  of  Záhorská  nížina  

at a scale 1:50,000. Štátny Geologický Ústav Dionýza Štúra

Bratislava, 1–232.

Fusán O., Biely A., Ibrmajer J., Plančár J. & Rozložník L. 1987: Base-

ment of the Tertiary of the Inner West Carpathians. Štátny geo­

logický ústav Dionýza Štúra, Bratislava, 1–123.

Geological map of Slovakia at scale 1:50,000 [online]. Štátny geolo­

gický ústav Dionýza Štúra, Bratislava, 2013. http://mapserver.

geology.sk/gm50js.

Hohenegger J., Ćorić S. & Wagreich M. 2014: Timing of the Middle 

Miocene Badenian Stage of the Central Paratethys. Geol. Carpath. 

65, 1, 55–66.

Hók J., Kováč M., Pelech O., Pešková I., Vojtko R. & Králiková S. 

2016: The Alpine tectonic evolution of the Danube Basin and its 

northern periphery (southwestern Slovakia). Geol. Carpath. 67, 

5, 495 – 505.

Horváth F. Musitz B., Balázs A., Végh A., Uhrin A., Nádor A., 

 Koroknai B., Pap N., Tóth T. & Wórum G. 2015: Evolution of 

the Pannonian basin and its geothermal resources. Geothermics 

53, 328–352.

Hrušecký I. 1999: Central part of the Danube Basin in Slovakia: Geo-

physical and geological model in regard to hydrocarbon prospec-

tion. EGRSE, Spec. Issue, 6, 1, 2–55.

Kilényi E. & Šefara J. (Eds.) 1989: Pre-Tertiary basement contour 

map of the Carpathian Basin beneath Austria, Czechoslovakia 

and Hungary. Eötvös Lóránd Geophys. Inst., Budapest, Hungary.

Kováč M. 1985: Origin of Jablonica formation conglomerates in the 

light of pebble analysis. Geol. Zbor., Geol. Carpath. 36, 1,  95–105.

Kováč M. 2000: Geodynamic, paleogeographic and structural evolu-

tion of the Carpathian-Pannonian region in Miocene – A new 

view on the Neogene basins of Slovakia. Veda, Bratislava, 1–204 

(in Slovak) .

Kováč  M.,  Krystek  I.  & Vass  D.  1989:  Origin,  migration  and  dis-

apearance of the West Carpathians sedimentary basins during the 

Neogene. Geologické práce, Správy 88, 45–58.

Kováč  M.,  Šutovská  K.,  Baráth  I.  &  Fordinál  K.  1992:  Planinka 

 formation, sediments of Ottnang and Lower Karpathian age in 

northern part of the Malé Karpaty Mts. Geologické práce, 

Správy 96, 47–50 (in Slovak with English summary).

Kováč  M.,  Holcová  K.  &  Nagymarosy  A.  1999:  Paleogeography, 

 paleobathymetry and relative sea-level changes in the Danube 

Basin and adjacent areas. Geol. Carpath. 50, 4, 325–338.

Kováč M., Grigorovič A.A., Brzobohatý R., Fodor L., Harzhauser M., 

Oszczypko  N.,  Pavelič  D.,  Rögl  F.,  Saftič  B.,  Sliva  Ľ.  &  

Stránik Z. 2003: Karpatian Paleogeography, Tectonics and 

 Eustatic Changes. In: The Karpatian – a Lower Miocene Stage of 

the Central Paratethys. Masaryk University, Brno, 49–72.

Kováč M., Synak R., Fordinál K., Joniak P., Tóth C., Vojtko R., Nagy 

A., Baráth I., Maglay J. & Minár J. 2011: Late Miocene and 

 Pliocene history of the Danube Basin: inferred from develop-

ment of depositional systems and timing of sedimentary facies 

changes. Geol. Carpath. 62, 6, 519–534.

