background image

GEOLOGICA CARPATHICA

, OCTOBER 2018, 69, 5, 453–466

doi: 10.1515/geoca-2018-0026

www.geologicacarpathica.com

Petrology and dating of the Permian lamprophyres from  

the Malá Fatra Mts. (Western Carpathians, Slovakia)

JÁN SPIŠIAK

1

, LUCIA VETRÁKOVÁ

1

, DAVID CHEW

2

, ŠTEFAN FERENC

1

, TOMÁŠ MIKUŠ

3

VIERA ŠIMONOVÁ

1

 and PETER BAČÍK

3, 4

1 

Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia; jan.spisiak@umb.sk

2

 Department of Geology, Trinity College Dublin, Dublin 2, Ireland

3 

Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia 

4 

Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6,  

842 15 Bratislava, Slovakia

(Manuscript received November 3, 2017; accepted in revised form October 4, 2018)

Abstract: Calc–alkaline lamprophyres are known from several localities in the Malá Fatra Mountains. They form dykes 

(0.5–3 m) of varying degree of alteration that have intruded the surrounding granitoid rocks which are often incorporated 

xenoliths. Clinopyroxenes (diopside to augite), amphiboles (kaersutitic), biotites (annite) and plagioclases are major 

primary minerals of the dykes, accessory minerals include apatite, ilmenite, rutile, pyrite, chalcopyrite, and pyrrhotite. 

Apatite has a relatively low F, but increased Cl content compared to typical apatite from lamprophyres or magmatic  

apatite from granitic rocks in the Western Carpathians. The chemical composition of the lamprophyres indicates  

their calc–alkaline character, but affinity to alkaline lamprophyres is suggested by the Ti enrichment in clinopyroxene, 

amphibole and biotite. According to modal classification of the minerals, the studied rocks correspond to spessartite.  

The differences in the chemical composition of the rocks (including Sr and Nd isotopes) probably result from the contami-

nation of primary magma by crustal material during magma ascent. The age of the lamprophyres, based on U/Pb dating 

in apatite, is 263.4 ± 2.6 Ma.

Keywords: calc–alkaline lamprophyres, mineralogy, geochemistry, Malá Fatra Mts.

 

Introduction 

Lamprophyres are dyke rocks which differ from intrusive and 

effusive rocks in mineral composition, structure and, to some 

degree, chemical composition. The term lamprophyre was 

 introduced by Gümbel (1874) to denote dark-coloured dyke 

rocks of variable mineral composition. 

Lamprophyres are generally ultramafic, mafic, or interme-

diate rocks that intrude the basement at shallow-crustal levels 

and form dykes or sills. They are porphyritic rocks comprising 

phenocrysts of mafic minerals in a groundmass consisting of 

the same early crystallized minerals. The early magmatic 

mafic minerals include phlogopite, olivine, amphibole, clino-

pyroxene, and apatite (Bergman 1987; Rock 1987, 1991).  

The lamprophyric magmas are typically formed at low degrees 

of partial melting of an upper mantle source at a depth of 

100–150 km (Rock 1991). These magmas are known to have 

very high concentrations of volatiles (F, CO

2

, H

2

O) and incom-

patible trace elements (light REE, Zr, Sr, Ba). Such high vola-

tile contents likely result either from a previously volatile and 

incompatible elements-rich mantle source (Ulrych et al. 1993) 

or from fluid-rich metasomatism (McKenzie 1989). Lampro-

phyres cannot be simply referred to as textural varieties of 

common plutonic or volcanic rocks, they are more complex in 

nature (Seifert 2005). They are hybrid rocks, resulting from 

interactions of mantle melts with more evolved crustal 

material by processes of magma mixing (mafic–felsic melts) 

and/or assimilation of country-rock material (Rock 1991).

In the crystalline complexes of the Western Carpathians, 

lamprophyres  occur  in  various  core  mountains:  Považský 

Inovec Mts., Suchý Mts., Malá Fatra Mts., Nízke Tatry Mts., 

but they are also known from the Veporic complexes (Hovorka 

1967). Yet no attention has been paid to the detailed mine-

ralogical and geochemical characteristics and age of these 

rocks. The focus of this work is on the detailed study of  

the mineral composition and geochemistry of Malá Fatra Mts. 

lamprophyres.

Geological setting

Basic dyke rocks from the Malá Fatra Mts. were first 

described by Ivanov and Kamenický (1957) from the area of 

the Kriváň hill (elevation Veľká Kráľová) and Martinské hole 

Mountains. The rocks occur as dykes of different thickness 

(0.5–3 m). Hovorka (1967) labelled these rocks as monsonitic 

lamprophyres. Lamprophyres are found in the surroundings of 

granitoid rocks (granodiorite and tonalite) of the Western 

Carpathians crystalline complexes. Some of the Malá Fatra 

lamprophyre dykes were relatively strongly tectonically 

affected, which indicates their pre-Alpine age. Depending  

on the structure, texture and mineral composition of 

background image

454

SPIŠIAK, VETRÁKOVÁ, CHEW, FERENC, MIKUŠ, ŠIMONOVÁ and BAČÍK

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

lamprophyres, several types of dyke rocks can be distin-

guished in the Malá Fatra Mts.: porphyric, equigranular and 

amygdaloidal. Lamprophyres were studied from two localities 

(Fig. 1):

•  Outcrops of dykes at the cable car valley station at Martinské 

hole near Kalužná hill (49°5’49” N, 18°50’28” E).

•  Dykes  in  Dubná  skala  granite  quarry  (49°8’25”  N,  

18°52’43” E) and dykes from the Višňové highway tunnel 

gallery.

The studied lamprophyres often contain xenoliths of 

 

the surrounding granitoid rocks and their minerals resorbed  

in a different stage. The surrounding granitoid rocks have  

the charac ter of hybrid tonalities (Kamenický et al. 1987) or 

I-type granites (Broska et al. 1997). The minerals represented 

in the rocks are mainly plagioclases (oligoclase–andesine), 

strongly undulosed quartz, less potassium feldspar and bio-

tites, and relatively rarely muscovite.

Mesozoic sequences of the Malá Fatra also contained 

Cretaceous  alkaline  lamprophyres  (Polom,  Višňové  or 

Krpeľany; Hovorka & Spišiak 1988; Spišiak 1999). They are 

different in age, mineral and chemical composition, but above 

all, in the presence of foids and absence of quartz and 

feldspar.

Analytical methods

Silicates and apatites were studied using electron micro-

probe JEOL JXA 8530FE at the Earth Sciences Institute of  

the Slovak Academy of Sciences in Banská Bystrica under  

the following conditions for silicates: accelerating voltage  

15 kV, probe current 20 nA, beam diameter 3–8 µm, ZAF 

 correction, counting time 10 s on peak, 5 s on background.  

The used standards, X-ray lines and D.L. (in ppm) were: 

Ca(, 25) — diopside; K (, 44) — 

orthoclase; P (, 41) — apatite; F (

167) — fluorite; Na (, 43) — albite; 

Mg (, 41) — diopside; Al (, 42) 

— albite; Si (, 63) — quartz; Ba (

72) — barite; Fe (, 52) — hematite; 

Cr (, 113) — Cr

2

O

3

; Mn (, 59) — 

rhodonite; Ti (, 130) — rutile; Cl 

(, 12) — tugtupite; Sr (, 71) — 

celestite. The following conditions for 

apatites were used: accelerating voltage 

15 kV, probe current 20nA and beam 

diameter 5 μm and ZAF matrix correc-

tion was used. The EPMA was cali-

brated by the natural and synthetic 

standards. Used standards, X-ray lines, 

crystal and D.L. (in ppm) are: 

 

Ca (, PETL, 24–62) — diopside;  

K (, PETL, 20–48) — orthoclase;  

Th (, PETL, 41–75) — thorianite;  

Pb (, PETL, 65–138) — crocoite;  

Cl (, PETL, 11–12) — tugtupite;  

P (, PETL, 56–85) — apatite; S (

PETL, 27–47) — barite; Y — (

PETL, 59–122) — YPO

4

; F (, LDE1, 

103–273) — fluorite; Na (, TAP, 

46–78) — albite; Sr (, TAP, 38–201) 

— celestite; Si (, TAP, 50–125) — 

orthoclase; Al (, TAP, 37–100) — 

albite; Mg (, TAP, 37–87) — diopside; 

Sm (, LIFH, 62–274) — SmPO

4

;  

Pr (, LIFH, 121–235) — PrPO

4

;  

Nd (, LIFH, 62–123) — NdPO

4

;  

Ce (, LIFH, 65–129) — CePO

4

;  

La (, LIFH, 72–139) — LaPO

4

;  

Fe (, LIF, 94–333) — hematite; 

 

Mn (, LIF, 79–238) — rhodonite;  

Ti (, LIF, 133–333) — rutile; Ba (

LIF, 242–674) — barite. 

Fig. 1.  Geological  map  of  part  of  Malá  Fatra  Mts.  (Digital  geological  map  of  the  Slovak 

Republic at scale 1:50,000 [online]. 

State  Geological  Institute  of  Dionýz  Štúr,   

Bratislava, 

2013).

