background image

GEOLOGICA CARPATHICA

, APRIL 2018, 69, 2, 149–168

doi: 10.1515/geoca-2018-0009

www.geologicacarpathica.com

Middle and late Badenian palaeoenvironments  

in the northern Vienna Basin and their potential  

link to the Badenian Salinity Crisis

MATHIAS HARZHAUSER

1, 

, PATRICK GRUNERT 

2,3

, OLEG MANDIC 

1

, PETRA LUKENEDER

1

ÁNGELA GARCÍA GALLARDO 

2

, THOMAS A. NEUBAUER 

4

, GIORGIO CARNEVALE 

5

,  

BERNARD M. LANDAU 

6

, ROMAN SAUER 

7

 and PHILIPP STRAUSS 

8

1 

Geological-Palaeontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria;  

 

mathias.harzhauser@nhm-wien.ac.at, oleg.mandic@nhm-wien.ac.at, petra.lukeneder@gmx.at

2 

Institute of Earth Sciences, University of Graz, NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria;  

patrick.grunert@uni-graz.at, angela.garcia-gallardo@uni-graz.at

3 

Institute of Geology and Mineralogy, University of Cologne, Zülpicher Straße 49a, 50674 Köln; pgrunert@uni-koeln.de

4 

Department of Animal Ecology & Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32 IFZ, 35392 Giessen, Germany; 

thomas.a.neubauer@allzool.bio.uni-giessen.de

5 

Università degli Studi di Torino, Dipartimento di Scienze della Terra, Via Valperga Caluso, 35, 10125 Torino, Italy; giorgio.carnevale@unito.it

6 

Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Instituto Dom Luiz da Universidade de Lisboa, Campo 

Grande, 1749-016 Lisboa, Portugal; and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200 Albufeira, Portugal; 

bernardmlandau@gmail.com

7 

OMV Exploration & Production GmbH, Labor, Protteser Straße 40, 2230 Gänserndorf, Austria; roman.sauer@omv.com

8 

OMV Exploration & Production GmbH, Trabrennstraße 6-8, 1020 Vienna, Austria; philipp.strauss@omv.com

(Manuscript received September 16, 2017; accepted in revised form January 23, 2018)

Abstract: Hydrocarbon exploration in the Bernhardsthal and Bernhardsthal-Sued oil fields documents an up to 2000 m 

thick succession of middle and upper Badenian deposits in this part of the northern Vienna Basin (Austria). Based  

on palaeontological analyses of core-samples, well-log data and seismic surveys we propose an integrated stratigraphy 

and describe the depositional environments. As the middle/late Badenian boundary is correlated with the Langhian/ 

Serravallian boundary, the cores capture the crucial phase of the Middle Miocene Climate Transition. The middle  

Badenian starts with a major transgression leading to outer neritic to upper bathyal conditions in the northern Vienna 

Basin, indicated by Bathysiphon-assemblages and glass-sponges. A strong palaeo-relief and rapid synsedimentary 

 subsidence accentuated sedimentation during this phase. The middle/late Badenian boundary coincides with a major drop 

of relative sea level by about 200 m, resulting in a rapid shift from deeper marine depositional environments to coastal 

and freshwater swamps. In coeval marine settings, a more than 100 m thick unit of anhydrite-bearing clay formed.  

This is the first evidence of evaporite precipitation during the Badenian Salinity Crisis in the Vienna Basin. Shallow 

 lagoonal environments with diverse and fully marine mollusc and fish assemblages were established during the sub-

sequent late Badenian re-flooding. In composition, the mollusc fauna differs considerably from older ones and is 

 characterized by the sudden appearance of species with eastern Paratethyan affinities.

Keywords: Miocene, Badenian, Paratethys Sea, Vienna Basin, Salinity Crisis, Mollusca, Foraminifera.

Introduction

The Vienna Basin (VB) is a key area for the reconstruction and 

understanding of the development of the Central Paratethys 

Sea during the Miocene (Kováč et al. 2004). First attempts to 

define discrete biostratigraphic units within the sedimentary 

record of this epicontinental sea were often based on Vienna 

Basin records (e.g., Suess 1866; Grill 1941, 1943). Difficulties 

in correlating the middle Miocene strata and faunas of the 

 Paratethys Sea with those from the Mediterranean Sea resulted 

in the definition of the Badenian as a regional stage by Papp & 

Steininger (1978) based on the name-giving stratotype locality 

Baden-Sooß south of Vienna revised by Piller et al. (2007) and 

Hohenegger et al. (2009). 

Despite ongoing controversies about the base and sub-

division of the Badenian stage (e.g., Piller et al. 2007 versus 

Hohenegger et al. 2014), it is generally accepted that the 

Badenian stage can be correlated with the entire Langhian 

stage and the lower part of the Serravallian stage of the Standard 

Global Chronostratigraphic Scale of Gradstein et al. (2012). 

This implies that Badenian biota capture the middle Miocene 

Climatic Optimum (MCO) of the Langhian and pass through 

the subsequent bottleneck of the Middle Miocene Climate 

Transition (MMCT) during the late Langhian and Serravallian 

(Zachos et al. 2001; Billups & Schrag 2002; Shevenell et al. 

2004; Hamon et al. 2013).

The impact of this major change in global climate on 

Paratethyan biota and depositional environments has been 

 variously discussed (De Leeuw et al. 2010; Kováčová et al. 

2011; Gebhard & Roetzel 2013; Peryt 2013; Báldi et al. 2017; 

Holcová 2017; Kováč et al. 2017). An expression of the reor-

ganization of Paratethyan basins and changing hydrology was 

the formation of evaporites during the Badenian Salinity Crisis 

(BSC) (De Leeuw et al. 2010). Recently, Báldi et al. (2017) 

background image

150

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

documented BSC-evaporites also from the Soltvadkert Trough 

in the Great Hungarian Plain and concluded that this pheno-

menon was not restricted to the Carpathian Foredeep and the 

Transylvanian Basin as previously thought (De Leeuw et al. 

2010 and references therein). Similarly, the productive halite 

deposits of Tuzla (Bosnia-Herzegovina) in the Southern 

Pannonian Basin might be an expression of the BSC (Pezelj   

et al. 2013).

Stromatolite formation in the Oberpullendorf Basin along 

the western margin of the Paratethys was interpreted to be 

related to the BSC (Harzhauser et. al. 2014), but clear evidence 

for the BSC in the VB was missing so far. Never theless, 

a coincidental drop in the diversity of marine biota, mainly 

accounted for by the loss of thermophilic species, was 

 documented  by  Harzhauser  &  Kowalke  (2002),  Hudáčková  

et  al.  (2003),  Harzhauser  &  Piller  (2007),  Kováčová  & 

Hudáčková  (2009)  and  Landau  et  al.  (2009). All  these  data 

were derived from surface outcrops with high resolution but 

very limited stratigraphic range (e.g., Zuschin et al. 2007; 

Hyžný  et  al.  2012). This  rather poor  data basis  —  in  terms  

of  continuous  records  —  is  surprising,  given  that  the VB  is 

among the most important hydrocarbon reservoirs in conti-

nental Europe (Hamilton et al. 2000). Due to intense hydro-

carbon exploration, data from hundreds of boreholes and 

information from 2D and 3D seismic surveys have become 

available since the 1940s. The rather restricted policies of the 

oil companies made it difficult to access this wealth of data, 

although general overviews were repeatedly published (e.g., 

Kreutzer  1986,  1992;  Jiříček  &  Seifert  1990).  Larger  syn­

theses combining log data with seismic data were published 

later by Kováč et al. (2004) and Strauss et al. (2006), when 

companies started to open up to science. Herein, we utilize 

geophysical data in combination with a analysis of the micro- 

and macropalaeontological content of core samples to describe 

the changes in depositional environments across the MMCT.

Geological setting and lithostratigraphic framework

The Vienna Basin covers large parts of eastern Austria 

(Lower Austria, Vienna, and Burgenland) and extends into the 

Czech Republic in the N and the Slovak Republic in the E.  

It is about 200 km long and 55 km wide, striking roughly  

SW–NE from Gloggnitz (Lower Austria) in the SSW to 

Napajedla (Czech Republic) in the NNE. The VB is subdi-

vided by a morphological high, the Spannberg Ridge, into 

a northern and a southern part (Wessely 2006). Marine sedi-

mentation was restricted to the N (N of the Danube) during  

the early Miocene and extended into the S only during the 

middle Miocene. Due to complex fault systems, the basin was 

internally subdivided into a series of horst and graben systems 

(Fig. 1). Herein, we focus only on the oil fields Bernhardsthal 

and Bernhardsthal-Sued in NE Austria close to the Czech 

 border. There, the Miocene basin fill is in direct vicinity and 

sphere of influence of the Steinberg fault (Fig. 1), roughly 

striking in SSW–NNE direction with field Bernhardsthal in 

the NNE and field Bernhardsthal-Sued in the SSW. The area 

represents the junction between the Mistelbach Halfgraben in 

the W with the Steinberg High as boundary, the Zistersdorf 

Basin in the south and the Moravian Central Basin in the 

Fig. 1. Structural map of the central and northern Vienna Basin, compiled from Kröll & Wessely (1993), Wessely (2006) and Jiříček (2002). 

The location of the investigation area is indicated by a square corresponding to the insert on the right showing the position of the wells in 

north-eastern Austria.

background image

151

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

north. To the east, it is bounded by the northern spur of the 

Eichhorn-Rabensburg High and a complex set of faults. Due 

to their economic importance, numerous boreholes have pene-

trated the Neogene deposits in both fields. 

In the study area, the Badenian units rest either directly on 

Rhenodanubian Flysch or on strongly tilted marine Ottnangian 

deposits of the Lužice Formation. The marine Langhian and 

lower Serravallian (= Badenian) deposits of the VB are united 

in the Baden Group, which comprises a broad range of litho-

logies and numerous informal formations (Kováč et al. 2004; 

Piller 2004) (Fig. 2). Aside from numerous local deltaic and 

nearshore bodies, the most important and widespread units  

in the northern VB are the Lanžhot, Jakubov and Studienka 

formations (Špička 1966; Kováč et al. 2004). In the Bernhard­

sthal area, deposits of the lower Badenian Lanžhot Formation 

are not clearly recorded, although their presence cannot be 

excluded. The lowermost cored Badenian deposits in the 

region belong to the Jakubov Fm. The predo minant lithologies 

are grey to greenish-grey clays and calca reous clays with sub-

ordinate sand layers. A characteristic feature is the frequent 

occurrence of the agglutinated forami nifer species Spirorutilus 

carinatus. This species, formerly assigned to the genus 

Spiroplectammina, was name-giving for the middle Badenian 

ecozone in the Vienna Basin (Grill 1941, 1943). Sediments of 

the Jakubov Fm. are part of the middle Bade nian of most 

authors. Based on seismic data and sequence stratigraphic 

interpretations, it compri ses the upper parts of the Upper 

Lage nidae Zone and the entire Spiro rutilus Zone (Weissenbäck 

1996) and belongs to nannoplankton zone NN5 (Kováč et al. 

2004). 

The upper units of the Badenian deposits in the Bernhardsthal 

area are correlated with the Studienka Fm. Open marine 

equivalents of this formation, as in the Slovak part of the VB, 

are represented by dark-grey calcareous clays and sands formed 

in marine environments with stratified water column and  frequent 

oxygen­depleted bot tom conditions (Kováčová & Hudáčková 

2009). Characteristic foraminifers are the planktic Velapertina 

indigena and the benthic Bolivina dilatata maxima and Pappina 

neudorfensis. The VB Bulimina–Bolivina Zone by Grill (1943) 

was based on the frequent occurrence of these benthic taxa. 

The nannoplankton is indi cative for nanno plankton Zone NN6 

(Kováč et al. 2004; Jamrich & Halásová 2010). This classi­

fication defines a time window for the deposition of the 

Studienka Fm. from about 13.6 Ma, marking the extinction of 

Sphenolithus heteromorphus, to 12.7 Ma, which is the onset of 

the Sarmatian (Harzhauser & Piller 2004 a, b).

Material and methods

Thirteen boreholes in the 

Bernhardsthal and Bernhardsthal-

Sued fields (Be3, Be4, Be5, Be6 

and Be7, BeS1, BeS2, BeS3, 

BeS4, MüT1, Mü100, Mü110, 

Mü125) were chosen (Fig. 1). 

Although no continuously cored 

borehole is available, numerous 

cores from different depth inter-

vals are stored in the OMV core-

shed in Gänserndorf (Austria) for 

sampling. In total, 83 core-samples 

were taken during two sampling 

campaigns. The sample names 

correspond to the names of the 

core boxes in the OMV core-shed. 

Typically, each box contains 5 m 

of core. Samples were taken from 

about 1-cm-thick slices of undis-

turbed cores and do not represent 

mixtures of different levels. All 

samples were treated with diluted 

H

2

O

2

 for several hours and sieved 

with water through a set of stan-

dard sieves (63, 125, 250 µm). 

Strongly cemented samples were 

processed with the surfactant 

Rewoquat® before further treat-

ment. Only foraminifera >250 µm 

Fig. 2. Lower and Middle Miocene chronostratigraphy and biostratigraphy of the Central Paratethys 

and major lithostratigraphic units of the Vienna Basin; modified from Harzhauser & Piller (2004a), 

Kováč et al. (2004), Piller et al. (2007) and Pezelj et al. (2013) (note that stratigraphic gaps between 

the lithostratigraphic units are not shown).

background image

152

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

were picked and counted (note that this leads to a bias against 

small plankton, which therefore is missing in the palaeoeco-

logical discussion). In total, 58 775 (often poorly preserved) 

specimens have been identified and assigned to 219 taxa 

(Supplementary Table 1). These data have been used for calcu-

lating percentages of taxa per sample and Plankton/Benthos 

ratio as discussed in the Results chapter.

In addition to discrete core samples, foraminifera of 54 drill 

cuttings from BeS1, an important reference well for the area, 

have been included in the analyses. The foraminfera of these 

cuttings were provided by OMV already in microslides; 

 

therefore, only presence/absence is indicated in the 

Supplementary Table 2). All gastropods, bivalves, scapho-

pods, polychaets, otoliths, bryozoans and coral fragments 

were collected from the core samples for supplementary 

palaeoecological information (Supplementary Table 3). 34 of 

the 83 samples were microsterile but partly contained macro-

fossils (see Figs. 3–4 for sample positions). The microfos-

sil-bearing  samples were qualitatively and partly quantitatively 

analysed for palaeoecological and biostratigraphic interpre-

tations for the area. 

For all wells, resistivity (RES), spontaneous potential (SP) 

and/or natural radiation (Gr) data, which were logged during 

the drilling campaigns, were provided by OMV. The data were 

measured downcore during the drilling with a resolution of 

~ 0.15 m. To remove noise and for an intuitive illustration, all 

log-data were log-transformed and smoothed by a Gaussian-

Filter (Figs. 3–4). 

