background image

GEOLOGICA CARPATHICA

, AUGUST 2018, 69, 4, 382–409

doi: 10.1515/geoca-2018-0023

www.geologicacarpathica.com

Integrated biostratigraphical, sedimentological and 

provenance analyses with implications for 

lithostratigraphic ranking: the Miocene Komjatice 

depression of the Danube Basin

KATARÍNA ŠARINOVÁ

1, 

, SAMUEL RYBÁR

2

,

 

EVA HALÁSOVÁ

2

, NATÁLIA HUDÁČKOVÁ

2

MICHAL JAMRICH

2

, MARIANNA KOVÁČOVÁ

2

 and MICHAL ŠUJAN

2

1

Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 

842 15 Bratislava, Slovakia; 

 

sarinova@fns.uniba.sk

2

Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 

842 15 Bratislava, Slovakia

(Manuscript received February 12, 2018; accepted in revised form May 31, 2018)

Abstract:  The Komjatice depression, situated on the Danube Basin’s northern margin, represents a sub-basin of  

the Neogene epicontinental Central Paratethys Sea and Lake Pannon. The paper provides an insight into the character of 

sediment provenance evolution by study of well cores (ZM-1, IV-1, MOJ-1, VR-1 wells). A modern combination of 

provenance, sedimentology and biostratigraphy together with the reported redefinition of Pannonian formations resulted 

in a new lithostratigraphy of the study area. Moreover, newly published volcanic rock age data were used for calibration 

of biostratigraphy. The overall age span of the sedimentary fill is occupied only by late Badenian–Sarmatian (Serravallian) 

to  Pannonian  (Tortonian–Messinian)  strata:  1)  the  basal  alluvial  sediments  of  the  newly  defined  Zlaté  Moravce   

Formation; 2) late Badenian–Sarmatian (Serravalian) marine sediments of the Vráble-Pozba Fm., connected with tectonic 

opening of the depression; 3) Pannonian (Tortonian) coarse grained sediments of the Nemčiňany Fm. with an erosional 

base; 4) Pannonian (Tortonian–Messinian) predominantly fine-grained, basin floor to slope Ivanka Fm., sandy deltaic 

Beladice Fm. and predominantly muddy, alluvial Volkovce Fm. In the middle Miocene provenance is situated in  

Paleozoic sequences and Neogene volcanic rocks occurring currently in the NE. During the late Miocene, provenance is 

changed to the NNW (Tribeč Mts.), although the transport from the NE also remained.

Keywords:  Neogene,  Danube  Basin,  biostratigraphy,  age  calibration  by  volcanic  rock  provenance  analysis,  Zlaté   

Moravce Fm.

Introduction

The Komjatice depression forms a NE bay of the Danube 

 Basin. It is bordered by the Tribeč Mts. in the N-NW and by 

Pohronský Inovec and Štiavnické vrchy Mts. in the E and SE 

(Fig. 1). The depression was opened by simple-shear mecha-

nism (Hók et al. 2016) along the Mojmírovce fault zone and 

later influenced by thermal subsidence linked to cessation of 

volcanic activity (e.g., Kováč et al. 2018). The last stage is 

marked by marginal basin inversion (e.g., Šujan et al. 2016). 

The Pre-Cenozoic basement is built up by crystalline com-

plexes of the Tatric and Veporic units and their cover and 

nappe units (Gaža & Beinhauerová 1976; Fusán et al. 1987a, b; 

Hók et al. 1999, 2016). The surrounding Pohronský Inovec and 

Štiavnické vrchy Mts. are formed by Neogene volcanic rocks 

(Fig. 1). Exploration wells, drilled in the 1960s and 1970s are 

essential for the geological research. Lithologies of the 

 Neogene fill together with petrography of selected cores are 

descri bed in the final drilling reports. These were summarized 

by Biela (1978a) and include biostratigraphic ranking based 

on the benthic foraminifera assemblages. This dataset was 

used for multiple studies which focused on subsidence history, 

 depositional systems and tectono-sedimentary evolution of  

the Komjatice depression (e.g., Gaža & Beinhauerová 1976; 

Lankreijer  et  al.  1995;  Hók  et  al.  1999,  2016;  Kováč  et  al. 

2006,  2010,  2011;  Lénárt  &  Hók  2013).   However,  for  bio-

stratigraphic correlations planktonic foraminifera and calca-

reous nannofossil assemblages are the most suitable tools.  

In the studied area only the ŠVM-1 Tajná well was 

 

processed  by  modern  methods  (Kováč  et  al.  2006,  2008).  

Calcareous nannofossils were also analysed from 

 

a part of the ZM-1 well (Ozdínová 2012) and IV-1 well  

(Zahradníková et al. 2013). Sarmatian fish fauna was descri-

bed from ŠVM-1 Tajná and JVM-2 by Chalupová (2006).  

In addition to biostratigraphic data, the first cosmogenic 

10

Be/

9

Be nuclides dating from VR-1 well, was published by 

Šujan et al. (2016). Recently new K/Ar and Rb/Sr age data 

from volcanic rocks, which form the eastern edge of 

 

the  basin,  have  been  published  by  Lexa  &  Pécskay  (2010)  

and Chernyshev et al. (2013). These enabled indirect dating  

of volcanic material in the basin fill. From this point of  

view, the presented study is aimed at the reevaluation of 

background image

383

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

 stratigraphy and provenance analysis of the recently resam-

pled deep wells.

Methodology

The analysis of the Komjatice depression was based on 

study of the available literature, including the original well 

protocols  (Gaža  1968,  1970,  1975,  1977;  Tanistrák  1969; 

Čermák 1972, 1976a, b, c; 1977a, b, c; Biela 1978a). The data 

was supplemented by investigation of well cores provided by 

Nafta petroleum company. Samples were taken from the 

Mojmírovce-1 (MOJ-1), Ivanka-1 (IV-1), Vráble-1 (VR-1

and Zlaté Moravce-1 (ZM-1) wells (Fig. 1, Table 1). For the 

purpose of the lithological and sedimentological description 

well core samples were cut in half perpendicularly to the bed-

ding plane. Sedimentary textures and structures were docu-

mented mainly in the sense of Miall (2006), Nichols (2009) 

and Boggs (2006).

For petrography and provenance analyses conglomerate and 

sandstone samples were studied under a polarizing micro-

scope.  Abbreviations  of  minerals  follow  Withney  &  Evans 

Fig. 1. Location map of the studied area: a — location in the Pannonian basin system; b — geological map (Káčer et al. 2013) with a view  

of the composition of the pre-Cenozoic basement (after Fusán et al. 1987b).

background image

384

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

(2010). The heavy fraction was separated using heavy liquid 

from the 0.25–0.10 mm fraction (10 g) and studied under  

the binocular microscope. The specified heavy minerals were 

confirmed by EDAX analysis of microprobe CAMECA SX 100 

(State Geological Institute of Dionýz Štúr). Selected heavy 

minerals and plagioclase were analysed by WDS analysis of 

microprobe CAMECA SX 100. Garnets were calculated to  

8 cations and their molecule composition was calculated after 

Locock (2008). Together with the chemical composition of 

garnets mineral inclusions were observed. For provenance 

evaluation a modification of Suggate & Hall’s (2014) diagram 

was used. Epidote / allanite were calculated to 8 cations, spinel 

to 3 cations and tourmaline to 31 anions. Feldspars were 

 calculated to 8 anions. Bentonite was confirmed by X-ray dif-

fraction on the Department of Mineralogy and Petrology, 

Comenius University in Bratislava.

Foraminifera have been obtained from 100 g of well core 

material, which was diluted by hydrogen peroxide and wet 

sieved (0.071 and 1 mm). The binocular stereoscopic micro-

scope (Olympus SZ75) and the biological polarizing micro-

scope were used for determination of foraminifera and 

 

the scan ning electron microscope QUANTA FEG 250 was 

used for their imaging (Institute of Electrical Engineering, 

SAS). The obtained residua were split into approximately 300 

specimens (if possible). Determination of foraminifers is 

based  on  Loeblich  &  Tappan  (1992),  Cicha  et  al.  (1998), 

Łuczkowska (1974) and Holbourn et al. (2013). Due to the poor 

preservation of the foraminiferal tests some stay in open 

nomenclature.

Calcareous nannofossil smear slides were prepared by  

the standard method of decantation. The aim was to count  

300 species from each sample (if possible). For microscopic 

evaluation Olympus BX 50, objective with 100× magnifi-

cation and oil immersion was applied. Camera Olympus 

Infinity 2, with QuickPHOTO CAMERA 2.3 software was 

used to create photo documentation. Nannofossil determina-

tion was supported by MIKROTAX webpage and papers from 

fellow workers dealing with the Central Paratethys.

Standard palynological processing was used to extract  

the organic matter. The samples were treated with cold HCl 

(35 %) and HF (40 %) to remove carbonates and silica.  

The organic matter was separated from the undissolved parti-

cles using heavy liquid ZnCl

2

 (density 2 g/cm

3

). Samples were 

not oxidized at any stage. The palynological slides were pre-

pared with glycerin, and alcohol as the mounting medium. 

Analyses were performed under the Leica light microscope 

combined with Nomarski interference contrast (NIC). 

Dinocyst taxonomy is in accordance with Lentin & Williams 

(1998) and biozonation according to Bakrač et al. (2012) and 

Magyar et al. (1999a, b).

Biostratigraphy

To confirm age assignment multiple samples were analysed 

for calcareous nannofossil, foraminiferal assemblages and 

paly nomorphs including dinocysts (Figs. 2, 3; Suppl. 1; for  

the fauna list see Suppl. 2). Palynomorphs are generally well 

preserved, but the proportion of dinocysts and sporomorphs 

changes in the individual samples. Due to bad preservation 

a part of the studied fossils stays in the open nomenclature. 

Additionally, samples contained pieces of coal, palynomorphs, 

Halicoryne aff. morelleti algae, Porifera spicules, Ostracoda 

valves, Echinoid spines, Osteichthyes bones, teeth and scales. 

In the VR-1 well pyritized diatom valves are also present, 

whereas in the ZM-1 well Limacina sp. (Spiratella) remains 

were observed.

From the MOJ-1 well all studied samples were barren for 

nannofossils and dinocysts. In the foraminiferal assemblages 

the benthic species prevail (Suppl. 1). In the lower part (2100–

2095 m) rare Bogdanowiczia pocutica (Bathysiphon pocutica) 

is present. A sample from a depth of 2010–2005 m contains 

rich Halicoryne aff. morelleti remains. In the following sam-

ples, the benthic Elphidium sp. div. and Quinqueloculina

Miliolina specimens are dominant. In the depth of 

1848–1851 m  Elphidium hauerinum and small echinate 

elphidia (E. josephinum, E. aculeatum) together with miliolids 

are present, but their ratio varies in the cores. In the depth of 

1795–1798 m few elphidia are present. Planktic Globigerinella 

obesa and other fragments of the lower Miocene foraminifers, 

like Lenticulina sp. are found in the depth of 960–955 m.

From the IV-1 well, the first sample was taken from the muddy 

interval of a gravity flow (2316–2311 m). The nannofossil 

assemblage is dominated by Braarudosphaera bigelowii and 

B. bigelowii parvula, but the association does not contain 

 biostratigraphical markers (Suppl. 1). Eocene and Oligocene 

redeposits are also observed. The following interval (2093–

1956 m) is barren for dinocysts, with an exception of reworked 

?Deflandrea sp. in the depth of 2090–2093 m. On the other 

hand, benthic foraminifera Elphidium sp. and species of 

QuinqueloculinaMiliolina genera are dominant. Elphidia 

prevail in the lower part; while in the depth of 2045–2040 m 

miliolids dominate. Foraminiferal assemblages include Poro­

sononion sp., reworked foraminiferal tests of Cassigerinella 

globulosa and Haplophragmoides sp. Halicoryne aff.  morelleti 

algae is also present (2045–2040 m). Bolivina sarmatica is 

found in the depth of 1956–1961 m. First occurrences of  

the dinocysts Virgodinium sp., Spiniferites sp. and freshwater 

algae Spirogyra, Zygnema, Ovoidites are identified in the depth 

of 1758–1763 m. Autochthonous Pannonian (Tortonian) nano-

fossil  Reticulofenestra tegulata and dinocysts Virgodinium 

asymmetricum, Spiniferites bentori pannonicus are observed 

in the depth of 1603–1612 m. These dinocysts together with 

Well

WGS 84 decimal

WGS 84 degrees minutes seconds

x

y

Longitude

Latitude

ZM-1

18.37121

48.37382

 18°22’16.35” E

 48°22’25.74” N

VR-1

18.26955

48.27331

 18°16’10.37” E

 48°16’23.92” N

IV-1

18.13928

48.22312

 18°08’21.42” E

 48°13’23.24” N

MOJ-1

18.06612

48.19925

 18°03’58.04” E

 48°11’57.29” N

Table 1: Coordinates of the studied wells.

background image

385

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 2. Foraminifera and nannofossils in scanning electron microscope (c — core, b — core box): a, b — Anomalinoides dividens Łuczkowska, 

1967; VR-1/c26, 1745–1750 m/b5; c — Anomalinoides cf. dividens Łuczkowska, 1967; VR-1/c26, 1745–1750 m/b5; d — Bolivina sarmatica 

Didkovski, 1959; VR-1/c26, 1745–1750 m/b5; e — Protoglobobulimina pupoides (d'Orbigny, 1846); VR-1/c26, 1745–1750 m/b5; f — Elphidium 

josephinum (d'Orbigny, 1846); VR-1/c22, 1550–1555 m/b3; g, h — Ammonia tepida (Cushman, 1926); VR-1/c19, 1405–1409 m/b5-4;  

i — Porosononion granosum (d'Orbigny, 1846); VR-1/c15, 1203–1208 m/b5; j — Miliammina subvelatina Venglinskyi, 1975; VR-1/c14, 

1149–1154 m/b2; k — Hyperammina cf. praelonga Venglinskyi, 1970; VR-1/c14, 1149–1154 m/b2; l — Miliammina subvelatina Venglinskyi, 

1975, VR-1/c14, 1149–1154 m/b2; m — Miliammina fusca (Brady, 1870); VR-1/c14, 1149–1154 m/b2; n, o — ?Trochammina kibleri Venglinskyi, 

1961; VR-1/c14, 1149–1154 m/b2; p, q — Elphidium hauerinum (d'Orbigny, 1846); VR-1/c14, 1149–1154 m/b3; r — Melonis pompilioides 

(Fichtel & Moll, 1798); ZM-1/c16, 1253–1258 m/b2; s — Bolivina dilatata Reuss, 1850; ZM-1/c18, 1346–1351 m/b2; t — Heterolepa dutemplei 

(d'Orbigny, 1846); ZM-1/c18, 1346–1351 m/b2; u — Budashevaella multicamerata (Voloshinova, 1961); ZM-1/c18, 1346–1351 m/b4;  

v — Alveolophragmium sp., ZM-1/c18, 1346–1351 m/b4; w — Haplophragmoides cf. fragile Höglund, 1947; ZM-1/c18, 1346–1351 m/b4;  

x — Uvigerina sp. pyrite mold, ZM-1/c18, 1346–1351 m/b4; y — Spirorutilus carinatus (d'Orbigny, 1846); ZM-1/c18, 1346–1351 m/b4;  

z, z’ — Coccolithus pelagicus (Wallich, 1877) Schiller, 1930, ZM-1/c18, 1346–1351 m/b2; z” — Helicosphaera walbersdorfensis Muller, 

1974; ZM-1/c18, 1346–1351 m/b2.

background image

386

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Impagidinium spongianum, Achomosphaera sp., Pontiadinium 

pecsvaradensis are present in the depth of 1506–1509 m.

In the VR-1 well benthic foraminiferal species prevail.  

The planktonic species are possibly reworked from the lower 

Miocene sediments (Globigerina sp. div; G. concinna, Cassi­

gerinella globulosa,  Trilobatus  trilobus, and Globigerinella 

obesa) or even Eocene–Oligocene such as Chiloguembelina 

cubensis (1750–1304 m)The lower part of the Neogene fill is 

barren for index species (Suppl. 1). In the depth interval of 

1801–1804 m one specimen of the dinocyst ?Cleisto sphaeri­

dinium placacanthum is found together with an abundant 

 nannofossil assemblage with poorly preserved Helico sphaera 

cf.  wallichii,  H. walbersdorfensis, Reticulofenestra pseudo­

umbilicus,  Calcidiscus sp.  and  allochthonous Cretaceous, 

Paleogene and early Badenian nannofossils (1804–1745 m). 

The foraminifer Anomalinoides dividens (acme) is recognized 

in the depth of 1745–1750 m. The depth interval from 1555 to 

1203 m contains Porosononion granosum, Ammonia sp.

Elphidium sp. (from 1510 m) and Nonion sp. (from 1455 m)  

(Fig. 2) together with Cycloforina badenensis in the lower  

part of this interval.  Nannofossil assemblages in this depth 

(1750–1203  m)  contain  Calcidiscus tropicus,  C.  pataecus 

(Fig. 3), Calcidiscus macintyrei and others (Suppl. 1). More-

over sphenoliths of Paleogene age are present. In the depth of 

1203–1208 m only well preserved terrestrial palynomorphs 

without dinoflagellates are observed. The following interval 

(depth 1149–1154 m) contains the foraminifera ?Trochammina 

kibleri (Fig. 2) and Dogielina sp. together with the acme event 

of Isolithus semenenko (Fig. 3). The foraminifera Miliammina 

sp. (Fig. 2) and Dogielina sp. together with Isolithus seme­

nenko are also found in the depth of 1103–1108 m. In the fol-

lowing part, well diversified dinoflagellata are observed 

(1000–1108 m), while the depth between 950–955 m is 

charac terized by absence of dinocysts, presence of terrestrial 

and freshwater elements (Zygnema, Nuphar), as well as rewor-

ked dinoflagellata (Deflandrea). The higher depth intervals 

contain Virgodinium asymmetricum, V. transformis, Impagi di­

nium spongianum, Spiniferites bentori pannonicus, S. bentori 

Fig. 3. Nannofossils and dinoflagellata in light microscope.

 

a — Calcidiscus tropicus (Kamptner, 1955) Varol, 1989 sensu Gartner, 1992;  

VR1/c16, 1250–1255 m; b — Braarudospahera bigelowii parvula Stradner, 1960; VR1/c15, 1203–1208 m; c — Sphenolithus abies Deflandre 

in Deflandre & Fert, 1954; VR1/c15, 1203–1208 m; d — Calcidiscus pataecus (Gartner, 1967) de Kaenel & Villa, 1996; VR1/c14, 1149–1154 m; 

e — Isolithus semenenko Luljeva, 1989; VR1/c14, 1149–1154 m; f — Braarudosphaera bigelowii parvula Stradner, 1960; ZM1/c16, 1253–

1258 m; g — Sphenolithus abies Deflandre in Deflandre & Fert, 1954; ZM1/c16, 1253–1258 m; h — Helicosphaera walbersdorfensis Müller, 

1974;  ZM1/c15,  1201–1206  m;  i — Helicosphaera wallichii (Lohmann,  1902)  Okada  &  McIntyre,  1977;  ZM1/c15,  1201–1206  m;  

j — Reticulofenestra tegulata (Bóna & Gál, 1985; Ćorić & Gross, 2004); ZM1/c11/1005–1010 m; k — Chytroeisphaeridia cariacoensis Wall, 

1967; VR1/c11, 1000–1005 m; l — Chytroeisphaeridia cariacoensis Wall, 1967; VR1/c11, 1000–1005 m; m — Virgodinium asymmetricum 

Sütő-Szentai, 2010; VR1/c11, 1000–1005 m; n — Impagidinium spongianum Sütő-Szentai, 1985; VR1/c7, 802–807 m; o — Impagidinium 

spongianum Sütő-Szentai, 1985; VR1/c5, 703–707 m.

background image

387

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

oblongus, Achomosphaera sp., Chytroeisphaeridia cariacoensis 

(750–755  m); Virgodinium asymmetricum, V. transformis, 

Pontiadinium pecsvaradensis, Impagidinium spongianum, 

Chytroeisphaeridia cariacoensis (703–707  m)  and  V. asym­

metricum, P. pecsvaradensis (603–607 m).