Kováč M., Márton E., Oszczypko N., Vojtko R., Hók J., Králiková S., 

Plašienka  D.,  Klučiar  T.,  Hudáčková  N.  &  Oszczypko- 

Clowes M. 2017a: Neogene palaeogeography and basin evolu-

tion on of the Western Carpathians, Northern Pannonian domain 

and adjoining areas. Global Planet. Change 155, 133–154. 

Kováč M., Hudáčková N., Halásová E., Kováčová M., Holcová K., 

Oszczypko-Clowes M., Báldi K., Less Gy., Nagymarosy A., 

 Ruman A., Klučiar T. & Jamrich M. 2017b: The Central Para-

tethys palaeoceanography: a water circulation model based on 

microfossil proxies, climate, and changes of depositional envi-

ronment. Acta Geologica Slovaca 9, 2, 75–114.

Kováč  M.,  Halásová  E.,  Hudáčková  N.,  Holcová  K.,  Hyžný  M., 

 Jamrich M. & Ruman A. 2018a: Towards better correlation of 

the Central Paratethys regional time scale with the standard geo-

logical time scale of the Miocene Epoch. Geol. Carpath. 69, 3, 

283–300.

Kováč M., Márton E., Klučiar T. & Vojtko R. 2018b: Miocene basin 

opening in relation to the north-eastward tectonic extrusion of 

the ALCAPA Mega-Unit. Geol. Carpath. 69, 3, 254–263.

Králiková S., Vojtko R., Hók J., Fügenschuh B. & Kováč M. 2016: 

Low-temperature constraints on the Alpine thermal evolution of 

the Western Carpathian basement rock complexes. J. Struct. 

Geol. 91, 144–160.

Maglay J. (Ed.), Pristaš J., Nagy A., Fordinál K., Elečko M., Havrila 

M., Bušek S., Kováčik M., Hók J., Baráth I., Kubeš P., Kucharič 

Ľ., Malík P., Klukanová A., Liščák P., Ondrášik M., Zuberec J., 

Baláž  P.,  Čurlík  J.,  Ševčík  P.,  Kernátsová  J.,  Vaněková  H., 

Harčová  E.,  Boorová  D.,  Zlinská A.,  Žecová  K.,  Siráňová  Z., 

Tuček Ľ., Tkáčová H. & Tkáč J. 2011: Explanations to the Geo-

logical map of the Podunajská nížina — Trnavská pahorkatina at 

a scale of 1:50,000. Štátny Geologický Ústav Dionýza Štúra

Bratislava, 1–322 (in Slovak). 

Mandić  O.,  de  Leeuw A.,  Bulić  J.,  Kuiper  K.F.,  Krijgsman  W.  & 

Jurišić-Polšak Z. 2012: Paleogeographic evolution of the Southern 

Pannonian Basin: 

40

Ar/

39

Ar age constraints on the Miocene 

 continental series of Northern Croatia. Int. J. Earth Sci. 101, 

1033–1046. 

Marko F. & Kováč M. 1996: Reconstruction of the Miocene tectonic 

evolution of the Vadovce depression based on the analysis of 

structural and sedimentary record. Mineralia Slovaca 28, 81–91.

Marko F., Fodor L. & Kováč M. 1991: Miocene strike-slip faulting 

and block rotation in Brezovské Karpaty Mts. (Western Car-

pathians). Mineralia Slovaca, 23, 3, 89–200.

Martini E. 1971: Standard Tertiary and Quarternary calcareous 

 nannoplankton zonation. In: Farinacci A. (Ed.): Proceedings of 

second Planktonic Conference, Roma, Vol, 2, 739–765.

background image

482

CSIBRI, RYBÁR, ŠARINOVÁ, JAMRICH, SLIVA and KOVÁČ

GEOLOGICA CARPATHICA

, 2018, 69, 5, 467–482

Mišík M. 1986: Petrographic-microfacial analysis of pebbles and 

 interpretation of sources areas of the Jablonica conglomerates 

(Lower Miocene of the NW margin of the Malé Karpaty Mts.)