All palaeontological material is stored in the collections of 

the Natural History Museum Vienna.

Results

Similarities of the well-log patterns in Figs. 3–4 allow 

a visual correlation of the boreholes. In the following, the sam-

ples are united in subsets and the biotic content of the samples 

is briefly summarized. The composition of foraminiferal 

assem blages and illustrations of characteristic micro- and 

macrofossils are shown in Figs. 5–10.

The lowermost middle Miocene units are cored in Mühlberg 

T1 between 3135 m and 2480 m (Fig. 3). One of the deepest 

samples MüT1 3127–3132 (Fig. 5) comprises silty sandstone 

and dark brown silt. The foraminiferal assemblage consists of 

43 taxa of which Heterolepa dutemplei (Fig. 6 Q) is the most 

abundant foraminifer (32 %) in the benthic assemblage (Fig. 5); 

Bathysiphon  sp.  (Fig.  6 O),  Laevidentalina spp., Lenticulina 

spp.,  Marginulina hirsuta  (Fig.  6 I)  and  Pseudonodosaria 

 brevis (Fig. 6 H) occur commonly. Planktic foraminifera are 

absent. MüT1 3132–3135 is similar, containing Heterolepa 

dutemplei and Laevidentalina spp. as most abundant benthic 

foraminifera; Marginulina hirsutaSpiroplectammina deper­

dita and Bathysiphon sp. occur commonly. Planktic forami-

nifera are absent. In MüT1 2937–2942, agglutinated 

fora                   mini     fera,  such  as  Spirorutilus carinatus,  Reticulo­

phragmium spp. and Cyclammina spp. dominate the benthic 

assemblage, accompanied by common Psammolingulina 

papillosa,  Reophax brevior,  Spiroplectammina  spp. and 

Uvigerina spp. (including U. aculeataUvenusta). Planktic 

foraminifera are common and include Globigerina bulloides, 

G. subcretacea and G. transsylvanica. The macrofauna is very 

poor and comprises only fragments of echinoids (Brissopsis sp.) 

and rare tubes of the polychaete Ditrupa sp. MüT1 2737–2742 

(Fig. 5) represents lignitic sandstone with a diverse micro-

fauna of 61 species; Ammonia  spp.  (14 %)  (Fig.  6 P)  is  the 

most abundant benthic foraminifer in the sample, Lenticulina 

spp. and the agglutinated foraminifera Spirorutilus carinatus

Reophax ssp. (Fig. 6 K) and Adelosina schreibersi (Fig. 6 L) 

occur commonly. Planktic foraminifera are abundant (13 %); 

plankton/benthos ratio (P/B) = 0.15. MüT1 2480–2485 (Fig. 5) 

comprises mica-rich lignitic sandstone; the foraminiferal 

assem blage of 26 taxa is strongly dominated by Ammonia spp. 

(87 %),  Reophax scorpiurus occurs commonly. Miliolid 

 benthic foraminifera are absent, planktic foraminifera are very 

rare (0.5%), (P/B = 0.01). A mass occurrence of the ostracod 

Cytheridea acuminata is characteristic for the sample.

In slightly shallower borehole depth, follow samples from 

the boreholes Bernhardsthal 4, 5 and 6 (Fig. 4). Be5 2338–

2343 reveals light grey fine sandstone with numerous frag-

ments of Anomia ephippium and Ostrea digitalina, but lacks 

any microfauna. The brownish-grey fine to medium sandstone 

of Be4 2134–2141 (Fig. 5) is rich in macrofauna, comprising 

balanid plates, cardiid bivalves and shell fragments of Anomia 

ephippium. The microfauna consists of ostracods and a rich 

foraminiferal assemblage of about 28 taxa. Ammonia species 

account for 77 % of the total assemblage with Ammonia 

 viennensis as dominant species. Planktic species, represented 

by Trilobatus trilobus, are very rare (< 1.7 %) (P/B = 0.002). 

A comparable composition was detected in Be6 2124–2131. 

Samples Be4 2100–2109 and Be4 2134–2141 comprise green 

to grey sand and silt with corallinacean debris, bivalves, such 

as  Anadara diluvii,  Ostrea digitalina, Anomia ephippium, 

Perna aquitanica and Aequipecten sp. along with the echino-

derm Brissopsis sp. Laterally, cuttings from BeS1 2130–2140 

document the presence of anhydrite in this horizon.

The grey sandy siltstone of sample Be6 2082–2091 is rich in 

fragments of Anomia ephippium and Ostrea digitalina. A claw 

of an Alpheidae decapod indicates the presence of snapping 

shrimps  (Fig.  7 G).  The  most  striking  feature  is  the  mass 

occurrence of the ostracod Cytheridea acuminata (Fig. 7 E–F). 

The foraminiferal assemblage is moderately diverse with  

26 taxa. Ammonia  spp. strongly dominate along with 

Elphidium spp.; planktic species account for less than 0.5 %  

of the assemblage (P/B = 0.005). Be4 2070–2078 (Fig. 5) has 

a comparable lithology and macrofauna. Its rich fish assem-

blage is represented by stingrays of the genus Dasyatis (Fig. 8 K), 

juvenile individuals of the seabream Spondyliosoma  sp.  

(Fig. 8 A–B)  and  numerous  representatives  of  the  family 

Gobiidae  (Fig. 8 C),  including  Lesuerigobius vicinalis  

(Fig. 8 E–H). The foraminiferal assemblage comprises 17 taxa 

and is strongly dominated by Ammobaculites agglutinans and 

Ammonia spp. No planktic species have been detected.

background image

153

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Fig. 3. Wire logs of selected boreholes from the Bernhardsthal-Sued 

field, showing the position of selected samples (wire log data have 

been log-transformed and smoothed with a Gaussian filter). 

Correlations are based on biostratigraphic and palaeo-ecological data 

and wire-log patterns. Red (full) lines represent sequence boundaries; 

blue (dotted) lines are flooding surfaces.

background image

154

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

The next samples are separated from the samples below by 

a conspicuous shale line interval in all wells and start with the 

Mü100 1980–1983 (Fig. 5), which yields a highly diverse 

microfauna with 66 taxa; Lenticulina clypeiformis  (50 %) 

 predominates in the assemblage and Adelosina schreibersi is 

common. Other benthic species and planktic foraminifera 

(3.6 %) are rare (P/B = 0.04). Be7 1895–1900 (Fig. 5) yields 

brownish-grey bioturbated silty clay with rare molluscs. Solen 

marginatus occurs with disarticulated valves parallel to the 

bedding plane. Striarca lacteaTritia schoenni and Ditrupa sp. 

Fig. 4.

 W

ire logs of selected boreholes from the Bernhardsthal field (see Fig. 3 for captions).

background image

155

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

are frequent. The microfauna is highly diverse with 60 taxa. 

Typical taxa are Gaudryinopsis  ssp.,  Heterolepa dutemplei

Praeglobobulimina pupoidesSpirorutilus carinatusTextularia 

gramen and Sphaeroidina bulloides. No planktic species have 

been detected. Sample Mü100 1820–1825 (Fig. 5) comprises 

a diverse microfauna with 58 taxa; Spirorutilus carinatus 

(26 %)  (Fig.  6 M–N)  and  Uvigerina semiornata  (Fig.  6 B)  

are the most abundant benthic species in this assemblage, 

Uvigerina pygmoides  (Fig.  6 G),  Nonion commune, Cibici­

doides  spp. and Heterolepa dutemplei occur commonly. 

Planktic foraminifera, such as Orbulina sp., are rare (6.7 %), 

(P/B = 0.07). Tubes of the polychaete worm Ditrupa are com-

mon. Benthic assemblages from BeS1 1980 to BeS1 1810 

regularly contain Cibicidoides spp. and Elphidium spp. 

Sample BeS1 1830 yielded a poorly preserved specimen 

 tentatively identified as Praeorbulina circularis (Fig. 6 R).

 Mü110 1798–1803 and Mü100 1740–1745 (Fig. 5) yield 

microfaunas of low diversity predominated by Ammonia spp. 

(66 %) and Elphidium spp. (29 %) or by Quinqueloculina spp. 

and  Ammonia spp., respectively; planktic foraminifera are 

absent. The mica-rich, greenish grey silty fine sand of BeS3 

1730–1746 (Fig. 5) is poor in macrofossils but yielded arti-

culated parts of glass sponges of the family Craticulariidae 

(Fig. 7 A–C), which are otherwise extremely rare in the fossil 

record. The foraminiferal assemblage consists of 25 taxa; 

Uvigerina venusta (Fig. 6 D–E), Uvigerina aculeata (Fig. 6 A), 

Elphidium spp. and Spiroplectammina deperdita are abundant 

in the foraminiferal assemblage, Cibicidoides spp., Lenticulina 

spp. and Nonion commune occur commonly. Planktic forami-

nifera  are  rare  (5.6 %),  (P/B = 0.6).  BeS2  1697–1706  yields 

a moderately diverse microfauna with 14 taxa; agglutinated 

foraminifera including Textularia  spp.,  Haplophragmoides 

spp.,  Alveolophragmium  crassum and Spiroplectammina 

deperdita dominate the benthic foraminiferal assemblages, 

while  Nonion commune occurs frequently. Planktic forami-

nifera are absent. At BeS1, samples from BeS1 1790 to  

BeS1 1720 regularly contain Heterolepa dutempleiPullenia 

bulloidesLenticulina spp., Uvigerina spp. (including U. semi­

ornata) and Elphidium spp. Amongst planktic foraminifera, 

a poorly preserved specimen tentatively identified as Prae­

orbulina circularis occurs in cutting sample BeS1 1720.

Anhydrite-bearing greenish to brownish clay is documented 

from BeS1 by cuttings starting from downcore ~1535 m 

 culminating in a characteristic interval of reddish clay with 

abundant anhydrite from 1640 to 1680 m (Fig. 3). Cutting 

samples from this interval (BeS1 1680–BeS1 1540) yielded 

various planktic foraminifers including Orbulina suturalis 

(Fig. 6 S), Globorotalia bykovae and Paragloborotalia mayeri

Amongst benthic taxa, Heterolepa dutemplei,  Uvigerina 

semiornataLenticulina spp., Cibicidoides spp. and Pullenia 

spp. are the most abundant for the entire interval from BeS1 

1830 to BeS1 1540.

A characteristic lignite bed, detected in the wells 

Bernhardsthal Be3, Be6 and BeS3, allows a separation of the 

uppermost subset of samples. The lignite is drilled in Be3 

1520–1529 and Be6 1500–1509. Reddish, mottled siltstone 

with numerous shells of the terrestrial gastropods Megalo­

tachea sp. and lignite with Planorbarius mantelli coquinas are 

typical for Be3 1520–1529 (Fig. 9 A–B). A single vertebrate 

bone might represent a frog (Rana sp.). A subsample of Be3 

1520–1529 yielded rare Ammonia  sp. and fragments of the 

thin-shelled cardiid Plicatiforma parvissima. The assemblages 

in Be6 1500–1509 (Fig. 5) are nearly identical with rare 

 fragments of the thin-shelled cardiid Plicatiforma parvissima 

and scattered shells of the pea clam Pisidium sp. (Fig. 9 D),  

the freshwater snail Bithynia  sp.  (Fig. 9 C),  the  planorbid 

Planorbarius mantelli  (Fig. 9 E)  and  the  tiny  hydrobiid 

Martinietta? sp. (Fig. 9 F). Terrestrial taxa are represented by 

fragments of the helicid Megalotachea sp. The low diverse 

microfauna comprises 10 taxa and is strongly dominated by 

Ammonia falsobeccarii  (~ 85 %).  Planktic  foraminifera  are 

absent.

Above the lignitic level, brownish-grey fine sandstone  

with  Textularia gramen,  Textularia spp., Spiroplectammina 

deperdita,  Ammonia spp. and Nonion commune occurs in 

BeS3 1583–1599 (Fig. 5). A very low diversity is evident for 

Mü100 1565–1570 (Fig. 4), which yielded only a few speci-

mens of Ammonia spp. and 1 specimen of Elphidium sp. 

Agglutinated, miliolid and planktic foraminifera are absent. 

Rare fragments of Aequipecten sp. occur. Up-core follows 

brownish-grey silty fine sandstone with numerous molluscs  

in Be7 1429–1434 (Fig. 4), Be7 1420–1429 (Fig. 5) and  

Be6 1397–1406 (Fig. 10). Turritellid coquinas with Oligodia 

pythagoraica  (Fig. 10 G–H)  are  very  frequent;  the  diverse 

mollusc assemblages comprise taxa such as Potamides 

 s chaueri  (Fig. 10 I–K), Vitta tuberculata (Fig. 10 A–D), Tritia 

longitesta (Fig. 10 L), Tritia schoenni (Fig. 10 M), Gibborissoia 

varicosa  (Fig.  10 N),  Alvania oceani (Fig.  10 N),  Tornus 

 kuemeli (Fig. 10 E–F), Favriella sp. (Fig. 10 P), Tragula fenes­

trata  (Fig. 10 R),  Chemnitzia  sp.  (Fig. 10 S),  Turbonilla ssp. 

(Fig. 10 Q), Acteocina heraclitica (Fig. 10 T), Retusa truncatula 

(Fig. 10 U),  Striarca lactea (Fig. 10 W–X),  Papillicardium 

papillosum  (Fig. 10 AB),  Plicatiforma parvissima  (Fig. 10  

Z–AA), Mioerycina letochai (Fig. 10 Y), Micr

oloripes dentatus 

(Fig. 10 AC) and Solen marginatus. Prismatic crystals of shells 

from pen shells (Pinnidae indet.) are frequent. In addition, 

tubes of the polychaete Ditrupa sp., elements of astropec-

tenids and colonies of the bryozoan Schizostomella grinzin­

gensis (Fig. 7 D) occur. The mainly epifaunal microfauna of 

Be7 1429–1434 comprises 12 taxa and is dominated by 

 miliolids,  Cycloforina contorta and Elphidium ssp. Planktic 

species account for less than 1.7 % of the assemblage 

(P/B = 0.02).  Be7  1420–1429  yields  18  taxa  and  is  strongly 

dominated by Ammonia viennensisQuinqueloculina boueana 

and Elphidium crispum. No planktic species were detected in 

the sample. In addition, octocorals, seastars (Astropecten sp.) 

and the scaphopod Antalis cf. mutabilis  (Fig. 10 V)  were  

found in sample Be6 1397–1406. The rich fish assemblage 

comprises various myliobatiform batoids (Fig. 8 L–M), juve-

nile seabreams (Spondyliosoma sp.), croakers (Umbrina sp.)  

(Fig. 8 I–J) and numerous Gobiidae (Fig. 8 D), such as Lesueri­

gobius vicinalis. The moderately diverse foraminiferal 

background image

156

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

assem blage with 17 taxa is strongly dominated by Ammonia 

viennensis and Porosononion granosum. Planktic species 

account only for 1 % of the assemblage (P/B = 0.01). The upper­

most sample Mü100 1330–1335 is microsterile; its mollusc 

fauna consists only of calcitic shells of Ostrea sp., Anomia 

ephippium and Pinna sp.