The lower part of the ZM-1 well is barren for index fossils. 

Only poor nannofossils are observed in the depth of 1555–

1551 m (Suppl. 1). However, the following well cores con-

tained poor and badly preserved foraminiferal assemblages. In 

the depth of 1405–1410 m possible (? undetermined) aggluti-

nated foraminifera or testaceans, glyptostrobus seeds and cone 

parts are present. In the depth of 1346–1351 m, remains of 

Nonion communis, Bulimina elongata, Haplophragmoides sp.

Reticulophragmium sp., Bathysiphon sp.,  Uvigerina semi­

ornata, Haplophragmoides wilsoni, Spirorutilus carinatus 

(Fig. 2), together with dinocysts Melitasphaeridium choano­

phorumCleistosphaeridinium placacanthum and Cretaceous 

reworked foraminifers are present. For the depth of 1253–

1258 m an abundant and diversified foraminiferal association 

is typical, but tests are fragmented and show signs of dissolu-

tion. The most abundant are Bolivina dilatata maximaMelonis 

pompilioides  (Fig. 2), Angulogerina angulosa,  Valvulineria 

complanata, bryozoans and ostracoda valves. Nannofossil 

assemblages from this interval (1351–1201 m) contain Braa­

rudosphaera bigelowii bigelowii, Calcidiscus leptoporus,  

C. premacintyrei,  C. macintyrei,  C.  tropicus,  Helicosphaera 

walbersdorfensis,  H.  wallichii,  Holodiscolithus macroporus

Reticulofenestra pseudoumbilicusSphenolithus abiesUmbi­

lico sphaera  rotula (Fig. 3). The association in the depth of 

1046–1051 m is highly dominated by the foraminifer Bolivina 

dilatata maxima (Fig. 2) and by poorly preserved Calcidiscus 

spp. nannofossils. Reticulofenestra tegulata acme (Fig. 3) is 

present in the depth of 1010–1005 m. Spiniferites bentori pan­

nonicus (653–658 m) is also present in the depth of 599–604 m 

together with Impagidinium spongianum. I. spongianum and 

Spirogyra are found in the depth of 551–556 m.

Lithology and composition of Neogene fill

MOJ-1 well

The leucocratic granite in the depth of 2099–2129 m  

(Figs. 4, 5) is composed of Qz, Pl, Mc, Or, Ms and Zrn. 

Fissures in the granites are filled by secondary carbonates.

The basal part of the Neogene fill (2099–1790 m; Figs. 4, 5) 

is composed of massive, lithic, medium-grained sandstones to 

fine-grained conglomerates, which interfinger with laminated 

mudstones. Mudstones include sporadic, lenticular sandy 

 ripples. In the depth of 1790–1640 m the character of the sedi-

mentary fill changes (Fig. 5). According to well logs and 

description of cuttings (Tanistrák 1969) three major gravelly– 

sandstone intervals divided by muddy horizons were recog-

nized. Fine-grained conglomerates and sandstones are poorly 

sorted and display intervals with normal gradation and rare 

mud intraclasts (max. 3 cm). Normally graded conglomerates 

and sandstones are followed by ripples forming flaser struc-

ture. The top of the ripples is coated by carbonized plant frag-

ments (Fig. 5). The sedimentary interval between 1640–980 m 

displays a heterolithic character but sandstones dominate.  

The mudstones are laminated; commonly bioturbated and 

 ripples form flaser to wavy bedding. They rarely include 

articu lated shells of Congeria czizeki (1253–1261 m) and 

 fragmented limnocardid bivalves (1000–1005 m; Fig. 5).  

In the sandstones normal gradation and lamination is high-

lighted by carbonized plant fragments. In the lower part 

(1600–1300 m) the sandstones are better sorted and grains are 

more rounded. The sorting and roundness decreases again  

in the depth range from 1300 to 1000 m. The sediment in  

the interval of 980–395 m is characterized by alteration of 

sandstones and mudstones with red mottles, but sandstones 

are slightly more abundant. In the well cores we recognize 

rip-up clasts, rhizoids and bioturbations (Fig. 5).

The sandstones and conglomerates are composed of mono-

crystalline quartz (Qz), epiclastic carbonates, Qz+mica schists, 

granitoid, polycrystalline Qz, microcline (Mc), orthoclase 

(Or), plagioclase (Pl), rare muscovite (Ms), chlorite (Chl), 

 garnet (Grt), zircon (Zrn), turmaline (Tur) and rutile (Rt).  

In the basal part, carbonate overgrowth, foraminifera test, Glt 

and framboidal Py were observed. In addition, carbonate fis-

sures which cut mineral grains, were present (depth 2050 m; 

Fig. 6), which indicates disintegration after lithification.  

The mineral maturity (amount of monocrystalline Qz) 

increases upwards. The most pronounced change in the com-

position is the presence of intensively coloured Chl and Bt  

at a depth above 980 m. The amount of carbonate cement 

decreased upward, however the sample from the depth of 

1397  m  is  heavily  cemented  with  several  generations  of 

 carbonate including poikilitic cement and carbonate clasts 

covered by iron oxides. A sample from the depth of 705 m also 

contains poikilitic cement.

Heavy mineral associations were analysed from four sandy 

samples (depth 1760 m, 2×1000 m and 550 m). Their compo-

sition is the same for all samples. Among transparent heavy 

minerals Grt (20–44 %) and Tur (4–26 %) dominate. Small 

amounts of Zrn, Ap, Rt, staurolite (St) and sillimanite (Sil < 

2 %) occur. The association is completed by Ilm (7–17 %), Glt 

(up to 0.5 %) and framboidal pyrite (Py) together with limo-

nite minerals (21–60 %). Samples from 1000 m rarely contain 

epidote (Ep) and magnesio-ferri-hornblende. Associations 

from depths of 1000 and 1760 m also show a strong leucoxe-

nization, manifested by the presence of ferric oxide / hydroxide 

coating mineral grains (mainly carbonates). Framboidal pyrite 

is oxidized. In the depth of 550 m oxidation is minimal and 

moreover crystalline pyrite was also documented. Additionally, 

zonal Tur with a schorl core and dravite rim is found. Other 

Tur of dravite composition did not show significant zoning.

IV-1 well

The dark-grey to grey-green basement rocks show an orien-

ted  porphyroclastic–mylonite  texture  (2390  m;  Figs.  7,  8). 

background image

388

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 4. MOJ-1 well table.

background image

389

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 5. MOJ-1 well core samples (scale bar = 1 cm, arrow pointing upwards, dot = bedding plane): a — leucocratic granite; MOJ-1/c33, 2095–

2100 m/b2; b — heterolithic sediment with lenticular sandy ripples; MOJ-1/c31, 2005–2010 m/b2; c — heterolithic sediment with sandy 

 ripples; MOJ-1/c27, 1795–1798,5 m/b5; d — poorly sorted conglomerate with poorly rounded clasts reach 2–3 mm in diameter; MOJ-1/c27, 

1795–1798,5 m/b5; e — fluent transition from normally graded sandstone through laminated sandstone to sandy ripples which are draped by 

carbonized plant fragments (gravity flow sediment); MOJ-1/c25, 1705–1710 m; f — the same as e, but with an erosive contact on the top; 

MOJ-1/c25,  1705–1710  m/b1; g — normally graded coarse-grained sandstone to conglomerate (max. 2–5 mm diameter) with mudstone  

intraclasts; MOJ-1/c25, 1705–1710 m/b4; h — laminated, fine-grained sandstone. Laminae are formed by carbonized plant fragments; MOJ-1/

c22, 1551–1556 m/b1; i — bioturbated mudstone with sporadic sandy laminae; MOJ-1/c18, 1351–1354 m; j — medium-grained sandstone 

ripples forming flaser bedding; MOJ-1/c17, 1298–1303 m/b4; k — Congeria cf. czjzeki Hörnes. MOJ-1/c16,1253–1261 m/b6; l — indistinctly 

bioturbated mudstone; MOJ-1/c16, 1253–1261 m/b5; m — massive mudstone witch carbonized plant fragments; MOJ-1/c13, 1099– 

1104 m/b1; n — massive sandstone; MOJ-1/c12, 1054–1059 m/b2;

 

o — Cardiidae indet.; MOJ-1/c11, 1000–1005 m/b4; p — massive, 

 medium-grained sandstone; MOJ-1/c11, 1000–1005 m/b2; r — mudstone with sandy concretions, red mottles and rhizoids; MOJ-1/c10, 

955–960 m/b4; s — massive, medium-grained sandstone with a reddish mudstone intraclast; MOJ-1/c5, 703–708 m/b1; t — mudstone with red 

mottles, and rhizoids; MOJ-1/c4, 649–654 m/b2; u — massive medium-grained sandstone; MOJ-1/c2, 549–554 m/b2.

background image

390

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 6. Thin section: a — mylonite with idiomorphic tourmaline, plane-polarized light (PPL), IV-1/c21, 2355–2358 m/b3; b — detrital grains 

cut by calcite veins, sandstone, crossed polars (CP), MOJ-1/c32, 2046–2051 m; c — melaphyre clast in conglomerate (CP), IV/c20, 2311– 

2316 m/b2; d — spherulite clasts in fine-grained conglomerate (CP), VR-1/c35, 2202–2207 m/b1; e — spherulitic rhyolite clast from conglo-

merate (PPL), VR-1/c33, 2104–2109 m; f — andesite clast from conglomerate (PPL), VR-1/c32, 2054–2059 m/b2; g — Bt–Amp andesite 

lithoclasts from volcanic conglomerate (PPL), ZM-1/c18, 1346–1351 m/b1; h — Cum-bearing andesite clast from sandy conglomerate (PPL), 

ZM-1/c12, 1046–1051 m/b1.

background image

391

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

They contain white blasts (0.5–3 cm) made up of recrys tallized 

Qz, Pl, minor Kfs or by aggregates of these minerals. The space 

between the blasts is occupied by microcrystalline Qz, Chl and 

by dispersed opaque minerals. At the depth of 2355 m light 

grey phyllonitic to porphyroblastic rocks with pink-coloured 

carbonate veins occur (Fig. 8). Less deformed parts have 

a similar composition as the underlying rocks, but the degree 

of Fs sericitization increases and the intensively coloured Chl 

is absent. The pseudomatrix is formed by sericite. In the inten-

sively deformed parts the ribbons are formed by recrystallized 

Qz, moreover laminas of idiomorphic Tur (Table 2, Fig. 6a) 

and opaque minerals are found. Both sampled levels  display 

cataclastic crushing. From the accessory minerals Zrn, Rt and 

Py occur.

The base of the Neogene fill is composed of poorly sorted 

conglomerates and sandstones (2350–2140 m, Fig. 7). Normal 

gradation, erosional surfaces, lamination and ripple cross- 

lamination is observed (Fig. 8). The diameter of the clasts does 

not exceed 10 cm. In the conglomerates grey micritic carbo-

nates occur, which yield rare foraminifera and calcite veins. 

Other present carbonates yield pelmicrosparite, sparite to 

recrys tallized textures. Carbonate breccia and carbonate silt-

stone clasts occur. It is important to note, that carbonate clasts 

are less rounded, than the siliciclastic lithoclasts. They are com -

po sed of granitoid to metagranitoid and sandstones. The large 

granitoid fragments are heavily shattered, and the fissures are 

filled with calcite (Calc). Sandstones and meta-sandstones are 

ranked to quartz arenite, arkose to meta-greywacke with seri-

citic pseudomatrix. Clasts corresponding to Bt schist are also 

found. Quartz phyllite, shale, chert and melaphyre are less 

abundant. Melaphyre clasts with intersertal and rarely diorite 

texture include Pl phenocryst in dark groundmass. Amygdales 

and pseudomorphs are filled by Qz and microcrystalline Qz 

(Fig. 6). Additionally, a fragment of Permian felsite with mag-

matically corroded Qz and a fragment of pseudotachylite is 

found. Mineral grains are mainly composed of polycrystalline 

Qz, Or, Pl and Tur. Carbonate cement is present in all samples. 

The overlying part from the depth of 2140–1930 m is domi-

nated by mudstones and sandstones. The mudstones are 

 commonly bioturbated and contain rare leaf (Zelkova sp.) and 

fish fossils  (Pleuronectiformes; Zahradníková et al. 2013).  

In the sandstones two types of structures occur: the first is 

characterized by gradation and the second by horizontal and 

ripple-cross lamination (Fig. 8). Pillow structures and synse-

dimentary folds are abundant in both sandstone types. The grain 

composition is enriched by shales to phyllites and large leaves 

of Chl, Ms and Bt. In the binding material Glt and foraminifers 

occur. From volcanites, only one clast is observed, but the size 

of the clast does not allow its assignment to Paleozoic or 

Neogene volcanics. The carbonate cement is poikilitic in  

some samples, while clay intraclasts are common. In the depth 

of 1930–1650 m para-conglomerates (gravel: 14–25 %, 

 

sand: 49–56 %, lutite: 25–30 %) are present (Figs. 7, 8). Well 

rounded clasts are max. 3–5 cm in diameter and are accompa-

nied by armoured mud intraclasts and synsedimentary fold 

structures. The debris composition is dominated by granitoids, 

additionally a small amount of white Neogene volcanic clasts 

are present. They are composed of Pl phenocryst in altered 

glassy groundmass. The remaining intervals were poorly 

 sampled, or were not sampled at all. Nonetheless the SP and 

RT log trends can provide some data on the lithology, which is 

confirmed by the core 5 which drilled massive mudstones 

(Fig. 8).

Heavy minerals were analysed from five samples (depth 

2240, 2160, 1960, 1760 and 1705 m). Their mineral compo-

sition is similar. Among transparent heavy minerals Grt (16–

53 %) dominate, while Tur, St, Ap, Rt, Zrn are less abundant 

(< 8 %). Both dravite and schorl Tur are observed. Ilm creates 

6–42 % and oxidized framboidal pyrites with minerals of 

limo nite group create 5–26 %. Glt is present mainly in the depth 

of 2240–1960 m (5 to 6 %) and decreases in the depth of 

1760–1705  m  to  <  1 %.  In  the  first  interval  one  magnesio- 

chromite spinel (Mg

0.52

Fe

2+

0.46

Mn

0.01

Cr

1.18

Al

0.77

Fe

3+

0.04

O

4

) is 

detected. On the other hand, Ep appeared in the second 

interval.

VR-1 well

Basement rocks drilled in the VR-1 well are composed of 

metamorphosed pink quartzites together with lila-brown 

shales and overlying dolomite with layers of black graphitic 

shale  (Gaža  1968;  Biela  1978a).  From  these  rock  types  

only the brecciated microcrystalline dolomite (Figs. 9, 10) is 

pre served.

Conglomerates from the base of the Neogene fill were not 

present in the archive (2460–2300 m). Only original petro-

grafic analyses describing poorly rounded, variegated clasts 

(max. 3 cm in diameter) of siltstones, claystones, shales, sand-

stones and rare, limonitized diabase grains with ophitic texture 

were reported by Gaža (1968).

The overlying interval is marked by abundant epiclastic vol-

canic material (2300–1860 m). The sequence starts with nor-

mally graded conglomerates and sandstones with rounded 

clasts (Fig. 10). They pass into poorly sorted, coarse-grained 

sandstones with armoured mud intraclasts. The lower white 

and green coloured part (up to 2055 m) consists of rhyolitic 

vitroclasts, spherulites, spherulitized vitroclast, pumice, Kfs, 

Pl (An

23–29

; Fig. 11, Table 3), Qz phenocrysts (observed mag-

matic corrosion) and rare heavily altered Bt (Fig. 6). This part 

also contains greenish crystalloclastic fine-grained tuff clasts, 

which rarely include vitroclasts and volcanic lithoclasts. These 

tuff fragments showed signs of deformation and bending 

around clastic grains. Non-volcanic lithoclasts are fairly rare. 

They are composed of granitoid, metaarkose, quartz arenite, 

phyllite/shale, Qz-mica schist, polycrystalline Qz and Zrn.  

At the depth of 2055 m, the composition of the volcanic mate-

rial changes. Intermediate volcanic lithoclasts with porphy-

ritic, intersertal and pilotaxitic texture dominate and lithoclasts 

with perlite texture are very rare. They are composed of Pl 

phenocrysts (An

40–63

; Fig. 11, Table 3) and pseudomorphs after 

mafic minerals (Px?) ± Bt (Fig. 6). From phenocrysts Qz, Bt, 

zonal and sieved Pl and pseudomorphs after mafic minerals 

background image

392

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 7. IV-1 well table; for explanations see Fig. 4.

background image

393

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 8. IV-1 well core samples (for symbol explanations see Fig. 5): a — mylonite; IV-1/c22, 2389–2392 m/b1; b, c — mylonite; IV-1/c21, 

2355–2358 m/b3; d — transition from graded conglomerate (up to 6 mm) through laminated sandstone to wavy ripples and laminated mud-

stone (gravity flow) IV-1/c20, 2311–2316 m/b3; e — graded conglomerate (up to 2 cm), IV-1/c20, 2311–2316 m/b3; f — heterolithic sediment 

including ripples with pillow structures and abundant carbonized plant fragments, IV/c16, 2158–2163 m/b2; g — fine-grained sandstone with 

Pleuronectiformes fish fossils (Zahradníková et al. 2013) IV-1/c15, 2090–2093 m/b3; h — mudstone with preserved Zelkova sp. carbonized 

leaves, IV-1/c15, 2090–2093 m/b1; i — flaser bedding with ripples draped by carbonized plant fragments. IV1/c15, 2090–2093 m/b3;  

j — wavy bedding with carbonized plant fragments and synsedimentary faults, IV-1/c14, 2040–2045 m/b1; k — heterolithic sediment with 

lenticular bedding; IV-1/c12, 1956–1961 m/b3; l, m — reddish para-conglomerate (up to 0.5 cm) with synsedimentary folds, IV-1/c8, 1758–

1763 m/b5; n — reddish para-conglomerate (up to 1.5 cm clasts), IV-1/c7, 1703–1708 m/b2; o — massive mudstone, IV1/c7, 1703–1708 m/b2.

background image

394

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

filled by Chl are present. Chloritized tuffaceous matrix is 

responsible for the green-grey sediment colour and its share 

decreases upward. However, rhyolitic lithoclasts are still  

present. At the depths of 2055 m and 1904 m carbonatized 

tuffite layers are cut by multiple veins (Fig. 10).

The overlying heterolithic interval (1860–1310 m) is domi-

nated by sandstones with occasional coal seams and abundant 

carbonized plant fragments. Within sedimentary structures 

lamination, ripple-cross lamination, small scale cross-beds, 

bioturbation, normal gradation, mud intraclasts and convolute 

bedding are observed, (Fig. 10). The amount of volcanic litho-

clasts decreases, whereas content of stable minerals (Qz,  

Zrn, Tur, Rt, Grt) and non-volcanic rock fragment increases. 

The amount of the carbonate cement, sorting and roundness of 

grains increases as well. The composition of non-volcanic 

lithoclasts is enriched by micritic carbonates, cherts and fossil 

remnants. In the depth up to 1550 m Glt is documented.

In the depth of 1310–1250 m, a change in the lithological 

appearance is observed. This interval is composed of para-con-

glomerate to poorly sorted, coarse-grained sandstone with 

approximately  7 %  gravel  (max.  1 cm  in  diameter),  which 

includes abundant cardiids (Fig. 10). The volume of the sandy 

and lutite fraction is the same (50 %). Sandy and gravelly 

 layers are rarely supplemented by muddy intercalations. Clast 

composition remains the same.