 

Legend: 1 — fluvial sediments (Quaternary); 2 — proluvial sediments (Quaternary);  

3 — deluvial sediments (Quaternary); 4 — Martin Fm. (calcareous clays, sandstones, con-

glomerates, Quaternary); 5 — Dubná Skala Fm. (nonsaline limestones, travertines, alms, con-

glomerates, Miocene); 6 — Mráznica Fm. (grey and dark-gray marly limestones, alms, 

marlestones, Late Jurassic–Early Cretaceous); 7 — Allgäu Fm. (Early Jurassic); 

 

8 — Guttenstein Limestones (Middle Triassic); 9 — Lúžna Fm. (Early Triassic); 10 — porfy-

rites, porphyrites, lamprophyres (Late Paleozoic); 11 — granites and granodiorites (Early 

Paleozoic); 12 — amphibolites (Early Paleozoic); 13 — orthogneisses (Early Paleozoic);  

14 — garnet–biotite paragneisses (Early Paleozoic); 15 — granodiorites and tonalities (Early 

Paleozoic); 16 — fault lines; 17 — tectonic structure (nappe structure); 18 — samples.

background image

455

LAMPROPHYRES FROM MALÁ FATRA MTS. (WESTERN CARPATHIANS, SLOVAKIA)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

The chemical composition of the rocks was determined at 

the ACME Analytical Laboratories (Vancouver, Canada). 

Total abundances of major element oxides were determined by 

inductively coupled plasma–emission spectrometry (ICP-ES) 

following lithium metaborate–tetraborate fusion and dilute 

nitric acid treatment. Loss on ignition (LOI) was calculated 

from the difference in weight after ignition to 1000 °C. For  

the total carbon (TOT/C) and sulphur analysis (TOT/S) by 

LECO analysis, the samples were heated in an induction fur-

nace to >1650 °C, which caused volatilization of all C and S 

bearing phases. Vapours were carried through an infrared 

spectrometric cell wherein the concentrations of C and S  

were determined by the absorption of specific wavelengths  

in  the  infrared  spectra  (ORG/C = TOT/C  minus  graphite  C  

and carbonate). Concentrations of trace elements and rare 

earth elements were determined by ICP mass spectrometry 

(ICP-MS). Further details are accessible on the web page of 

the ACME Analytical Laboratories (http://acmelab.com/). 

Apatite crystals were separated using standard techniques. 

Apatite U–Pb data were acquired using a Photon Machines 

Analyte Exite 193 nm ArF Excimer laser-ablation system 

 coupled to a Thermo Scientific iCAP Qc at the Department  

of  Geology  Trinity  College  Dublin.  Twenty-eight  isotopes 

(

31

P, 

35

Cl, 

43

Ca, 

55

Mn, 

86

Sr, 

89

Y, 

139

La, 

140

Ce, 

141

Pr, 

146

Nd, 

147

Sm, 

153

Eu, 

157

Gd, 

159

Tb, 

163

Dy, 

165

Ho, 

166

Er, 

169

Tm, 

172

Yb, 

175

Lu, 

200

Hg, 

204

Pb, 

206

Pb, 

207

Pb, 

208

Pb, 

232

Th, 

238

U and mass 

248

(

232

Th

16

O) 

were acquired using a 50 μm laser spot, a 4 Hz laser repetition 

rate and a fluence of 3.31 J/cm

2

. A ca. 1 cm sized crystal of 

Madagascar apatite which has yielded a weighted average 

ID-TIMS  concordia  age  of  473.5 ± 0.7  Ma  (Thomson  et  al. 

2012; Cochrane et al. 2014) was used as the primary apatite 

reference material in this study. McClure Mountain syenite 

apatite (the rock from which the 

40

Ar/

39

Ar hornblende standard 

MMhb is derived) was used as a secondary standard. McClure 

Mountain syenite has moderate but reasonably consistent U 

and Th  contents  (~23  ppm  and  71  ppm;  Chew  &  Donelick 

2012) and its thermal history, crystallization age (weighted 

mean 

207

Pb/

235

U age of 523.51 ± 2.09 Ma) and initial Pb isoto-

pic composition (

206

Pb/

204

Pb = 17.54 ± 0.24; 

207

Pb/

204

Pb = 15.47 

± 0.04)  are  known  from  high-precision  TIMS  analyses 

(Schoene  &  Bowring  2006).  Durango  apatite  was  also  ana-

lysed in this study as a secondary standard. Durango apatite is 

a distinctive yellow-green fluorapatite widely used as a mine-

ral standard in apatite fission-track and (U–Th)/He dating and 

apatite electron micro-probe analyses. It is found as large crys-

tals within an open pit iron mine at Cerro de Mercado, 

Durango, Mexico. The apatite was formed between the erup-

tions of two major ignimbrites which have yielded a sanidine–

anorthoclase 

40

Ar–

39

Ar age of 31.44 ± 0.18 Ma (McDowell et 

al. 2005). NIST 612 standard glass was used as the apatite 

trace element concentration reference material. The raw iso-

tope data were reduced using the “VizualAge” data reduction 

scheme  of  Petrus  &  Kamber  (2012)  within  the  freeware 

IOLITE package of Paton et al. (2011). User-defined time 

intervals are established for the baseline correction procedure 

to calculate session-wide baseline-corrected values for each 

isotope. The time-resolved fractionation response of indivi-

dual standard analyses is then characterized using a user-

speci fied down-hole correction model (such as an exponential 

curve, a linear fit or a smoothed cubic spline). The data reduc-

tion  scheme  then  fits  this  appropriate  sessionwide  “model” 

U–Th–Pb fractionation curve to the time-resolved standard 

data and the unknowns. Sample-standard bracketing is applied 

after the correction of down-hole fractionation to account for 

long-term drift in isotopic or elemental ratios by normalizing 

all ratios to those of the U–Pb reference standards. Common 

Pb in the apatite standards was corrected using the 

207

Pb-based 

correction method using a modified version of the VizualAge 

DRS that accounts for the presence of variable common Pb  

in the primary standard materials (Chew et al. 2014). Over  

the course of two months of analyses, McClure Mountain apa-

tite (

207

Pb/

235

U  TIMS  age  of  523.51 ± 1.47  Ma;  Schoene  & 

Bowring 2006) yielded a U–Pb Tera-Wasserburg concordia 

lower intercept age of 524.5 ± 3.7 Ma with an MSWD = 0.72. 

The lower intercept was anchored using a 

207

Pb/

206

Pb value of 

value of 0.88198 derived from an apatite ID-TIMS total U–Pb 

isochron (Schoene & Bowring 2006). 

Samples for Sr and Nd isotope analyses were chemically 

prepared  and  measured  in  the  Isotope  Geochemistry 

Laboratory in the Institute of Geological Sciences of the Polish 

Academy of Science, Krakow. The analyses were made with  

a Multi-Collector Inductively Coupled Plasma Mass 

Spectrometer (MC-ICP-MS) Neptune. The samples were 

digested in three steps: firstly, with HF : HNO

3

, secondly, with 

HNO

3

 and finally, with HCl and HF, following the procedure 

described by Anczkiewicz et al. (2004) and Anczkiewicz & 

Thirlwall (2003). The samples were then dissolved in HCl for 

loading  on  cation  exchange  columns  with  AG50Wx8  resin 

(Anczkiewicz et al. 2004). Final separation of Sr was per-

formed by Sr-spec resin (Peryt et al. 2010) and Nd by Ln-spec 

resin  (Anczkiewicz  &  Thirlwall  2003).  Nd  isotopes  were 

 normalized  to 

143

Nd/

144

Nd = 0.7219  to  correct  for  mass  bias. 

The reproducibility of Nd standards over the period of analy-

ses was 

143

Nd/

144

Nd = 0.512101 ± 8  (2  s.d.  n = 3).  Sr  isotopes 

were normalized to 

86

Sr/

88

Sr = 0.1194 to correct for mass bias. 

The reproducibility of Sr standards over the period of analyses 

was 

87

Sr/

86

Sr = 0.710261 ± 8  (2  s.d.  n = 3).  They  were  also 

chemi cally prepared and measured in the Isotope Geochemistry 

Laboratory in the Institute of Geological Sciences of the Polish 

Academy of Science, Krakow. The εNd(0,t) values were 

 calculated with parameters for CHUR 

143

Nd/

144

Nd = 0.512638, 

147

Sm/

144

Nd = 0.1967 (Jacobsen & Wasserburg 1980; DePaolo 

1981).

Results

Petrographic observation

Lamprophyres from the Malá Fatra Mountains are pale 

green, grey-green to dark grey in colour and they mostly have 

porphyric texture (equigranular types are less frequent), rarely 

background image

456

SPIŠIAK, VETRÁKOVÁ, CHEW, FERENC, MIKUŠ, ŠIMONOVÁ and BAČÍK

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

also amygdaloidal texture. Phenocrysts are formed by plagio-

clase, quartz, pyroxene, biotite, rarely also amphibole. In some 

places, there are occurrences of irregular, up to 6 cm large 

xenoliths of the surrounding granitoid rocks or their minerals 

(mainly plagioclases; Fig. 2a). Oval-shaped amygdales filled 

with carbonate, rarely with chlorite are also frequent (Fig. 2b). 