Geol. Zbor. Geol. Carpath. 37, 4, 405–448.

Mitchum R.M. Jr. & Vail P.R. 1977: Seismic stratigraphy and global 

changes of sea-level. Part 6: Stratigraphic interpretation of 

 seismic reflection patterns in depositional sequences: In Payton 

C.E. (Ed.): Seismic Stratigraphy — Applications to Hydro-

carbon Exploration. American Association of Petroleum Geolo­

gistsMemoir 26, 135–144.

Nichols G. 2009: Sedimentology and Stratigraphy. Blackwell Science 

Ltd., London, 1–335.

Ogg J.G., Ogg G. & Gradstein F.M. 2016: A concise geologic time 

scale. Elsevier. New York, 1–234.

Ozdínová S. 2008: Badenian calcareous nannofossils from Seme-

rovce ŠV-8 and Cífer-1 boreholes (Danube Basin). Mineralia 

Slovaca 40, 141–150.

Pagáč I. 1959: Final report of the Cífre-2 well. Open file report — 

Geofond, Bratislava, 1–14 (in Slovak).

Pettijohn F.J. 1975: Sedimentary rocks. Third edition. Harper & Row

New York, 1–628 .

Polák M., Plašienka D., Kohút M., Putiš M., Bezák V., Maglay J., 

Olšavský  M.,  Havrila  M.,  Buček  S.,  Elečko  M.,  Fordinál  K., 

Nagy A., Hraško Ľ., Németh Z., Malík P., Liščák P., Madarás J., 

Slavkay  M.,  Kubeš  P.,  Kucharič  Ľ.,  Boorová  D.,  Zlínska A., 

Síráňová Z. & Žecová K. 2012: Explanations to the Geological 

map of the Malé Karpaty Mts. at scale 1:50,000. MŽP  SR,  

Štátny geologický ústav Dionýza Štúra, Bratislava, 1–309 (in 

Slovak) . 

Powers M.C. 1953: A new roundness scale for sedimentary particles. 

J. Sediment. Petrol. 23, 117–119.

Ratschbacher L., Merle O., Davy Ph. & Cobbold P. 1991: Lateral 

 extrusion in the Eastern Alps. Part 1, Boundary conditions and 

experiments scaled for gravity, Tectonics 10, 245–256.

Rider M.H. & Kennedy M. 2011: The geological interpretation of 

well logs. 3

rd

 Revised edition. Rider­French Consulting Limited

1–440.

Rybár  S.,  Kováč  M.,  Šarinová  K.,  Halásová  E.,  Hudáčková  N.,   

Šujan M., Kováčová M., Ruman A. & Klučiar T. 2016: Neogene 

changes in palaeogeography, palaeoenvironment and the prove-

nance of sediment in the Northern Danube Basin. Bull. Geosci. 

91, 2, 367–398.

Sant K., V. Palcu D., Mandic O. & Krijgsman W. 2017: Changing seas 

in the Early–Middle Miocene of Central Europe: a Mediter ranean 

approach to Paratethyan stratigraphy. Terra Nova. 29, 273–281.

Sztanó  O.,  Kováč  M.,  Magyar  I.,  Šujan  M.,  Fodor  L.,  Uhrin  A.,  

Rybár S., Csillag G. & Tőkés L. 2016: Late Miocene sedimen-

tary record of the Danube / Kisalföld Basin: interregional corre-

lation of depositional systems, stratigraphy and structural evolu-

tion. Geol. Carpath. 67, 6, 525–542. 

Šujan  M.,  Kováč  M.,  Hók  J.,  Šujan  M.,  Braucher  R.,  Rybár  S.  &  

de Leeuw A. 2017: Late Miocene fluvial distributary system in 

the northern Danube Basin (Pannonian Basin System) deposi-

tional processes, stratigraphic architecture and controlling 

 factors  of  the  Piešťany  Member  (Volkovce  Formation).  Geol. 