The upper parts (1250–395 m) are characterized by altera-

tions of mudstones and minor sandstones. The matrix is pre-

dominantly  red  in  colour.  Lamination,  bioturbation,  synsedi           - 

mentary folds, carbonized plant fragments, leaves (Ulmus 

pyramidalis) and dreisenids are present (Fig. 10). The fine-

grained sands consist of Qz, Fs, Ms, Chl and rarely observed 

carbonate crystals.

Heavy minerals were analysed from four sandy samples 

(depth 1450, 1305, 1250 and 950 m) and one lutite sample 

(depth 500 m). Mineral composition is nearly identical in all 

samples, but representation of individual minerals at the 500 m 

depth is significantly affected by overall grain-size of the sam-

ple. Grt (7–44 %) and Ilm (18–43 %) dominated in the sandy 

samples; in the lutite sample Grt create 3 %. Ap, St, Tur (dra-

vite), La

0.21-0.24

Ce

0.40-0.43 

allanite (Table 2), Zrn and Rt did not 

Neogene fill

Mylonite basement

Neogene fill

Well

ZM-1

VR-1

MOJ-1

IV-1

IV-1/21

Well

VR-1

core

rim

core

rimI

rimII

core 

rim

core 

rim

Min.

Srl

Drv

Drv

Srl

Drv

Drv

Srl

Drv

Drv

Drv

Drv 

Aln

Aln

SiO

2

36.63

36.70

36.82

36.19

36.64

37.98

34.54

36.60

37.65

37.88

37.13

SiO

2

31.32

30.89

TiO

2

0.53

0.66

0.44

1.77

0.87

0.05

0.29

0.16

0.22

0.14

0.15

TiO

2

0.77

1.41

Al

2

O

3

29.28

32.73

34.98

28.69

32.33

32.05

33.25

32.24

31.91

32.72

32.41

Al

2

O

3

14.40

13.85

Cr

2

O

3

0.02

0.02

0.03

0.03

0.07

0.00

0.00

0.00

0.04

0.00

0.00

FeO

15.56

15.63

FeO

9.58

6.94

5.83

11.84

7.81

5.77

15.11

3.09

4.01

2.61

3.68

MgO

0.66

0.64

MgO

5.94

5.95

5.68

5.27

5.96

7.98

0.69

10.28

9.66

10.06

9.57

MnO

0.76

0.36

CaO

0.30

0.57

0.54

0.31

0.65

0.05

0.09

0.12

0.26

0.16

0.14

SrO  

0.05

0.06

MnO

0.00

0.02

0.06

0.01

0.00

0.00

0.10

0.02

0.01

0.00

0.06

CaO  

10.31

9.94

Na

2

O

2.57

1.78

1.71

2.59

1.93

2.20

1.88

2.58

2.48

2.49

2.46

Na

2

0.01

0.03

K

2

O

0.02

0.01

0.04

0.03

0.01

0.00

0.06

0.02

0.02

0.03

0.06

Y

2

O

3

 

0.12

0.13

F

0.00

0.00

0.00

0.00

0.00

0.00

0.27

0.00

0.00

0.00

0.00

ThO

1.83

0.61

Cl

0.01

0.00

0.01

0.01

0.00

0.00

0.01

0.00

0.00

0.01

0.00

UO

2

  

0.04

0.01

H

2

O*

3.59

3.67

3.74

3.59

3.68

3.73

3.40

3.70

3.74

3.77

3.72

La

2

O

3

6.78

6.63

B

2

O

3

*

10.40

10.64

10.83

10.42

10.67

10.80

10.24

10.71

10.84

10.92

10.77

Ce

2

O

3

11.43

12.30

Li

2

O*

0.51

0.34

0.42

0.26

0.31

0.35

0.17

0.00

0.14

0.18

0.03

Pr

2

O

3

1.08

1.27

Total

99.37

100.04

101.13

101.02

100.95

100.97

100.10

99.51

100.98

100.94

100.17

Nd

2

O

3

2.89

3.77

O=F

0.00

0.00

0.00

0.00

0.00

0.00

0.11

0.00

0.00

0.00

0.00

Sm

2

O

3

0.28

0.36

Si

6.123

5.995

5.909

6.033

5.967

6.109

5.863

5.939

6.035

6.028

5.993

Eu

2

O

3

0.40

0.37

T

Al

0.000

0.005

0.091

0.000

0.033

0.000

0.137

0.061

0.000

0.000

0.007

Gd

2

O

3

0.17

0.32

B

3.000

3.000

3.000

3.000

3.000

3.000

3.000

3.000

3.000

3.000

3.000

Tb

2

O

3

0.05

0.04

Z

Al

5.769

6.000

6.000

5.638

6.000

6.000

6.000

6.000

6.000

6.000

6.000

Dy

2

O

3

0.00

0.12

Mg

0.231

0.000

0.000

0.362

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Er

2

O

3

0.13

0.19

Cr

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Tm

2

O

3

0.03

0.06

Fe

3+

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Yb

2

O

3

0.04

0.09

Al

0.000

0.295

0.524

0.000

0.172

0.075

0.515

0.103

0.030

0.138

0.158

Lu

2

O

3

0.19

0.24

Ti

0.067

0.081

0.054

0.222

0.107

0.007

0.036

0.020

0.026

0.016

0.018

Total

99.31

99.32

V

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Si

2.996

2.981

Cr

0.002

0.002

0.004

0.004

0.009

0.000

0.000

0.000

0.006

0.000

0.000

T

Al

0.004

0.019

Fe

3+

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Al

1.619

1.556

Mg

1.249

1.449

1.359

0.948

1.448

1.914

0.174

2.487

2.308

2.386

2.301

Ti

0.056

0.102

Mn

0.000

0.002

0.008

0.002

0.000

0.001

0.015

0.002

0.001

0.000

0.008

Mg

0.095

0.091

Fe

2+

1.340

0.948

0.782

1.651

1.064

0.776

2.145

0.419

0.538

0.347

0.497

Fe

1.245

1.262

Zn

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Mn

0.062

0.030

Li*

0.342

0.222

0.269

0.174

0.200

0.228

0.114

0.000

0.092

0.113

0.017

Ca

1.056

1.027

Ca

0.053

0.099

0.092

0.056

0.113

0.009

0.017

0.020

0.045

0.027

0.024

Sr

0.003

0.003

Na

0.832

0.565

0.532

0.837

0.610

0.686

0.619

0.811

0.771

0.768

0.771

Th

0.040

0.013

K

0.004

0.003

0.009

0.007

0.001

0.001

0.012

0.005

0.003

0.006

0.011

U

0.001

0.000

r

0.110

0.333

0.366

0.101

0.275

0.304

0.352

0.164

0.181

0.198

0.194

Ce

0.400

0.435

OH

3.998

4.000

3.999

3.998

4.000

4.000

3.853

4.000

3.999

3.998

4.000

La

0.239

0.236

F

0.000

0.000

0.000

0.000

0.000

0.000

0.144

0.000

0.000

0.000

0.000

REE

0.183

0.238

Cl

0.002

0.000

0.001

0.002

0.000

0.000

0.003

0.000

0.001

0.002

0.000

Table 2: Selected analyses of tourmaline (*calculated to stoichiometry) and allanite.

background image

395

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 9. VR-1 well table; for explanations see Fig. 4.

background image

396

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 10. VR-1 well core samples (for symbol explanations see Fig. 5): a — tectonized carbonate breccia, VR-1/c43, 2569–2572 m/b5; b — wavy 

beddings with carbonized plant fragments, VR-1/c35, 2202–2207 m/b3; c — green to white, normally graded volcanic conglomerate. Clasts 

reached up to 6 mm in diameter; VR-1/c33, 2104–2109 m/b3; d — greenish volcanic conglomerate with armoured mudstone intraclasts, VR-1/c32, 

2054–2059 m/b2; e — carbonized tuffite, VR-1/c32, 2054–2059 m/b2; f — greenish, coarse-grained volcanic sandstone; VR-1/c30, 1943– 

1948 m/b2; g — greenish para-conlomerate with mudstone intraclasts; VR-1/c29, 1899–1904 m/b2; h — tuffite cut by calcite veins; VR-1/c29, 

1899–1904 m/b2; i — heterolithic sediment with wavy to lenticular bedding; VR-1/c26, 1745–1750 m/b2; j — heterolithic sediments with 

convolute bedding and pillow structure; VR-1/c23, 1605–1610 m/b1; k — fine-grained sandstone with trace fossil on the bedding planes, 

VR-1/c21, 1505–1510 m/b2; l — fine-grained conglomerate (up to 3 mm) to coarse-grained sandstone, VR-1/c20, 1450–1455 m/b3;  

m — heterolithic sediment with flaser bedding and abundant carbonized plant fragments, VR-1/c20, 1450–1455 m/b2; n — heterolithic sediment 

with flaser bedding and abundant carbonized plant fragments; VR-1/c20, 1450–1455 m/b5; o — para-conglomerate (up to 5 mm),VR-1/c17, 

1304–1309 m; p — conglomerate (up to 3 mm) with fragments of Cardiidae bivalves, VR-1/c16, 1250–1255 m/b3; r — reddish, bioturbated, 

heterolithic sediment with carbonized plant fragments. VR-1/c10, 950–955 m/b1; s — reddish, heterolithic sediment with synsedimentary folds 

and carbonized plant fragments. VR-1/c9, 900–905 m/b1; t — reddish mudstone with Dreissenid bivalves. VR-1/c7, 802–807 m/b3; u — fine-

grained sandstone with preserved carbonized Ulmus pyramidalis leaves, VR-1/c7, 802–807/b4; v — reddish mudstone, VR-1/c1, 500–505 m/b2.

background image

397

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

exceed 3 %. The amount of framboidal pyrite and limonite 

minerals increases upward from 4 % (in the depth 1450 m) to 

55 % (in the depth 1250 m). Samples from the depth of 950 

and 500 m no longer contain pyrite, but the sample from  

the depth of 950 m is leucoxenized and the content of limonite 

minerals is 62 %. In contrast, the lutite sample from the depth 

of 500 m has only 7 % of limonite minerals. Associations of 

the sandy samples are completed by monazite and rock frag-

ments formed by Na

0.40

Ca

0.54

-rich mica with inclusions of 

chloritoid and staurolite (Fig. 12).

ZM-1 well

The basement rocks in the ZM-1 well were not present in 

the  repository.  However,  in  the  original  report  (Gaža  1970) 

grey metamorphosed arkose with carbonate veins (depth 

below 1956 m) is assigned without a doubt to the Paleozoic 

basement (Fig. 13). The lower limit of the Neogene fill in  

the ZM-1 well is questionable due to the lack of the disputed 

well cores (Fig. 13). From this interval, only a core from  

the  depth  of  1711–1708  m  is  preserved,  which  has  similar 

character as sedimentary rocks from the depth of 1558–1448 m. 

These sediments are represented by fine-grained conglome-

rates, sandstones and mudstones. In the grey mudstones, 

synsedimentary folding, abundant carbonized plant fragments 

and red mottles are observed (Fig. 14). The mudstones are 

often cut by scours and filled with fine-grained conglomerates. 

The conglomerate and light coloured sandstones are normally 

graded. Clasts are poorly rounded and locally poorly imbri-

cated. In their composition the Qz, Qz-sericitic and carbonate 

shale lithoclasts strongly dominate. Altered granitoids to 

meta-granitoids, meta-greywacke, meta-arkose, chert/felsite, 

quartz arenite, arkose, lithic sandstone and micritic to recrys-

tallized carbonates are also included. In the upper part (above 

1495 m) altered volcanic lithoclasts appear and their volume 

increases upward. From mineral grains altered Fsp, Bt, Zrn 

and opaque minerals occur. Some granitoid grains are 

carbonatized.

A significant change in the modal composition is observed 

at a depth of 1410–1007 m. At the base of the interval (depth 

1405–1410 m) weakly consolidated, greenish, massive volca-

nic sandstones with tuffaceous matrix are present (gravel 

1–4 %, sandy fraction 44–55 %, lutite fraction 44–53 %). 

Volcanic origin is represented by altered volcanic lithoclasts, 

vitroclasts and Pl. Mafic minerals except altered Bt are not 

preserved. Inside these sandstones, well sorted polymict con-

glomerates with normal to inverse gradation and well rounded 

pebbles (1–2 cm diameter) are present (Fig. 14). They contain 

poikilitic calcite cement. Abundant volcanic lithoclasts yield 

intersertal and porphyritic texture with Pl phenocrysts and 

pseudomorphs after mafic minerals (Px ± Amp) often filled by 

calcite in microlithic glass. Nonvolcanic lithoclasts in both 

types are composed of quartz arenite, arkose, meta-arkose, 

greywacke with strong ore pigment, lithic sandstone, siltstone 

and altered granitoids. These volcanic sandstones pass into 

grey mudstones. In the mudstone, intercalation of coarse-

grained volcanic conglomerate (depth 1351–1346 m) and ben-

tonite (1310–1305 m) appears (Fig. 14). Volcanic conglomerate 

with subrounded to poorly rounded pebbles cannot be clearly 

classified because of the ratio between core diameter (10 cm) 

and the clast diameter (up to 6 cm). The conglomerate is 

unsorted and is formed entirely by volcanic lithoclasts of 

andesite to dacite with porphyritic texture. The composition  

of the lithoclasts and matrix is approximately the same. 

Pronounced rusty colour of the matrix is a result of a stronger 

alteration. Lithoclasts with microcrystalline groundmass are 

light pink to grey and yield large phenocryst (about 0.5 cm) of 

reddish-brown, idiomorphic Bt, and Pl (An

74-65

 in the core to 

An

51

 in the rim; Fig.11, Table 3). Opacitic Amp phenocrysts 

are dominantly of magnesio-hastingsite composition, less fre-

quently of magnesio-ferri-hornblende composition (Šarinová 

& Rybár 2018). They are often replaced by secondary minerals. 

Rare magmatically corroded Qz, Kfs and augite are also present 

(Fig. 6). The white bentonite layers contain glass shards, Qz, 

Pl and Bt in smectite matrix. Above the bentonite, mudstones 

dominate and include rare, graded sandstone layers. Coarse-

grained sandstones with poikilitic carbonate cement (1255 m) 

contain well-rounded cloudy volcanic epiclasts, shale, grani-

toid, carbonates, quartz arenite, arkose, Qz, sericitized Or, Pl, 

Bt and Tur. At the depth of ~1100 m fine-grained deposition is 

terminated by the second layer of coarse-grained volcanic 

conglomerate (the clasts reach up to ~10 cm; Fig. 14). Their 

composition corresponds to the composition of volcanic con-

glomerate from the depth of 1350 m, but one green clast of 

an andesitic tuff is also found. The volcanic conglomerate 

passes into poorly sorted, chaotic, rusty coloured, sandy vol-

canic paraconglomerate and coarse-grained sandstone (gravel: 

4–11 %,  sand:  39–60 %,  lutite:  28–57 %).  These  chaotic 

 conglomerates are composed of rounded andesite clasts, hea-

vily altered volcanic lithoclasts and elongated mud intraclasts 

(Fig. 14). Heavy synsedimentary deformation and poorly 

Fig. 11. Composition of feldspars in volcanic lithoclasts from ZM-1 

and VR-1 well. * data taken from Šarinová & Rybár (2018).

background image

398

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

preserved ripples are also documented. The diameter of litho-

clasts decreases upward from 5 to 2 cm. Well rounded, lithi-

fied clasts of older volcanic rocks are similar to those in  

the underlying volcanic lithoclasts. Strongly altered, friable 

clasts with the rusty-brown, hyaline to pilotaxitic volcanic 

groundmass contain phenocryst of Bt, Pl, Amp, Px and 

probably orthopyroxene pseudomorphs filled by secondary 

minerals  (Šarinová  &  Rybár  2018). The  sandy  matrix  addi-

tionally includes Pl, Bt, Amp, Px, vitroclastic and crystallo-

clastic tuff clasts, arkose, granitoid, shale and polycrystalline 

Qz. The interval is closed by layered pale grey mudstone. 

Another significant change in the composition of sediments is 

observed in the depth of 1000–700 m. From the coarse clastic 

interval the core from the depth of 954–959 m was only avai-

lable. Laminated sandstone with indistinct ripples, and abun-

dant carbonized plant fragments, occurs together with poorly 

sorted conglomerate with synsedimentary folds and erosional 

contacts (Fig. 14). In this interval, altered volcanic lithoclasts 

are represented only by a small percentage. The dominating 

non-volcanic lithoclasts are composed of altered granitoid, 

mylonite, Qz to Qz–Ser shale, sandstone, Qz, Kfs, Pl and chlo-

ritized Bt. The drilling report (Gaža 1970) of several consecu-

tive cores describes 3 to 10 cm long clasts composed of shale/

phylite, quartz arenite, granitoid, greywacke and volcanite. 

A fine-grained interval follows in the depth of 700–340 m and 

is dominated by laminated mudstones with minor carbonized 

plant fragments. In the depth of 551–556 m a layer of poorly 

sorted, coarse-grained, sandstone to graded conglomerate is 

documented. Fine-grained conglomerate with crystalline car-

bonate cement showed a similar composition as the previous 

sample.

Heavy minerals were analysed from sandstones (1450 m) 

and volcanic sandstones to sandy conglomerates (1410 m, 

1050 m and 1005 m). During the validation of mineral compo-

sition by microprobe, the polished section from the depth of 

1450 and 1410 m contained only a small number of picked 

grains. From transparent minerals Ap 4–6 % dominated, Grt 

makes up 1–6 % and Tur 1–3 %. Zrn, Rt, Sp and Cpx (augite) 

are also present. One Tur with schorl core and dravite rim is 

part of a lithoclast consisting of Qz, Ms, Ab and Ap (Fig. 12). 

Sandstone from the depth of 1450 m consists of 71 % of limo-

nite minerals, 12 % of pyrite (including framboidal) and 1 % 

of Ilm. On the other hand, volcanic sandstone from the depth 

of 1410 m is composed of 25 % of Ilm, 18 % of limonite and 

limonitized pyrite and idiomorphic Bt (37 %). Volcanic sand-

stones to conglomerates from the depth of 1050 m and 1005 m 

contain  different  amphibole  rich  associations  (47–79 %).  

The associations are completed by Ilm together with Mag 

(16–45 %), Py (2–7 %), Ap (1–3 %), Px (1.6 %), Zrn, Tur, Rt, 

Ttn and Grt (less than 1 %). The composition of Amp (cum-

mingtonite, magnesio-hornblende, magnesiohastingsite) and 

Px (augite) was published by Šarinová & Rybár (2018).

Garnet

Garnets were present in all samples, therefore they were 

selected for further study. The ZM-1 well is not statistically 

evaluated, since only one Grt was analysed. Grt are divided 

into seven groups based on different molecule composition 

(Fig. 15): a) Alm

24

Sps

65

 from MOJ-1 clearly corresponds to 

a granite source; b) Prp

11-21

Alm

69-82

 are abundant and contain 

inclusions of Chl, Rt and Zrn. They correspond to fields of 

well

VR-1 rhyolite clasts

VR-1 andesite clasts

ZM-1 Bt-Amp andesite/dacite clasts

depth

2104 - 2109

 m

1450 - 1250

 m

1346 - 1351

 m

1099 - 1

104

 m

type

Kfs

Kfs

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Kfs

Pl

Kfs

Phen.

Phen.

Phen.

Phen.

Phen.

Phen.

matrix

Phen.

matrix

Phen.

Phen.

Phen.

Phen.

Phen.

matrix

Phen.

Phen.