The rocks are characterized by strongly, usually almost com-

pletely altered primary minerals, namely clinopyroxenes, but 

often also amphiboles and biotites. This is the reason for diffi-

culties in the classification of rocks based on their modal 

 mineral composition composition (Spišiak & Hovorka 1998). 

Nevertheless, based on the observed relics of minerals, their 

pseudomorphoses and types of alte rations, the studied rocks 

correspond to spessartite. The chemi cal and isotopic composi-

tions of the lamprophyres from the Malá Fatra Mts. in  

the analysed samples are given in Tables 1 and 2.

We determined the age of the rocks using LA-ICP-MS  

by apatite analysis (Trinity College, Dublin, Ireland) as  

263.4 ± 2.6 Ma (Fig. 3), which corresponds well to their geo-

logical position.

Mineralogical characterization

Clinopyroxenes usually form phenocrysts with a typical 

oscillatory and sector (hour-glass texture) (Fig. 4a) zoning. 

The pyramidal sector is enriched with SiO

2

 and MgO, or 

depleted in TiO

2

, Al

2

O

3

 and Na

2

O compared to the prismatic 

sector (Table 3). The studied clinopyroxenes are characterized 

by relatively high contents of TiO

2

 and Na

2

O. Based on the 

IMA classification of pyroxenes (Morimoto et al. 1988), they 

Fig. 2. a — Photo of the lamprophyres structure; light irregular shape 

— xenolith of the surrounded granitoids, small ovoid-shape carbonate 

amygdaloids; b — photomicrograph of carbonate amygdales, crossed 

polaroids.

MH-1

MH-2

DS-55

DS-424

SiO

2

39.96

46.85

53.22

48.10

TiO

2

1.65

1.85

1.63

1.75

Al

2

O

3

14.05

16.64

15.68

15.92

Fe

2

O

3

9.88

10.68

8.44

9.97

Cr

2

O

3

0.02

0.02

0.02

0.03

MnO

0.16

0.18

0.08

0.16

MgO

6.55

5.38

7.23

6.88

CaO

9.40

4.76

1.77

6.36

Na

2

O

3.24

3.20

4.39

2.95

K

2

O

1.82

3.59

1.34

1.63

P

2

O

5

0.60

0.66

0.46

0.44

LOI

12.30

5.80

5.50

5.50

Total

99.63

99.73

99.76

99.73

TOT/C

2.91

0.83

0.27

0.51

TOT/S

0.08

0.07

0.07

0.06

Sc

14

15

17

18

Ba

433

1052

308

425

Be

2

2

2

1

Co

27.8

27.9

18.6

33.7

Cs

1.5

1.7

1.4

1.6

Ga

13.6

16.1

15.6

15.6

Hf

4.9

5.5

5.4

5.1

Nb

53.8

66.2

53.1

47.3

Rb

41.1

60.3

20.5

36.7

Sn

2

2

2

2

Sr

571.7

589.4

113.9

509.3

Ta

3.4

4.1

3.4

3.0

Th

4.5

5.7

5.8

5.9

U

21

2

2.3

2

V

117

128

139

158

W

0.7

0.5

1.3

1

Zr

219

273.5

241.4

220.9

Y

21.3

25.7

22.8

24.5

La

39.9

50.1

33.7

37.7

Ce

79.6

87.7

69.2

73

Pr

8.69

10.04

7.71

8.17

Nd

32.2

36.8

28.2

31.3

Sm

5.45

6.37

5.28

6.14

Eu

1.83

1.97

1.59

1.7

Gd

5.18

5.73

5.2

5.47

Tb

0.74

0.84

0.7

0.8

Dy

4.3

4.6

4.17

4.64

Ho

0.77

0.95

0.79

0.9

Er

2.16

2.67

2.28

2.49

Tm

0.32

0.38

0.34

0.37

Yb

1.98

2.48

2.24

2.24

Lu

0.32

0.35

0.37

0.37

Ni

52

52

73

80

Table 1: Chemical composition of lamprophyres from the Malá  

Fatra Mts.

background image

457

LAMPROPHYRES FROM MALÁ FATRA MTS. (WESTERN CARPATHIANS, SLOVAKIA)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

can be classified as diopside to Ca-rich augite (Fig. 5). There 

are also rare occurrences of clinopyroxene xenocrysts in these 

rocks (Fig. 4b). They are partially altered to form a mixture of 

chlorite and hydrated grossular-andradite garnet. This altera-

tion must have taken place at the lamprophyres magma gene-

rating site, as the rims of the xenocrysts were formed later. 

Compared to the phenocrysts, the xenocrysts have increased 

contents of Al

2

O

3

, Na

2

O and TiO

2

 and lower contents of SiO

2

 

and CaO (Table 3). The newly formed rims of xenocrysts have 

a similar composition to the central part of phenocrysts.  

An identical type of clinopyroxenes alteration was also 

described  in  the  Nízke  Tatry  Mountains  Permian  basalts 

(Spišiak et al. 2017).

Amphibole is a relatively rare mineral (Fig. 6a) and is often 

strongly altered. It usually has elevated contents of TiO

2

, Na

2

and K

2

O (Table 4). Based on the classification of amphiboles 

(Hawthorne et al. 2012), it corresponds to kaersutitic amphi-

bole based on the Ti > 0.5 apfu. However, unknown Fe

2+

/Fe

3+

 

and (OH)

/O

2−

 ratio prevents exact classification. The Al con-

tent is too low for kaersutite. If a part of Fe is treated as triva-

lent to charge balance octahedral sites, amphibole would have 

the composition of ferri-kaersutite. In contrast, if the charge at 

octahedral sites is balanced by OH, the composition would be 

between ferro-ferri-kaersutite and hastingsite. Like amphi-

bole, biotite is also strongly altered (chloritized). It is charac-

terized by the high content of TiO

2

, which documents its 

magmatic origin (Table 4). Based on the mica classification of 

Rieder et al. (1998), it corresponds to annite (Fig. 7). Abdel-

Rahman (1993) used the dependence of Al

2

O

3

 and MgO in 

biotites from different lamprophyre types for their genetic 

classification. In the discrimination diagram (Fig. 8), the bio-

tites from the rocks under study are lying in the field of biotites 

from calc–alkaline lamprophyres.

Plagioclase and K-feldspar are common felsic minerals in 

these rocks, with plagioclase prevailing over alkaline feldspar. 

Plagioclase has a relatively high basicity — An

61 

(Table 5,  

Fig. 6b). Strongly resorbed xenoliths of the surrounding gra-

nitoid rocks, and/or feldspar rarely occur. In plagioclase 

xenocrysts, the original composition is often preserved only in 

Age

143

Nd/

144

Nd 

2SE

143

Nd/

144

Ndi

EpsNdi 

87

Sr/

86

Sr

2SE

87

Sr/

86

Sri

DS-424

260

0.512725

0.000006

0.512523

4.29

0.705136

0.000008

0.704365

DS-55

260

0.5127624

0.000009

0.5127

5.2

0.707219

0.000011

0.705292

MH-1

260

0.512817

0.000005

0.512643

6.63

0.704381

0.000007

0.703612

MH-2

260

0.512813

0.000006

0.512635

6.47

0.704406

0.000008

0.703311

Table 2: Sr and Nd isotope composition of studied lamprophyres.

Fig. 3. LA-ICP-MS U–Pb age for apatite from studied lamprophyres. 

Fig.  4.  a, b — Back scattered electron (BSE) images of clinopy-

roxenes; HG — hydrated garnet, Chl — chlorite; the numbers in figures 

correspond to those in Table 3.

background image

458

SPIŠIAK, VETRÁKOVÁ, CHEW, FERENC, MIKUŠ, ŠIMONOVÁ and BAČÍK

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

the central parts (basicity corresponds to the original granitoid 

plagioclase; An

32

 (Broska et al. 1997, Fig. 6b) and the rims are 

replaced by more basic plagioclase. The rims (An

58–61

) of  

the xenoliths correspond to primary plagioclase from lampro-

phyres (Fig. 9). K-feldspar is less common and has elevated 

contents of Na

2

O and Ba (Table 5). 

From the accessory minerals, apatite is the most common.  