At BeS1, assemblages from BeS1 1550 to BeS1 1430 

 frequently contain the benthic taxa Sphaeroidina bulloides

Fig. 5. Composition of representative foraminiferal assemblages with indication of the most important taxa in %; (in stratigraphical order from 

bottom to top); n = number of taxa (based on data in Supplementary Table 1).

background image

157

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Fig. 6. Foraminifers from the Berhardsthal boreholes: A — Uvigerina aculeata d'Orbigny, 1846, BeS3 1730–1746; B — Uvigerina semiornata 

d'Orbigny, 1846, Mü100 1820–1825; C — Uvigerina grilli Schmid, 1971, Mü100 1820–1825; D — Uvigerina cf. venusta (Franzenau, 1894), 

Mü100 1980–1983; E — Uvigerina cf. venusta (Franzenau, 1894), BeS3 1730–1746; F — Uvigerina cf. multistriata Hantken, 1871, MüT1 

3295–3300; G — Uvigerina pygmoides Papp & Turnovsky, 1953, Mü100 1820–1825; H — Pseudonodosaria brevis (d'Orbigny, 1846), MüT1 

3127–3132; I — Marginulina hirsuta d'Orbigny, 1826, MüT1 3127–3132; J — Pleurostomella alternans Schwager, 1866, MüT1 3295–3300; 

K — Reophax nodulosa brevior Lomnicki, 1899, MüT1 2737–2742; L — Adelosina schreibersi d'Orbigny, 1846, MüT1 2737–2742; M — Spiro­

rutilus carinatus (d'Orbigny, 1846), Mü100 1820–1825; N — Spirorutilus carinatus (d'Orbigny, 1846), Mü100 1820–1825; O — Bathysiphon 

sp., MüT1 3127–3132; P — Ammonia viennensis (d'Orbigny, 1846), MüT1 2737–2742; Q — Heterolepa dutemplei (d'Orbigny, 1846), MüT1 

3127–3132; R — Praeorbulina circularis (Blow, 1956), BeS1 1830; SOrbulina suturalis Brönnimann, 1951, BeS1 1570. all scale bars = 100 µm.

background image

158

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Melonis pompilioides,  Cibicidoides spp. and uvigerininds 

including Uvigerina macrocarinata and U. semiornata; shelf 

taxa such as Ammonia and Elphidium are rare. Amongst 

planktic foraminifera, Orbulina suturalis occurs frequently. 

Above this interval (BeS1 1420–BeS1 1380), assemblages 

show very low diversity and are composed almost exclusively 

of species of AmmoniaElphidiumNonion and Porosononion.

Biostratigraphy and lithostratigraphy

Middle Badenian (Spirorutilus carinatus Ecozone, Jakubov 

Fm.):  Occurrences of Amphistegina mammilla,  Psammo­

lingulina papillosa, Pseudonodosaria brevisSchlumbergerina 

transilvaniae,  Uvigerina grilli and Uvigerina semiornata in 

samples Be4 2134–2141, Be7 1895–1900, MüT1 3127–3132, 

Fig. 7. Micro and meso-fossils from the Bernhardsthal boreholes: A, B, C — glass sponges (Hexactinosida; Craticulariidae), BeS3 1730–1746; 

D  —  Schizostomella grinzingensis David & Pouyet, 1974, (Bryozoa), Be7 1420–1429; E, F  —  Cytheridea acuminata Bosquet, 1852 

(Ostracoda), Be6 2082–2091; G — tip of Alpheidae claw (Decapoda), Be6 2082–2091.

Fig. 8. Vertebrates from the Bernhardsthal boreholes: A–B — Spondyliosoma sp. (Sparidae), Be4 2070–2078; C — Gobiidae, Be4 2070–2078; 

D — Gobiidae, Be4 1397–1406; E–F, G–H — Lesueurigobius vicinalis (Koken, 1891) (Gobiidae), Be4 2070–2078; I–J — Umbrina sp. 

(Sciaenidae), Be4 1397–1406; K — Dasyatis sp., Be4 2070–2078; L, M — Myliobatiformes indet., Be4 1397–1406.

background image

159

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

MüT1 2937–2942, MüT1 2737–2742, Mü100 1980–1983, 

BeS1 1790 and BeS1 1780 generally suggest an early to 

 middle Badenian age (sensu Kováč et al. 2004 and Piller et  

al. 2007). The co-occurrence of the planktic foraminifers 

Globigerina subcretacea (middle to late Badenian) and Globo­

rotalia transsylvanica (early to middle Badenian) in sample 

MüT1 2937–2942 indicates a middle Badenian age (Cicha et 

al. 1998). This correlation with the Spirorutilus carinatus 

Biozone is also supported by the rich assemblage of agglu-

tinated foraminifera including the name giving species 

Spirorutilus carinatus in samples MüT1 29372942, 

 Mü100 1820–1825 and Be7 1895–1900. Other typical middle 

Badenian taxa are Reophax brevior, U. aculeata and U. venusta

which are all rare or already extinct in the late Badenian 

(Haunold 1995; Cicha et al. 1998).

In terms of lithostratigraphy, the greenish-grey clays and 

siltstones belong to the Jakubov Fm. (Špička 1966; Kováč et 

al. 2004), which is part of the Baden Tegel Series of Papp et al. 

(1968). Although lower parts of the formation comprise parts 

of the Upper Lagenidae Biozone, the majority of the deposits 

belong to the Spirorutilus carinatus Biozone (Weissenbäck 

1996). In the Bernhardsthal and Bernhardsthal-Sued bore-

holes, this formation seems to cover only the Spirorutilus 

 carinatus  Biozone.

Upper Badenian (Bulimina­Bolivina Biozone & Vitta 

tuberculata Biozone, Studienka Fm.): The microfaunas of the 

samples Be7 1429–1434, Be7 1420–1429, Be6 1500–1509, 

Be6 1397–1406, BeS3 1583–1599 and Mühl100 1565–1570 

lack biostratigraphic index fossils and their correlation with 

the Bulimina

­Bolivina Biozone is tentative. Nevertheless, high 

percentages of Ammonia viennensis and Porosononion 

 granosum with various miliolid foraminifera are highly 

 characteristic for inner shelf environments of the late Badenian 

(Papp et al. 1968; Cicha et al. 1998). A more reliable biostrati-

graphic tool for theses samples is the mollusc fauna, which is 

characterized by frequent occurrences of Vitta tuberculata, 

Oligodia pythagoraica, Papillicardium papillosum and Pota­

mides schaueri (Fig. 10). This assemblage type is restricted to 

the late Badenian of the Central Paratethys. It has variously 

been documented from the VB, the Danube Basin and  

the Pannonian Basin (Švagrovský 1964; Hladilová & Fordinál 

2013).  Vitta tuberculata (sometimes referred to as “Nerita 

picta” in the older literature) is restricted to the late Badenian 

of  the  Central  Paratethys  (Švagrovský  1964,  1982).  For  the 

VB, Grill (1941) already recognized its  biostratigraphic value 

and proposed the “Zone with Rotalia beccarii and Nerita 

picta” for the upper Badenian.

In the VB, the dark-grey clays and brownish  siltstones 

 containing assemblages of the Bulimina­Bolivina Biozone are 

united in the Studienka Fm. (Špička 1966; Kováč et al. 2004). 

In basinal parts with open marine conditions, a stratified water 

column and frequent oxygen-depleted  

bottom conditions 

 prevailed  (Kováčová  &  Hudáčková  2009).  The  correlative 

samples from the Bernhardsthal and Bernhardsthal-Sued bore-

holes document shallow sublittoral and lagoonal equivalents 

of this offshore facies. 

Discussion

Palaeoecology and depositional environment

The transgression of the Paratethys Sea in the northern VB 

flooded a strongly accentuated palaeorelief. This is docu-

mented by the strongly varying depth of the Ottnangian/

Badenian boundary in the boreholes (note that post-Badenian 

tectonics is not responsible for this pattern as can be seen from 

seismics). Samples BeS1 2210, BeS1 2179.6, Be4 2473–2478, 

Be4 2409–2414, Be4 2344–2347.5, Be5 2395–2400 and 

MüT1 3295–3300 all yielded Ottnangian assemblages of the 

Lužice  Formation  corresponding  to  the  regional  benthic 

Bathysiphon­Cyclammina Biozone of Grill (1941, 1943, 

1968), Kapounek et al. (1965), Cicha & Rögl (1973) and 

Cicha et al. (1998). A typical early Miocene (Ottnangian) 

assemblage is detected in MüT1 3295–3300 (4/5) with 

Globigerinoides subquadratus, Pleurostomella alternans 

(Fig. 6 J), Uvigerina mantaensis and Uvigerina cf. multistriata 

(Fig. 6 F). Of these, Pleurostomella alternans displays its Last 

Occurrence (LO) in the Karpatian, and Uvigerina mantaensis 

and Uvigerina cf. multistriata are restricted to the Egerian to 

Fig. 9. Terrestrial and freshwater indicators from the Bernhardsthal boreholes: A, B — Megalotachea sp., Be3 1520–-1529; C — operculum 

of  Bithynia sp., Be6 1500–1509; D  —  Pisidium  sp., Be6 1500–1509; E  —  Planorbarius mantelli (Dunker, 1848), Be3 1520–1529;  

F — protoconchs of a hydrobiid (Martinietta? sp.) with calcite rods, Be6 1500–1509.

background image

160

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Fig. 10. Marine molluscs from the Bernhardsthal boreholes: A–B, C–D — Vitta tuberculata (Schréter in Horusitzky, 1915), Be6 1397–1406; 

E, F — Tornus kuemeli Harzhauser, 2002, Be6 1397–1406; G, H — Oligodia pythagoraica (Hilber, 1882), Be6 1397–1406; I, J–K — Potamides 

schaueri (Hilber, 1882), Be7 1429–1434; L — Tritia longitesta (Beer­Bistrický, 1958), Be6 1397–1406; M — Tritia schoenni (Hoernes & 

Auinger, 1882), Be6 1397–1406; N — Gibborissoia varicosa (de Basterot, 1825), Be6 1397–1406; O — Alvania oceani (d'Orbigny, 1852), Be6 

1397–1406; P — Favriella sp., Be7 1420–1429; Q — Turbonilla sp., Be7 1420–1429; R — Tragula fenestrata (Jeffreys, 1848), Be7 1429–1434; 

S — Chemnitzia sp., Be7 1429–1434; T — Acteocina heraclitica Berger, 1949, Be7 1420–1429; U — Retusa truncatula (Bruguière, 1792), 

Be6 1397–1406; V — Antalis cf. mutabilis (Hörnes, 1856), Be6 1397–1406; W, X — Striarca lactea (Linnaeus, 1758), Be6 1397; YMioerycina 

letochai (Hörnes, 1865), Be6 1397–1406; Z, AA — Plicatiforma parvissima (Švagrovský, 1960), Be6 1397–1406; AB — Papillicardium 

papillosum (Poli, 1791), Be7 1420–1429; AC — Microloripes dentatus (Defrance, 1823), Be6 1397–1406.

background image

161

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Ottnangian;  Globigerinoides subquadratus has its First 

Occurrence (FO) during the early Burdigalian (Postuma 1971; 

Cicha et al. 1998). Typical Ottnangian assemblages also 

appear in BeS1 2179.6 and BeS1 2210 with the marker species 

Amphicoryna ottnangiensis and Uvigerina cf. posthantkeni.

Consequently, MüT1 3132–3135 and MüT1 3127–3132 are 

the lowermost Badenian samples available from the 

Bernhardsthal field. Based on the high abundance of 

Heterolepa dutemplei and frequent occurrences of 

BathysiphonLaevidentalina and Chrysalogoniidae, an outer 

neritic to upper bathyal depositional environment can be 

deduced (Leckie & Olson 2003; Murray 2006; Hayward et al. 

2012; Grunert et al. 2013). Bathysiphon is adapted to high 

 sediment flux in unstable environments with frequent deposi-

tion of turbidites (Grunert et al. 2013). The high abundances of 

uniserial hyaline foraminifera indicate high export produc ti-

vity (Roetzel et al. 2006; Grunert et al. 2010; Hayward et  

al. 2012). Due to the presence of Badenian marker species 

such as 

Pseudonodosaria brevis and the homogenous state  

of preser vation, the assemblage can be considered parauto-

chthonous (e.g., not reworked from Ottnangian strata). Outer 

neritic to upper bathyal conditions also prevail in MüT1  

2937–2942 based on the high abundances of ReophaxReticulo­

phragmium,  Cyclammina and Spirorutilus (Van Morkhoven  

et al. 1986; Holbourn et al. 2013). Influx from inner to middle 

neritic environments is indicated for MüT1 2737–2742 and 

MüT1 2480–2485 by frequent occurrences of Ammonia spp. 

and Lenticulina spp. (Leckie & Olson 2003; Murray 2006). 

Upsection, the following sample set suggests inner neritic 

depositional environments in the shallow sublittoral. Anomia, 

Ostrea and the balanids in Be5 2338–2343 and Be4 2134–2141 

were all attached to rocks or other shells and are found from 

the intertidal down to sublittoral environments (Bernard et al. 

1993). The first evaporite formation is indicated by anhydrite 

cuttings in BeS1 2130–2140.

Similarly, Be4 2100–2109 formed under fully marine condi-

tions in coastal to inner neritic environments as indicated by 

the echinoderm assemblage and the pectinids. The frequent 

abundance of the ostracod Cytheridea acuminata in Be6 

2082–2091 also suggests a shallow sublittoral environment 

< 60 m (Zorn 2003; Opreanu 2003). The Ammonia–Elphidium 

dominated foraminiferal assemblage supports this interpre-

tation (Murray 2006). Similar conditions are documented for 

sample Be4 2070–2078; juvenile sea breams and gobies of the 

genus Lesuerigobius prefer coastal waters and occur over sea-

grass beds and sandy bottoms to about 300 m depth (e.g., 

Bauchot & Hureau 1986; Miller 1986). The Ammobaculites–

Ammonia dominated microfauna is typical for lagoons 

(Murray 2006). The scarceness of planktic foraminfers also 

points to very shallow settings.