Quarterly 61, 3, 521-548.

Vail P.E., Mitchum R.M. Jr. & Thompson S. III. 1977: Relative 

changes of sea level from coastal onlap. In: Payton C.E. (Ed.): 

Seismic Stratigraphy: Applications to Hydrocarbon Exploration. 

American Association of Petroleum Geologists,  Memoir 26, 

 63–82.

Vass D. 2002: Lithostratigraphy of Western Carpathians: Neogene 

and Buda Paleogene. GÚDŠ, Bratislava, 1–200 (in Slovak).

Vass D., Nagy A., Kohút M. & Kraus I. 1988: Devínska Nová Ves 

formation: Coarse-grained sediments on the south-eastern part 

of Vienna Basin. Mineralia Slovaca 20, 109–122 (in Slovak with 

English summary).

Wentworth Ch.K. 1922: A Scale of Grade and Class Terms for Clastic 

Sediments. J. Geol. 30, 5, 377–392.

Whitney D.L. & Evans B.W. 2010: Abbreviations for names of 

rock-forming minerals. Am. Mineral. 95, 185–187.

Zlinská A. 2015: Middle Miocene foraminifers from the sediemnts in 

well HGP-3 (Stupava, Vienna Basin, Slovakia). Mineralia 

 Slovaca 47, 177–188 (in Slovak with English summary). 

Calcareous nannofossils were studied from 5 core samples of 

Cífer-2 well. Top sample core 13 is assigned to NN6 Zone (Martini 

1971) based on the presence of Reticulofenestra pseudoumbilicus 

and >7 μm, Helicosphaera wallichii and Sphenolithus abies. Core 14 

contains  Helicosphaera scissura, Coronocyclus nitescens and 

Helicosphaera walbersdorfensis and is thus assigned to NN5 Zone. 

Core 15 is poor in recovery due to tuffitic composition of the sedi-

ment. Entire sample  

contains only Coccolithus pelagicus, 

Reticulofenestra haqii, R. minuta and Thoracosphaera thus NN Zone 

cannot be assigned. Core 20 contains Sphenolithus heteromorphus  

a marker for NN5-NN4 zones but due to absence of Helicosphaera 

ampliaperta (NN4–NN2) NN5 Zone can be suggested. Core 23 con-

tains  Helicosphaera euphratis, Calcidiscus tropicus and 

Reticulofenestra pseudoumbilicus so NN4 Zone is assigned. All stud-

ied samples contain reworking of Early Miocene (e.g., Reticulofenestra 

lockeri, R. bisecta, R. stavensis) Oligocene (e.g., Isthmolithus recur­

vus, Reticulo fenestra umbilicus), Eocene (e.g., Chiasmolithus gran­

dis, Pontosphaera pulcheroides) and Late Cretaceous (e.g., 

 

Micula staurophora, Prediscosphaera cretacea, Watznaueria barne­

siae) nanofossils.

Appendix 1

Calcareous nannofossils zonal markers found in the Cífer-2 well

Depth (m)

Core

Discipline

Zone / Subzone

Event

1350–1259.2

13

N

NN6

PRES Reticulofenestra pseudoumbilicus 6 and >7 μm, Helicosphaera wallichii, Sphenolithus abies 

1405–1411

14

N

NN5

TOP Helicosphaera scissura, Coronocyclus nitescens, BASE Helicosphaera walbersdorfensis

1447–1451

15

N

Unassigned

Poor sample, PRES Coccolithus pelagicus, Reticulofenestra haqii, R. minuta, Thoracosphaera

1674–1680

20

N

NN5

PRES Sphenolithus heteromorphus, ABSENCE Helicosphaera ampliaperta

1857–1862

23

N

NN4

TOP Helicosphaera euphratis, BASE Calcidiscus tropicus, Reticulofenestra pseudoumbilicus