Phen.

matrix

matrix

SiO

2

64.74

64.62

61.49

62.42

54.94

55.32

53.40

53.55

54.07

53.77

55.04

51.77

55.69

49.04

55.77

52.50

48.32

65.08

54.18

65.24

Al

2

O

3

18.55

18.20

23.78

23.12

27.37

27.41

27.48

28.90

28.16

28.22

28.10

30.26

27.97

32.54

28.43

29.78

32.30

20.29

28.66

20.79

SrO

0.13

0.1

1

0.05

0.03

0.08

0.06

0.07

0.05

0.12

0.09

0.1

1

0.1

1

0.09

0.10

0.08

0.07

FeO

0.05

0.08

0.12

0.1

1

0.91

0.57

1.04

0.39

0.81

0.79

0.22

0.44

0.18

0.28

0.41

0.34

0.48

0.27

0.51

0.24

MgO

0.00

0.03

0.04

0.03

0.02

0.02

0.06

0.00

0.02

0.04

0.00

0.03

0.00

0.00

0.02

0.04

0.04

0.00

0.03

0.02

BaO

0.39

0.25

0.89

0.47

CaO

0.13

0.15

5.55

4.79

11.17

10.80

11.62

12.1

1

11.89

12.02

11.17

13.68

10.59

15.90

11

.11

12.90

16.09

0.29

11.15

0.46

Na

2

O

2.58

1.29

7.76

8.02

5.01

5.10

4.77

4.32

4.61

4.38

5.02

3.61

5.67

2.93

5.38

4.38

2.47

3.78

4.95

4.15

K

2

O

12.98

14.56

0.90

0.89

0.41

0.34

0.39

0.33

0.28

0.27

0.23

0.60

0.30

0.10

0.47

0.21

0.09

10.63

0.37

10.20

Total

99.43

99.17

99.78

99.49

99.88

99.60

98.83

99.67

99.90

99.55

99.90

100.48

100.52

100.89

101.67

100.24

99.87

101.24

99.91

101.58

Si

2.987

3.000

2.744

2.784

2.495

2.509

2.459

2.435

2.457

2.451

2.488

2.352

2.502

2.231

2.484

2.383

2.223

2.936

2.456

2.921

Al

1.008

0.996

1.251

1.215

1.465

1.465

1.492

1.549

1.508

1.516

1.497

1.621

1.481

1.745

1.492

1.593

1.751

1.078

1.531

1.097

Sr

0.003

0.003

0.001

0.001

0.002

0.002

0.002

0.001

0.003

0.002

0.003

0.003

0.002

0.003

0.002

0.002

Fe

0.002

0.003

0.004

0.004

0.034

0.022

0.040

0.015

0.031

0.030

0.008

0.017

0.007

0.01

1

0.015

0.013

0.018

0.010

0.020

0.009

Mg

0.000

0.002

0.003

0.002

0.002

0.001

0.004

0.000

0.001

0.002

0.000

0.002

0.000

0.000

0.001

0.003

0.003

0.000

0.002

0.001

Ba

0.007

0.005

0.016

0.008

Ca

0.007

0.007

0.265

0.229

0.543

0.525

0.573

0.590

0.579

0.587

0.541

0.666

0.510

0.775

0.530

0.627

0.793

0.014

0.541

0.022

Na

0.231

0.1

16

0.671

0.693

0.441

0.449

0.426

0.381

0.406

0.387

0.440

0.318

0.494

0.258

0.465

0.385

0.220

0.330

0.435

0.360

K

0.764

0.862

0.051

0.051

0.023

0.020

0.023

0.019

0.016

0.016

0.014

0.035

0.017

0.006

0.026

0.012

0.006

0.612

0.021

0.582

cat. sum

5.006

4.991

4.992

4.981

5.005

4.992

5.019

4.991

5.000

4.992

4.991

5.014

5.014

5.028

5.016

5.019

5.015

4.996

5.007

5.002

Table 3:

 Selected analyses of feldspar from volcanic lithoclasts (Phen.–phenocrysts, matrix–crystals from groudmass).

background image

399

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

granitoids and orthogneisses (Fig. 15); c) Prp

21-31

Alm

63-68 

indi-

cate more Mg-rich provenance from gneiss (Suggate & Hall 

2014; Fig. 15); d) Prp

7-18

Sps

29-40

Alm

41-43

 (two Grt from MOJ-1) 

compositionality corresponds to Bt gneiss of the Tribeč Mts. 

(Ivanička et al. 1998); e) Grs

8-24

Alm

52-83 

composition is typical 

for low grade metapelite to amphibolite (Suggate & Hall 2014; 

Fig. 15). This group yields inclusions of Zrn, Al

2

SiO

5

, Ilm, Qz 

and Chl; f+g) Grs

9-24

Prp

10-21

Alm

59-69 

with inclusion of Amp, Rt 

and Bt attributed to Neogene volcanic source or metabasites. 

This group yields Grt from the volcanic lithoclast of the VR-1 

well (Fig. 12). A slightly different projection of the six Grt  

(f group) from the MOJ-1 and VR-1 wells (Fig. 15) is caused 

by  low  content  of  Sps  molecule  (˂  2 %).  Sps  molecule  in  

the g group varies from 2.2 to 10 %, with the highest peak 

in-between 4 to 6.5 %. Two Grt from the f group also contain 

Prp

21-31

 (VR-1, MOJ-1), which can indicate an ultrabasic 

source (Suggate & Hall 2014).

Interpretation 

Provenance

The wide spread late Badenian–Sarmatian sediments are 

limited by the Mojmírovce fault zone (e.g., Biela 1978a; Hók 

et al. 1999). The composition of non-volcanic sediments from 

the basal part of the Neogene fill is generally identical in all 

the analysed wells, but variation in the volume of individual 

lithotypes occurs. The tectonically disturbed granitoid clasts 

without Bt from the IV-1 well correspond to the leucocratic 

granite forming the basement of the MOJ-1 well. Leucocratic 

granites are typical for the top of granitoid plutons and their 

remnants are preserved in the Tribeč part of the Tribeč Mts. 

(Ivanička et al. 1998). According to the MOJ- 56, 57, 65 wells 

(Biela 1978a), the footwall of the Mojmírovce fault zone (Fig. 1) 

was built up by granitoids, which formed the source before  

the Pannonian (Tortonian). The higher content of granitoid 

clasts in the VR-1 well can be explained by erosion of  

the Tribeč Mts. or denudation of Cenozoic granitoids during 

the development of the Štiavnica stratovolcano (Konečný et 

al. 1998). Due to small areas of exhumation of Cenozoic 

grani toids, the source in these granitoids cannot be fully 

excluded, but it is unlikely. Provenance of the Bt gneisses 

observed in the IV-1 well and described in the IV-4 and 6 wells 

(Čermák 1976c, 1977a) can be derived from the Tribeč Mts. 

(Ivanička et al. 1998). Arkose, arkosic meta-greywacke, shale, 

melaphyre and rare paleorhyolite clasts indicated the presence 

of Paleozoic sediments in the source area. Arkosic metagrey-

wacke can be derived from the Paleozoic cover unit of  

the Cen tral Western Carpathians. Presence of non-metamorpho-

sed arkose and melaphyre lithoclasts is typical for the Permian 

sequence of the Hronic units. These rocks outcrop in the Nor-

thern,  Rázdiel  part  of  the  Tribeč  Mts.  (Vozárová  &  Vozár 

1988). On the other hand, quartz arenite, greywacke, clay- 

sericitic shales and melaphyre layers were also described from 

the pre-Cenozoic basement of the Pohronský Inovec Mts. and 

vicinity (GK-5, 6, 12, 13, 14, PKŠ-1, VIK-1 wells; Biela 

1978b;  Fusán  et  al.  1987a, b).  In  this  area,  Paleozoic  com-

plexes are covered mainly by volcanics of the 4

th

 stage of  

the Štiavnica Stratovolcano. This does not exclude provenance 

from this area, since the onset of the volcanic activity is asso-

ciated with the end of deposition of non-volcanic sediments. 

From this point of view, the transport direction from the NE is 

obvious, especially in the ZM-1 well, where shale fragments 

dominate. In addition, the presence of the lithoclast with tur-

maline (Fig. 12) in the heavy fraction of the ZM-1well (depth 

1450 m) showed that the non-volcanic material comes from 

the first cycle of erosion. The abundant fragments of pink- 

coloured quartz arenite to subarkose can be attributed to  

the Lower Triassic of the Lúžna Fm., as well as to the Upper 

Triassic of the Carpathian Keuper Fm. (Ivanička et al. 1998). 

Both formations are present in the Tribeč Mts., but the pink- 

coloured subarkose to arkose and violet-coloured claystone 

(Gaža 1968) of the Carpathian Keuper Fm. (Biela 1978a) was 

also described from the top of the Pre-Cenozoic basement of 

the Vr-1 well. Their presence in the immediate basement sug-

gests that they could form the margin of the depocentre. 

Therefore, the provenance of pink quartz arenite to subarkose 

can be found on the SW, as well as on the N rim of the depres-

sion. Micritic carbonates with small amounts of allochems are 

typical for the Triassic. At present such carbonates emerge to 

the surface in the Tribeč Mts. In addition, carbonate and shale 

alternations were described in MOJ-7, 8 and 29 wells which 

are located N and NW from the MOJ-1 and IV-1 wells (Biela 

1978a; Fusán et al. 1987b; Fig. 1). The Mesozoic basement in 

these wells is covered only by Pannonian sediments, which 

means that carbonates formed the margin of the depression 

during the Sarmatian (late Serravallian) time. Towards 

 

the south, carbonate rocks were also found in the basement of 

the VR-1, POZ-1, 2, 4 and Podhájska-1 wells (Biela 1978a).  

In this case, carbonates are covered by sediments of late 

Fig. 12. a — andesite volcanic lithoclasts from the VR-1 well (1250–

1309 m); b — detail of andesite clasts with Grt (BSE); c — metapelite 

clasts with zonal Tur (ZM-1, BSE); d — mica with Cld, VR-1/c20, 

1450–1455 m.

background image

400

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Badenian–Sarmatian (Serravallian) age, but they could have 

been locally exposed. The interesting information is the higher 

angularity of carbonate clasts relative to siliciclastic lithoclasts 

in the IV-1 well. The same data are mentioned in the original 

drilling report of the IV-3, 5 and 6 wells (Čermák 1976a, b, c). 

The IV-6 well also contains intercalations of carbonate  breccias 

(Čermák 1976c). The higher angularity of the carbo nate debris 

points to a short transport distance in comparison to the sili-

cate rock fragments. Proximity of the Mojmírovce fault  system 

allows us to interpret clast angularity as a tectoni cally derived 

admixture. In general, we obtain an image of the dominant 

transport direction from E-NE, which was supplemented by 

material derived from the footwall of the Mojmírovce fault 

zone. 

Fig. 13. ZM-1 well table; for explanations see Fig. 4.

background image

401

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fig. 14. ZM-1 well core samples (for symbol explanations see Fig. 5): a — massive mudstone cut by a scour filled by coarse-grained sandstone, 

ZM-1/c25, 1708–1711 m; b — normally graded conglomerate (up to 1 cm) to coarse-grained sandstone, ZM-1/c22, 1553–1558 m; c — mud-

stone with red mottles and carbonized plant fragments. ZM-1/c21, 1494–1499 m/b3; d — mudstone with abundant carbonized plant fragments, 

ZM-1/c21, 1494–1499 m/b2; e — normally graded conglomerate (up to 1.5 cm), ZM-1/c19, 1405–1410 m/b4; f — greenish, coarse-grained 

sandstone, ZM-1/c19, 1405–1410 m/b4; g — massive mudstone, ZM-1/c18, 1346–1351 m/b3; h — volcanic conglomerate, ZM-1/c18, 1346–

1351 m/b1; i — bentonite, ZM-1/c17, 1305–1310 m/b4; j — normally graded, coarse to fine-grained sandstone with horizontal lamination at 

the top (gravity flow), ZM-1/c16, 1253–1258 m/b2; k — massive mudstone, ZM-1/c15, 1201–1206 m/b1; l — coarse-grained sandstone, 

ZM-1/c14, 1145–1150 m/b2; m — volcanic conglomerate, ZM-1/c13, 1099–1104 m/b4; n — contact of plastically deformed mudstone and 

conglomerate with strongly altered volcanic lithoclasts (up to 1.5 cm), ZM-1/c12, 1046–1051 m/b3; o — para-conglomerate with synsedimen-

tary folds, ZM-1/c12, 1046–1051 m/b; p — medium grained sandstone with synsedimentary folds. ZM-1/c12, 1046–1051 m/b4; r — volcanic 

conglomerate, ZM-1/c11, 1005–1010 m/b3; s — greenish muddy sandstone with carbonized plant fragments and indistinct ripples, ZM-1/c10, 

954–959 m/b5; t — massive mudstone, ZM-1/c2, 551–556 m/b3.

background image

402

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Different, finer grained development of basal sediments 

from the MOJ-1 well can be attributed to the position on 

a basement elevation of the Tribeč Mts. The high content of 

monocrystalline Qz and the very low amount of mica indicates 

that the granitoid source is similar to that of the underlying 

granite. The second major source is represented by carbonates. 

Both rock types can be linked to the Tribeč Mts., which con-

firms a local provenance.

In the MOJ-1 and IV-1 wells only a minor change of prove-

nance was observed upwards. This is documented by large Bt, 

Bt-granitoid debris and by higher amounts of shale to phyllite 

clasts. The occurrence of granitoids with Bt indicates 

an  increase  in  the  influence  of  the Tribeč  Mts.  provenance. 

The shale debris generally means a relatively near source area, 

because of their rapid mechanical decay. They can still be 

derived from the basement, which was exhumed on the foot-

wall of the Mojmírovce fault zone. 

The admixture of volcanic material appears in sediments  

of late Badenian–Sarmatian (Serravalian) age, mainly in  

the eastern to central part of the depression (ZM-1 and VR-1 

wells). In the ZM-1 well, a gradual transition from non-volca-

nic to volcanic epiclastic sediments manifested by an increase 

in volume of volcanic clasts was observed. Volcanic sand-

stones and andesite pebbles (1405–1410 m) indicate reworking 

of volcanites from the 1

st

 stage of the Štiavnica Stratovolcano 

development. Based on mineral composition and felsic, 

microlithic  groundmass  the  coarse-grained  Bt –Amp ± Px 

andesite to dacite conglomerate (1405 m, 1100 m) can be 

linked to the Studenec Fm. (3

th

  volcanic  stage;  Šarinová  & 

Rybár 2018). Today the Studenec Fm. outcrops on the surface 

between  Nová  Baňa  town  and  Stará  Huta  village  (Fig.  1; 

Konečný et al. 1998). Mudstone and sandstone intercalations 

from in-between volcanic conglomerates (1405–1100 m) indi-

cate calming of volcanic activity and recycling of older depo-

sits. Based on the fossil residues recycling of Oligocene, 

Cretaceous (Ozdínová 2012) and Badenian sediments is 

proved. The presence of strongly altered volcanic clasts of 

reddish-brown colour (Fig. 14) and fresh phenocrysts of Px 

and Amp (Fig. 6h), inside the overlying chaotic conglomerate 

(1046–1051 m), indicated short transport by gravity flow 

mechanism. Admixture of new cummingtonite-bearing volca-

nic lithoclasts indicate deposition connected with the 4

th

 stage 

of  the  Štiavnica  stratovolcano  (Šarinová  &  Rybár  2018). 

However, volcanic conglomerates, sandstones, bentonite and 

other clasts of volcanic origin clearly confirm the dominance 

of volcanic provenance. From the point of view of provenance, 

it is interesting, that rhyolite material and spherulites, which 

occur abundantly in the VR-1 well, are not observed in the ZM-1 

well. This fact points to two separate source areas; first for  

the vicinity of the ZM-1 and second for the vicinity of the VR-1, 

both coming from the NE. Rhyolite and spherulite clasts, 

which significantly dominated in the depth of 2207–2104 m in 

the VR-1 well, can be derived from the Jastrabá Fm. The clo-

sest outcrops of the Jastrabá Fm. are situated to the NE of 

Nová  Baňa  town  (Fig.  1). This  provenance  is  supported  by 

similar composition of Pl phenocrysts from the VR-1 well 

(Table 3) and rhyolites from the Jastrabá Fm. (Demko 2010). 

Additionally, the presence of rhyolite conglomerate near 

Tekovské  Nemce  village  confirms  transport  from  this  area.  

At the depth of 2055 m, a rapid change to andesite character of 

volcanic debris is observed. This fact can be interpreted in  

two ways: 1) by deep erosion, which started by removal of  

the Jastrabá Fm. and continued to erode the relatively older 

Priesil and Inovec Fm., or 2) by onset of andesite volcanic 

activity during the transportation of rhyolite epiclasts. 

 

The second option is in contradiction with the evolutionary 

stages of the Štiavnica Stratovolcano (Konečný et al. 1998; 

Chernyshev et al. 2013), but the new ages of the Jastrabá Fm. 

from Nová Baňa town (12.31–12.03 Ma by Lexa & Pécskay 

2010) and the Priesil to Inovec fms. (13–12.2 Ma by 

Chernyshev et al. 2013) allow us to think in this direction. 

This possibility is supported by the absence of andesite clasts 

in rhyolite sandstones and conglomerates just as in the base  

of the rhyolite interval. However, this can be explained by  

the incompleteness of the well core material or by river 

avulsion.

In the upper part of the VR–1 well, the content of the stable 

material increases upward. Admixture of altered andesite and 

rhyolite lithoclasts, including the idiomorphic quartz crystals, 

points to recycling of older deposits. Also, less abundant 

Fig. 15.  Garnet  provenance  diagram  after  Suggate  &  Hall  (2014;  

G +A+ S = Grossular +Andradite + Schorlomite): a–c — origin in grani-

toide to gneiss: a — granite, b — low Mg gneiss, c — Mg-rich 

metapelite or gneiss; d — ?Bt-paragneiss; e — low grade metapelites 

(mica schist) to amphibolites; f, g — intermediate to basic rocks:  

f — ?meta basite, g — andesite.

background image

403

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

sandstone clasts can be explained by recycling of the older fill, 

although the presence of mica with St and Cld intergrowths 

(Fig. 12) indicate the first cycle of erosion of mica-schists. 

This can be explained by the continued erosion of the base-

ment rock in the volcanic field. In contrast to previous wells, 

the presence of the volcanic source in fine-grained, hetero-

lithic sediments of the IV-1 well is documented only by  

Grs

9-24

Prp

10-21

Alm

59-69 

garnets (Fig. 15) and by rare volcanic 

clasts (1760 m).

In the upper part of the wells (Pannonian/Tortonian–

Messianian age), the amount of material derived from cover 

and nappe units, as well as from the Neogene volcanics 

decreases. On the other hand, the amount of clasts derived 

from granitoids increases. The composition of the clast in  

the ZM-1, MOJ-1 and IV-1 wells corresponds to the adjacent 

parts of the Tribeč Mts. Admixture of well-rounded volcanic 

lithoclasts in the ZM-1 well and altered Neogene volcanic 

clasts in the IV-1 well indicated continual but already less 

 significant volcanic provenance and a relatively long trans-

port. The para-conglomerate from the Serravallian–Pannonian 

boundary with well-rounded clasts indicates reworking of 

underlying sediments. This is manifested by: 1) composition 

similarity; 2) presence of intraclasts; 3) presence of chloritized 

Bt which was derived from underlying volcanic-rich sedi-

ments (ZM-1); 4) high content of ferric oxide in the heavy 

fraction (IV-1) as well as 5) by the presence of Sarmatian (late 

Serravalian) allochthonous nanofossils (IV-1, VR-1, ZM-1). 

The fine-grained development of the VR-1 well does not allow 

comments on the evolution of provenance in the central part of 

Komjatice depression.

The composition of the heavy minerals corresponds to  

the stated provenance, where the presence of St, Cld, Sil, Tur, 

Grs

8-24

Alm

52-83

 and Prp

7-18

Sps

29-40

Alm

41-43

 garnets indicate ori-

gin in the metasediments and Bt paragneiss of the Tribeč Mts. 