The samples above the shale line interval document a deeper 

marine environment. The predominance of Lenticulina  spp. 

and common occurrences of Adelosina schreibersi indicate 

a middle to outer neritic environment for Mü100 1980–1983 

(Jones 1994; Murray 2006). Be7 1895–1900 with a rich fora-

miniferal assemblage with Gaudryinopsis, Heterolepa, 

Praeglobobulimina and Sphaeroidina likely also formed in 

middle neritic environments (Rupp 1986; Kaiho 1994; Rögl & 

Spezzaferri 2003; Pezelj et al. 2007; Spezzaferri & Tamburini 

2007; Grunert et al. 2012). The mollusc fauna, however, 

derives from shallow sublittoral environments: The extant 

Solen marginatus prefers sandy to muddy bottoms from 0.5 to 

3 m  water  depth  (Milišić  1991).  Tritia schoenni is known 

mainly from protected lagoonal environments (Harzhauser 

2002; Zuschin et al. 2014). This contradiction might be 

explained by occasional transport from coastal environments 

into deeper settings, which would account for the preservation 

of the solenids with valves parallel to the bedding plane. 

Middle to outer neritic conditions are also documented for 

Mü100 1820–1825, based on the frequent occurrences of 

Spiro rutilus carinatus, Uvigerina semiornata, Nonion commune, 

Cibicidoides spp., and Heterolepa dutemplei (Van Morkhoven 

et al. 1986; Jones 1994; Murray 2006; Pezelj et al. 2007; 

Holbourn et al. 2013). BeS3 1730–1746 formed under similar 

conditions based on foraminiferal assemblages with Uvigerina 

venusta, Elphidium spp., and Spiroplectammina deperdita

Cibicidoides spp., and Lenticulina spp. Deep water conditions 

are also indicated by the presence of hexactinosid glass 

sponges (Tabachnick 1994; Chu et al. 2011). Up to the level of 

BeS2 1697–1706, benthic foraminiferal assemblages with 

Textularia spp., Haplophragmoides spp., Alveolophragmium 

crassum, Spiroplectammina deperdita and Nonion commune 

point to middle neritic environments. A lateral equivalent of 

this interval is drilled in BeS1 where a more than 100-m-thick 

unit of anhydrite-bearing greenish to reddish clay (BeS1 

1535–1680) points to high evaporation (Fig. 11). These eva-

porites, however, are only documented by cuttings. Therefore, 

their depositional architecture is unknown. The presence of 

planktic foraminifera such as Orbulina suturalis and a diverse 

benthic fauna  clearly indicate a marine environment during 

the formation of the evaporites.

The widespread lignite interval sampled in Be3 1520–1529 

and Be6 1500–1509 comprises several sub-environments.  

The mottled colour of the siltstone and the presence of frequent 

terrestrial gastropods indicate palaeosol formation. This 

palaeo sol is followed by a very shallow, vegetated freshwater 

swamp with planorbids and Pisidium; close to the lignite 

a thin marl layer of characean oogonia occurs, supporting the 

interpretation as freshwater swamp (John et al. 2011). Above 

follows lignitic clay of a paralic swamp, as indicated by the 

rare presence of the cardiid Plicatiforma and the foraminifer 

Ammonia, which stands lowered salinities in marshes (Murray 

2006). Shallow marine conditions were re-established in the 

interval represented by BeS3 1583–1599, based on the benthic 

foraminiferal assemblage with Textularia gramenTextularia 

spp.,  Ammonia spp., Spiroplectammina deperdita,  Nonion 

commune and Elphidium spp. (Leckie & Olson 2003; Murray 

2006). Shallow marine environments are also documented by 

the impoverished Ammonia/Elphidium assemblage of Mü100 

1565–1570 (Murray 2006).

Coastal marine environments became established around 

sample Be7 1429–1434. The frequent occurrence of 

background image

162

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

potamidids and the neritid Vitta tuberculata indicates tidal 

mudflats (Reid et al. 2008; Petuch & Myers 2014); especially 

the batillariid Granulolabium bicinctum settled mudflats 

(Lozouet et al. 2001; Harzhauser 2002; Zuschin et al. 2014), 

and the micro  gastropods point to a vegetated shallow subtidal 

setting. Tornus kuemeli was documented by Harzhauser (2002) 

from brachyhaline littoral to shallow sublittoral assemblages 

of an estuary in the Korneuburg Basin. Adjacent littoral to 

very shallow sublittoral settings were settled by large turritel-

lid populations. These conditions prevailed in the interval rep-

resented by Be7 1420–1429 and Be6 1397–1406; shallow 

 sublittoral sandflats were settled by large populations of the 

turritellid Oligodia pythagoraica. Rissooids indicate the pre-

sence of algae and/or seagrass, which was settled by bryo-

zoans. Seagrass is also indicated by the presence of pen shells 

(Milišić  1991).  The  uppermost  sample  available  is  Mü100 

1330–1335. Although the aragonitic mollusc fauna is dissol-

ved, the remaining calcitic taxa, such as Ostrea, Anomia and 

Pinnidae, indicate shallow marine conditions. 

Integrated stratigraphy

Tracing the lower/middle Miocene boundary

The deepest parts of the boreholes represent the lower parts 

of  the  Lužice  Formation  and  are  correlated  with  the 

Bathysiphon–Cyclammina Biozone (Cicha et al. 1998). 

Assemblages of the Cibicides

­Elphidium Biozone, representa-

tive for the upper Lužice Fm., or from the Karpatian have not 

been detected. In Bernhardsthal 4 and 5 and in Mühlberg T1, 

the  Lužice  Fm.  is  overlain  by  Badenian  deposits.  Lower 

Badenian deposits of the Lagenidae zone might be present in 

basal parts as relics but have not been reliably documented by 

our samples (e.g., Be4 2236–2245). The first samples with 

significant fauna yield assemblages characteristic for the 

Spirorutilus carinatus Biozone. This depositional gap indi-

cates at least one hiatus. The hiatus coincides with a phase of 

erosion and non-deposition after the tectonic tilting of the 

lower Miocene deposits in large parts of the (later) Vienna 

Basin during the Styrian tectonic phase (Stille 1924; Rögl et 

al. 2007). 

Due to the spotty core recovery and limited number of sam-

ples,  the  boundary  between  the  lower  Miocene  Lužice  Fm. 

and the middle Miocene Jakubov Fm. cannot be identified 

precisely. In Bernhardsthal 4, the boundary lies between sam-

ples B4 2295–2300 and B4 2134–2141, coinciding with a shift 

from outer shelf environments to coastal settings with hard-

grounds (e.g., rocky shore with balanids and oysters) (note 

that the intervening sample Be4 2236–2245 does not contain 

biostratigraphic markers). Given the abrupt change in wire-log 

patterns, from low to very high RES-values and the opposite 

trend in SP-values, the boundary might be expected at 

~ 2207  m.  In  Bernhardsthal  5,  the  boundary  lies  between 

 samples Be5 2395–2400 and Be5 2338–2343, indicated by  

the same shift in depositional environments and faunas as  

in Be4. The boundary may be expected at ~ 2347 m, where 

a change in wire-log patterns like that in Be4 occurs. In 

Mühlberg T1, the boundary is located between samples MüT1 

3295–3300 and MüT1 3132–3135 and might be placed at 

~ 3140 m based on the considerable change in well­log pat-

terns (Fig. 2). Hence, the basal part of the Middle Miocene 

succession is represented in all three boreholes by a thick unit 

with blocky or strongly serrated high amplitude RES- and 

SP-values, ranging from 3140–3058 m in Mühlberg T1, from 

2207–2149 m in Bernhardsthal 4 and from 2347–2208 m in 

Bernhardsthal 5.

The middle Badenian depositional cycle — severe flooding 

of the basin

Middle Badenian samples of the Spirorutilus carinatus 

Biozone are recorded in Bernhardsthal 4, 5, 6, 7, S3 and 

Mühlberg MüT1 and Mü100, partly yielding abundant 

Orbulina suturalis. The stratigraphically lowest samples of 

the Biozone in the Bernhardsthal field indicate very shallow 

marine, nearshore environments partly with close by rocky 

Fig. 11. Anhydrite-bearing cutting samples from Bernhardsthal S1: A — BeS1 1580 m, B — BeS1 1600 m (crossed Nikols).

background image

163

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

shores with sessile taxa such as balanids, oysters, mytilids and 

Anomia (Be4 2134–2141, Be5 2338–2343 (2/4) or lagoonal 

conditions (Be6 2124–2131). Subsequent samples (Be4 2070–

2078.5, Be4 2100–2109, Be6 2082–2091) do not show a major 

environmental change. Shallow marine sublittoral conditions 

of  < 100 m  water  depth  were  established  with  Ammonia–

Elphidium dominated foraminiferal assemblages. These sam-

ples from the Bernhardsthal field all come from an ~ 120 m 

thick interval of moderately serrated RES- and SP-log pat-

terns, which passes into an ~ 60 –80 m thick shale­line interval. 

In terms of sequence stratigraphy, this interval can be inter-

preted as a transgressive systems tract culminating in a maxi-

mum flooding surface at ~ 1960 m in Be3, Be4 and Be6 and at 

~ 2150m  in  Be5.  Sample  Be7  1895–1900  lies  only  slightly 

above the maximum flooding surface (mfs) and consequently 

represents the deepest environment recorded by the available 

samples, indicating deeper inner shelf or even outer shelf 

 settings. The subsequent high-stand systems tract (HST) might 

be heralded in this sample by the presence of molluscs, which 

seem to have been transported from nearshore environments. 

In RES-, GR- and SP-logs, the HST is expressed as 

a 300–500-m-thick unit with strongly serrated, barrel to 

 funnel-shaped wire-log patterns. No samples are available 

from this interval and therefore the exact thickness of the 

Jakubov Fm. cannot be defined in the wells.

At the Mühlberg T1 drill site, the TST is represented by 

a deeper, middle to outer neritic (or even upper bathyal in the 

deepest sample) environment indicated by the faunal content 

of samples MüT1 3127–3132 and MüT1 2937–2942. Except 

for the lowermost interval, GR- and SP-logs are only a little 

serrated in this ~ 400 m thick interval. A progressive shallo­

wing of the environment, probably the result of high sedimen-

tation rates suggested by the presence of Bathysiphon in the 

lower part, is indicated by increasing predominance of 

Ammonia in the lignitic sandstones of samples MüT1 2737–

2742 and MüT1 2480–2485. Well-log data in this interval 

show a clearly serrated pattern, indicating that inner to middle 

neritic conditions prevail up to ca. 2000 m in MüT1 where the 

mfs is tentatively placed (Fig. 12). Samples of the HST are 

available from drill-site Mühlberg 100. Samples Mü100 

1980–1983, Mü100 1820–1825 and BeS3 1730–1746.8 

 indicate deeper, middle to outer neritic conditions than below 

the mfs, thus supporting the sequence stratigraphic interpreta-

tion from the Bernhardsthal field, where identical outer neritic 

depo sitional environments are indicated, for example, by 

 sample Be7 1895–1900. The shallowing during the middle 

Badenian HST is also indicated in seismic data by prograding 

clinoforms (Fig. 12).

The upper Badenian depositional cycle — from swamps and 

evaporites to lagoons

The next samples, reflecting a major change in depositional 

environments, derived from Bernhardsthal 3 and Bernhardsthal 

6, which penetrated lignites and lignitic clay roughly at the 

same depth between 1500 m and 1530 m. The faunal content 

in both boreholes is identical and represents basically three 

palaeoenvironments: 

1. Paralic swamps with species adapted to brackish water 

 conditions, such as Ammonia among the foraminifera and 

Plicatiforma parvissima among the bivalves. 

2. Pure freshwater swamps with freshwater molluscs such as 

Planorbarius mantelli, Pisidium sp. and Bithynia sp. None 

of these taxa can stand polyhaline conditions. Moreover, 

thin marl layers were formed in these swamps by the charo-

phyte green algae Chara, which is a freshwater genus. 

Microscopic calcite rods within the lignites and especially 

on mollusc shells were precipitated in the vadose zone by 

fungal mycelial strands (Reuter et al. 2009).

3. Terrestrial environments within the swamps settled by 

 terrestrial gastropods, such as the helicid Megaotachea sp. 

Palaeosols are intensively mottled and often show traces of 

roots. 

An additional exceptional palaeoenvironment is represented 

by the anhydrite-bearing marine clays in BeS1. In shallow 

marine settings, connected to the Paratethys Sea as indicated 

by the presence of planktic foraminifers, evaporation occa-

sionally increased and gypsum was precipitated.

No comparable palaeoenvironments have been described so 

far from the Badenian of the VB. The lignites  overlay marine 

deposits of the 

Spirorutilus carinatus Biozone and underlay 

marine deposits of the Bulimina–Bolivina Biozone (and Vitta 

tuberculata Zone). Thus, they are close to the middle/upper 

Badenian boundary. The occurrence of the marine-derived 

cardiid  Plicatiforma parvissima in samples Be3 1520–1529 

and Be6 1500–1509 allows a correlation with the late Badenian 

Vitta tuberculata Zone, as this species has never been docu-

mented so far in lower and middle Badenian strata. Con-

sequently, the lignites in Bernhardsthal 3 and 6 are interpreted 

as representing terrestrial and paralic environments of the 

 low-stand systems tract (LST) of the late Badenian rather  

than to have formed during the late HST of the middle 

Badenian. 

The sequence boundary between the middle Badenian HST 

and the late Badenian LST is difficult to detect in the wire-

logs. Tentatively it may be placed around 1580 m Be3, Be4 

and Be5 and ~1600 m in Be6 and Be7, coinciding with the last 

high amplitude peaks in the SP-logs, which characterize the 

SP-logs of the middle Badenian HST (Fig. 4). The late 

Badenian LST and TST are well reflected in the wire logs by 

strongly serrated but overall clearly bell-shaped patterns, 

reflecting a fining upward trend culminating in the maximum 

flooding surface at ~1260–1270 m in Be3, Be4 and Be7 and 

~1290 m and ~1320 m in Be5 and Be6. Hence, samples Be6 

1397–1406 and Be7 1420–1429 and Be7 1429–1434 all derive 

from the late Badenian TST. All these samples are strikingly 

similar in faunal content. Coquinas formed by turritellids and 

Anomia ephippium were wide spread. Fully marine conditions 

are clearly indicated by various echinoderms, bryozoans, 

 octocorals and rays. The mollusc assemblages lived in very 

shallow sublittoral environments in a lagoonal setting with 

sandy to muddy soft bottom with patches of sea grass and 

background image

164

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

algae. The coast was formed by tidal mudflats, which were 

settled by potamidid gastropods and hydrobiids. Very shallow 

water depths of less than 50 m are also indicated by the fora-

miniferan faunas with Ammonia-dominated assemblages, 

which are nearly devoid of planktic species, and by the diverse 

fish fauna with numerous gobiids, seabreams and croakers.

Shallow conditions are also indicated between samples 

Mü100 1820–1825, Mü100 1740–1745, Mü110 (1798–1803, 

1850–1855) and BeS3 1730–1746 and BeS3 1583–1599, 

which we correlate with the late Badenian LST. These condi-

tions < 100 m prevail at least until sample Mü100 1565–1570.

The subsequent HST was not sampled within this project.  