It forms columnar grains, or grains with a hexagonal shape 

(Fig. 10a). Needle-like apatite (Fig. 6a) as well as oval-shape 

apatite are observed in rare cases (Fig. 10b). According to their 

composition  (Fig.  10c, d;  Table  6),  the  apatite  studied  here 

belongs to the apatite group (Pasero et al. 2010) with the com-

position of hydroxylapatite. It has a low proportion of substi-

tuting cations (Fe < 0.04 apfu, Mg < 0.02 apfu, Na < 0.03 apfu

N. anal.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sector

pr

py

pr

py

c

c

xe

xe

xe

xe

r

r

r

r

r

SiO

2

46.33

49.96

48.29

50.04

50.27

50.36

47.03

47.29

47.04

47.06

49.18

47.96

48.70

49.29

50.77

TiO

2

2.97

1.67

2.28

1.60

1.41

1.45

1.82

1.83

1.83

1.86

1.89

2.26

1.99

1.95

1.52

Al

2

O

3

6.41

2.81

4.44

2.84

3.15

2.78

8.34

8.40

8.53

8.62

4.02

4.73

3.73

4.19

2.98

Cr

2

O

3

0.29

0.01

0.00

0.00

0.31

0.27

0.02

0.01

0.04

0.03

0.04

0.14

0.04

0.07

0.08

Fe

2

O

3

3.34

2.10

2.74

2.91

1.92

1.41

3.21

3.02

2.42

2.77

2.49

4.30

3.05

2.45

1.81

FeO

5.47

7.16

7.18

6.36

6.49

6.69

5.62

5.93

6.41

6.17

6.17

4.79

6.19

6.53

6.86

MnO

0.17

0.27

0.31

0.25

0.26

0.24

0.20

0.22

0.23

0.18

0.21

0.22

0.19

0.28

0.23

MgO

12.40

13.83

12.35

14.15

14.79

14.65

12.92

12.90

12.71

12.87

13.27

13.33

13.28

13.42

14.22

CaO

21.57

21.37

21.58

21.24

20.78

20.97

19.26

19.28

19.17

19.06

21.89

21.77

21.64

21.36

21.61

Na

2

O

0.56

0.37

0.55

0.46

0.34

0.34

0.91

0.93

0.85

0.90

0.51

0.56

0.47

0.54

0.40

K

2

O

0.03

0.02

0.03

0.03

0.02

0.01

0.04

0.01

0.03

0.02

0.02

0.04

0.02

0.03

0.03

Total

99.55

99.57

99.74

99.88

99.74

99.17

99.37

99.82

99.26

99.54

99.69

100.10

99.31

100.11

100.51

Si

4+

1.743

1.875

1.819

1.869

1.873

1.886

1.754

1.756

1.758

1.752

1.841

1.791

1.835

1.838

1.881

Al

3+

0.257

0.124

0.181

0.125

0.127

0.114

0.246

0.244

0.242

0.248

0.159

0.208

0.165

0.162

0.119

Σ

2.000

1.999

2.000

1.994

2.000

2.000

2.000

2.000

2.000

2.000

2.000

1.999

2.000

2.000

2.000

Ti

4+

0.084

0.047

0.065

0.045

0.040

0.041

0.051

0.051

0.051

0.052

0.053

0.063

0.056

0.055

0.042

Al

3+

0.028

0.000

0.016

0.000

0.011

0.009

0.121

0.124

0.133

0.131

0.019

0.000

0.000

0.022

0.011

Fe

3+

0.095

0.059

0.078

0.082

0.054

0.040

0.090

0.084

0.068

0.078

0.070

0.121

0.087

0.069

0.050

Cr

3+

0.009

0.000

0.000

0.000

0.009

0.008

0.001

0.000

0.001

0.001

0.001

0.004

0.001

0.002

0.002

Mg

2+

0.696

0.774

0.693

0.788

0.821

0.818

0.718

0.714

0.708

0.714

0.741

0.742

0.746

0.746

0.785

Fe

2+

0.090

0.120

0.148

0.085

0.065

0.084

0.019

0.026

0.038

0.024

0.116

0.069

0.110

0.106

0.108

Σ

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

Fe

2+

0.083

0.105

0.078

0.113

0.137

0.126

0.156

0.158

0.162

0.168

0.077

0.080

0.085

0.097

0.105

Mn

2+

0.005

0.009

0.010

0.008

0.008

0.008

0.006

0.007

0.007

0.006

0.007

0.007

0.006

0.009

0.007

Ca

2+

0.870

0.859

0.871

0.850

0.829

0.842

0.770

0.767

0.767

0.760

0.878

0.871

0.873

0.853

0.858

Na

+

0.041

0.027

0.040

0.033

0.025

0.025

0.066

0.067

0.062

0.065

0.037

0.041

0.034

0.039

0.029

K

+

0.001

0.001

0.001

0.001

0.001

0.000

0.002

0.000

0.001

0.001

0.001

0.002

0.001

0.001

0.001

Σ

1.000

1.001

1.000

1.006

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.001

1.000

1.000

1.000

Wo

38.32 % 40.92 % 40.32 % 40.46 % 38.98 % 40.08 % 32.03 % 31.94 % 32.05 % 31.44 % 40.97 % 39.40 % 40.60 % 39.67 % 40.84 %

En

38.24 % 40.48 % 37.07 % 41.40 % 43.18 % 42.64 % 40.02 % 39.69 % 39.35 % 39.76 % 39.27 % 40.25 % 39.61 % 39.66 % 41.05 %

Fs

9.46 % 11.76 % 12.08 % 10.44 % 10.63 % 10.92 %

9.77 % 10.24 % 11.14 % 10.69 % 10.24 %

8.11 % 10.36 % 10.82 % 11.11 %

Ae

1.12 %

0.91 %

1.21 %

1.38 %

0.72 %

0.63 %

1.45 %

1.39 %

1.05 %

1.23 %

1.11 %

1.62 %

1.25 %

1.13 %

0.84 %

Jd

3.37 %

1.91 %

3.08 %

2.12 %

1.86 %

1.94 %

5.89 %

6.05 %

5.80 %

6.00 %

2.81 %

2.78 %

2.39 %

3.02 %

2.16 %

Ca–Ts

4.87 %

1.57 %

2.78 %

1.84 %

2.54 %

1.66 %

8.01 %

7.86 %

7.75 %

7.98 %

2.77 %

4.40 %

2.80 %

2.79 %

1.78 %

Ti–Ts

4.62 %

2.47 %

3.45 %

2.36 %

2.08 %

2.13 %

2.84 %

2.84 %

2.86 %

2.90 %

2.82 %

3.44 %

3.00 %

2.91 %

2.21 %

Fig. 5. Classification diagram of clinopyroxenes (Morimoto et al. 

1988); D — diopside, H — hedenbergite, A — augite; pr — prismatic 

sector, py — pyramidal sector, c — core, r — rims, xe — xenocryst.

Table 3: Selected analyses of clinopyroxenes. Crystal-chemical formula calculated based on 6 cations and Fe

2+

/Fe

3+

 ratio calculated from 

charge-balanced formula. pr — prismatic sector, py — pyramidal sector, c — core, xe — xenocryst, r — rims.

background image

459

LAMPROPHYRES FROM MALÁ FATRA MTS. (WESTERN CARPATHIANS, SLOVAKIA)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

REE < 0.03 apfu) but (OH)

 is significantly substituted by F

 

(0.37–0.44 apfu) and Cl

 (0.05 apfu).. From the opaque mine-

rals, the most common are ilmenite, rutile, pyrite, chalcopyrite, 

pyrrhotite, while the sulphides are younger than the oxides.

Discussion

Geochemical characterization of the lamprophyres

The chemical composition of the lamprophyres from 

 

the Malá Fatra Mts. can be used to reveal their genetic condi-

tions, although it is strongly affected by the alteration of these 

rocks and amygdales and xenoliths of the surrounding grani-

toid rocks (or plagioclases) presence. In the classification 

 diagram of different types of lamprophyre rocks (Rock 1987), 

the studied lamprophyres correspond to the calc–alkaline type 

(Fig. 11). To compare, we plotted the average compositions of 

calc–alkaline lamprophyres, spessartites (Rock 1991) and 

Cretaceous alkaline lamprophyres from the Malá Fatra Mts. 

(Spišiak  &  Hovorka  1997).  The  Cretaceous  lamprophyres 

from the Malá Fatra Mts. fall within the field of alkaline 

lamprophyres. 

For a more detailed geochemical characterization, we used  

a trace element diagram normalized to primitive mantle   

(Fig. 12). The contents of compatible elements (Cr, Ni, Co, V, 

Sc) in the studied lamprophyres are lower (Cr, Ni) or similar to 

primitive mantle (PM). This could mean that the source was 

either depleted in these elements or retained by compatible 

elements during partial melting. It could also indicate (espe-

cially Sc and Co concentrations) the presence of biotite and 

clinopyroxene in the source. In contrast to PM, all incompa-

tible elements are highly abundant. Compared to the average 

composition of calc–alkaline lamprophyres, the lamprophyres 

from the Malá Fatra Mts. are rich in Nb and Ta and slightly 

depleted in LILE (large-ion lithophile elements), namely Rb, 

Ba and Cs. The other elements compared had identical con-

tents. Enrichment of some lamprophyre types with Nb and Ta 

was also described in the Sudetes (Awdankiewicz 2007)

We also used discrimination diagrams to classify the studied 

rocks with different types of magmatic formations. The Nb/Y 

ratio was used as an index to ascertain the alkaline or 

Fig. 6. a — Back scattered electron (BSE) images of amphiboles and 

apatites, the numbers in figures correspond to those in Table 4; b — 

back scattered electron (BSE) images of plagioclases, the numbers in 

figures correspond to those in Table 5; Plg — plagioclases, Amp — 

amphiboles, Bt — biotites, Ap — apatites.