The tourmaline zonality from schorl core to dravite rim  

(Fe/Fe + Mg = 0.63– 0.26), found in the MOJ-1 well, is opposite 

to the zonality described in tourmaline rich horizons from  

the  Lúžna  Fm.  of  the  Tribeč  Mts.  (Vozárová  et  al.  2003). 

Schorl  component  increases  towards  the  rim  (Fe/Fe+Mg = 

0.14– 0.23)  in  dravite  laminas  from  the  basement  rocks  of  

the IV-1 well, just as in the Lúžna Fm. Identical zonality as in 

the MOJ-1 well is found in a Tur from schist lithoclast found 

in the ZM-1 well (Table 2; Fig. 12). This excludes Tur prove-

nance from the Lúžna Fm. and confirms transport from the NE. 

Alm

24

Sps

65

 (MOJ-1 well) and Prp

11-21

Alm

69-82 

garnets (MOJ-1, 

IV-1  and  VR-1  wells)  together  with  schorls  (Fe/Fe+Mg = 

0.92–0.94; IV-1) correspond to granitoid provenance. Occur-

rence of magnesio-chromite in the heavy fraction of the IV-1 

well points to recycling of the lower part of the Neogene fill, 

which contains melaphyre clasts. Grs

9-24

Prp

10-21

Alm

59-69 

garnet 

probably derived from Neogene volcanic rocks reach the MOJ-1 

well and confirm the existing transport direction from the NE. 

The presence of rare Hbl in the MOJ-1 well can be derived 

from granitoid rocks, but Hbl of similar composition is found 

in Neogene volcanic-rich horizons of the ZM-1 well (Šarinová 

& Rybár 2018).

The Cretaceous, Paleogene and Badenian fossils (Kováč et 

al. 2006, 2008; Ozdínová 2012; Zahradníková et al. 2013; our 

results) point to the presence of such sediments in the source 

area and/or their recycling. It is possible to speculate, that 

Badenian sediments were derived from the SE, for example, 

from the northern part of the Želiezovce depression (Kováč et 

al. 2018). The Cretaceous and Paleogene sediments may have 

formed the cover of the Central Western Carpathian units.

Stratigraphy

The original assignment of sediments based mainly on 

 benthic foraminifera species as in Biela (1978a), is modified 

based on the new results from biostratigraphy and indirect 

dating of volcanic material. The assignment of formations is 

also affected by determination of the Nemčiňany Fm. and by 

genetic redefinition of the Pannonian (Tortonian–Messinian) 

sedimentary formations (Sztanó et al. 2016).

Several biostratigraphical markers are applied from the pre-

sented foraminiferal assemblages: the late Badenian (early 

Serravallian) Bogdanowiczia pocutica; the Sarmatian (late 

Serravallian) Elphidium hauerinum (Fig. 2), Nonion biporus 

and also Anomalinoides dividens acme;  and  the Pannonian 

?Trochammina kibleri (Fig. 2). Recorded nannofossil markers 

are: the Sarmatian association with Calcidiscus pataecus 

(sensu  Schütz  et  al.  2007;  Galović  & Young  2012;  Galović 

2017; Fig. 3), Calcidiscus tropicus acme (Fig. 3) together with 

rare specimens of Calcidiscus macintyrei; and the Pannonian 

Isolithus semenenko and Reticulofenestra tegulata (Fig. 3). 

The dinocysts Virgodinium asymmetricum, V. transformis, 

Spini ferites bentori pannonicus, S. bentori oblongus, Pontia­

dinium pecsvaradensis, P. obesum assigned to the Spiniferites 

bentori  oblongus  Zone  (Sütő-Szentai  1988)  are used for  

the verification of the early Pannonian (Tortonian) age. This is 

the most diverse and rich assemblage calibrated with Biochron 

~10.8 Ma (Magyar et al. 1999a), Congeria banatica–

Lymnocardium gorjanovici–Gyraulus tenuistriatus Cenozone 

(Vrsaljko  1999)  and  NN9a-b  to  NN9b  Zone  (Bakrač  et  al. 

2012). 

Upper Badenian–Sarmatian (Serravallian)

The presence of Bogdanowiczia pocutica in the lowermost 

part of the MOJ-1 well (2100–2095 m) indicates late Badenian 

(early Serravallian) age. The pre-tectonic age of these sedi-

ments is supported by the presence of veins cutting through 

mineral grains in the depth of 2046–2050 m (Fig. 6). 

 

The Sarma tian (late Serravallian) age of the following hetero-

lithic sediments (2010–1795 m) is documented by the presence 

of algae Halicoryne aff. morelleti and Elphidium hauerinum 

with FO in the upper part of the early Sarmatian (sensu Piller 

&  Harzhauser  2005)  in  the  Paratethys  (Cicha  et  al.  1998). 

These results are consistent with Biela (1978a) and the strata 

can be assigned to the Vráble Fm. The following coarse-

grained interval from the Sarmatian–Pannonian boundary was 

originally assigned to the Sarmatian (Biela 1978a). The newly 

background image

404

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

defined, coarse-grained marginal Nemčiňany Fm. (Sztanó et 

al. 2016) corresponds to these sediments much better.

The Sarmatian (late Serravallian) age of the basal sediments 

from the IV-1 well (2355–1950 m; Biela 1978a) is supported 

by the presence of a poor nannofossil assemblage (2315 m) 

including Cyclicargolithus floridanus. Its last common occur-

rence  can  be  found  at  the  NN6/NN7  (Martini  1971)  zones 

boundary. A clear stratigraphic assignment of these deposits 

comes from heterolithic sediments that overlie the coarse clas-

tics of the IV-1 well (Figs. 7, 8). Here the NN6 was recognized 

in the depth of 2090–2093 m (Zahradníková et al. 2013). 

Moreover, the Sarmatian age of these sediments is supported 

by the presence of Halicoryne aff. morelleti and Elphidium 

hauerinum (2093–2040 m), as well as by Bolivina sarmatica 

in the depth of 1961–1956 m.

In the case of the VR-1 well, non-volcanic conglomerate 

from the base of the Neogene fill was originally assigned to 

the middle Badenian (Langhian), while volcanic conglome-

rates and sandstones were assigned to the late Badenian 

(Serravallian; Biela 1978a). These assignments were based on 

benthic foraminiferal assemblages in the overlaying sediments. 

In this study, the first abundant, but poorly preserved marine 

nannofossils and dinocyst ?Cleistosphaeridinium placa­

canthum  from the depth of 1801–1804 m indicates late 

Badenian–Sarmatian (Serravallian) age. The Sarmatian age 

(NN6; 1750–1203 m), has been set based on a small Calci­

discus resembling C. pataecus? and higher numbers of Calci­

discus species starting to appear in the depth of 1745–1750 m 

including the C. tropicus acme (1203 m; Suppl. 1). Within  

the foraminifera assemblage the Anomalinoides dividens acme 

(1745–1750  m),  indicates  the  base  of  marine  Sarmatian 

 sediments. Occurrence of Nonion biporus with  Elphidium 

hauerinum (up to 1250 m) supported this assignment. 

However, biostratigraphic sterility of underlying sediments 

(~1850 m–2300 m) can be explained by the dominance of 

coarse- grained volcanic material. In addition, the present vol-

canic material indicates Sarmatian age. Rhyolite clasts which 

appear from the depth of 2207 m (Figs. 6, 10) can be linked to 

the Jastrabá Fm. outcropping NE of Nová Baňa town (Fig. 1). 

This interpretation is suggested by the presence of the rhyolite 

conglomerate  occurring  near  Tekovské  Nemce  village. 

Original dating of rhyolites in the vicinity of Nová Baňa town 

yield a cooling age of 14.4 ± 0.5 Ma from Bt and 13.8 ± 0.3 Ma 

from volcanic glass (Repčok 1981 in Konečný et al. 1998). 

New K/Ar dating of rhyolites from the vicinity of Nová Baňa 

yield an age of 12.31 ± 0.44–12.03 ± 0.38 Ma, with a mean of 

12.19  Ma  (Lexa  &  Pécskay  2010).  Nevertheless,  the  latest  

K/Ar and Rb/Sr dating for the whole Jastrabá Fm. is in  

the interval between 12.2 ± 0.8 and 11.4 ± 0.4 Ma (Chernyshev 

et al. 2013). Additionally, the Sarmatian (late Serravallian) age 

of these sediments is supported by the high content of ande-

sitic material in the overlaying sediments (2055 m and above). 

In this depression, andesites of the 4

th

 stage of the Štiavnica 

stratovolcano (especially Priesil Fm.) formed an elevation on 

the surface. In the past, the Priesil and Inovec Fm. were 

assigned to the late Badenian–Sarmatian (intra Serravallian) 

boundary (Konečný et al. 1998). The new absolute dating by 

K/Ar and Rb/Sr indicates an age of 13–12.2 Ma (Chernyshev 

et al. 2013), although the authors discussed age ranges from 

12.7 to 12.2 Ma. The age limits of both Jastrabá and Priesil 

fms. do not contradict the observed sedimentary record and 

indicated a Sarmatian (late Serravallian) age of these deposits. 

Presence of poorly preserved nannofossils indicating late 

Badenian age (1801–1804 m), can be explained by recycling 

of older strata during opening of the depression accompanied 

by volcanic activity. The sandy, gravity flow character of  

the deposits connected with rapid sedimentation, tectonic 

activity and volcanism supports this fact. According to this 

point of view, the non-volcanic conglomerates from the basal 

part of the Neogene fill are older than 12.2 Ma.

The base of the Neogene fill in the ZM-1 well is questio-

nable and cannot be commented because of lack of core 

 samples. The question about the assignment of the non-meta-

morphosed sandstones from the interval 1904–1804 m remains. 

Gaža & Beinhauerová (1976) assign these rocks to the Carbo-

niferous  and  Biela  (1978a)  describes  a  core  fragment  from 

a depth of 1900 m as a possible Pre-Cenozoic rock. The fol-

lowing ochre and brick-red coloured arkosic sandstones  

(1590  m),  which  were  marked  as  Permian  (Gaža  &  Bein-

hauerová  1976)  were  not  found  in  the  repository.  However, 

based on presence of the mottled mudstones (Fig. 11) and 

other structures typical for an alluvial environment (1553–

1558 m) it is likely, that the colouring was caused by pedo-

genesis, and not by Permian arid deposition. The presence of 

micritic  carbonate  clasts  (1711  m)  is  also  not  typical  for  

the composition of the Permian sediments of the Hronic unit 

(Vozárová  &  Vozár  1988).  As  suggested  by  Biela  (1978a), 

similar lithological composition of samples from the depth of 

1711–1448 m supports this view and points to the Neogene 

age. However, these sediments are biostratigraphically barren. 

A Cenozoic age is indicated by a poor nannofossil assemblage 

(1555–1551 m). Although the first foraminifera tests are 

observed in the depth of 1405–1410 m, biostratigrafical 

 markers such as Nonion communis, Bulimina elongata and 

Uvigerina semiornata are present no sooner than at the depth 

of 1351 m. Extremely high content of pyrite and molds with 

small remains of dissolute, calcareous tests indicate that  

the assemblage represents only a fraction of the original asso-

ciation. According to the present foraminifera markers in  

the upper parts of the well, a late Badenian association typical 

for “agglutinated zone” is assumed. The dinocysts Melita­

sphaeridium choanophorum and Cleistosphaeridinium placa­

canthum from this depth (1351 m) can be correlated with  

the NN6 Zone. Dominance of Bolivina dilatata maxima 

(1258–1046 m) is typical for the late Badenian. However, 

fragmented tests, signs of dissolution (1255 m, 1051 m) and 

size sorting of smaller forams suggest reworking from 

 

the older late Badenian strata. Presence of the NN6 Zone in  

the depth of 400–1200 m was first mentioned by Ozdínová 

(2012). This is consistent with the presented results, where 

calcareous nannofossils showed the NN6 Zone (1351–1201 m). 

Late Badenian affinity is based on the common Calcidiscus 

background image

405

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

premacintyreiHelicosphaera walbersdorfensisHwallichii

Sphenolithus abiesReticulofenestra pseudoumbilicusUmbi­

lico sphaera  rotula,  Holodiscolithus macroporus,  Braarudo­

sphaera bigelowii bigelowii (Suppl. 1). Numerous poorly 

preserved Calcidiscus in the depth of 1051–1046 m indicate 

a Sarmatian age. Redeposition of fossil assemblages is sup-

ported by observed slump structures and intraclasts (1051–

1000 m; Fig. 11). Apart from biostratigraphy, indirect dating 

of volcanic material was possible. Based on the texture and 

mineral composition, the Bt–Amp ± Px andesite to dacite from 

coarse-grained conglomerates (1350 and 1100 m) is assigned to 

the Studenec Fm. (Figs. 6, 11). Original dating of the Studenec 

Fm. by K/Ar method was set to 15.2 ± 0.1 Ma (Konečný et al. 

1969  in  Konečný  et  al.  1998)  and  by  the  FTA  method  to  

14.8–16.4 Ma (Repčok 1978, 1979, 1980, 1981 all in Konečný 

et al. 1998). These ages did not line up with biostratigraphy 

(Konečný et al. 1998). Nonetheless, the new K/Ar and Rb/Sr 

data yield an age of 13.1 ± 0.3 Ma to 12.4 ± 0.1 Ma (Chernyshev 

et al. 2013); although the authors discuss an age range of 

13.1–12.7 Ma. In the ZM-1 well, only the altered, rusty-brown 

volcanic lithoclasts from the chaotic conglomerate (1051–

1005 m) can be assigned to the 4

th

 stage of the Štiavnica strato-

volcano evolution (Šarinová & Rybár 2018; Figs. 6, 11) with 

an age of 12.7–12.2 Ma (Chernyshev et al. 2013). Based on 

the above mentioned information, the late Badenian–Sarmatian 

(Serravallian) age of this volcanosedimentary interval can be 

considered,  in  contrast  to  the  original  assignment  (Gaža  & 

Beinhauerová  1976;  Biela  1978a).  Nonvolcanic  terrestrial 

sediments from the basal part are older than 12.7 Ma.

The actual stratigraphy (Vass 2002) assigned the late 

Badenian (early Serravallian) sediments to the Pozba Fm. and 

Sarmatian (late Serravalian) sediments to the Vráble Fm., both 

with littoral to shelf character. The formations defined based 

on their age are difficult to use, especially when the NN6 Zone 

is typical for both formations. In addition, environments are 

normally time transgressive, therefore genetically-defined 

 formations are more suitable for interpretations. Because of 

the impossibility of the strict separation of the marine sedi-

ments into the Pozba and Vráble formations, they are included 

in the merged Vráble–Pozba Fm. (Fig. 16). The actual defini-

tion (Vass 2002) does not include the underlying alluvial sedi-

ments. For the alluvial to fluvial sediments a new formation is 

defined, with the name adopted from the stratotype section in 

the Zlate Moravce-1 well = Zlaté Moravce Formation.

The Zlaté Moravce Formation

Lithology, facies:  The  Zlaté  Moravce  Fm.  is  dominantly 

built up by grey mudstones, which are cut and filled by light 

coloured conglomerates and sandstones. Red mottles, synsedi-

mentary folds, and carbonized plant fragments are common 

(Fig. 14). Muddy horizons with red mottles and abundant car-

bonized plant fragments are interpreted as swamps or oxbow 

lakes. Polymict conglomerate and sandstone are fine-grained, 

poorly rounded and composed mainly of Qz-, Qz-sericitic and 

carbonate shale lithoclasts. Altered granitoids to meta-granitoids 

meta-greywacke, meta-arkose, chert/felsite, quartz arenite, 

arkose, wacke, carbonates, Fsp, Bt and rare melaphyre are also 

included. In the upper part, Neogene volcanic lithoclasts start 

to appear. Presence of normal gradation, imbrications and ero-

sive surfaces points to deposition by traction currents. These 

features clearly coincide with an alluvial environment, which 

is partly supported by the cyclic character of the well logs 

(Fig. 13).

Stratigraphic position, thickness: The thickness is more 

than  270  m  in  the  ZM-1  well  and  160 m in the VR-1 well 

(depth 2300–2454 m). The formation overlies pre Cenozoic 

basement and passes into the marine Vráble-Pozba Fm. of late 

Badenian–Sarmatian (Serravalian) age.

Fossils, age: The sediments are biostratigraphically barren. 

The assumed age is Serravallian which is derived from  

the cor re lation with the syn-rift packet defined on the seismic 

lines 3/99 (Šályová & Mojžiš 2002) and 820/00 (provided by 

Equis l.t.d).

Depositional environments: The Zlaté Moravce Fm. repre-

sents terrestrial sediment which was deposited on an alluvial 

fan. These sediments continually pass into a fan delta environ-

ment belonging to the Vráble–Pozba Fm., what is documented 

by  marine  fossils.  In  this  context,  the  Zlaté  Moravce  Fm. 

 represents a proximal facies of the newly opened depocenters 

(Komjatice, ?Rišňovce, ?Gabčíkovo depressions).

mudstone,lignite, sand and conglomerate (alluvial, fluvial)

a  mudstone and  sandstone

)

.

(shelf

b.conglomerate, sandstone (mass gravity flow)

(para)conglomerate, sandstone mass gravity flow

(

)

a

c

b

a.

(

)

claystone, mudstone, siltstone deep lake

b. mudstone, sandstone (mass gravity flow)
c  claystone, mudstone (slope progradation)

.

mudstone, lignite, sand deltaic

(

)

mudstone, sandstone (alluvial)

a

c

b

c  mudstone, minor sandstone (slope progradation)

.

bentonite, volcanic conglomerate and sandstone

Fig. 16. Lithostratigraphy of the Komjatice depression.

background image

406

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Representative outcrops and wells: The stratotype section 

can be found in the ZM-1 well (1440–1711 m). The material 

can be found in the repository of Nafta a.s. in Gbely town. 

This formation is also recognized in the basal part of the VR-1 

well, but unfortunately no core material is available in the 

repository today.

Pannonian (Tortonian–Messinian)

The Pannonian (Tortonian–Messinian) age of the sedimen-

tary record was originally recognized by Biela (1978a). This 

study refines the conclusion based on the Pannonian 

(Tortonian) Reticulofenestra tegulata (1603–1612 m in IV-1; 

1005–1010 m in ZM-1) and Isolithus semenenko acme 

together with the lowermost occurrence acme of ?Trochammina 

kibleri (1154 m of VR-1 well). The acme of Reticulofenestra 

tegulata in the ZM-1 well is in contradiction with the original, 

Sarmatian age (Biela 1978a). In this case, a younger, Pannonian 

age is also supported by an erosional unconformity, significant 

change in provenance and by a high degree of weathering. 

Pannonian dinoflagellates are present in the ZM-1 (658–551 m), 

IV-1 (up from 1763 m) and VR-1 wells (up from 1050 m).  

In the VR-1 well, a dinoflagellate association can be correlated 

with the NN9ab–NN9b Zone (755–603 m; Suppl. 1). This age 

range  is  consistent  with  a  9.62 ± 0.57  to  9.14 ± 0.57  Ma  age 

based on 

10

Be/

9

Be dating from overlying sediments (555–505 m; 

Šujan et al. 2016).

The new assignment of the formations is affected by intro-

duction of the Nemčiňany Fm. and by genetic redefinition of 

the Pannonian (Tortonian–Messinian) sedimentary formations 

(Sztanó et al. 2016; Fig. 16). The Nemčiňany Fm. is defined as 

basal, coarse-grained braided river to fan delta deposits repre-

senting pre-trangressive facies in marginal parts of Lake 

Pannon. In the studied wells, the para-conglomerate and other 

coarse-grained sediments from the Sarmatian–Pannonian 

(Serravallian–Tortonian) boundary are assigned to the Nemč i-

ňany Fm. (Figs. 4, 7, 13, 16). In the past, these sediments were 

often assigned to the upper part of the Vráble Fm. (MOJ-1, 

ZM-1; Biela 1978a). It was caused by recycling or by fossil 

sterility of the coarse-grained sediments, as well as by an 

incorrect division of the underlying, volcanic sediments (ZM-1). 