In all Bernhardsthal boreholes, it seems to be strongly trun-

cated at around 1100 m due to erosion by Sarmatian channels 

[note that the placement of the Badenian/Sarmatian boundary 

in Figs. 3–4 is based only on comparison with characteristic 

wire-log patterns of the Sarmatian as discussed by Harzhauser 

& Piller (2004a, b)].

The Langhian / Serravallian boundary in the Vienna Basin 

and biogeographic considerations

The Bernhardsthal boreholes capture the middle/upper 

Badenian boundary, which correlates with the Langhian/

Serravallian  boundary  at  13.82  Ma  (Kováč  et  al.  2004; 

Hohenegger et al. 2014). The Langhian/Serravallian boundary 

is characterized by a major drop of global temperatures and 

sea level (TB2.5 of Hardenbol et al. 1998; Hilgen et al. 2009), 

which also affected Paratethyan basins. De Leeuw et al. (2010) 

showed that the onset of the BSC in the Carpathian Foredeep 

and the Transylvanian Basin coincided with the onset of the 

MMCT. The sea level drop resulted in exposure of middle 

Badenian corallinacean shoals in the southern VB (Strauss et 

al. 2006), the Carpathian Foredeep (Nehyba et al. 2016) and  

in the southern Pannonian Basin a distinct shallowing is 

observed  (Bakrač  et  al.  2010;  Pezelj  et  al.  2013).  Incised 

 valleys were formed in the Alpine–Carpathian Foredeep 

(Gebhard & Roetzel 2013). In addition, this phase coincided 

with considerable tectonic activity in the vicinity of the Vienna 

Basin. For instance, the opening of the Danube Basin and  

the new connections to the southern Vienna Basin are reflected 

in a major change from biologically to hydrodynamically 

 controlled sedimentation in the corallina cean shoals (Wiedl et 

al. 2014). 

In the northern Vienna Basin, this boundary was not well 

understood so far. There, the sequence boundary between mid-

dle and upper Badenian was recognized in the Slovak part of 

the  basin  as  an  unconformity  by  Kováč  et  al.  (2004),  who 

described a shift from offshore environments to littoral or sub-

littoral shore face sands in the Slovak part of the basin. Now, 

the data from the Bernhardsthal and Mühlberg boreholes 

prove a major drop of relative sea level around the Langhian/

Serravallian boundary in the VB. The uppermost Langhian 

(middle Badenian) samples available from the boreholes  

(e.g., Mü100 1980–1983, Mü100 1820–1825, BeS3 1730–

1746, Be7 1895–1900) indicate deeper, middle to outer neritic 

conditions. The lowermost Serravallian samples (upper 

Badenian) (e.g., Be3 1520–1529, Be6 1500–1509) reflect 

palaeosols, freshwater swamps and paralic swamps. This 

 suggests a rapid drop of the relative sea level by around 

~ 200 m in the investigated area and probably in the entire VB. 

This drop clearly exceeds estimates for a global sea level  

drop of about 50 m at the Langhian/Serravallian boun dary 

(John et al. 2004; Westerhold et al. 2005), but is in line with 

estimates for the southern Pannonian Basin calculated by 

Pezelj et al. (2013). Therefore, the sea level of the Paratethys 

might have been influenced by additional factors, such as tec-

tonics and/or evaporation. The latter assumption is in line with 

Fig. 12. Sequence stratigraphic interpretation of the middle Badenian cycle in the Bernhardsthal-Sued field (with Mühlberg T1). Left: seismic 

survey with indication of the wells Bernhardsthal S4 and Mühlberg T1. Right: Interpretation and wire logs of MüT1; blue (dotted): flooding 

surfaces, red (full): sequence boundary.

background image

165

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

the presence of evaporites in BeS1 (1535–1680 m), which  

are documented here for the first time from the VB. 

 

The additional presence of BSC-evaporites in the Pannonian 

Basin (Pezelj et al. 2013; Báldi et al. 2017) shows that the BSC 

affected the entire Central Paratethys, which thus explains the 

dramatic Paratethyan sea level drop. The more or less coeval 

formation of lignites and evaporites seems to be a contra-

diction due to the different climatic regimes, which are com-

monly associated with these deposits. Nevertheless, peat bogs, 

coastal forest swamps and open marshes, which formed 

 late rally to Badenian evaporites, were also documented from 

the Polish part of the Carpathian Foredeep by Wagner et al. 

(2008, 2010). 

In the Southern Pannonian Basin of NW Croatia, the upper 

Badenian LST is also represented by a paralic coal facies 

(Bakrač et al. 2010). 

The subsequent flooding was rather moderate in the investi-

gated area and shallow water depths of a lagoonal to inner 

neritic environment were established. The immediate appea-

rance of new and endemic molluscs, however, suggests that 

this flooding allowed immigration from the eastern Paratethyan 

region. Species such as Vitta tuberculata, Oligodia pytha­

goraica, Papillicardium papillosum and Potamides schaueri 

are unknown from coeval Serravallian proto-Mediterranean 

faunas (Landau et al. 2013). Therefore, the sea-level drop 

might also have resulted in a biogeographic separation from 

the proto-Mediterranean Sea as discussed also by Studencka 

& Jasionowski (2011). Similarly, Bartol et al. (2014) discussed 

influence from the Eastern Paratethys during the late Badenian 

based on nannoplankton assemblages.

Conclusions

For the first time an integrated stratigraphy of the Neogene 

deposits of the Bernhardsthal and Bernhardsthal-Sued fields is 

proposed. Micropalaeontological and seismic data document 

middle Badenian units unconformably overlying tilted 

Ottnangian deposits. No Karpatian or lower Badenian deposits 

could be verified based on the available samples (although the 

presence of such deposits cannot be excluded). Based on the 

foraminifers, the lowermost cored Badenian deposits covered 

by the boreholes can be correlated with the middle Badenian 

Spirorutilus carinatus Biozone (although we do not exclude 

the presence of deposits correlative with the Lagenidae Zone 

in basal parts). This dating reveals a major hiatus in this part of 

the Vienna Basin due to non-deposition or erosion. 

The middle Badenian units display a considerable diffe rence 

in thickness between Bernhardsthal and Bernhardsthal-Sued. 

This difference is mainly reflected in the deposits inter      preted 

here as TST, whereas the position of the maximum flooding 

surface and the thickness of the HST are roughly  similar across 

both fields. This pattern points to considerable synsedimentary 

tectonics in the Bernhardsthal-Sued field with rapid subsi-

dence. In addition, some palaeo-relief may have provided 

higher accommodation space in the Bernhardsthal-Sued area. 

This assumption is supported by the fact that the deepest 

Badenian samples in the Bernhardsthal field yield mollusc 

faunas indicative for close-by rocky coast and/or shallow sub-

littoral environments, whereas the coeval samples in Mühlberg 

T1 indicate deeper marine conditions. Outer to middle neritic 

conditions prevailed throughout the middle Badenian in the 

region indicated by outer shelf foraminifer assemblages and 

deep water glass sponges in the HST deposits. The marine 

middle Badenian units are abruptly overlain by lignites, which 

are interpreted here as LST of the late Badenian cycle. 

Palaeosol and paralic swamps developed in the region. 

Laterally, evaporation took place in shallow marine settings, 

resulting in deposition of anhydrite-bearing clay, being 

 probably equivalent of the BSC-evaporites of other Paratethyan 

basins.

 Samples from the subsequent late Badenian TST are 

extraordinarily rich in molluscs, bryozoans, teleost fish and 

sharks indicating the re-flooding of the northern VB. At that 

time, shallow marine lagoonal conditions, partly with sea 

grass patches, prevailed. The associated mfs can be traced 

 easily in wire-log patterns across both fields. The upper 

Badenian HST was not studied here, but is obviously strongly 

truncated by erosion by Sarmatian strata. 

In conclusion, a rapid sea-level drop marked the boundary 

between middle and late Badenian, coinciding with the 

Langhian/Serravallian boundary. This global event was 

 amplified in magnitude in some Paratethyan basins by local 

tectonics. In the northern VB it led to a shift from outer neritic 

environments to palaeosols and freshwater swamps. This 

implies a drop of relative sea level of up to 200 m. The coastal 

marine mollusc fauna of the late Badenian yields several new 

immigrants from the eastern Paratethys. This partly endemic 

character might suggest that connections to the proto-Medi-

terranean Sea were already partly restricted during the early 

Serravallian. 

Acknowledgements: We thank the team of the OMV Explo-

ration & Production working group for their fruitful coopera-

tion and open­minded policy. Many thanks to Radek Vodrážka 

(Czech Geological Survey, Praha) for his sponge identifica-

tions, to Martin Gross (Universalmuseum Graz) for help   

with ostracods, to Kamil Zágoršek (Technical University of 

Liberec) for bryozoan identifications and to Gerald Auer 

 

(University Graz) for checking nannoplankton samples. 

Krzysztof Bukowski (AGH University of Science and Techno-

logy in Kraków) is acknowledged for his discussion about 

evaporite and lignite formation. We are grateful to Natália 

Hudáčková  (Comenius  University  in  Bratislava)  and  two 

anonymous reviewers for their constructive reviews.

References

Bakrač K., Hajek­Tadesse V., Mikinić M., Grizelj A., Hećimović I. & 

Kovačić M. 2010: Evidence for Badenian local sea level changes 

in  the  proximal  area  ćof  the  North  Croatian  Basin.  Geologia 

Croatica 63, 259–269.

background image

166

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Báldi  K.,  Velledits  F.,  Ćorić  S.,  Lemberkovics  V.,  Lőrincz  K.  & 

 Shevelev M. 2017: Discovery of the Badenian evaporites inside 

the Carpathian Arc: implications for global climate change and 

Paratethys salinity. Geol. Carpath. 68, 193–206.

Bauchot M.L. & Hureau J.C. 1986: Sparidae. In: Whitehead P.J.P. et 

al. (Eds): Fishes of the North-Eastern Atlantic and the Mediter-

ranean. Volume II. UNESCO, Paris, 883–907.

Bernard F.R., Cai Y.Y. & Morton B. 1993: Catalogue of the living 

marine bivalve molluscs of China. Hong Kong University Press, 

Hong Kong, 1–121. 

Billups K. & Schrag D. 2002: Paleotemperatures and ice volume of 

the past 27 Myr revisited with paired Mg/Ca and 18O/16O 

 measurements on benthic foraminifera. Paleoceanography 17, 1003. 

Chu J.W.F., Maldonado M., Yahel G. & Leys S.P. 2011: Glass sponge 

reefs as a silicon sink. Mar. Ecol. Prog. Ser. 441, 1–14. 

Cicha I. & Rögl F. 1973: Die Foraminiferen des Ottnangien. In:  

Papp A., Rögl F. & Seneš J. (Eds): Chronostratigraphie und 

Neostratotypen. Miozän der Zentralen Paratethys. Band III: M2 

Ottnangien. Die Innviertler, Salgótarjáner, Bántapusztaer 

Schichtengruppe und die Rzehakia Formation. Verlag der 

Slowakischen Akademie der Wissenschaften VEDA,  Bratislava,   

297–355.

Cicha I., Rögl F., Rupp C. & Čtyroká J. 1998: Oligocene–Miocene 

foraminifera of the Central Paratethys. Abhandlungen der 

 senckenbergischen naturforschenden Gesellschaft 549, 1–325. 

De Leeuw A., Bukowski K., Krijgsman W. & Kuiper K.F. 2010:  

Age of the Badenian salinity crisis; impact of Miocene climate 

variability on the circum Mediterranean region, Geology 38, 

715–718.

Gebhard H. & Roetzel R. 2013: The Antarctic viewpoint of the 

 Central Paratethys: cause, timing, and duration of a deep valley 

incision in the Middle Miocene Alpine–Carpathian Foredeep of 

Lower Austria. Int. J. Earth Sci. 102, 977–987.

Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. 2012: The Geo-

logic Time Scale 2012. Elsevier, Amsterdam. 2 vols., 1–1144.

Grill R. 1941: Stratigraphische Untersuchungen mit Hilfe von Mikro-

faunen im Wiener Becken und den benachbarten Molasse- 

Anteilen. Oel und Kohle 37, 595–602.

Grill R. 1943: Über mikropaläontologische Gliederungsmöglich-

keiten im Miozän des Wiener Beckens. Mitteilungen der Reichs­

anstalt für Bodenforschung 6, 33–44.

Grill R. 1968: Erläuterungen zur Geologischen Karte des nordöstli-

chen Weinviertels und zu Blatt Gänserndorf. Flyschausläufer, 

Waschbergzone mit angrenzenden Teilen der flachlagernden 

Molasse, Korneuburger Becken, Inneralpines Wiener Becken 

nördlich der Donau. Geologische Bundesanstalt, Wien, 1–155. 

Grunert  P.,  Hinsch  R.,  Sachsenhofer  R.F.,  Bechtel  A.,  Ćorić  S., 

 Harzhauser M., Piller W.E. & Sperl H. 2013: Early Burdigalian 

infill of the Puchkirchen Trough (North Alpine Foreland Basin, 

Central Paratethys): Facies development and sequence strati-

graphy. Mar. Petrol. Geol. 39, 164–186.

Grunert  P.,  Soliman  A.,  Ćorić  S.,  Roetzel  R.,  Harzhauser  M.  &  

Piller W.E. 2012: Facies development along the tide-influenced 

shelf of the Burdigalian Seaway: An example from the Ottnan-

gian stratotype (Early Miocene, middle Burdigalian). Mar. 

 Micropaleontol. 84–85, 14–36. 

Grunert P., Soliman A., Harzhauser M., Müllegger S., Piller W.E., 

Roetzel R. & Rögl F. 2010: Upwelling conditions in the Early 

Miocene Central Paratethys Sea. Geol. Carpath. 61, 129–145. 

Hamilton W., Wagner L. & Wessely G. 2000: Oil and gas in Austria. 

Mitteilungen der Österreichischen Geologischen Gesellschaft 

92, 235–262.

Hamon N., Sepulchre P., Lefebvre V. & Ramstein G. 2013: The role 

of eastern Tethys seaway closure in the Middle Miocene Clima-

tic Transition (ca. 14 Ma). Climate of the Past 9, 2687–2702.

Hardenbol J., Thierry J., Farley M.B., Jacquin T., Graciansky P.-C. & 

Vail P.R. 1998: Mesozoic and Cenozoic sequence chronostrati-

graphic framework of European basins. In: Graciansky C.-P., 

Hardenbol J., Jacquin T. & Vail P.R. (Eds): Mesozoic and Ceno-

zoic Sequence Stratigraphy of European Basins. SEPM Spec. 

Publ. 60, 3–13.

Harzhauser M. 2002: Marine und brachyhaline Gastropoden aus dem 

Karpatium des Korneuburger Beckens und der Kreuzstettener 

Bucht (Österreich, Untermiozän). Beiträge zur Paläontologie 

27, 61–159. 

Harzhauser M. & Kowalke T. 2004: Survey of the Nassariid Gastro-

pods in the Neogene Paratethys. Archiv für Molluskenkunde 133, 

1–63.