N. anal.

1

2

3

N. anal.

1

2

3

SiO

2

39.63

40.47

39.61 SiO

2

35.35

35.03

35.29

TiO

2

5.45

4.33

5.10 TiO

2

3.58

5.47

5.92

Al

2

O

3

11.23

10.41

11.22 Al

2

O

3

16.24

14.53

14.66

Cr

2

O

3

0.01

0.12

0.00 Cr

2

O

3

0.00

0.00

0.00

FeO

16.72

20.16

16.64 FeO

23.59

22.55

21.99

MnO

0.30

0.44

0.30 MnO

0.05

0.08

0.07

MgO

8.89

7.19

8.54 MgO

8.35

8.99

9.32

CaO

11.13

11.08

11.33 CaO

0.06

0.10

0.05

Na

2

O

2.45

2.65

2.29 Na

2

O

0.14

0.09

0.11

K

2

O

1.42

1.55

1.51 K

2

O

9.34

9.46

9.48

H

2

O*

1.69

1.68

1.67 H

2

O*

3.90

3.89

3.92

Total

98.92 100.08

98.21 Total

100.60 100.19 100.81

Si

4+

6.100

6.260

6.162 Si

4+

2.716

2.703

2.697

Al

3+

1.900

1.740

1.838

IV

Al

3+

1.284

1.297

1.303

T

8.000

8.000

8.000 ∑T

4.000

4.000

4.000

Ti

4+

0.631

0.504

0.597 Ti

4+

0.207

0.318

0.340

Al

3+

0.137

0.158

0.219

VI

Al

3+

0.187

0.025

0.017

Cr

3+

0.001

0.015

0.000 Cr

3+

0.000

0.000

0.000

Mg

2+

2.040

1.658

1.980 Fe

2+

1.516

1.455

1.405

Mn

2+

0.039

0.058

0.040 Mn

2+

0.003

0.005

0.005

Fe

2+

2.152

2.608

2.165 Mg

2+

0.956

1.034

1.062

∑C

5.000

5.000

5.000

M

0.131

0.162

0.171

Ca

2+

1.835

1.836

1.888 ∑M

3.000

3.000

3.000

Na

+

0.165

0.164

0.112 Ca

2+

0.005

0.008

0.004

∑B

2.000

2.000

2.000 Na

+

0.021

0.013

0.016

Na

+

0.567

0.631

0.579 K

+

0.915

0.931

0.924

K

+

0.279

0.306

0.300

I

0.059

0.047

0.055

∑A

0.845

0.937

0.879 ∑I

0.941

0.953

0.945

OH

-

2.000

2.000

2.000 OH

-

2.000

2.000

2.000

Table 4: Selected analyses of amphiboles and biotites. Crystal-

chemical formula calculated based on 13 C+T cations (amphiboles) 

and 22 negative charges (biotites).

background image

460

SPIŠIAK, VETRÁKOVÁ, CHEW, FERENC, MIKUŠ, ŠIMONOVÁ and BAČÍK

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

calc–alkaline character of various rock types (Ma et al. 2013, 

Jayabalan et al. 2015). The high Nb contents in the samples 

would point to their alkaline character. A similar dependence 

was used by Krmíček et al. (2011) for geotectonic classifica-

tion. In the discrimination diagram (Fig. 13), the examined 

rocks are lying in the field of anorogenic geodynamic setting 

rocks. Further, we employed the dependence of Th/Y; Ta/Yb 

and Ba/Th, U/La to compare the studied lamprophyres with 

main  geochemical  reservoirs  (Fig.  14a, b).  In  the  diagrams,  

the rocks lie close to the enriched mantle field (Fig. 14a) or are 

shifted toward U–Th enrichment (Fig. 14b). We also plotted 

the analyses of calc–alkaline lamprophyres from the Krušné 

hory Mts. (Štemprok et al. 2014).

The normalized REE curve (Fig. 15) indicates enrichment 

in LREE relative to HREE, which can result from mode rate-

degrees of partial melting of the protolith. No Eu-anomaly was 

observed and therefore, no accumulation or plagioclase frac-

tionation during magma evolution is likely. La/Yb ratio from 

the sampled lamprophyres is consistently within 0.14 to 0.17 

indicating that parental melts were probably mantle-derived 

Fig. 8. Position of studied mica in the classification diagram of Abdel-

Rahman (1993) for micas from different magmatic series.

Fig. 7. Classification diagram of studied micas. End-members names 

according to Rieder et al. (1998).

Sample

MH-1

DS-29

DS-55

N. anal.

1xe

2

3

4xe

5

6

7

8

9

10

11

12

13

SiO

2

59.96  

55.83  

52.76  

60.01  

54.89  

52.19  

52.58  

53.26  

53.74  

53.09  

53.95  

64.73  

65.06  

TiO

2

0.00  

0.14  

0.21  

0.11  

0.10  

0.08  

0.10  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00  

Al

2

O

3

25.15  

27.61  

29.45  

25.08  

28.19  

29.74  

29.74  

28.54  

28.40  

29.04  

28.56  

18.36  

18.08  

FeO

0.24  

0.41  

0.43  

0.22  

0.32  

0.42  

0.38  

0.49  

0.43  

0.53  

0.55  

0.20  

0.17  

MnO

0.00  

0.09  

0.03  

0.00  

0.00  

0.07  

0.03  

0.00  

0.00  

0.00  

0.00  

0.00  

0.01  

CaO

6.21  

9.38  

11.92  

6.27  

9.99  

12.36  

12.07  

12.44  

12.29  

12.57  

11.38  

0.09  

0.05  

MgO

0.00  

0.06  

0.05  

0.00  

0.02  

0.05  

0.03  

0.08  

0.09  

0.11  

0.11  

0.23  

0.00  

BaO

0.06  

0.03  

0.04  

0.04  

0.04  

0.12  

0.04  

0.00  

0.00  

0.00  

0.00  

0.34  

0.17  

SrO

0.26  

0.23  

0.25  

0.36  

0.25  

0.16  

0.12  

0.13  

0.15  

0.13  

0.16  

0.00  

0.00  

Na

2

O

7.52  

5.49  

4.28  

7.17  

5.03  

4.02  

4.17  

3.94  

4.32  

3.99  

4.52  

0.47  

0.45  

K

2

O

0.91  

0.87  

0.42  

0.89  

0.85  

0.36  

0.39  

0.59  

0.53  

0.43  

0.75  

15.91  

16.27  

Total

100.30  

100.14  

99.83  

100.15  

99.69  

99.55  

99.64  

99.48  

99.95  

99.90  

99.98  

100.33  

100.26  

Formula based on 5 cations
Si

2.67

2.52

2.40

2.69

2.49

2.39

2.40

2.44

2.44

2.42

2.45

2.99

3.00

Ti

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Al

1.32

1.47

1.58

1.32

1.51

1.60

1.60

1.54

1.52

1.56

1.53

1.00

0.98

Cr

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Fe3

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Fe2

0.01

0.02

0.02

0.01

0.01

0.02

0.01

0.02

0.02

0.02

0.02

0.01

0.01

Mn

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Mg

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.02

0.00

Ca

0.30

0.45

0.58

0.30

0.49

0.61

0.59

0.61

0.60

0.61

0.55

0.00

0.00

Ba

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

Na

0.65

0.48

0.38

0.62

0.44

0.36

0.37

0.35

0.38

0.35

0.40

0.04

0.04

K

0.05

0.05

0.02

0.05

0.05

0.02

0.02

0.03

0.03

0.03

0.04

0.94

0.96

An

29.69

46.09

59.11

30.85

49.70

61.60

60.11

61.36

59.25

61.87

55.63

0.47

0.26

Ab

65.11

48.84

38.43

63.92

45.28

36.27

37.55

35.17

37.70

35.59

39.97

4.23

4.03

Or

5.20

5.06

2.46

5.23

5.02

2.14

2.34

3.46

3.05

2.54

4.39

95.30

95.71

Table 5: Selected analyses of plagioclases and K-feldspar.

background image

461

LAMPROPHYRES FROM MALÁ FATRA MTS. (WESTERN CARPATHIANS, SLOVAKIA)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

(Sun & McDonough 1989). In comparison to the REE curve, 

in calc–alkaline lamprophyres, lower LREE and slightly 

higher HREE contents can be observed.

The available data on Sr and Nd isotopes indicate relatively 

large differences in the composition (Bernard-Griffiths et al. 

1991; Rock 1991; Huang et al. 1998; Seifert 2009 and others) 

of different varieties of calc–alkaline lamprophyre. Relatively 

large variations in the chemical composition of these rocks 

(including Sr and Nd isotopic compositions) are probably   

a result of primary magma contamination by crustal material 

during magma ascent. Our isotopic data (Table 2; Fig. 16) 

 suggest that the mantle was the primary source of magma  

Nd

 = 4), but it was affected by crustal material. Similar isotope 

contents are found in some lamprophyre types from the Mid-

European Variscides (Seifert 2009).