The  time  span  of  the  Nemčiňany  Fm.  was  determined  by 

10

Be/

9

Be dating from the Nemčiňany outcrop in the time span 

of 11.72 ± 0.88 to 11.21 ± 1.23 Ma and from the ŠVM-1 well 

(Fig.  1)  in  the  time  span  of  11.23 ± 0.84  to  9.92 ± 0.63  Ma 

(Šujan et al. 2016). In the central part of the depression (VR-1) 

the  Nemčiňany  Fm.  is  not  present,  but  the  Sarmatian–

Pannonian (Serravallian–Tortonian) boundary (1208–1149 m) 

is characterized by well preserved pollen and no dinocysts, 

which indicates marginal conditions. Only the brackish lacus-

trine sediments without presence of terrestrial facies are 

assigned to the Ivanka Fm. (Sztanó et al. 2016). This environ-

ment is supported by Isolithus semenenko acme, as well as by 

the dinoflagellate assemblages. Additional evidence comes 

from prevailing fine-grained lithology and from prograding 

clinoforms observed on the reflection seismic lines 3/99 

(Šályová  &  Mojžiš  2002)  and  820/00  (provided  by  Equis 

l.t.d). The change in grain size, which is also reflected in  

the SP and RT log, indicates a change in deposition. At this 

boundary, the deltaic deposition of the Beladice Fm. (Sztanó et 

al. 2016) begins.

Discussion

The older interpretation of this area considered a wide age 

range of the sedimentary fill (from middle Badenian to 

Sarmatian/Langhian–Serravalian; Gaža & Beinhauerová 1976; 

Biela 1978a; Hók et al. 1999 and others). The new indirect age 

data based on volcanic material are inconsistent with older 

interpretations. The new assignment is consistent with biostra-

tigraphy, if it is noted that the coarse grained gravity flow 

character of deposits caused biostratigraphic sterility or 

reworking of fossils. According to Hók et al. (1999) the late 

Badenian to Sarmatian (Serravallian) sediments belong to one 

depositional event, with continual transition from terrestrial to 

marine environment (ZM-1, Vr-1 wells). The same facies are 

older in the NE and younger in the SW, which is supported by 

the presented provenance and biostratigraphic analysis. 

Presence of late Badenian (early Serravallian) sediments in  

the E (SE) can be explained by gradual tectonic opening of  

the depression. In the late Badenian, the Komjatice depression 

was not yet open. The deposition in the study area was proba-

bly connected to the margin of the older Želiezovce depres-

sion. The main phase of the deposition is associated with 

opening of the depression in simple shear tectonic regime 

(Hók et al. 2016). This led to the widening and deepening of 

the depositional environment followed by rapid deposition. 

Moreover, the syn-rift cycle is nicely observed on the reflec-

tion seismic line 820/00, which cuts through the VR-1 and 

seismic line 3/99 (Šályová & Mojžiš 2002). Since the extent of 

the Sarmatian (Serravallian) sediments is limited by the Moj-

mírovce fault system (Biela 1978a; Hók et al. 1999), the sea 

level did not reach the top of the footwall. The total thickness 

of the Sarmatian (Serravallian) sediments in the central part of 

the depression reaches more than 1100 m (VR-1). It is similar 

to the thickness of the Sarmatian sediments in the adjacent 

Rišňovce depression (Fordinál & Elečko 2000). In contrast, 

the Želiezovce depression contains lower Badenian (Lan ghian) 

sediments and only a low thickness of late Badenian–

Sarmatian (Serravallian) deposits (e.g., Kováč et al. 2018).

The Sarmatian–Pannonian (Serravallian–Tortonian) boun-

dary is erosive. The increase of water level during the Pannonian 

(Tortonian) is manifested by the deposition of coarse clastics 

of  the  Nemčiňany  Fm.  in  marginal  parts  of  the  depression 

(Fig. 16). The deepwater environment of the Ivanka Fm. was 

sustained by further tectonic subsidence on the Mojmírovce 

Fault  system  (e.g.,  Gaža  &  Beinhauerová  1976;  Hók  et  al. 

1999). The cessation of the water level rise led to a gradual 

filling up of the depression (Fig. 16). The sedimentation of  

the deltaic Beladice Fm. and alluvial Volkovce Fm. followed 

(Fig. 16). The widespread Pannonian sediments are no longer 

background image

407

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

limited by the Mojmírovce fault system (Biela 1978a; Hók et 

al. 1999).

Conclusion

Combination of new results from biostratigraphy and indi-

rect dating of volcanic material brought changes to the assign-

ment of the sedimentary record especially in the VR-1 and 

ZM-1  wells.  In  contrast  to  previous  studies  (Gaža  & 

Beinhauerová  1976;  Biela  1978a;  Harčár  et  al.  1988;  Hók 

1999; Vass 2002) and in agreement with Szatnó et al. (2016) 

the formations are defined by their genetic origin. The new 

stratigraphic assignment of the Komjatice depression can be 

defined as follows (Fig. 16):

•  Zlaté Moravce Fm.: a newly defined formation containing 

alluvial deposits. The late Badenian–Sarmatian (Serravalian) 

age  is  set  based  on  its  stratigraphic  position.  The  Zlaté 

Moravce Fm. represents the base of sedimentary fill linked 

to initial opening of the depression.

•  Vráble–Pozba Fm.: Late Badenian–Sarmatian (Serravalian) 

age is documented by biostratigraphical markers and by 

indirect dating of volcanic rocks. The deposition of marine 

sediments is connected with the tectonic opening of 

 

the depression.

•  Nemčiňany  Fm.:  contains  coarse-grained  sediments  from 

the Sarmatian–Pannonian (Tortonian–Serravallian) boun-

dary. The most visible trend of erosion and recycling is 

observed in the eastern part of the depression (ZM-1 well).

•  The following Pannonian (Tortonian–Messinian) forma-

tions are divided based on their lithology, fossil assem-

blages, well log patterns and seismic reflection character 

into: the predominantly fine-grained Ivanka Fm. (basin 

floor to slope); the sandy deltaic Beladice Fm., and the pre-

dominantly muddy, alluvial Volkovce Fm.

The main transport direction in the late Badenian–Sarmatian 

(Serravallian) time was from the NE to SW and the prove-

nance area contained Paleozoic rocks from the Hronic unit and 

subsequently also Neogene volcanic rocks. The length of 

transport was short in the eastern part and increased towards 

the west. During the Pannonian (Tortonian–Messinian) time, 

the  main  provenance  area  was  located  in  the  Tribeč  Mts., 

although the direction of transport from the E remained.

Acknowlegements: This research was supported by the Slovak 

research and development agency under the contracts No. 

APVV-16-0121,  APVV-0099-11,  APVV-15-0575  &  APVV-

14-0118. The authors wish to express their gratitude to the Mana-

gement of Nafta petroleum company and to Dr. Sliva for 

 allowing access to the well-core repository; to the Equis ltd. 

for  providing  data  (seismic  line  820/00);  to  Dr.  Bakrač  and  

Dr. Soliman for dinoflagellate taxonomy discussion; 

 

Dr. Teodoridis for leaf taxonomy discussion; and to Dr. Kostič 

for assistance with the QUANTA FEG 250. We express our 

gratitude to the editor and to the reviewers for their insightful 

comments which improved the manuscript.

Reference

Bakrač K., Koch G. & Sremac J. 2012: Middle and Late Miocene 

palynological biozonation of the south-western part of Central 

Paratethys (Croatia). Geologica Croatica 65, 2, 207–222.

Biela A. 1978a: Deep wells in the covered regions of inner Western 

Carpathians.  Regional geology of Western Carpathians 10, 

1–224 (in Slovak).

Biela A. 1978b: Deep wells in the covered regions of inner Western 

Carpathians II. Regional geology of Western Carpathians 10, 

1–224 (in Slovak).

Boggs Jr. S. 2006: Principles of Sedimentology and Stratigraphy. 

Fourth ed. Pearson Prentice Hall, Upper Saddle River, 1–662.

Bóna  J.  &  Gál  M.  1985:  Kalkiges  nannoplankton  im  Pannonien 

 Ungarns. In: Papp A. (Ed.): Chronostratigraphie und Neostrato-

typen  Miozän  der  Zentralen  Paratethys,  7,  M6  Pannonien. 

 Akademia Kiadó, Budapest, 482–515.

Chalupová B. 2006: Paleoecology of the Sarmatian fish fauna in the 

Danube basin (Slovakia). Mineralia Slovaca 38, 4, 321–326  

(in Slovak).

Chernyshev  I.V.,  Konečný  V.,  Lexa  J.,  Kovalenker  V.A.,  Jeleň  S., 

Lebedev V.A. & Goltsman Y.V. 2013: K–Ar and Rb–Sr geochro-

nology and evolution of the Štiavnica Stratovolcano (Central 

Slovakia). Geol. Carpath. 64, 4, 327–351.

Cicha I., Rögl F., Rupp Ch. & Čtyroká J. (Eds.) 1998: Oligocene– 

Miocene foraminifera of the Central Paratethys. Abhandlungen der 

Sencken bergischen Naturforschenden Gesellschaft 549, 1–325.

Ćorić  S.  &  Gross  M.  2004:  Kalkiges  Nannoplankton  aus  dem 

 

Unter-Pannonium des Oststeirischen Beckens (Österreich). 

Joannea Geologie und Paläontologie 5, 9–18 (in German with 

English abstract).

Čermák D. 1972: Lithological description of mechanical drill cores 

sampled at the Ivánka-1 well, near Nitra town. Open file report, 

Manuscript archive Nafta a.s. Plavecký Štvrtok, 1–8 (in Slovak).

Čermák  D.  1976a:  Final  geological  report  from  the  Ivánka-3  well. 

Open file report, Manuscript archive Nafta a.s. Plavecký Štvrtok

1–16 (in Slovak).

Čermák D. 1976b: Final geological report from the Ivánka-5 well. 

Open file report, Manuscript archive Nafta a.s. Plavecký Štvrtok

1–15 (in Slovak).

Čermák  D.  1976c:  Final  geological  report  from  the  Ivánka-6  well. 

Open file report, Manuscript archive Nafta a.s. Plavecký Štvrtok

1–23 (in Slovak).

Čermák  D.  1977a:  Final  geological  report  from  the  Ivánka-4  well. 

Open file report, Manuscript archive Nafta a.s. Plavecký Štvrtok

1–14 (in Slovak).

Čermák D. 1977b: Final geological report from the Ivánka-7 well. 

Open file report, Manuscript archive Nafta a.s. Plavecký Štvrtok

1–14 (in Slovak).

Čermák  D.  1977c:  Final  geological  report  from  the  Ivánka-8  well. 

Open file report, Manuscript archive Nafta a.s. Plavecký Štvrtok

1–12 (in Slovak).

Demko R. (Ed). Lexa J., Koděra P., Biroň A., Smolka J., Šesták P., 

Konečný P., Tuček Ľ., Ferenc Š., Bačo P., Repčiak M., Kollárová V., 

Pipík  Kiška  R.,  Mikušová  J.,  Kotulová  J.,  Bystrická  G.  & 

 Vlachovič J. 2010: Paleovolcanic reconstruction maps of rhyo-

lite volcanics of Slovakia an analysis of magmatic and hydro-

termal preoceses. Final report of the geological task 15 06. Open 

file report, Geofond, Bratislava, 1–728 (in Slovak).

Fordinál K. & Elečko M. 2000: Ripňany Formation–a Sarmatian and 

Early Pannonian fresh water sedimentary assemblage of the 

Rišňovce depression. Mineralia Slovaca 32, 55–60.

Fusán  O.,  Biely A.,  Ibrmajer  J.,  Plančár  J.  &  Rozložník  L.  1987a: 

Basement of the Tertiaty of the Inner West Carpathians. GÚDŠ

1–123.

background image

408

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Fusán O., Plančár J. & Ibrmajer J. 1987b: Tectonic map of Basement 

of Tertiary in Inner West Carpathians. GÚDŠ, Bratislava.

Galović I. 2017: Sarmatian calcareous nannofossil assemblages in the 

SW Paratethyan marginal marine environments: Implications for 

palaeoceanography and the palaeoclimate. Progress in Oceano­

graphy 156, 209–220.

Galović I. & Young J. 2012: Revised taxonomy and stratigraphy of 

Middle Miocene calcareous nannofossils of the Paratethys. 

 Micropaleontology 58, 4, 305–334.

Gaža  B.  1968:  Final  geological  report  from  the  structural  well 

Vráble-l. Open file report, Manuscript archive Nafta a.s. Plavecký 

Štvrtok, 1–11 (in Slovak).

Gaža B. 1970: Final geological report from the structural well Zlaté 

Moravce-1.  Open file report, Manuscript archive Nafta a.s. 

 Plavecký  Štvrtok, 1–11 (in Slovak).

Gaža B. 1975: Final geological report from the Ivánka-2 well. Open 

file report, Manuscript archive Nafta a.s. Plavecký Štvrtok, 1–19 

(in Slovak).

Gaža B. 1977: Final geological report from the Ivánka-9 well. Open 

file report, Manuscript archive Nafta a.s. Plavecký Štvrtok, 1–8 

(in Slovak).

Gaža  B.  &  Beinhauerová  M.  1976:  On  the  geology  of  the  Zlaté 

 Moravce bay (Danube basin), Mineralia Slovaca 8, 3, 221–240 

(in Slovak with English summary).

Harčár J. & Priechodská Z. (Eds.), Karolus K., Karolusová E., Remšík 

A. & Šucha P. 1988: Explanations to the geological map of the 

North-Eastern part of the Podunajská Lowland 1:50,000. GÚDŠ

Bratislava, 1–114 (in Slovak with English summary).

Hók J., Kováč M., Kováč P., Nagy A. & Šujan M. 1999: Geology and 

tectonics of the NE part of Komjatice Depression. Slovak 

 Geological  Magazine 5, 3, 187–199.

Hók J., Kováč M., Pelech O., Pešková I., Vojtko R. & Králiková S. 

2016: The Alpine tectonic evolution of the Danube Basin and its 

northern periphery (southwestern Slovakia). Geol. Carpath. 67, 

5, 495–505.

Holbourn A., Kuhnt W., Clemens S., Prell W. & Andersen N. 2013: 

Middle to late Miocene stepwise climate cooling: Evidence from 

a high-resolution deep water isotope curve spanning 8 million 

years. Paleoceanography 28, 688–699.

Ivanička  J.  (Ed.).,  Hók  J.,  Polák  M.,  Határ  J.,  Vozár  J.,  Nagy A., 

 Fordinál  K.,  Pristaš  J.,  Konečný  V.,  Šimon  L.,  Kováčik  M., 

Vozárová  A.,  Fejdiová  O.,  Marcin  D.,  Liščák  P.,  Macko  A.,   

Lanc  J.,  Šantavý  J.  &  Szalaiová V.  1998:  Explanations  to  the 

geological  map  of  Tribeč  Mts,  1:50,000.  GÚDŠ, Bratislava, 

1–246 (in Slovak with English summary).

Káčer Š. (Ed.), Polák M., Bezák V., Hók J., Teťák F., Konečný V., 

Kučera M., Žec B., Elečko M., Hraško Ľ., Kováčik M., Pristaš J., 

Káčer  Š.,  Antalík  M.,  Lexa  J.,  Zvara  I.,  Fritzman  R.,  

Vlachovič  J.,  Bystrická  G.,  Brodianska  M.,  Potfaj  M.,  

Madarás  J.,  Nagy  A.,  Maglay  J.,  Ivanička  J.,  Gross  P.,  

Rakús  M.,  Vozárová A.,  Buček  S.,  Boorová  D.,  Šimon  L.  &  

Mello J. 2013: Slovak Republic —  digital geological map in 

scale of: 1:50,000 and 1:500,000. GÚDŠ, available at http://apl.

geology.sk/gm50js.

Konečný V. (Ed.), Lexa J., Halouzka R., Hók J., Vozár J., Dublan L., 

Nagy A., Šimon L., Havrila M., Ivanička J., Hojstrovičová V., 

Miháliková  A.,  Vozárová  A.,  Konečný  P.,  Kováčikova  M.,   

Filo M., Marcin D., Klukanová A., Liščák P. & Žáková E. 1998: 

Explanations to the geological map of Štiavnica Mts. and 

Pohronský Inovec Mts. (Štiavnica stratovolcano). GÚDŠ

Bratislava, 1–473 (in Slovak with English summary).

Kováč  M.,  Baráth  I.,  Fordinál  K.,  Grigorovich A.  S.,  Halásová  E., 

Hudáčková N., Joniak P., Sabol M., Slamková M., Sliva Ľ. & 

Vojtko R. 2006: Late Miocene to Early Pliocene sedimentary 

 environments and climatic changes in the Alpine–Carpathian–

Pannonian junction area: A case study from the Danube Basin 

northern margin (Slovakia). Palaeogeogr. Palaeoclimatol. 

 Palaeoecol. 238, 32–52.

Kováč  M.,  Andrejeva-Grigorovič  A.,  Baráth  I.,  Beláčková  K., 

 Fordinál K., Halásová E., Hók J., Hudáčková N., Chalupová B., 

Kováčová M., Sliva Ľ. & Šujan M. 2008: Lithological, sedimen-

tological and biostratigraphical evaluation of the ŠVM-1 Tajná 

well.  Geologické práce, Správy 114, 51–84 (in Slovak with 

 English  abstract).

Kováč M., Synak R., Fordinál K. & Joniak P. 2010: Dominant events 

in the northern Danube Basin palaeography — a tool for specifi-

cation of the Upper Miocene and Pliocene stratigraphy. Acta 

Geologica Slovaca 2, 1, 23–36.

Kováč M., Synak R., Fordinál K., Joniak P., Tóth C., Vojtko R., Nagy A., 

Baráth I., Maglay J. & Minár J. 2011: Late Miocene and Plio-

cene history of the Danube Basin: inferred from development of 

depositional systems and timing of sedimentary facies changes. 

Geol. Carpath. 62, 6, 519–534.

Kováč M., Rybár S., Halásová E., Hudáčková N., Šarinová K., Šujan M., 

Baranyi V., Kováčová M., Ruman A., Klučiar T. & Zlinská A. 

2018: Changes in Cenozoic depositional environment and sedi-

ment provenance in the Danube Basin. Basin Research 30, 

 97–131. 

Lankreijer A.,  Kováč  M.,  Cloethingh  S.,  Pitoňák  P.,  Hlôška  M.  & 

 Biermann C. 1995: Quantitative subsidence analysis and for-

ward modelling of the Vienna and Danube basins: thin-skinned 

versus thick-skinned extension. Tectonophysics 252, 433–451.

Lénárt  R.  &  Hók  J.  2013:  Polyphase  deformation  of  the  cover  se-

quence and granitic rocks of the Zobor part of the Tribeč Mts. 

Acta Geologica Slovaca 5, 1, 107–115.

Lentin J.K. & Williams G.L. 1998: Fossil dinoflagellates: index to 

genera and species. 1998 edition. AASP, Contribution series 34, 

1–817.

Lexa J. & Pécskay Z. 2010: Radiometric dating of rhyolite of Jastrabá 

Fm. by conventional K/Ar method. In: Demko R. (Ed.). Lexa J., 

Koděra P., Biroň A., Smolka J., Šesták P., Konečný P., Tuček Ľ., 

Ferenc Š., Bačo P., Repčiak M., Kollárová V., Pipík Kiška R., 

Mikušová J., Kotulová J., Bystrická G. & Vlachovič J.: Paleo-

volcanic reconstruction maps of rhyolite volcanics of Slovakia 

an analysis of magmatic and hydrotermal preoceses. Final report 

of the geological task 15 06. Open file report, Geofond, Brati-

slava, 86–100 (in Slovak). 