Harzhauser M. & Piller, W.E. 2004a: Integrated stratigraphy of the 

Sarmatian (Upper Middle Miocene) in the western Central Para-

tethys. Stratigraphy 1, 65–86.

Harzhauser M. & Piller W.E. 2004b: The Early Sarmatian — hidden 

seesaw changes. Courier Forschungsinstitut Senckenberg 246, 

89–111.

Harzhauser M. & Piller W.E. 2007: Benchmark data of a changing sea 

— Palaeogeography, palaeobiogeography and events in the Cen-

tral Paratethys during the Miocene. Palaeogeogr. Palaeoclima­

tol. Palaeoecol. 253, 8–31.

Harzhauser M., Peckmann J., Birgel D., Draganits E., Mandic O., 

Theobalt D. & Huemer J. 2014: Stromatolites in the Paratethys 

Sea during the Middle Miocene Climate Transition as witness of 

the Badenian Salinity Crisis. Facies 60, 429–444.

Haunold T.G. 1995: Zur Taxonomie, Systematik und stratigra-

phischen Bedeutung uviginerider Foraminiferen im Neogen  

des  Wiener  Beckens  und  benachbarter  Gebiete  —  40  Jahre  

nach Papp & Turnovsky (1953). Jahrb. Geol. Bundesanst. 138, 

67–87.

Hayward B.W., Kawagata S., Sabaa A.T., Grenfell H.R., van Kerck-

hoven L., Johnson K. & Thomas E. 2012: The Last Global 

 Extinction (Mid-Pleistocene) of Deep-Sea Benthic Foraminifera 

(Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, 

Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), 

their Late Cretaceous–Cenozoic History and Taxonomy. 

 Cushman  Found.  Foraminiferal Res. Spec. Pap. 43, 1–408.

Hilgen F.J., Abels H.A., Iaccarino S., Krijgsman W., Raffi I.,  

Sprovieri R., Turco E. & Zachariasse W.J. 2009: The Global 

Stratotype Section and Point (GSSP) of the Serravallian Stage 

(Middle Miocene). Episodes 32, 152–166.

Hladilová Š. & Fordinál F. 2013: Upper Badenian Molluscs (Gastro-

poda, Bivalvia, Scaphopoda) from the Modra­Kráľová locality 

(Danube Basin, Slovakia). Mineralia Slovaca 45, 35–44.

Hohenegger J., Ćorić S. & Wagreich M. 2014: Timing of the Middle 

Miocene Badenian Stage of the Central Paratethys. Geol. 

 Carpath. 65, 55–66.

Hohenegger J., Ćorić S., Khatun M., Pervesler P., Rögl F., Rupp C., 

Selge A., Uchman A. & Wagreich M. 2009: Cyclostratigraphic 

dating in the Lower Badenian (Middle Miocene) of the Vienna 

Basin (Austria): the Baden-Sooss core. Int. J. Earth Sci. 98, 

915–930.

Holbourn A., Henderson A.S. & MacLeod N. 2013: Atlas of Benthic 

Foraminifera.  Wiley

­Blackwell & Natural History Museum

1–642.

Holcová K. 2017: Calcareous nannoplankton and foraminiferal 

 response to global Oligocene and Miocene climatic oscillations: 

a case study from the Western Carpathian segment of the Central 

Paratethys. Geol. Carpath. 68, 207–228.

Hudáčková  N.,  Halásová  E.,  Fordinál  K.,  Sabol  M.,  Joniak  P.  &   

Kráľ  J.  2003:  Biostratigraphy  and  radiometric  dating  in  the 

 

Vienna Basin Neogene (Slovak part). Slovak Geological 

 Magazine 9, 233–236.

background image

167

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Hyžný  M.,  Hudáčková  N.,  Biskupič  R.,  Rybár  S.,  Fuksi  T.,  

Halásová E., Zágoršek K., Jamrich M. & Ledvák P. 2012: 

Devínska  Kobyla  —  a  window  into  the  Middle  Miocene 

 shallow-water marine environments of the Central Paratethys 

(Vienna Basin, Slovakia). Acta Geologica Slovaca 4, 5–21.

Jamrich M. & Halásová E. 2010: The evolution of the Late Badenian 

calcareous nannofossil assemblages as a reflexion of the palaeo-

environmental changes of the Vienna Basin (Devínska Nová Ves 

— clay pit). Acta Geologica Slovaca 2, 123–140.

Jiříček  R.  2002:  The  evolution  of  the  Molasse  in  the  Alpine– 

Carpathian Foredeep and the Vienna Basin. Exploration Geo­

physics, Remote sensing and environmnet 9, 1–179.

Jiříček R. & Seifert P. 1990: Paleogeography of the Neogene in the 

Vienna Basin and the adjacent part of the foredeep. In: 

 Minaříková D. & Lobitzer H. (Eds): Thirty Years of Geological 

Cooperation between Austria and Czechoslovakia. ÚÚG, Praha, 

89–104.

John C.M., Karner G.D. & Mutti M. 2004: δ

18

O and Marion Plateau 

backstripping: Combining two approaches to constrain late 

 middle Miocene eustatic amplitude. Geology 32, 829–832.

John D.M., Whitton B.A. & Brook A.J. 2011: The Freshwater Algal 

Flora of the British Isles. Cambridge University Press, London

2

nd

 Edition, 1–896.

Jones R.W. 1994: The Challenger Foraminifera. Oxford   University 

Press, New York, 1–149. 

Kaiho K. 1994: Benthic foraminiferal dissolved-oxygen index and 

dissolved-oxygen levels in the modern ocean. Geology  22,  

719–722.

Kapounek J., Kröll A., Papp A. & Turnovsky K. 1965: Die Ver-

breitung von Oligozän, Unter- und Mittelmiozän in Nieder-

österreich. Erdoel­Er

dgas­Zeitschrift 81, 109–115. 

Kováč  M.,  Baráth  I.,  Harzhauser  M.,  Hlavatý  I.  &  Hudáčková  N. 

2004: Miocene depositional systems and sequence stratigraphy 

of the Vienna Basin. Courier des Forschungs­Instituts Sencken­

berg 246, 187–212. 

Kováč M., Hudáčková N., Halásová E., Kováčová M., Holcová K., 

Oszczypko-Clowes M., Báldi K., Less G., Nagymarosy A., 

 Ruman A.,  Klučiar T.  &  Jamrich  M.  2017: The  Central  Para-

tethys palaeoceanography: a water circulation model based on 

microfossil proxies, climate, and changes of depositional envi-

ronment. Acta Geologica Slovaca 9/2, 75–114.

Kováčová M., Doláková N. & Kováč M. 2011: Miocene vegetation 

pattern and climate change in the northwestern Central Para-

tethys domain (Czech and Slovak Republic). Geol. Carpath. 62, 

251–266.

Kováčová P. & Hudáčková N. 2009: Late Badenian foraminifers from 

the Vienna Basin (Central Paratethys): Stable isotope study and 

paleoecological implications. Geol. Carpath. 60, 59–70.

Kreutzer N. 1986: Die Ablagerungssequenzen der miozänen Badener 

Serie im Feld Matzen und im zentralen Wiener Becken. 

 Erdoel­Erdgas­Zeitschrift 102, 492–503.

Kreutzer N. 1992: Matzen Field – Austria, Vienna Basin. AAPG

Treatise­Atlas, Structural Traps 7, 57–93.

Kröll A.  &  Wessely  G.  1993:  Strukturkarte  —  Basis  der  tertiären 

 Beckenfüllung 1:200,000. Erläuterung zu den Karten über den 

Untergrund des Wiener Beckens und der angrenzenden Gebiete. 

Geologische Bundesanstalt, Wien.

Landau B., Harzhauser M. & Beu A.G. 2009: A revision of the 

 Tonnoidea (Caenogastropoda, Gastropoda) from the Miocene 

Paratethys and their palaeobiogeographic implications.  Jahrb. 

Geol. Bundesanst. 149, 61–109.

Landau B.M., Harzhauser M., İslamoğlu Y. & da Silva C.M. 2013: 

Systematics and palaeobiogeography of the gastropods of the 

middle Miocene (Serravallian) Karaman Basin, Turkey. Caino­

zoic Res. 11–13, 11–584. 

Leckie R.M. & Olson H.C. 2003: Foraminifera as proxies for sea- 

level change on siliciclastic margins. In: Olson H.C. & Leckie 

R.M. (Eds): Micropaleontologic Proxies for Sea-Level Change 

and Stratigraphic Discontinuities. Society for Sedimentary 

 Geology Special Publication 75, 5–19.

Lozouet P., Lesport J.F. & Renard P. 2001: Révision des Gastropoda 

(Mollusca) du stratotype de l’Aquitanien (Miocène inf.): site de 

Saucats ‘Lariey’, Gironde, France. Cossmanniana, Hors série 3, 

1–189. 

Milišić N. 1991: Bivalves and Gastropods of the Adriatic Sea. Logos, 

Split, 1–302. 

Miller P.J. 1986: Gobiidae. In: Whitehead P.J.P. et al. (Eds): Fishes of 

the North-Eastern Atlantic and the Mediterranean. Volume III. 

UNESCO, Paris, 1019–1085. 

Murray J.W. 2006: Ecology and Applications of Benthic Forami-

nifera. Cambridge University Press, Cambridge, 1–426. 

Nehyba S., Holcová K., Gedl P. & Doláková N. 2016: The Lower 

Badenian transgressive­regressive cycles — a case study from 

Oslavany (Carpathian Foredeep, Czech Republic). Neues Jahrb. 

Geol. Paläontol. 279, 209–238.

Opreanu P. 2003: Some data on the recent ostracod fauna from the 

continental shelf of the black sea in the Crimea and Sinop Areas. 

Geo­Eco­Marina 9–10, 1–4.

Papp A. & Steininger F. 1978: Holostratotypus des Badenien. Holo-

stratotypus: Baden-Sooss (südlich von Wien), Niederösterreich, 

Österreich. Badener Tegel–Keferstein, 1828 (Unterbaden; M4b; 

Obere Lagenidenzone). In: Papp A., Cicha I., Seneš J. & 

Steininger F. (Eds): Chronostratigraphie und Neostratotypen. 

Miozän der Zentralen Paratethys. Band VI: M4 Badenien 

 (Moravien,  Wielicien,  Kosovien).  Verlag der Slowakischen 

Akademie der Wissenschaften VEDA, Bratislava, 138–145.

Papp A., Grill R., Janoschek R., Kapounek J., Kollmann K. & 

Turnovsky K. 1968: Zur Nomenklatur des Neogens in Öster-

reich — Nomenclature of the Neogene of Austria. Verh. Geol. 

Bundesanst. 1968, 9–27

Peryt D. 2013: Foraminiferal record of the Middle Miocene climate 

transition prior to the Badenian salinity crisis in the Polish 

 Carpathian Foredeep Basin (Central Paratethys). Geol. Quarterly 

57, 141–164.

Petuch E.J. & Myers R.F. 2014: Molluscan communities of the 

 Florida Keys and adjacent areas: their ecology and biodiversity. 

CRC Press, Florida, 1–320.

Pezelj Ð., Mandic O. & Ćorić C. 2013: Paleoenvironmental dynamics 

in the southern Pannonian basin during initial middle Miocene 

marine flooding. Geol. Carpath. 64, 81–100.

Pezelj Ð., Sremac J. & Sokač A. 2007: Palaeoecology of the Late Bade­

nian foraminifera and ostracoda from the SW Central  Paratethys 

(Medvednica Mt., Croatia). Geologia Croatica 60, 139–150. 

Piller W.E. 2004 (Ed.): Die stratigraphische Tabelle von Österreich 

(sedimentäre Schichtfolgen). Kommission für die paläonto­

logische und stratigraphische Erforschung Österreichs der 

 

Österreichischen Akademie der Wissenschaften und Öster­

reichische Stratigraphische Kommission, Wien.

Piller W.E., Harzhauser M. & Mandic O. 2007: Miocene Central 

 Paratethys stratigraphy — current status and future directions. 

Stratigraphy 4, 151–168.

Postuma J.A. 1971: Manual of planktonic foraminifera. Elsevier, 

 Amsterdam, London, New York, 1–420.

Reid D.G., Dyal P., Lozouet P,. Glaubrecht M. & Williams S.T. 2008: 

Mudwhelks and mangroves: The evolutionary history of 

an  ecological association (Gastropoda: Potamididae). Molecular 

Phylogenetics and Evolution 47, 680–699.

Reuter M., Piller W.E., Harzhauser M., Kroh A. & Berning B. 2009: 

A fossil Everglades-type marl prairie and its paleoenvironmental 

significance. Palaios 24, 747–755.

background image

168

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Roetzel  R.,  Ćorić  S.,  Galović  I.  &  Rögl  F.  2006:  Early  Miocene 

(Ottnangien) costal upwelling conditions along the southeastern 

scarp of the Bohemian Massif (Parisdorf, Lower Austria, Central 

Paratethys). Beiträge zur Paläontologie 30, 387–413. 

Rögl F. & Spezzaferri S. 2003: Foraminiferal paleoecology and 

 biostratigraphy of the Mühlbach section (Gaindorf Formation, 

Lower Badenian), Lower Austria. Annalen des Naturhistorischen 

Museums Wien 104A, 23–75. 

Rögl F., Ćorić S., Hohenegger J., Pervesler P., Roetzel R., Scholger R., 

Spezzaferri S. & Stingl K. 2007: The Styrian tectonic Phase — 

a series of events at the Early/Middle Miocene boundary revised 

and stratified (Styrian Basin, Central Paratethys). Joannea 

 Geologie und Paläontologie 9, 89–91. 

Rupp C. 1986: Paläoökologie der Foraminiferen in der Sandschaler-

zone (Badenien, Miozän) des Wiener Beckens. Beiträge zur 

Paläontologie von Österreich 12, 1–180. 

Shevenell A.E., Kennett J.P. & Lea, D.W. 2004: Middle Miocene 

southern ocean cooling and Antarctic cryosphere expansion. 

 Science 305, 1766–1770.

Spezzaferri S. & Tamburini F. 2007: Paleodepth variations on the 

 

Eratosthenes Seamount (Eastern Mediterranean): sea-level 

changes or subsidence? eEarth Discuss 2, 115–132. 

Špička V. 1966: Palaeogeography and tectonogenesis of the Vienna 

Basin and a contribution to its oil-geological problems [Palaeo-

geografie  a  tektonogeneze  Vídeňské  pánve  a  příspěvek  k  její 

naftově­geologické  problematice].  Rozpravy  Československé 

akademie  věd,  Řada  matematických  přírodo  pisných  věd 76, 

1–118. 

Stille H. 1924: Grundfragen der vergleichenden Tektonik.  Gebrüder 

Bornträger, Berlin, 1–443.