The genetical remarks to lamprophyres

The Late Paleozoic lamprophyres of the Malá Fatra Mts.

have a complicated genesis influenced by contamination of 

primary  magma  with  mantle  material.  Geochemistry  and 

mine ralogy indicate their calk–alkaline to alkaline character. 

The mineral association including diopside, biotite and plagio-

clase is typical for calc–alkaline lamprophyres (Rock 1987). 

Fig. 9. Classification diagram of feldspars; the numbers in figures cor-

respond to those in Table 5.

Fig. 10. a — Photomicrograph of lamprophyres, parallel polaroids; b, c, d — back scattered electron (BSE) images of apatite in studied lam-

prophyres; the numbers in figures correspond to those in Table 6; Pl — plagioclases, Bt — biotites, Ap — apatites, Chl — chlotites, Ab — albite, 

Cal — calcite, Ilm — ilmenite.

background image

462

SPIŠIAK, VETRÁKOVÁ, CHEW, FERENC, MIKUŠ, ŠIMONOVÁ and BAČÍK

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

Cs

Ba

U

Ta

Ce

Pr

P

Zr

Eu

Dy

Yb

Rb

Th

Nb

La

Pb

Sr

Nd

Sm

Ti

Y

Lu

1

V

Ni

Sc

Cr

Co

Sample/ Primitive mantle

1
2
3

10

100

1000

0.1

0.01

Table 6: Selected analyses of apatites.

N. anal.

1

2

3

4

5

6

Figures

Fig 10c

Fig. 10d

SiO

2

0.13

0.14

0.15

0.15

0.10

0.09

TiO

2

0.00

0.00

0.00

0.08

0.09

0.05

Al

2

O

3

0.00

0.00

0.00

0.03

0.00

0.00

FeO

0.55

0.47

0.54

0.51

0.53

0.58

MnO

0.11

0.20

0.14

0.16

0.16

0.12

MgO

0.10

0.10

0.10

0.11

0.14

0.17

CaO

52.79

52.51

52.85

52.81

52.27

52.70

Na

2

O

0.14

0.11

0.13

0.09

0.10

0.10

K

2

O

0.01

0.01

0.00

0.02

0.01

0.00

BaO

0.07

0.05

0.01

0.00

0.00

0.00

F

1.53

1.36

1.49

1.41

1.53

1.63

Cl

0.35

0.36

0.35

0.34

0.34

0.34

SrO

0.10

0.09

0.09

0.12

0.12

0.10

SO

3

0.00

0.00

0.01

0.00

0.02

0.01

ThO

2

0.02

0.03

0.00

0.01

0.02

0.00

PbO

0.04

0.00

0.00

0.00

0.02

0.02

P

2

O

5

41.14

41.43

41.69

41.36

41.48

41.47

Y

2

O

3

0.08

0.02

0.08

0.04

0.03

0.02

La

2

O

3

0.13

0.18

0.13

0.17

0.10

0.11

Ce

2

O

3

0.33

0.40

0.33

0.36

0.26

0.25

Pr

2

O

3

0.01

0.07

0.01

0.01

0.10

0.00

Nd

2

O

3

0.16

0.15

0.14

0.16

0.15

0.13

Sm

2

O

3

0.02

0.00

0.03

0.06

0.01

0.00

Total

97.78

97.66

98.26

98.00

97.58

97.89

Oxygens   

13

13

13

13

13

13

P

3.005

3.030

3.023

3.015

3.024

3.012

Si

0.011

0.012

0.013

0.013

0.009

0.008

S

0.000

0.000

0.000

0.000

0.001

0.001

sum

3.016

3.042

3.036

3.028

3.034

3.021

Ca

4.880

4.861

4.850

4.872

4.823

4.845

Al

0.000

0.000

0.000

0.003

0.000

0.000

Ti

0.000

0.000

0.000

0.005

0.006

0.003

Fe

0.039

0.034

0.039

0.037

0.038

0.041

Mn

0.008

0.014

0.010

0.012

0.012

0.008

Mg

0.013

0.012

0.013

0.014

0.018

0.021

Na

0.023

0.018

0.022

0.016

0.017

0.017

K

0.001

0.001

0.000

0.003

0.001

0.000

Ba

0.002

0.002

0.000

0.000

0.000

0.000

Sr

0.005

0.005

0.004

0.006

0.006

0.005

Th

0.000

0.001

0.000

0.000

0.000

0.000

Pb

0.001

0.000

0.000

0.000

0.001

0.001

REE+Y

0.024

0.026

0.023

0.025

0.021

0.016

sum

4.995

4.973

4.962

4.992

4.942

4.958

F

0.418

0.372

0.402

0.385

0.417

0.442

Cl

0.051

0.052

0.051

0.050

0.050

0.049

OH

0.531

0.576

0.547

0.565

0.533

0.509

sum F+Cl

0.469

0.424

0.453

0.435

0.467

0.491

Y

0.004

0.001

0.004

0.002

0.001

0.001

La

0.004

0.006

0.004

0.005

0.003

0.003

Ce

0.010

0.013

0.010

0.011

0.008

0.008

Pr

0.000

0.002

0.000

0.000

0.003

0.000

Nd

0.005

0.005

0.004

0.005

0.005

0.004

Sm

0.000

0.000

0.001

0.002

0.000

0.000

Total

14.511

14.450

14.450

14.485

14.418

14.453

However, the Ti enrichment in pyroxene and biotite, presence 

of kaersutitic amphibole indicates an alkaline trend (Rock 

1987), although similar magmatic kaersutite was reported 

from calc–alkaline lamprophyres (Pivec et al. 2002). Apatite 

in the studied samples has a relatively lower F content com-

pared to typical apatite from lamprophyres (e.g., Tappe et al. 

2006; Seifert 2009; Pandey et al. 2018) or magmatic apatite 

from granitic rocks in the Western Carpathians (Broska et al. 

2004). In contrast, the Cl content in apatite is unusually high 

compared to granitoids in the Western Carpathians (Broska et 

al. 2004) and most of lamprophyres (e.g., Renno et al. 2003; 

Tappe et al. 2006; Pandey et al. 2018). However, high Cl con-

tent in apatite is typical for post-collisional lamprophyres 

(Seifert 2009).

Fig. 11. Classification diagram of lamprophyres (Rock 1987);  

1 — studied lamprophyres, 2 — calc–alkaline lamprophyres, 3 — ave-

rage spessartite (data for calc–alkaline lamprophyres and spessartite 

from Rock (1991), 4 — Cretaceous alkaline lamprophyres from Malá 

Fatra Mts. (Hovorka & Spišiak 1988).

Fig. 12. Trace element concentrations normalized to the composition 

of  the  primordial  mantle  (McDonough  &  Sun  1995);  1—  studied 

 lamprophyres, 2 — calc–alkaline lamprophyres, 3 — average spessar-

tite (data for calc–alkaline lamprophyres and spessartite from Rock 

(1991).

background image

463

LAMPROPHYRES FROM MALÁ FATRA MTS. (WESTERN CARPATHIANS, SLOVAKIA)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

It is assumed that primary magma was derived from enriched 

mantle protolith influenced by crustal contamination by sedi-

ments and assimilation of surrounding granitoid rocks. In com-

parison with similar calc–alkaline Late Paleozoic lamprophyres 

from other Western Carpathians localities, such as the Low 

Tatras, they are different in the content of individual minerals 

(especially amphibole) as well as overall geochemistry. 

 

If compared with Malá Fatra Cretaceous alkaline lampro-

phyres  (Polom,  Višňové  or  Krpeľany),  Malá  Fatra  Late 

Paleozoic lamprophyres have a different geological position 

(cut  carbonate  sequences  of  Krížna  nappe),  different  age, 

moderately different mineral and chemical composition, they 

contain foids and lack quartz and feldspar. At the same  

time, the alkaline type of rocks has not been reported from  

the Western Carpathians Late Paleozoic.

The studied lamprophyres contain clinopyroxene (Cpx) 

xenocrysts partially altered to a mixture of hydrated garnets 

and chlorite. Cpx xenocrysts are fringed with newly formed 

Cpx identical in content with porphyric xenocrysts. An iden-

tical type of alteration of clinopyroxenes was also described in 

the case of clinopyroxenes from Nízke Tatry Permian basalts 

(Spišiak  et  al.  2017). The  hydrated  garnets  and  chlorites  in 

Fig. 13. Discriminant diagram Th–Hf–Nb/2 for orogenic and anoro-

genic lamproites (Krmíček et al. 2011); 1— studied lamprophyres,  

2 — calc–alkaline lamprophyres, 3 — average spessartite (data for 

calc–alkaline lamprophyres and spessartite from Rock (1991).

Fig. 14. Trace element variation diagram for studied lamprophyres 

and the main geochemical reservoirs; a  —  Th/Yb : Ta/Yb  (Wilson 

1989; Pearce 1993); b  —  Ba/Th : U/La  (Patino  et  al.  2000);  

GLOSS — global oceanic subducting sediment (Plank & Langmuir 

1998); 1 — studied lamprophyres, 2 — calc–alkaline lamprophyres, 

3 — average spessartite (data for calc–alkaline lamprophyres and 

spessartite from Rock (1991), 4 — Krušné Hory Mts. lamprophyres 

(data from Štemprok et al. 2014).