Locock A.J. 2008: An Excel spreadsheet to recast analyses of garnet 

into end-member components, and a synopsis of the crystal 

chemistry of natural silicate garnets. Computers & Geosciences 

34, 1769–1780.

Loeblich A.R.  &  Tappan  H.  1992:  Present  status  of  Foraminiferal 

Classification.  In: Takayanagi Y.  &  Saito T  (Eds.):  Studies  in 

Benthic Foraminifera. Tokai University Press, 93–102.

Łuczkowska E. 1974: Miliolidae (Foraminiferida) from the Miocene 

of Poland Part II. Biostratigraphy, palaeoecology, and syste-

matics. Acta Palaeontologica Polonica 19, 1, 3–176.

Magyar I., Geary D., Sütő-Szentai M., Lantos M. & Müller P. 1999a: 

Integrated bio-, magneto and chronostratigraphic correlations  

of the Late Miocene lake Pannon deposits. Acta Geologica 

 Hungarica 42, 1, 5–31.

Magyar I., Geary D.H. & Müller P. 1999b: Paleogeographic evolution 

of the Late Miocene Lake Pannon in Central Europe. Palaeo­

geogr. Palaeoclimatol. Palaeoecol. 147, 151–167.

Martini  E.  1971:  Standard  Tertiary  and  Quaternary  Calcareous 

Nanno plankton Zonation. In: Farinacci A. (Ed.): Proceedings of 

the II Planktonic Conference, Roma, 1970. Edizioni Tecnoscienza

739–785.

Miall A.D. 2006: The geology of fluvial deposits. Springer, New 

York, 1–582.

Nichols G. 2009: Sedimentology and Stratigraphy. Wiley­Blackwell

Chichester, 1–419.

background image

409

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Ozdínová S. 2012: Redepositions of the Paleogene calcareous nanno-

fossils in the Neogene sediments aroud the northern margin of 

the Danube Basin: The data source about uplift and erosion of 

the substrates. Mineralia Slovaca 44, 257–266 (in Slovak).

Piller W.E. & Harzhauser M. 2005: The myth of the brackish Sarma-

tian Sea. Terra Nova 17, 450–455.

Schütz K., Harzhauser M., Rögl F., Ćorić S. & Galović I. 2007: Fora-

miniferen und Phytoplankton aus dem unteren Sarmatium des 

südlichen Wiener Beckens (Petronell, Niederösterreich). Jahrb. 

Geol. Bundesanst. 147, 449–488.

Suggate S.M. & Hall R. 2014: Using detrital garnet compositions to 

determine provenance: a new compositional database and proce-

dure. In: Scott R.A., Smyth H.R., Morton A.C. & Richardson N. 

(Eds.): Sediment Provenance Studies in Hydrocarbon Explora-

tion and Production. Geol. Soc. London, Spec. Publ. 386,  

373–393.

Sütő-Szentai  M.  1988:  Microplankton  zones  of  organic  skeleton  

in the Pannonian s.l. stratum complex and in the upper part  

of the Sarmatian strata. Acta Botanica Hungarica 34, 3–4,  

339–356.

Sztanó O., Kováč M., Magyar I., Šujan M., Fodor L., Uhrin A., Rybár S., 

Csillag G. & Tőkés L. 2016: Late Miocene sedimentary record 

of the Danube/Kisalföld Basin: interregional correlation of 

depo 

sitional systems, stratigraphy and structural evolution. 

Geol. Carpath. 67, 6, 525–542.

Šályová  B.  &  Mojžiš  J.  2002:  Ivanka  pri  Nitre-Golianovo  locality 

calculation of gas reserves in an exclusive accumulation, state at 

1st January 2002. Open file report,  

Geofond, Bratislava, 

1–60 + 28 graph. attachments (in Slovak).

Šarinová  K.  &  Rybár  S.  2018:  Cummingtonite-bearing  volcanic 

rocks: first evidence in the Central Slovak Volcanic Field. Geol. 

Carpath. 69, 335–346.

Šujan M., Braucher R., Kováč M., Bourlés D. L., Rybár S., Guillou V. 

& Hudáčková N. 2016: Application of the authigenic 

10

Be/

9

Be 

dating method to Late Miocene–Pliocene sequences in the 

 northern Danube Basin (Pannonian Basin System): Confirma-

tion of heterochronous evolution of sedimentary environments. 

Global Planet. Change 137, 35–53.

Tanistrák J. 1969: Final geological report from the structural well 

 Mojmírovce-1.  Open file 

report, Manuscript archive Nafta a.s. 

Plavecký Štvrtok, 1–20 (in Slovak).

Vass D. 2002: Lithostratigraphy of Western Carpathians: Neogene 

and Buda Paleogene. GÚDŠ, Bratislava, 1–200.

Vozárová A., Jánošov J. & Šarinová K. 2003: Tourmaline-enriched 

horizons in the Lower Triassic quartzose sediments from Tribeč 

Mts., Tatric Unit, Western Carpathians (Slovakia). Slovak 

 Geological  Magazine 9, 1, 65–75.

Vozárová A. & Vozár J. 1988: Late Paleozoic in West Carpathians. 

GÚDŠ, 1–314.

Vrsaljko D. 1999: The Pannonian palaeoecology and biostratigraphy 

of Mollusca from Kostanjek-Medvednica Mt., Croatia. Geologica 

Croatica 52, 1, 9–27.

Whitney  D.L.  &  Evans  B.W.  2010:  Abbreviations  for  names  of 

rock-forming minerals. Am. Mineral. 95, 185–187.

Zahradníková B., Hudáčková N., Halásová E., Rybár S. & Kováč M. 

2013: New findings from research of Sarmatian sediments from 

Ivanka-l well (Danube Basin, Slovakia). Acta. Rer. Natur. Mus. 

Nat. Slov. 59, 25–32.

background image

i

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Supplement

Suppl. 1. Key biostratigraphic data: foraminifera (F), nannofossils (N) and palynomorfs  include dinoflagellata (P).  

U. Badenian = early Serravallian; Sarmatian = late Serravallian; Pannonian = Tortonian–Messinian; a) MOJ-1 well; b) IV-1 well; 

c) VR-1 well; d) ZM-1 well.

a) Mojmírovce 1 well (MOJ-1)

Depth (m)

Core

Discipline

Zone / Subzone

Event

848–854

8/1/15cm

P

Unassigned

Barren

848–854

8/1/ 75cm

P

Unassigned

Barren

848–854

8/2/50cm

F

Unassigned

Barren 

Other

Rhizoids

902–907

9/1/65cm

F

Unassigned

Barren 

Other

Fe oxides

955–960

10/2/ 90cm

F

Unassigned

Reworked: Lenticulina sp., Globigerinella obesa

Other

Fe oxides, coal

955–960

10/3/75cm

F

Unassigned

Barren 

Other

?Crab excrements, coal, Fe oxides

955–960

10/3/95cm

F

Unassigned

Barren 

Other

Rhizoids

1000–1005

11/1/30cm

F

Unassigned

Barren 

Other

Ostracod shells–also articulated, coal

1253–1261

16/1/55cm

P

Unassigned

Barren

1253–1261

16/3/50cm

P

Unassigned

Barren

1253–1261

16/6

P

Unassigned

Barren

1253–1261

16/7/30cm

F

Unassigned

Barren 

Other

Gastropoda and Ostracoda fragments

1298–1303

17/1/25cm

F

Unassigned

Barren 

Other

Coal

1298–1303

17/2/40cm

F

Unassigned

Barren 

Other

1298–1303

17/3/40cm

F

Unassigned

Barren 

Other

1298–1303

17/5/30cm

F

Unassigned

Barren 

Other

Fe oxides

1351–1354

18/1–2/50

F

Unassigned

Barren 

Other

1397–1401.5 19/1/60cm

F

Unassigned

Barren 

Other

Ostracoda fragments

1397–1401.5 19/3/25cm

P

Unassigned

Barren

1451–1455

20b/2/50

F

Unassigned

Barren 

P

Unassigned

Barren

Other

Ostracoda fragments, fish bones

1500–1511

21/2–3/50

F

Unassigned

Barren

Other

Coal

1500–1511

21/4–5

N

Unassigned

Barren 

1795–1798

27/2–3/ 50

N

Unassigned

Barren

F

Sarmatian

Elphidium sp.

1847–1851

28/1–2

F

Sarmatian

Elphidium sp., E. josephinum, E. aculeatum, Ammonia parkinsoniana, Miliolidae

1847–1851

28/3–4/50

F

Sarmatian

Elphidium hauerinum, Aubignyna perlucida, Bolivina spp., Porosonion, Fissurina, Miliolidae

P

Unassigned

Phytoclasts, opaque

Other

Coal rest, Fe oxides

1905–1910

29/2–4

F

Unassigned

Barren

Other

Organic matter (algae)

2005–2010

31

N

Unassigned

Barren

F

Unassigned

Barren

Other

Dasycladacea Halicoryne aff. morelleti

2046–2051

32/4–5

F

Unassigned

Barren

Other

Rhizoids

2095–2100

33/1–2/50

F

Late Badenian

Bogdanowiczia pocutica (Bathysiphon pocutica)

background image

ii

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

b) Ivanka 1 well (IV-1)

Depth (m)

Core

Discipline

Zone / Subzone

Event

1506–1509

3/2/ 65cm

F

Unassigned

Barren

P

Pannonian

Virgodinium asymmetricum, Spiniferites bentori pannonicus, Impagidinium spongianum

1506–1509

3/3/ 50cm

F

Unassigned

Barren

Other

Gastropoda and ostracoda fragments, fish bones

P

Pannonian

Achomosphaera sp., Spiniferites bentori pannonicus, Impagidinium spongianum, Pontiadinium 

pecsvaradensis

1603–1612

5/3

N

Pannonian

Reticulofenestra tegulata, Braarudosphaera bigelowiiB. bigelowii parvula and allochthonous 

Cyclicargolithus floridanusReticulofenestra bisecta 

P

Pannonian

Virgodinium asymmetricum, Spiniferites bentori pannonicus

1758–1763

8/2/

25cm

P

?Pannonian

Virgodinium sp., Spiniferites ssp., + Spirogyra, Zygnema, Ovoidites 

1956–1961

12/3/50cm

F

Sarmatian

Bolivina sarmatica, Bolivina spp., Porosonion ex. gr. granosum

Other

Fish bones

1956–1961

12/4/50cm

F

Barren

Other

Organic matter, plant debris

1956–1961

12/5/50cm

F

Sarmatian

Ammonia tepida, Bolivina spp., Nonion spp., Miliolidae, reworked

Other

Dasycladacea Halicoryne aff. morelleti

1956–1961

12/6/80cm

F

Unassigned

Barren

2010–2015

13/4/50cm

F

Unassigned

Barren

2040–2045

14/1/65cm

F

Sarmatian

Nonion tumidulus, Miliolidae, Ammonia parkinsoniana, Elphidium sp., Streptochilus

Other

Acritarcha: Pterospermella sp., Dasycladacea Halicoryne aff. morelleti, pollen

2040–2045

14/2/45cm

F

Sarmatian

Nubecularia crasraformis, Nonion spp., Bolivina spp., Miliolidae, Haynesina depressula, 

Elphidium sp.

2090–2093

15/1/50cm

F

Sarmatian

Ammonia tepida, Elphidium sp., Nonion spp., Miliolidae

reworked: Cassigerinella globulosa, Haplophragmoides sp.

P

Unassigned

Barren redep. ?Deflandrea (paleogene dino)

Other

Sponge spicules, Fe oxides, pyrite,

2090–2093

15/2/65cm

F

Unassigned

Barren

P

Unassigned

Barren

Other

Fish scales, coal, Fe oxides

2090–2093

15/3/30cm

F

? Sarmatian

Porosonion ex. gr. granosum, Miliolidae

P

Unassigned

Barren

Other

Organic matter

2158–2163

16/2/50cm

F

Unassigned

Barren

Other

Organic matter

2158–2163

16/3/50cm

F

Unassigned

Barren

Other

Organic matter

2274–2276

19/1/50cm

F

Unassigned

Barren

Other

Mollusca fragments

2311–2316

20/31

N

Unassigned

Braarudosphaera bigelowii, B. bigelowii parvula, Coccolithus pelagicus, Cyclicargolithus 

floridanus, Reticulofenestra bisecta, R. haqii, R. pseudoumbilicus, Sphenolithus moriformis 

Eocene, Oligocene redeposits Coccolithus formosus and Pontosphaera latelliptica

background image

iii

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

c) Vráble 1 well (VR-1)

Depth (m)

Core

Discipline

Zone/Subzone

Event

603–607

3/3

P

Pannonian/

Tortonian/

NN9a-b

Virgodinium asymmetricum, Pontiadinium pecsvaradensis

703–707

5/1

P

Pannonian/

Tortonian/ NN9a-b

Virgodinium asymmetricum, V. transformis, Pontiadinium pecsvaradensis, Impagidinium 

spongianum,

750–755

6/1

P

Pannonian/

Tortonian/ NN9a-b 

Virgodinium asymmetricum, V. transformis, Impagidinium spongianum, Spiniferites bentori 

pannonicus, Spiniferites bentori oblongus, Achomosphaera sp.

802–807

7/1

P

Pannonian/Tortonian/ 

NN9a-b

Virgodinium asymmetricum, V. transformis, Spiniferites bentori pannonicus, Spiniferites bentori 

oblongus

802–807

7/2

P

Pannonian/

Tortonian/ NN9a-b

Virgodinium asymmetricum, V. transformis, Spiniferites bentori pannonicus, Spiniferites bentori 

oblongus, Pontiadinium pecsvaradensis, P. obesum + Spirogyra, phytoclasts,

-corr. S.b.oblongus Biochron 10.8 Ma (Magyar et al 1999), Central Paratethyan Spiniferites 

bentori oblongus zone (Suto-Szentai 1988) middle early Pannonian s.l.

802–807

7/4

P

Pannonian/Tortonian/ 

NN9a-b

Spiniferites bentori pannonicus, Spiniferites bentori oblongus, Pontiadinium pecsvaradensis,  

P. obesum, V. transformis

900–905

9/1/ 40cm

P

Pannonian/Tortonian/ 

NN9a-b

Achomosphaera sp., Virgodinium asymmetricum, Pontiadinium pecsvaradensis, Spiniferites 

bentori pannonicus, Spiniferites bentori oblongus

-corr. S.b.oblongus Biochron 10.8 Ma (Magyar et al 1999), Central Paratethyan Spiniferites 

bentori oblongus zone (Suto-Szentai 1988) middle early Pannonian s.l.

950–955

10/1/ 50cm

P

?

Different palynofacies, more terrestrial and freshwater elements (Zygnema)aquatics (Nuphar)

plus redepozited dinoflagellata (e.g. Deflandrea); no dinocyst

950–955

10/4/ 50cm

P

?

Small ungular organic remnants, no dinocyst

950–955

10/3

N

Unassigned

Poor sample, Cyclicargolithus floridanus, Reticulofenestra pseudoumbilicus

1000–1005

11/1/ 50cm

P

Pannonian

Dinoflagellata div.gen. et sp.

1103–1108

13/1/50cm

N

Pannonian

Isolithus semenenkoCoccolithus miopelagicusCyclicargolithus floridanusCalcidiscus?, 

Ascidian spicules, Reticulofenestra sp.,

F

Panonnian

Milliammina fusca, M. subvelatina, Dogiellina sp.

Other

Fish remains, shark teeth

1103–1108

13/2/ 50cm

P

?

Dinoflagellata div.gen. et sp.

1103–1108

13/4

N

Unassigned

Barren

1149–1154

14/1/50cm

N

Pannonian

Coccolithus pelagicus, C. miopelagicusCyclicargolithus floridanusCalcidiscus tropicus,  

CpataecusHelicosphaera carteri, Rhabdosphaera sp., Umbilicosphaera rotula

Reticulofenestra pseudoumbilicus, Acme Isolithus semenenko, reworking: Coccolithus 

formosus, Microrhabdulus decoratus

F

Dogielina sp., poorly preserved Miliammina ovata,  M. subvelatina, undeterminable 

agglutinated foraminifera

Other

Fish teeth, Ostracoda shells

1149–1154

14/2/50cm

N

?Pannonian/

?Sarmatian

?NN6

Reticulofenestra pseudoumbilicusUmbilicosphaera jafari, ?Isolithus semenenko, ABN 

Coccolithus pelagicusReticulofenestra haqii, Cyclicargolithus floridanus, Paleogene 

reworking Reticulofenestra bisectaPontosphaera latelliptica, Cretaceous reworking

F

Agglutinated foraminifera, Dogielina sp., Miliammina velatinaM. subvelatina

P

?

Rare organic remnants

Other

Ostracoda shells

1149–1154

14/3/50cm

N

?Pannonian/?Sarmatian

?NN6

Coccolithus pelagicusCmiopelagicusCyclicargolithus floridanusReticulofenestra haqii

Zygrhablithus bijugatus, Paleogene and Cretaceous reworking

F

Pannonian

?Trochammina kibleriDogielina sp.

Other

Fish teet, Ostracoda shells, pyrite concretions strongly prevails

1203–1208

15/1/50cm

N

NN6

Sarmatian

Coccolithus pelagicus, C. miopelagicusCyclicargolithus floridanusBraarudosphaera 

bigelowii parvula, Calcidiscus tropicus, C. pataecus?, Discoaster deflandrei,  

RpseudoumbilicusPontosphaera multiporaSphenolithus abies, Paleogene discoaster  

DlodoensisPontosphaera latelliptica,

F

Ammonia tepida, Elphidium sp., Sinuloculina consobrina, reworked Badenian foraminifera 

tests

P

?

Well preserved pollen, no dinocyst

Other

Carbonized floral rests, pyrite, fish bones, polens

1250–1255

16/1/50cm

N

NN6

Sarmatian

Coccolithus pelagicus, Calcidiscus tropicusC. macintyrei?, C. premacintyreiCpataecus

Pontosphaera latelliptica, Coccolithus miopelagicus, R. bisecta, Helicosphaera wallichii

F

2 specimens of Foraminifera tests Elphidium and Ammonia

Other

Coal, organic linnigs, dasycladaceans, fish bones

1250–1255

16/2/50cm

N

Sarmatian

Calcidiscus tropicusCpataecusCmacintyreiBraarudosphaera bigelowii parvula

1250–1255

16/3/45cm

N

NN6

Sarmatian

Calcidiscus tropicusCpataecusCleptoporusReticulofenestra pseudoumbilicus

Sphenolithus abies

F

Barren

Other

Coal, fish bones

1250–1255

16/4/50cm

N

NN6

Sarmatian

Coccolithus pelagicus, Calcidiscus, C. tropicus, C. pataecus

F

Barren

1250–1255

16/4

N

NN6

Sarmatian

Coccolithus pelagicus, Calcidiscus, Ctropicus,

1304–1309

17/1/20cm

N

Unassigned

Poor sample, Coccolithus pelagicus

F

Autochtonnous can be test of Ammonia and Cibicides boueanus, Lower Miocene reworked 

foraminiferal tests as Cassigerinella, Globigerina sp. and Nonion sp. 