Strauss P., Harzhauser M., Hinsch R. & Wagreich M. 2006: Sequence 

stratigraphy in a classic pull-apart basin (Neogene, Vienna 

 Basin). A 3D seismic based integrated approach. Geol. Carpath. 

57, 185–197. 

Studencka B. & Jasionowski M. 2011: Bivalves from the Middle 

Miocene reefs of Poland and Ukraine: a new approach to Bade-

nian/Sarmatian boundary in the Paratethys. Acta Geol.  Pol. 61, 

79–114.

Suess  E.  1866:  Untersuchungen über den Charakter der öster-

reichischen Tertiärablagerungen, II. Über die Bedeutung der 

sogenannten brackischen Stufe oder der Cerithienschichten. 

Sitzungsberichte der kaiserlichen Akademie der Wissenschaften 

54, 1–40.

Švagrovský J. 1964: Zur Torton­Sarmat Grenze im ostslowakischen 

Neogen. Geologický Sborník 15, 79–86. 

Švagrovský  J.  1982:  Gastropoda,  Prosobranchia,  1. Archaeogastro­

poda  und  Mesogastropoda  des  oberen  Badeniens  von  Borský 

Mikuláš (NO-Teil des Wiener Beckens) und ihre stratigraphische 

Bedeutung. Geologický Zbornik — Geol. Carpath. 33, 3–50. 

Tabachnick K.R. 1994: Distribution of recent Hexactinellida. In: van 

Soest R.W.M., van Kempen B. & Braekman G. (Eds): Sponges 

in time and space. Balkema, Rotterdam, 225–232.

Van Morkhoven F.P.C.M., Berggren W.A. & Edwards A.S. 1986: 

 Cenozoic cosmopolitan deep-sea benthic foraminifera. Bulletin 

des Centres des Rechérches Exploration­Production Elf­Aquita­

ine, Mémoire 11, 1–421.

Wagner M., Bukowski K. & Przybyło J. 2008. Petrographic character 

of the coal substance from the Wieliczka salt sediments 

 

[Charakter petrografi 

czny substancji wêglowej z osadów 

solnych Wieliczki]. Gospodarka Surowcami Mineralnymi 24, 

225–239 (in Polish).

Wagner M., Bukowski K. & Stochel B. 2010. Petrologic character of 

lignite (brown coal) from Badenian salts in the Bochnia Mine 

(Southern Poland). Geol. Quarterly 54, 439–448.

Weissenbäck M. 1996: Lower to Middle Miocene sedimentation 

model of the central Vienna Basin. In: Wessely G. & Liebl W. 

(Eds): Oil and Gas in alpidic thrustbelts and basins of Central 

and Eastern Europe. European Association of Geoscientists and 

Engineers (EAGE), Special Publications 5, 355–363. 

Wessely G. 2006 (Ed): Niederösterreich. Geologie der Öster reichischen 

Bundesländer. Geologische Bundesanstalt, Wien, 1–416.

Westerhold T., Bickert T. & Röhl U. 2005: Middle to late Miocene 

oxygen isotope stratigraphy of ODP Site 1085 (SE Atlantic): 

New constrains on Miocene climate variability and sea-level 

fluctuations.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 217, 

205–222.

Wiedl T., Harzhauser M., Kroh A., Ćorić S. & Piller W.E. 2014: From 

biologically to hydrodynamically controlled carbonate produc-

tion by tectonically induced palaeogeographic rearrangement 

(Middle Miocene, Pannonian Basin). Facies 60, 865–881.

Zachos J., Pagani M., Sloan L., Thomas E. & Billups K. 2001: Trends, 

rhythms, and aberrations in global climate 65 Ma to present. 

 Science 292, 686–693.

Zorn I. 2003: Ostracoda from the Gaindorf Formation (Middle 

 Miocene, Lower Badenian) of Mühlbach (Molasse Basin, Lower 

Austria).  Annalen des Naturhistorischen Museums in Wien 

104A, 77–84.

Zuschin M., Harzhauser M. & Mandic O. 2007: The stratigraphic and 

sedimentologic framework of fine-scale faunal replacements in 

the Middle Miocene of the Vienna Basin (Austria). Palaios 22, 

285–295.

Zuschin M., Harzhauser M., Hengst B., Mandic O. & Roetzel R. 

2014: Long-term ecosystem stability in an Early Miocene 

 estuary.  Geology 42, 1–4.

background image

i

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Supplementum

Supplementary Table 1: List of foraminifers identified from quantitatively analysed samples.

Taxa

Be4 2070-2078,5

Be4 2134-2141

Be6 1397-1406

Be6 1500-1509

Be6 2082-2091

Be7 1420-1429

Be7 1429-1434,5

Be7 1895-1900

Mü100 1565-1570

Mü100 1740-1745

Mü100 1820-1825

Mü100 1980-1983

MüT1 2480-2485

MüT1 2737-2742

MüT1 3127-3132

Mü1

10 1798-1803

Mü1

10 1850-1855

BeS2 1697-1706

BeS3 1583-1599.5

BeS3 1730-1746.8

Adelosina longirosta (d'Orbigny, 1846)

0

0

0

0

0

0

0

9

0

0

0

0

0

0

8

0

0

0

0

0

Adelosina schreibersi (d'Orbigny, 1846)

0

0

0

0

0

0

0

8

0

0

100

113

0

106

2

0

0

0

0

0

Adelosina spp.

0

0

0

0

0

0

0

1

0

0

0

72

0

0

0

0

0

0

0

0

Agglutinated indet.

0

0

0

0

0

1

0

1

0

0

477

78

32

653

44

0

0

258

0

0

Agglutinated indet. - biserial

16

0

0

0

0

0

0

2

0

0

0

0

0

0

12

0

0

0

0

0

Agglutinated indet. - spiral

0

0

0

0

0

0

0

0

0

0

0

0

16

32

6

0

0

0

0

64

Agglutinated indet. - uniserial/tube

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

14

0

0

Allomorphina trigona Reuss, 1850

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

?Ammobaculites agglutinans (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

4

32

224

0

0

0

0

0

0

Ammobaculites agglutinans (d'Orbigny, 1846)

292

0

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

Ammodiscus cf. peruvianus Berry, 1928

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

Ammodiscus cf. tenuissimus Grzybowski, 1896

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

Ammodiscus miocenicus Karrer, 1877

0

0

0

0

0

0

0

2

0

0

0

1

0

1

1

0

0

0

0

0

Ammodiscus spp.

0

0

0

0

0

0

0

4

0

0

5

5

0

0

0

0

0

0

0

0

Ammomarginulina sp. 1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

Ammomassilina sp.

0

0

0

0

0

0

0

0

0

0

16

8

0

0

0

0

0

0

0

0

Ammonia convexa Collins, 1958

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ammonia falsobeccarii (Rouvillois, 1974) 

138

37

4

210

4

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ammonia inflata (Seguenza, 1862) 

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ammonia sp. 1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ammonia spp.

8

0

0

1

5

0

0

0

640

3

0

0

17780

1143

0

5440

849

0

80

0

Ammonia tepida (Cushman, 1926) 

14

24

8

16

101

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ammonia viennensis (d'Orbigny, 1846)

30

399

227

2

210

188

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Amphicoryna badenensis (d’Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

1

0

32

0

0

0

0

0

0

Amphicoryna hispida (d’Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Amphistegina mammilla (Fichtel & Moll, 1798)

0

10

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Amphistegina sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

Anastomosa sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

Anomalina badensis (d'Orbigny, 1846)

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Asterigina sp. 1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Asterigina spp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

160

448

0

0

0

Bathysiphon sp. 1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

70

0

0

0

0

0

Bathysiphon spp.

0

0

0

0

0

0

0

7

0

0

0

0

0

3

223

0

0

0

0

0

background image

ii

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Taxa

Be4 2070-2078,5

Be4 2134-2141

Be6 1397-1406

Be6 1500-1509

Be6 2082-2091

Be7 1420-1429

Be7 1429-1434,5

Be7 1895-1900

Mü100 1565-1570

Mü100 1740-1745

Mü100 1820-1825

Mü100 1980-1983

MüT1 2480-2485

MüT1 2737-2742

MüT1 3127-3132

Mü1

10 1798-1803

Mü1

10 1850-1855

BeS2 1697-1706

BeS3 1583-1599.5

BeS3 1730-1746.8

Biasterigerina planorbis (d'Orbigny, 1846)

0

26

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bigenerina nodosaria d'Orbigny, 1826

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

0

0

0

Bolivina antiqua d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Bolivina sp. 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Budashevaella multicamerata (Voloshinova, 1961)

0

0

0

0

0

0

0

0

0

0

64

0

0

0

2

0

0

0

0

0

Bulimina striata d'Orbigny, 1826 gr.

0

0

1

0

0

0

0

13

0

0

0

0

0

32

0

0

0

0

0

0

Bulimina subulata Cushman & Parker, 1947

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

32

16

16

0

Cassidulina laevigata d'Orbigny, 1826

0

0

0

0

0

0

0

0

0

0

0

7

0

0

0

0

0

0

0

0

Chrysalogoniidae indet.

0

0

0

0

0

0

0

0

0

0

0

12

0

0

78

0

0

0

0

0

Cibcidoides cf. lopjanicus (Myatlyuk, 1850)

0

0

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

Cibicidoides lobatulus (Walker & Jacob, 1798)

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

0

24

Cibicides sp. 1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

Cibicidoides cf. austriacus (d'Orbigny, 1846)

0

0

0

0

0

0

0

1

0

0

0

1

0

0

2

0

0

0

0

0

Cibicidoides cf. ungerianus  (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

Cibicidoides pachyderma (Rzehak, 1886)

0

0

0

0

1

0

0

0

0

0

0

1

16

0

16

0

0

0

0

0

Cibicidoides spp.

0

0

0

1

0

0

0

0

0

0

618

30

0

64

0

256

160

0

16

152

Cyclammina spp.

0

0

0

0

0

0

0

0

0

0

0

4

0

32

0

0

0

0

0

0

Cyclammina vulchoviensis Venglinskyi, 1953

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

Cycloforina nussdorfensis (d'Orbigny, 1846)

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

Cycloforina sp. 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Cycloforina sp. 2

0

0

0

0

0

24

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Cycloforina sp. 3

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

?Cyclofornia badensis (d'Orbigny, 1846)

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Cyclofornia badensis (d'Orbigny, 1846)

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Cyclofornia contorta (d'Orbigny, 1846)

0

1

1

0

0

5

9

0

0

0

0

0

0

0

0

0

0

0

0

0

Cyclofornia spp.

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Cymbaloporetta sp. 1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Dentalina elegans d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

0

0

0

64

0

0

0

0

0

0

Dentalina scripta d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Dentalina spp.

0

0

0

0

0

0

0

0

0

0

96

2

0

0

0

0

0

0

16

0

Discorbina planorbis (d'Orbigny, 1846)

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ellipsoidella sp.

0

0

0

0

0

0

0

0

0

0

8

0

0

0

0

0

0

0

0

0

Elphidella minuta (Reuss, 1865)

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Elphidium advenum (Cushman, 1922)

2

4

0

0

0

0

9

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium cf. angulatum (Egger, 1857)

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium cf. flexuosum (d'Orbigny, 1846)

0

0

0

0

23

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium cf. subnodosum (Münster, 1838)

10

0

2

0

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium cf. ungeri (Reuss, 1850)

12

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

background image

iii

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Taxa

Be4 2070-2078,5

Be4 2134-2141

Be6 1397-1406

Be6 1500-1509

Be6 2082-2091

Be7 1420-1429

Be7 1429-1434,5

Be7 1895-1900

Mü100 1565-1570

Mü100 1740-1745

Mü100 1820-1825

Mü100 1980-1983

MüT1 2480-2485

MüT1 2737-2742

MüT1 3127-3132

Mü1

10 1798-1803

Mü1

10 1850-1855

BeS2 1697-1706

BeS3 1583-1599.5

BeS3 1730-1746.8

Elphidium crispum (Linnaeus, 1758)

0

65

0

0

4

25

8

0

0

0

0

0

48

96

0

0

0

0

0

0

Elphidium fichtelianum (d'Orbigny, 1846)

0

1

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

Elphidium hauerinum (Linnaeus, 1758)

0

0

0

0

0

4

2

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium sp. 1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium sp. 2

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium sp. 3

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium sp. 4

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium sp. 5

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Elphidium spp.

2

1

0

1

5

3

1

0

64

2

0

0

0

3

0

2400

293

16

32

288

Eponides repandus (Fichtel & Moll, 1798)

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

Fissurina obtusa Egger, 1857

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fissurina sp. 1

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

0

0

Fursenkoina acuta (d'Orbigny, 1846)

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

?Gaudryinopsis beregoviensis (Venglinskiy, 1958)

0

0

0

0

0

0

0

80

0

0

0

0

0

0

0

0

0

0

0

0

Gaudryinopsis beregoviensis (Venglinskiy, 1958)

0

0

0

0

0

0

0

122

0

0

42

0

0

0

0

0

0

0

0

0

Glandulina ovula d'Orbigny, 1846

0

0

0

0

0

0

0

4

0

0

33

16

0

0

0

0

0

0

0

16

Globigerina bulloides d'Orbigny, 1826

0

0

0

1

0

0

0

0

0

0

48

8

16

32

0

0

0

0

0

0

Globigerina cf. praebulloides Blow, 1959

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Globigerinella aequilateris (Brady, 1879)

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

0

0

0

Globigerinella sp. 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Globigerinoides apertasuturalis Jenkins, 1960

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Globigerinoides cf. apertasuturalis Jenkins, 1960

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Globigerinoides quadrilobatus d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Globobulimina sp.

0

0

0

0

0

0

0

0

0

0

8

0

0

0

0

0

0

0

0

0

Globoquadrina altispira (Cushman & Jarvis, 1936)

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Globulina gibba (d'Orbigny in Deshayes, 1832)

0

0

0

0

0

0

0

1

0

0

1

1

0

32

0

0

0

0

0

0

Grigelis sp.

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

0

0

Guttulina communis (d'Orbigny, 1826)

0

0

0

0

0

0

0

2

0

0

16

0

0

0

0

0

0

0

0

0

Guttulina sp. 1

0

0

0

0

0

0

0

1

0

0

16

0

0

0

0

0

0

0

0

0

Hansenisca soldanii (d'Orbigny, 1826)

0

0

0

0

0

0

0

5

0

0

32

0

0

0

0

0

0

0

0

0

Hanzawaia crassiseptata (Łuczkowska, 1964)

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Hanzawaia sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Haplophragmoides carinatum Cushman & Renz, 1941

0

0

0

0

0

0

0

7

0

0

0

0

0

0

0

0

0

0

0

0

Haplophragmoides sp. 1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Haplophragmoides sp. 2

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

?Haplophragmoides spp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

0

Haplophragmoides spp.