Fig. 15. Chondrite (McDonough & Sun 1995) normalized diagram;  

1 — studied lamprophyres, 2 — calc–alkaline lamprophyres, 3 — ave-

rage spessartite (data for calc–alkaline lamprophyres and spessartite 

from Rock (1991).

background image

464

SPIŠIAK, VETRÁKOVÁ, CHEW, FERENC, MIKUŠ, ŠIMONOVÁ and BAČÍK

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

both types of rocks are very similar in composition. Regarding 

the fact they are xenocrysts, we suppose that they grew in  

the basic melt at great depth, at the site of its generation.  

The same age of rocks, the same type of xenocrysts and  

the same type of their alteration point to possible comagmatic 

origin of Permian paleobasalts (melaphyres) in the Hronicum 

and Late Paleozoic calc–alkaline lamprophyres from the Malá 

Fatra Mountains. 

The age of the studied rocks has not been precisely deter-

mined yet and it is thus estimated according to their geological 

position. The lamprophyre dykes cut the Variscan medium- 

grained granodiorities to tonalities, but do not penetrate  

the cover Mesozoic complexes. The age of the surrounding 

granites was determined by Scherbak et al. (1990) at 353 Ma. 

In general, the age of lamprophyre is estimated to Late 

Paleozoic. The determined age of the rocks using LA-ICP-MS 

by apatite analysis of 263.4 ± 2.6 Ma corresponds to their geo-

logical position.

Conclusions

The lamprophyric dyke rocks in the Malá Fatra core moun-

tain which intruded the Variscan granites are strongly altered.

Xenoliths of the surrounding granite rocks and minerals 

(especially plagioclase) are frequently observed and they are 

resorbed to different degrees.

Clinopyroxene, amphibole, biotite, plagioclase and potas-

sium feldspar are preserved as primary minerals. Clinopyroxene 

occurs as phenocrysts, but rarely also as xenocrysts. These two 

types of clinopyroxene are different in chemical composition. 

Amphibole (kaersutitic) and biotite are characteristic for high 

TiO

2

 content.

Based on the main and rare element content, they corre-

spond to calc–alkaline lamprophyres with an affinity to alka-

line lamprophyres. 

Variations in the chemical composition of lamprophyres 

(including Sr and Nd isotopic compositions) are probably  

the result of the primary mantle magma contamination by 

crustal materials.

 The LA-ICP-MS U–Pb age for apatite from Malá Fatra 

Mts.  lamprophyres  is  263.4 ± 2.6  Ma.  The  age  is  similar  to  

the calc–alkaline lamprophyres from the Nízke Tatry Mts.

Acknowledgements: This research was supported by grants 

VEGA 1/0650/15, 1/0237/18 and APVV 15-0050. We appre-

ciate the critical reviews by handling editors Pavel Uher and 

Igor  Broska,  an  anonymous  reviewer,  and  Jaromír  Ulrych, 

who helped to improve the manuscript.

References

Abdel-Rahman A.M. 1993: Nature of biotites from alkaline, calcalka-

line, and peraluminous magmas. J. Petrol. 35, 525–541.

Anczkiewicz  R.,  Platt  J.P., Thirwall  M.F.  & Wakabayashi  J.  2004: 

Franciscan subduction off to a slow start: evidence from 

high-precision Lu–Hf garnet ages on high grade-block. Earth 

Planet. Sci. Lett. 225, 147–161.

Anczkiewicz  R.  &  Thirwall  M.F.  2003:  Improving  precision  of    

Sm–Nd garnet dating by H

2

SO

4

 leaching: A simple solution to 

the phosphate inclusion problem. Geol. Soc. Spec. Publ. 220, 

83–91.

Awdankiewicz M. 2007: Late Palaeozoic lamprophyres and associa-

ted mafic subvolcanic rocks of the Sudetes (SW Poland): petro-

logy, geochemistry and petrogenesis. Geologia Sudetica 39, 

11–97.

Bergman S.C. 1987: Lamproites and other potassium-rich igneous 

rocks: A review of their occurrence, mineralogy and geoche-

mistry. In: Fitton J.G. & Uption B.G.J. (Eds.): Alkaline Igneous 

Rocks. Geol. Soc. London, Spec. Publ. 30, 103–189.

Bernard-Griffiths J., Fourcade S. & Dupuy C. 1991: Isotopic study 

(Sr, Nd, O and C) of lamprophyres and associated dykes from 

Tamazert (Morroco): crustal contamination processes and source 

characteristics. Earth Planet Sci. Lett. 103, 190–199.

Broska  I.,  Petrík  I.  &  Benko  P.  1997:  Petrology  of  the  Malá  Fatra 

granitoid rocks (Western Carpathians, Slovakia). Geol. Carpath. 

48, 1, 27–47.

Broska I., Williams C.T., Uher P., Konečný P. & Leichmann J. 2004: 

The geochemistry of phosphorus in different granite suites of the 

Western Carpathians, Slovakia: the role of apatite and P-bearing 

feldspar. Chem. Geol. 205, 1–15.

Chew D.M. & Donelick R.A. 2012: Combined apatite fission track 

and U–Pb dating by LA-ICP MS and future trends in apatite 

provenance analysis. In: Sylvester P. (Ed.): Quantitative mine-

ralogy and microanalysis of sediments and sedimentary rocks. 

Mineral. Assoc. Canada, 219–248. 

Chew  D.M.,  Petrus  J.A.  &  Kamber  B.S.  2014:  U–Pb  LA-ICPMS 

 dating using accessory mineral standards with variable common 

Pb. Chem. Geol. 363C, 185–199.

Cochrane R., Spikings R.A., Chew D., Wotzlaw J.-F., Chiaradia M., 

Tyrrell S., Schaltegger U. & Van der Lelij R. 2014: High tem-

perature  (>350  °C)  thermochronology  and  mechanisms  of  Pb 

loss in apatite. Geochim. Cosmochim. Acta 127, 39–56.

Fig. 16. Initial Nd–Sr rations of studied lapmprophyres in comparison 

with different mantle rocks; 1 — studied lamprophyres, 2 — average 

calc–alkaline lamprophyres (Rock 1991), MORB — Mid-Ocen Ridge 

Basalts, OIB — Ocean Island Basalts (Faure 1986), MEVL — Mid-

European Variscides Lamprophyres (Seifert 2009), CHUR — Chon-

drit  Uniform  Reservoir,  UR  —  Undifferent  Reservoir  (DePaolo  & 

Wasserburg 1976).

background image

465

LAMPROPHYRES FROM MALÁ FATRA MTS. (WESTERN CARPATHIANS, SLOVAKIA)

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

DePaolo D.J. 1981: Trace element and isotopic effects of combined 

wallrock assimilation and fractional crystallization. Earth 

 Planet. Sci. Lett. 53, 184–202.

DePaolo  D.J.  &  Wasserburg  G.J.  1976:  Inferences  about  magma 

sources and mantle structure from variations of 

143

Nd⁄

144

Nd. 

Geophys. Res. Lett. 3, 743–746.

Faure G. 1986: Principles of Isotope Geology. Wiley & Sons, New 

York, 1–589.

Gümbel C.W. 1874: Die paläolithischen Eruptivgesteine des Fichtel-

gebirges. Universitätsbuchdruckerei von J.G. Weiss, München, 

1–50.

Hawthorne C.F., Oberti R., Harlow G.E., Maresch V.W., Martin F.R., 

Schumacher  C.J.  &  Welch  D.M.  2012:  Nomenclature  of  the 

 amphibole  supergroup.  Am. Mineral. 97, 2031–2048. 

Hovorka D. 1967: Porphyres and lamprophyres from tatraveporide 

cristalline complexes. Sbor. geol. vied 8, 51–78 (in Slovak). 

Hovorka D. & Spišiak J. 1988: Mesozoic volcanism of the Western 

Carpathians. Veda, Bratislava, 1–263 (in Slovak).

Huang  Z.L.,  Jin  Z.,  Zhu  Ch., Wang  L.  &  Li  X.  1998: The  Sr,  Nd 

 isotopic composition of lamprophyres in Laowangzhai gold ore-

field, Yunnan Province. Chin. Sci. Bull. 43, 1, 950–954. 

Ivanov M. & Kamenický I. 1957: Notes to geology and petrography 

Malá Fatra Mts. Cristalline. Geol. práce 45, 187–212 (in Slovak).

Jacobsen S.B. & Wasserburg G.J. 1980: Sm–Nd isotope evolution of 

chondrites. Earth Planet. Sci. Lett. 50, 139–155.

Jayabalan M., Udayasankar S., Thiagarajan J., Sasikumar S., 

 Nandhakumar  E.,  Rajakumaran  M.,  Manikandan  M.  & 

 Nagamani S. 2015: Petrology and geochemistry of lamprophyre 

rock types of Salem, Dharmapuri, Krishnagiri and Namakkal 

district, Tamil Nadu. J. Appl. Geochem. 17, 2, 213–235.