Other

Coal

1304–1309

17/5/20cm

N

NN 6

Sarmatian

Coccolithus pelagicusHelicosphaera carteri, Calcidiscus, C. tropicus, C. leptoporus, 

Sphenolithus abies, Reticulofenestra pseudoumbilicus

F

Autochtonnous can be tests of Ammonia Miocene reworked foraminiferal tests of big diameters 

as 

Cassigerinella, Globigerina sp. and Nonion sp

background image

iv

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Depth (m)

Core

Discipline

Zone/Subzone

Event

1350–1355

18/2/50cm

N

NN6

Sarmatian

Coccolithus pelagicusCalcidiscus tropicusC. macintyreiCleptoporus?, C. patecus?, 

Rhabdosphaera sp., Reticulofenestra pseudoumbilicusSphenolithus abiesBraarudosphaera 

bigelowii bigelowii, Pontosphaera latelliptica, Prediscosphaera cretacea

F

Sarmatian

Ammonia tepida macrospheric, Elphidium macellum, E. josephinum, E. hauerinum

Other

Pyrite, Ca concretions, fish bones, coal

1350–1355

18/3/50cm

N

Unassigned

Barren

F

Sarmatian

Elphidium josephinum, Ammonia tepida, Porosinonion ex. gr. granosum, rare Badenian 

redeposites

Other

Ca and Fe concretions, fish scales

1350–1355

18/4/50cm

N

Unassigned

Barren

F

Unassigned

Barren

Other

Coal

1405–1409

19/1/50cm

N

Unassigned

Barren

F

Unassigned

Barren

1405–1409

19/2/25cm

N

Unassigned

Barren

F

Sarmatian

Autochtonnous Nonion biporus, O/M redeposites

other

Pyritized valves of diatomace

1405–1409

19/2/80cm

N

NN6

Sarmatian

Acme Calcidiscus, C. tropicus + Coccolithus pelagicus

F

Unassigned

Barren

1405–1409

19/4/45cm

N

NN6

Sarmatian

Coccolithus formosus, Calcidiscus tropicus, C. premacintyrei, C. pataecus, C. leptoporus? 

Discoaster variabilis?, Lanternithus minutus

F

Unassigned

Barren

Other

Coal

1405–1409

19/5/50cm

N

NN6

Sarmatian

Coccolithus pelagicus, Calcidiscus tropicus, C. premacintyrei

F

Unassigned

Small tests of foraminifera, probably all reworked Globigerina sp. div., Bulimina elongata

Other

Organic matter

1450–1455

20/2/10cm

N

Unassigned

Barren

F

Unassigned

Very bad preserved miliolidae foraminiferal tests

Other

Coal

1450–1455

20/3/10cm

N

Unassigned

Barren

F

Unassigned

Porosonion granosum, Ammonia parkinsoniana, Elphidium macellum

Other

Organic matter

1450–1455

20/4/50cm

N

Unassigned

Barren

Barren

Other

Organic matter

1450–1455

20/5/50cm

N

Unassigned

Barren

F

Nonion sp. indet

Other

Coal, organic matter, dasycladacea Halicornia sp.

1450–1455

20/8/50cm

N

Unassigned

Barren

F

Unassigned

Very rare reworked planktic foraminiferal tests as Globigerinita uvula

1505–1510

21/2/50cm

N

NN6

Sarmatian

Acme Calcidiscus, C. tropicus + C. pataecus?

F

Unassigned

Elphidium macellum, reworked globigerinids

Other

Coal

1505–1510

21/3/50cm

N

NN6

Sarmatian

Acme Calcidiscus, C. tropicus, C. leptoporus, Reticulofenestra pseudoumbilicus, R. haqii, 

Reticulofenestra sp., Braarudosphaera bigelowii parvula, Coccolithus pelagicus, Paleogene,  

C. formosus

F

Sarmatian

Cycloforina badenensis, Ammonia tepida, Elphidium josephinum, E. macellum, Porosononion 

granosum, reworked planktic foraminiferal tests

Other

Coal, sponge spines

1505–1510

21/4/50cm

N

NN6

Sarmatian

Acme Calcidiscus, C. tropicusReticulofenestra pseudoumbilicusCoccolithus pelagicus

F

Massive portion of reworked ?Upper Badenian foraminiferal benthos

Other

Fe crusts, organic matter

1550–1555

22/1/50cm

N

Unassigned

Poor sample, Coccolithus pelagicus, lots of organic matter

1550–1555

22/2/50cm

N

Unassigned

Poor sample, Coccolithus pelagicus, Cyclicargolithus floridanus, Reticulofenestra haqii,  

R. pseudoumbilicus, lots of organic matter

F

Ammoniana tepida, Nonion sp., Globigerina sp.

Other

Organic matter, ostracods, porifera spines, dasycladacea Halicoryne aff. morelleti

1550–1555

22/3/50cm

N

Unassigned

Poor sample, Coccolithus pelagicus, lots of organic matter

F

Sarmatian

Ammonia tepidaNonion sp.

Other

Halicornnia sp.

1550–1555

22/4/50cm

N

Unassigned

Poor sample, Reticulofenestra bisecta, lots of organic matter, pyrite

F

?Streptochilus sp., Cibicides boueanus, Ammonia tepida, Cycloforina badenensis, 

Porosononion granosum

Other

Coal

1652–1657

24/2/50cm

N

NN6 

Sarmatian

Calcidiscus acme, Calcidiscus tropicus, C. leptoporus/pataecus?, Coccolithus pelagicus, 

Cyclicargolithus floridanus

F

Unassigned

Barren

Other

Organic matter

1652–1657

24/3/50cm

N

NN6 

Sarmatian

Calcidiscus tropicus small CalcidiscusSphenolinithus abies?, Umbilicosphaera rotula, U. 

jafari

F

Unassigned

Barren

Other

Poriferan spikes

1700–1705

25/1/50cm

N

Unassigned

Poor sample, Coccolithus pelagicus, Reticulofenestra bisecta

F

Unassigned

Barren

c) Vráble 1 well (VR-1) (continued)

background image

v

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

Depth (m)

Core

Discipline

Zone/Subzone

Event

1745–1750

26/1/50cm

N

NN 6 

Sarmatian

Calcidiscus leptoporus/pataecus?, Holodiscolithus macroporusReticulofenestra 

pseudoumbilicus, Braarudosphaera bigelowii bigelowii, Braarudosphaera bigelowii parvula, 

Pontosphaera japonica, reworked Lanternithus minutus, Zygrhablithus bijugatus, Coccolithus 

formosus, pyrite

1745–1750

26/2/50cm

N

NN 6 

?Sarmatian

Reticulofenestra pseudoumbilicus, Holodiscolithus macroporusCalcidiscus leptoporus, ABN 

Coccolithus pelagicus, Reticulofenestra haqii, Cyclicargolithus floridanus

F

Milliolidae foraminifers visible in lumps, very tinny, may be dissolved

Other

Dasycladacea Halicornia sp.

1745–1750

26/4/50cm

N

NN6

Sarmatian

Braarudosphaera bigelowii parvula, Holodiscolithus macroporusReticulofenestra 

pseudoumbilicus, Calcidiscus tropicusC. leptoporus, C. pataecus?, Helicosphaera 

walbersdorfensis, Umbilicosphaera rotula

F

Unassigned

Barren

Other

Coal

1745–1750

26/5/50cm

N

NN6

?Sarmatian

Braarudosphaera bigelowii bigelowiiCalcidiscus pataecus?, C. tropicusHolodiscolithus 

macroporusReticulofenestra pseudoumbilicus, ABN Coccolithus pelagicus, Reticulofenestra 

haqii

F

Sarmatian

Acme Anomalinoides badenensis, reworked Globigerinoides sp.

Other

Pyritized diatomace

1801–1804

27/1/50cm

N

?Badenian 

Braarudosphaera bigelowii bigelowiiB. bigelowii parvula, Calcidiscus sp., Helicosphaera 

wallichii?, H. walbersdorfensis, Reticulofenestra pseudoumbilicus, ABN Coccolithus 

pelagicus, Reticulofenestra haqii, Cyclicargolithus floridanus, Coronocyclus nitescens, 

Spenolithus heteromorphus

Paleogene reworking nannofossils: Reticulofenestra hillae, Cyclicargolithus abisectus, 

Pontosphaera latelliptica, Helicosphaera recta, Lanternithus minutus, Zygrhablithus bijugatus, 

R. bisecta, R. stavensis, Tribrachiatus orthostylus; Cretaceous reworking nannofossils: Micula 

staurophora, Arkhangelskiella cymbiformis

F

Small foraminifera shells, ? Reworked?

P

Badenian/

Sarmatian

?Cleistosphaeridinium placacanthum (or reworked)

Other

Autigene pyrite, coal, seeds, organic matter, poriferan spikes

2054–2059

32/2A

N

Unassigned

Barren

2202–2207

35/3/90cm

N

Unassigned

Barren

c) Vráble 1 well (VR-1) (continued)

background image

vi

KOMJATICE DEPRESSION — INTEGRATED BIOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE ANALYSIS

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

d) Zlaté Moravce 1 well (ZM-1)

Depth (m.)

Core

Discipline

Zone/Subzone

Event

551–556

2/2

P

Pannonian

Impagidinium spongianum, Spirogyra

551–556

2/4

P

Pannonian

Impagidinium spongianum, Spirogyra

599–604

3/3

P

Pannonian

Impagidinium spongianum, Spiniferites bentori pannonicus

653–658

4/1

P

Pannonian

Spiniferites bentori pannonicus

954–959

10/1/50cm

N

Unassigned

Barren/?Thoracosphaera fragment

F

Unassigned

Barren

1005–1010

11/3,4/50 cm

N

Pannonian

ABN Reticulofenestra tegulata and Pontosphaera japonicaReticulofenestra pseudoumbilicus

R. haqiiRminutaCoccolithus pelagicusCyclicargolithus floridanus

F

Unassigned

Barren

1046–1051

12/2/50

F

Acme Bolivina dilatata maxima, Bulimina elongata, cassidulinids (reworked)

1046–1051

12/4

N

NN6 Sarmatian

Calcidiscus spp., CleptoporusUmbilicosphaera jafari

1099–1104

13/4/50cm

F

Unassigned

Barren

1145–1150

14/1

N

Unassigned

Barren

1201–1206

15/2

N

NN6

?Late Badenian

?Sarmatian

Helicosphaera walbersdorfensisHwallichiiHcarteriSphenolithus abiesReticulofenestra 

pseudoumbilicusCalcidiscus premacintyreiCmacintyreiCtropicusCleptoporus

Umbilicosphaera rotulaHolodiscolithus macroporusBraarudosphaera bigelowii bigelowii

Rhabdosphaera sp., ABN Coccolithus pelagicusReticulofenestra haqii

1253–1258

16/2/50cm

F

Extremely rich and diversified assemblage dominated by Bolivina dilatata maximaMelonis 

pompilioidesAngulogerina angulosa, Valvulineria complanata

Other

Bryozoans, ostracoda valves

1253–1258

16/3

N

NN6

Late Badenian

Sphenolithus abies, Braarudosphaera bigelowii parvula, Reticulofenestra pseudoumbilicus

Umbilicosphaera jafariHolodiscolithus macroporusABN Coccolithus pelagicus

Reticulofenestra haqii, reworked Coccolithus formosus, Arkhangelskiella cymbiformis

1346–1351

18/2/50cm

N

NN6

?Badenian

?Sarmatian

Calcidiscus premacintyrei, C. tropicusCoccolithus pelagicus, Reticulofenestra haqii, 

Cyclicargolithus floridanus, Sphenolithus abiesUmbilicosphaera jafari, Reticulofenestra 

stavensis

F

Upper Badenian

Fragments of agglutinated foraminifers, Nonion communis, Bulimina elongata, Uvigerina 

semiornata

P

Corr.with NN6/BulBol Melitasphaeridium choanophorum 

1346–1351

18/3/50cm

N

Unassigned

Barren

F

Spirorutilus carinatus, Haplophragmoides wilsoni, Reticulophragmium, Bathysiphon sp.

P

Corr.with NN6/BulBol Cleistosphaeridinium placacanthum

1346–1351

18/4/50cm

F

Dominated by Haplophragmoides wilsoni, Reticulophragmium, Ammobaculites, Bathysiphon sp.

P

Unassigned

Phytoclasts, opaque

1346–1351

18/5/50cm

N

Unassigned

Barren

F

Agglutinated types of foraminifers dominated by Haplophragmoides wilsoni, 

Reticulophragmium, Ammobaculites, Bathysiphon sp.

1405–1410

19/1/50cm

N

Unassigned

Barren

F

Unassigned

Possible agglutinated foraminifera or testaceans, Ammobaculites

Other

Organic matter, Glyptostrobus seeds and cones

1405–1410

19/2/50cm

N

Unassigned

Barren

F

Undetermined agglutinated foraminifera or testaceans

1494–1499

21/1/50cm

N

Unassigned

Barren

P

Unassigned

Barren

F

Unassigned

Barren

1494–1499

21/2

N

Unassigned

Barren

1494–1499

21/3/50cm

N

Unassigned

Barren

P

Unassigned

Barren

F

Unassigned

Barren

1494–1499

21/4/50cm

N

Unassigned

Barren

F

Unassigned

Barren

1494–1499

21/5

N

Unassigned

Barren

1553–1558

22/1/50cm

N

Unassigned

Barren/?Thoracosphaera, ?Reticulofenestra sp.

F

Unassigned

Barren

1708–1711

25/1/50cm

N

Unassigned

Barren

F

Unassigned

Barren

background image

vii

ŠARINOVÁ, RYBÁR, HALÁSOVÁ, HUDÁČKOVÁ, JAMRICH, KOVÁČOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2018, 69, 4, 382–409

a) Dasycladacean algae

Halicoryne aff. morelleti (Pokorný, 1948)

b) Foraminifera

Angulogerina angulosa (Williamson, 1858)

Anomalinoides dividens Łuczkowska, 1967

Bathysiphon Sars1872 sp.

Bogdanowiczia pocutica Pishvanova, 1967

Bolivina dilatata maxima (Cicha & Zapletalová, 1963)

Bolivina sarmatica Didkowski, 1959

Bulimina elongata d’Orbigny, 1826

Cassigerinella globulosa Egger, 1857

Chiloguembelina cubensis (Palmer, 1934)

Dogielina Bogdanovich & Voloshinova, 1949 sp.

Elphidium aculeatum (d‘Orbigny, 1846)

Elphidium hauerinum (d‘Orbigny, 1846)

Elphidium josephinum (d‘Orbigny, 1846)

Globigerina concinna Reuss, 1850

Globigerinella obesa (Bolli, 1957)

Haplophragmoides Cushman, 1910 sp.

Haplophragmoides wilsoni Smith, 1948

Melonis pompilioides (Fichtel & Moll, 1798)

Miliammina Heron-Allen & Earland, 1930

Miliammina fusca (Brady, 1870) 

Miliammina subvelatina Venglinsky, 1975 

Miliammina velatina Venglinsky, 1961 

Nonion communis (d’Orbigny, 1846)

Porosononion granosum (d’Orbigny, 1846)

Quinqueloculina badenensis = Cycloforina badenensis (d’Orbigny, 

1846) 

Reticulophragmium Maync, 1955

Spirorutilus carinatus (d’Orbigny, 1846)

Trilobatus trilobus (Reuss, 1850)

?Trochammina kibleri Venglinsky, 1961

Uvigerina semiornata d’Orbigny, 1846

Valvulineria complanata (d’Orbigny, 1846)

c) Nannofossils

Arkhangelskiella cymbiformis Vekshina, 1959

Braarudosphaera bigelowii (Gran & Braarud, 1935) Deflandre, 1947

Braarudosphaera bigelowii parvula Stradner, 1960 

Calcidiscus Kamptner, 1950

Calcidiscus leptoporus (Murray & Blackman, 1898) Loeblich & 

 Tappan, 1978

Calcidiscus macintyrei (Bukry & Bramlette, 1969) Loeblich & 

 Tappan, 1978

Calcidiscus pataecus (Gartner, 1967) de Kaenel & Villa, 1996

Calcidiscus premacintyrei Theodoridis, 1984 

Calcidiscus tropicus (Kamptner, 1955) Varol, 1989 sensu Gartner, 

1992

Coccolithus formosus (Kamptner, 1963) Wise, 1973 

Coccolithus miopelagicus Bukry, 1971

Coccolithus pelagicus (Wallich, 1877) Schiller, 1930

Coronocyclus nitescens (Kamptner, 1963) Bramlette & Wilcoxon, 

1967

Cyclicargolithus abisectus (Muller, 1970) Wise, 1973

Cyclicargolithus floridanus (Roth & Hay, in Hay et al., 1967) Bukry, 

1971

Discoaster deflandrei Bramlette & Riedel, 1954

Discoaster lodoensis Bramlette & Riedel, 1954

Discoaster variabilis Martini & Bramlette, 1963

Helicosphaera carteri (Wallich, 1877) Kamptner, 1954

Helicosphaera recta (Haq, 1966) Jafar & Martini, 1975

Helicosphaera walbersdorfensis Muller, 1974

Helicosphaera wallichii (Lohmann, 1902) Okada & McIntyre, 1977

Holodiscolithus macroporus (Deflandre, in Deflandre & Fert, 1954) 

Roth, 1970

Isolithus semenenko Luljeva, 1989

Lanternithus minutus Stradner, 1962

Microrhabdulus decoratus Deflandre, 1959

Micula staurophora (Gardet, 1955) Stradner, 1963

Pontosphaera japonica (Takayama, 1967) Nishida, 1971

Pontosphaera latelliptica (Báldi-Beke, in Báldi-Beke & Báldi, 1974) 

Perch-Nielsen, 1984

Pontosphaera multipora (Kamptner, 1948 ex Deflandre in Deflandre 

& Fert, 1954) Roth, 1970)

Prediscosphaera cretacea (Arkhangelsky, 1912) Gartner, 1968

Reticulofenestra Hay, Mohler & Wade, 1966

Reticulofenestra bisecta (Hay, Mohler & Wade, 1966) Roth, 1970

Reticulofenestra haqii Backman, 1978

Reticulofenestra hillae Bukry & Percival, 1971

Reticulofenestra minuta Roth, 1970

Reticulofenestra pseudoumbilicus (Gartner, 1967) Gartner, 1969

Reticulofenestra stavensis (Levin & Joerger, 1967) Varol, 1989

Reticulofenestra tegulata (Bóna & Gál, 1985; Ćorić & Gross, 2004)

Rhabdosphaera Haeckel, 1894

Sphenolithus abies Deflandre in Deflandre & Fert, 1954

Sphenolithus heteromorphus Deflandre, 1953

Sphenolithus moriformis (Bronnimann & Stradner, 1960) Bramlette 

& Wilcoxon, 1967

Thoracosphaera Kamptner, 1927

Tribrachiatus orthostylus Shamrai, 1963

Umbilicosphaera jafari Muller, 1974

Umbilicosphaera rotula (Kamptner, 1956) Varol, 1982

Zygrhablithus bijugatus (Deflandre in Deflandre & Fert, 1954) 

 Deflandre,  1959

d) Palynomorfs

Achomosphaera Evitt, 1963

Cleistosphaeridinium placacanthum Deflandre & Cookson, 1955

Deflandrea Eisenack, 1938

 Impagidinium spongianum Sütő-Szentai, 1985

Melitasphaeridium choanophorum (Deflandre & Cookson, 1955) 

Harland & Hill, 1979

Pontiadinium obesum Sütő-Szentai, 1982

Pontiadinium pecsvaradensis Sütő-Szentai, 1982 *

Spiniferites Mantell, 1850

Spiniferites bentori (Rossignol, 1964) Wall & Dale, 1970 ssp. 

 oblongus  Sütő-Szentai, 1986

Spiniferites bentori (Rossignol, 1964) Wall & Dale, 1970 ssp. 

 pannonicus Sütő-Szentai, 1986

Virgodinium Sütő-Szentai, 2010

Virgodinium asymmetricum Sütő-Szentai, 2010

Virgodinium transformis Sütő-Szentai, 2010

* Despite the Lentin and Williams index (2017 edition) with redefined 

genus to ?Impagidinium, we used in whole manuscript the species 

name  Pontiadinium pecsvaradensis  (= ?pecsvaradense) according 

the Sütő-Szentai´s and Bakrac´s  publications to be able to correlate 

biozones.

Suppl. 2. Complete fauna and flora list: a) Dasycladacean algae; b) Foraminifera; c) Nannofossils; d) Palynomorfs.