Kamenický  L.,  Macek  J.  &  Krištín  J.  1987:  Contribution  to  the 

 petrography and geochemistry of granitoids in the Malá Fatra 

Mts., West Carpathians. Mineralia Slovaca 19, 4, 311–324   

(in Slovak).

Krmíček  L.,  Cempírek  J.,  Havlín  A.,  Přichystal  A.,  Houzar  S., 

Krmíčková M. & Gadas P. 2011: Mineralogy and petrogenesis  

of a Ba–Ti–Zr-rich peralkaline dyke from Šebkovice (Czech 

 Republic): Recognition of the most lamproitic Variscan intru-

sion. Lithos 121, 74–86.

Ma L., Jiang S.Y., Hou M.L., Dai B.Z., Jiang Y.H., Yang T.,   

Zhao K.D., Pu W., Zhu Z.Y. & Xu B. 2013: Geochemistry of 

Early Cretaceous calc–alkaline lamprophyres in the Jiaodong 

Peninsula: Implication for lithospheric evolution of the eastern 

North China Craton. Gondwana Res. 25, 2, 859–872.

McDonough W.F. & Sun S.S. 1995: Composition of the Earth. Chem. 

Geol. 120, 228.

McDowell  F.W.,  McIntosh  W.C.  &  Farley  K.A.  2005:  A  precise  

40

Ar–

39

Ar reference age for the Durango apatite (U–Th)/He and 

fission-track dating standard. Chem. Geol. 214, 249–263.

McKenzie D. 1989: Some remarks on the movement of small melt 

fractions in the mantle. Earth Planet. Sci. Lett. 95, 53–72.

Morimoto  N.,  Fabries  J.,  Ferguson A.  K.,  Ginzburg  I.V.,  Ross  M., 

Seifert F. A., Zussman J., Aoki K. & Gottardi G. 1988: Nomen-

clature of pyroxenes. Am. Mineral. 73, 1123–1133.

Pandey R., Chalapathi Rao N.V., Dhote P., Pandit D., Choudhary A.K., 

Sahoo S. & Lehmann B. 2018: Rift-associated ultramafic lam-

prophyre (damtjernite) from the middle part of the Lower Creta-

ceous (125 Ma) succession of Kutch, northwestern India: tec-

tonomagmatic implications. Geosci. Frontiers, in press.

Pasero  M.,  Kampf  A.R.,  Ferraris  C.,  Pekov  I.V.  Rakovan  J.  &  

White T.J. 2010: Nomenclature of the apatite supergroup mine-

rals. Eur. J. Mineral. 22, 163–179.

Patino L.C., Carr M.J.& Feigenson M.D. 2000: Local and regional 

variations in Central American arc lavas controlled by variations 

in subducted sedimentary input. Contrib. Mineral. Petrol. 138, 

265–283.

Paton C., Hellstrom J., Paul B., Woodhead J. & Hergt J. 2011: Iolite: 

freeware for the visualisation and processing of mass spectro-

metric data. J. Anal. At. Spectrom. 26, 2508–2518.

Pearce J.A. 1983: The role of sub-continental lithosphere in magma 

genesis  at  destructive  plate  margins.  In:  Hawkesworth  C.J.  & 

 Norry M.J. (Eds.): Continental Basalts and Mantle Xenoliths. 

Shiva, Nantwich, 230–249.

Peryt T.M., Hryniv S.P. & Anczkiewicz R. 2010: Stroncium isotope 

composition of Badenian (Middle Miocene) Ca-sulphate depos-

its in West Ukraine: A preliminary study. Geol. Quarterly 54, 

465–476.

Petrus J.A. & Kamber B.S. 2012: Vizual age: A novel approach to 

laser ablation ICP-MS U–Pb geochronology data reduction. 

Geostand. Geoanal. Res. 36, 3, 247–270.

Pivec E., Holub F.V., Lang M., Novák J.K. & Štemprok M. 2002: 

Rock-forming minerals of lamprophyres and associated mafic 

dykes  from  the  Krušné  hory/Erzgebirge  (Czech  Republic).  

J. Czech. Geol. Soc. 47, 1, 23–32.

Plank T. & Langmuir CH. 1998: The chemical composition of sub-

ducting sediment and its consequences for the crust and mantle. 

Chem. Geol. 145, 325–394.

Renno A.D., Haser S., Stanek K.P. & Götze J. 2003: Mineral Chemis-

try and Petrogenesis of Ultramafic Alkaline Lamprophyre Dyke 

from  the  Klunst  Quarry  in  Ebersbach  (Lusatia,  Germany). 

 GeoLines 15, 133–139.

Rieder M., Cavazzini G., D’Yakonov Y.S., Frank-Kamenetskii V.A., 

Gottardi G., Guggenheim S., Koval P.V., Müller G., Neiva A.M.R., 

Radoslovich E.W., Robert J.L., Sassi F.P., Takeda H., Weiss Z. & 

Wones D.R. 1998: Nomenclature of micas. Canad. Mineral. 36, 

905–912.

Rock N.M.S. 1987: The nature and origin of lamprophyres an over-

view. In: Fitton J.G. & Upton B.G.J. (Eds): Alkaline Ingneous 

Rocks. Geol.Soc. Spec. Publ. 30, 191–226.

Rock N.M.S. 1991: Lamprophyres. Blackie and Son Ltd., 1–285.

Scherbak  N.P.,  Cambel  B.,  Bartnicky  E.N.  &  Stenyuk  L.M.  1990:  

U–Pb age of granitoid rock from Dubná Skala — Malá Fatra Mts. 

Geol. Carpath. 41, 407–414.

Schoene B. & Bowring S.A. 2006: U–Pb systematics of the McClure 

Mountain syenite: thermochronological constraints on the age of 

the 

40

Ar/

39

Ar standard MMhb. Contrib. Mineral. Petrol. 151, 5, 

615–630.

Seifert W. 2005: REE–Zr and Th rich titanite and associated acces-

sory  minerals  from  a  Kersentite  in  Frankenwald,  Germany. 

 Mineral. Petr

ol. 84, 129–146.

Seifert T. 2009: Metallogeny and petrogenesis of lamprophyres in  

the Mid-European Variscides: Post-collisional magmatism and 

its relationship to late-variscan ore forming processes in the 

 Erzgebirge (Bohemian Massif). Millpress, Rotterdam, 1–303.

Spišiak  J.  1999:  Mesozoic  alkali  lamprophyres  dyke  from  Polom 

quarry  near  Žilina  (Malá  Fatra  Mts.,  Western  Carpathians). 

 Mineralia Slovaca 31, 2, 109–116 (in Slovak).

Spišiak J. & Hovorka D. 1997: Petrology of the Western Carpathians 

Cretaceous primitive alkaline volcanics. Geol. Carpath. 48, 2, 

113–121.

Spišiak J. & Hovorka D. 1998: Mafic dykes in Variscan tonalities of 

the Malá Fatra Mts. Western Carpathians, Slov. Geol. Mag. 4, 3, 

157–164.

Spišiak J., Vozárová A., Vozár J., Ferenc Š., Mikuš T. & Šimonová V. 

2017: Fe

3+

 rich katoite from Permian basalts (Hronicum,  Western 

Carpathians, Slovakia); composition and origin. Carpath. J. 

Earth Environ. Sci. 12, 1, 293–299.

Sun S.S. & McDonough W.F. 1989: Chemical and isotopic systematic 

of oceanic basalts: implications for mantle composition and 

 processes. In: Saunders A.D. & Norry M.J. (Eds.): Magmatism 

in the Ocean Basins. Geol. Soc. London, Spec. Publ. 42, 

 313–345.

background image

466

SPIŠIAK, VETRÁKOVÁ, CHEW, FERENC, MIKUŠ, ŠIMONOVÁ and BAČÍK

GEOLOGICA CARPATHICA

, 2018, 69, 5, 453–466

Štemprok M., Dolejš D. & Holub F.V. 2014: Late Variscan calc–alka-

line  lamprophyres  in  the  Krupka  ore  district,  Eastern  Krušné 

Hory/Erzgebirge: their realtionship to Sn-W mineralization.  

J. Geosci. 59, 41–68.

Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., 

Romer R.L., Stracke A., Joyce N. & Hoefs J. 2006: Genesis of 

ultramafic lamprophyres and carbonatites at Aillik Bay, 

 Labrador: a consequence of incipient lithospheric thinning 

 beneath the North Atlantic Craton. J. Petrol. 47, 1261–1315.

Thomson S.N., Gehrels G.E., Ruiz J. & Buchwaldt R. 2012: Routine 

low-damage apatite U-Pb dating using laser ablation-multicol-

lector-ICPMS. Geochem. Geophys. Geosyst. 13, 2, 23.

Ulrych  J.,  Pivec  E.,  Žák  K.,  Bendl  J.  &  Bosák  P.  1993: Alkaline  

and ultramafic carbonate lamprophyres in Central Bohemian 

Carboniferous basins, Czech Republic. Mineral. Petrol. 48, 

 65–81.

Wilson M. 1989: Igneous petrogenesis. A global tectonic approach. 

Chapman & Hall, London, 1–466.