0

0

0

0

0

0

0

0

0

0

174

2

16

0

0

0

0

173

0

80

Haplopragmoides cf. advenum Cushman, 1925

0

0

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

background image

iv

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Taxa

Be4 2070-2078,5

Be4 2134-2141

Be6 1397-1406

Be6 1500-1509

Be6 2082-2091

Be7 1420-1429

Be7 1429-1434,5

Be7 1895-1900

Mü100 1565-1570

Mü100 1740-1745

Mü100 1820-1825

Mü100 1980-1983

MüT1 2480-2485

MüT1 2737-2742

MüT1 3127-3132

Mü1

10 1798-1803

Mü1

10 1850-1855

BeS2 1697-1706

BeS3 1583-1599.5

BeS3 1730-1746.8

Heterolepa cf. dutemplei (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

72

0

227

0

0

0

96

0

0

Heterolepa dutemplei (d'Orbigny, 1846)

0

0

0

0

0

0

0

78

0

0

451

0

64

193

553

0

0

4

16

56

Heterolepa spp.

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Hoeglundina elegans (d'Orbigny, 1826)

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

Hyaline indet.

1

1

0

0

0

0

2

1

0

0

16

0

192

135

36

0

0

0

0

8

Hyalinea sp. 1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Hyperammina elongata Brady, 1878

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Karreriella sp. 1

0

0

0

0

0

0

0

5

0

0

0

3

0

0

0

0

0

0

0

0

Laevidentalina spp.

0

0

0

0

0

0

0

0

0

0

24

96

96

1

122

0

0

0

0

72

Lagena striata (d'Orbigny, 1839)

0

0

0

0

0

0

0

2

0

0

8

0

0

0

0

0

0

0

0

32

Lenticulina calcar (Linnaeus, 1758)

0

0

0

0

0

0

0

0

0

0

0

13

0

116

5

0

0

0

0

0

Lenticulina cf. limbosa (Reuss, 1863)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

Lenticulina cf. melvilli (Cushman & Renz, 1941)

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Lenticulina convergens (Bornemann, 1855)

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

Lenticulina cyclepiformis (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

1184

0

0

0

0

0

2

0

0

Lenticulina gibba (d'Orbigny, 1839)

0

0

0

0

0

0

0

0

0

0

16

4

0

0

0

0

0

0

0

0

Lenticulina inornata (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

16

0

210

3

0

0

0

0

0

Lenticulina iota (Cushman, 1923)

0

0

0

0

0

0

0

0

0

0

30

24

0

0

0

0

0

0

0

0

Lenticulina spp.

0

0

0

0

0

0

0

0

0

0

16

85

48

564

162

0

17

5

16

128

Lenticulina vortex (Fichtel & Moll, 1798)

0

0

0

0

0

0

0

0

0

0

0

10

0

0

0

0

0

0

0

0

Marginulina hirsuta d'Orbigny, 1826

0

0

0

0

0

0

0

0

0

0

0

15

16

128

70

0

0

0

0

0

Marginulina obesa Terquem, 1866

0

0

0

0

0

0

0

0

0

0

8

0

0

0

0

0

0

0

0

0

Marginulina sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

20

0

0

0

0

0

Martinottiella communis (d'Orbigny, 1826)

0

0

0

0

0

0

0

5

0

0

224

1

0

0

0

0

0

0

0

0

Martinottiella karreri (Cushman, 1936) 

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Melonis pompilioides Fichtel & Moll, 1798

0

0

0

4

0

0

0

3

0

0

160

1

32

32

34

0

32

0

0

0

Melonis sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

Melonis sp. 1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

32

0

0

0

0

Miliolidae indet. sp. 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

24

Miliolidae indet. sp. 2

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Miliolidae indet. sp. 3

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Miliolidae indet.

0

0

0

0

0

12

24

7

0

0

0

24

0

0

9

0

0

0

0

24

Neolenticulina variabilis (Reuss, 1850)

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

Neugeborina longiscata (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Nodosaria? sp.

0

0

0

0

0

0

0

0

0

0

0

1

0

0

42

0

0

0

0

0

Nonion commune (d'Orbigny, 1846)

0

0

0

0

2

0

0

2

0

0

680

13

16

288

2

0

0

304

64

96

Nonion tumidulus Pishvanova, 1960

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Oolina globosa (Montagu, 1803)

0

0

0

0

0

0

0

1

0

0

8

0

0

0

0

0

0

0

0

24

background image

v

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Taxa

Be4 2070-2078,5

Be4 2134-2141

Be6 1397-1406

Be6 1500-1509

Be6 2082-2091

Be7 1420-1429

Be7 1429-1434,5

Be7 1895-1900

Mü100 1565-1570

Mü100 1740-1745

Mü100 1820-1825

Mü100 1980-1983

MüT1 2480-2485

MüT1 2737-2742

MüT1 3127-3132

Mü1

10 1798-1803

Mü1

10 1850-1855

BeS2 1697-1706

BeS3 1583-1599.5

BeS3 1730-1746.8

Orbulina suturalis Brönnimann, 1951

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

Oridorsalis umbonatus (Reuss, 1851)

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Orthomorphina spp.

0

0

0

0

0

0

0

0

0

0

48

0

0

0

0

0

0

0

0

0

Paragloborotalia sp. 1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Planularia sp.

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

Porosononion granosum (d'Orbigny, 1846)

0

7

36

2

16

0

0

0

0

0

0

0

0

96

0

0

0

0

0

0

Praeglobobulimina pupoides (d'Orbigny, 1846)

0

0

0

0

0

0

0

53

0

0

0

0

0

0

0

0

0

0

0

0

Pseudonodosaria brevis (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

1

0

0

10

0

0

0

0

0

Pullenia bulloides (d'Orbigny, 1846)

0

1

0

0

0

0

0

0

0

0

64

5

0

0

24

0

0

0

0

0

Pyrgo lunula (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

16

17

0

0

0

0

0

0

0

0

Quinqueloculina akneriana d'Orbigny, 1846

2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Quinqueloculina auberiana d'Orbigny, 1839

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Quinqueloculina boueana d'Orbigny, 1846

0

0

0

0

0

55

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Quinqueloculina contorta d'Orbigny, 1846

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Quinqueloculina haidingeri d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Quinqueloculina seminula (Linnaeus, 1758)

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Quinqueloculina sp. 2

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Quinqueloculina spp.

4

1

0

0

0

0

0

0

0

7

17

22

0

381

0

0

0

0

0

0

Quinqueloculina triangularis (d'Orbigny, 1846)

0

3

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

Recurvoides sp. 1

0

0

0

0

0

0

0

7

0

0

0

0

0

0

0

0

0

0

0

0

Reophax nodulosa brevior Łmnicki, 1900

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Reophax scorpiurus Montfort, 1808

0

0

0

0

0

0

0

0

0

0

24

0

1536

426

0

0

0

0

0

0

Reophax spp.

0

0

0

0

0

0

0

0

0

0

0

2

208

0

0

0

0

0

0

0

Reticulophragmium venezuelanum (Maync, 1952)

0

0

0

0

0

0

0

0

0

0

0

0

48

0

0

0

0

0

0

0

Reussella spinulosa (Reuss, 1850)

0

0

0

0

0

0

0

0

0

0

8

0

0

0

2

0

0

0

0

0

Rosalina sp. 1

0

0

2

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sigmoilopsis schlumbergeri (Silvestri, 1904)

0

0

0

0

0

0

0

5

0

0

97

8

0

0

4

0

0

32

0

48

Sigmoilopsis sp. 1

0

0

0

0

0

0

0

0

0

0

0

2

0

321

6

0

0

0

0

0

Sinuloculina consobrina (d'Orbigny, 1846)

2

0

5

8

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sphaeroidina bulloides d'Orbigny, 1826

0

0

0

0

0

0

0

32

0

0

104

0

0

0

0

0

0

0

0

0

Spiroloculina tenuis (Cžjžek, 1848)

0

0

0

0

0

0

0

0

0

0

0

12

0

0

0

0

0

0

0

0

Spiroplectammina  pectinata (Reuss, 1850)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

Spiroplectammina deperdita (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

64

0

0

0

38

0

0

240

80

256

Spiroplectammina sp. 1

0

0

0

0

0

0

0

5

0

0

0

7

0

0

0

0

0

0

0

0

Spiroplectinella cf. wrighti (Silvestri, 1903)

0

0

0

0

0

0

0

0

0

0

0

0

0

35

0

0

0

0

0

0

Spiroplectinella spp.

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Spirorutilus carinatus (d'Orbigny, 1846) 

0

0

0

0

0

0

0

35

0

0

2186

56

0

544

6

0

0

0

0

48

Stilostomella adolphina (d'Orbigny, 1846)

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

background image

vi

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Taxa

Be4 2070-2078,5

Be4 2134-2141

Be6 1397-1406

Be6 1500-1509

Be6 2082-2091

Be7 1420-1429

Be7 1429-1434,5

Be7 1895-1900

Mü100 1565-1570

Mü100 1740-1745

Mü100 1820-1825

Mü100 1980-1983

MüT1 2480-2485

MüT1 2737-2742

MüT1 3127-3132

Mü1

10 1798-1803

Mü1

10 1850-1855

BeS2 1697-1706

BeS3 1583-1599.5

BeS3 1730-1746.8

Stilostomellidae indet.

0

0

0

0

0

0

0

0

0

0

0

33

0

160

51

0

0

0

0

0

Textularia cf. laevigata d'Orbigny, 1826

0

0

0

0

0

0

0

1

0

0

0

0

0

4

0

0

0

0

0

0

Textularia gramen gramen d'Orbigny, 1846

0

0

0

0

0

0

0

22

0

0

40

23

0

4

3

0

0

2

128

32

Textularia gramen maxima Cicha & Zapletalova, 1965

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Textularia laevigata d'Orbigny, 1826

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

Textularia mariae d'Orbigny, 1846

0

0

0

0

0

0

0

6

0

0

96

4

0

0

0

0

0

0

0

0

Textularia pala Cžjžek, 1848

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

Textularia spp.

0

0

0

0

0

0

0

7

0

0

100

44

0

256

21

0

32

94

112

24

Trilobatus cf. bisphericus (Todd, 1954)

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Trilobatus trilobus (Reuss, 1850)

0

1

1

0

0

0

0

0

0

0

96

42

16

64

0

0

0

0

0

0

Triloculina gibba d'Orbigny, 1826

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Triloculina spp.

0

0

0

0

0

0

0

1

0

0

48

72

0

0

0

0

0

0

0

0

Triloculina trigonula (Lamarck, 1804)

0

2

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Trochammina sp. 1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

Uvigerina aculeata d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

72

Uvigerina cf. aculeata d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

8

0

0

0

0

0

0

0

0

8

Uvigerina cf. grilli Schmid, 1971

0

0

0

0

0

0

0

4

0

0

8

0

0

0

0

0

0

0

0

0

Uvigerina cf. multistriata Hantken, 1871

0

0

0

0

0

0

0

0

0

0

0

0

16

0

0

0

0

0

0

0

Uvigerina cf. venusta Franzenau, 1894

0

0

0

0

0

0

0

0

0

0

8

0

16

0

0

0

0

0

0

0

Uvigerina grilli Schmid, 1971

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

Uvigerina pygmoides Papp & Turnovsky, 1953

0

0

0

0

0

0

0

0

0

0

64

0

0

0

0

0

0

0

0

0

Uvigerina semiornata d'Orbigny, 1846

0

0

0

0

0

0

0

0

0

0

1328

0

0

0

0

0

0

0

0

0

Uvigerina spp.

0

0

0

0

0

0

0

1

0

0

0

5

64

32

0

0

0

0

0

0

Uvigerina urnula d'Orbigny, 1846 gr.

0

0

0

0

0

0

0

0

0

0

0

0

0

160

0

0

0

0

0

0

Uvigerina venusta Franzenau, 1894

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

208

Vaginulinopsis hauerina (d'Orbigny, 1846)

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Vaginulopsis sp.

0

0

0

0

0

0

0

0

0

0

8

0

0

0

2

0

0

0

0

0

Valvulineria complanata (d'Orbigny, 1846)

0

2

0

0

1

0

0

6

0

0

0

0

0

32

0

0

0

0

0

0

Valvulineria sp. 1

0

0

0

0

0

0

0

13

0

0

0

0

0

0

0

0

0

0

0

0

Valvulineria spp.

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Vulvulina pennatula (Batsch, 1791)

0

0

0

0

0

0

0

0

0

0

0

0

0

32

0

0

0

0

0

0

Plankton indet.

0

0

0

0

0

0

0

0

0

0

376

34

80

864

0

0

16

0

0

104

Benthos indet.

0

0

7

0

11

0

0

0

0

0

0

0

0

0

15

0

0

0

0

0

background image

vii

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Ammonia

 ssp.

Amphicoryna ottnangiensis 

(T

oula, 1914)

Amphicoryna 

sp.

Bathysiphon 

sp.

Bigenerina/Martinotiella

 spp.

Bolivina budensis 

(Hantken, 1875)

Bolivina fastigia 

Cushman, 1936

Bolivina/Brizalina 

spp.

Bulimina 

spp.

Cibicidoides austriacus 

(d'Orbigny

, 1846)

Cibicidoides budayi 

(Cicha & Zapletalova, 1960)

Cibicidoides 

spp.

Cyclammina 

spp.

Elphidium, Elphidiella

 spp.

Globigerinoides 

spp.

Globobulimina 

spp.

Globocassidulina 

sp.

Globor

otalia bykovae

 (Aisenstat in Subbotina et al., 1960) 

Gyr

oidinoides 

sp.

Hanzawaia 

sp.

Heter

olepa dutemplei 

(d'Orbigny

, 1846)

Lagena

 sp.

Lenticulina 

spp.

Mar

ginulina

 spp.

Melonis pompilioides 

Fichtel & Moll, 1798

Nonion commune

 (d'Orbigny

, 1846)

Orbulina suturalis 

Brönnimann, 1951

Pappina parkeri 

(Karrer

, 1877)

Paraglobor

otalia

? mayeri 

(Cushman & Ellisor

, 1939)

Plectofr

ondicularia 

sp.

Por

osononion granosum 

(d'Orbigny

, 1846)

Praeorbulina cir

cularis

 (Blow

, 1956)

 

Pullenia bulloides

 (d'Orbigny

, 1846)

Quinqueloculina 

sp.

Schlumber

gerina 

sp.

Schlumber

gerina transilvaniae 

(Karrer

, 1865)

Sigmoilopsis 

sp.

Spir

orutilus 

sp.

Textularia 

sp.

Trilobatus trilobus

 (Reuss, 1850)

Uvigerina 

cf.

 posthantkeni 

Papp, 1971

Uvigerina macr

ocarinata 

Papp & 

Turnovsky

, 1953

Uvigerina multistriata 

Hantken, 1871

Uvigerina parviformis 

Papp, 1953

Uvigerina semiornata

 d'Orbigny

, 1846

Valvulineria 

sp.

Planktonic foraminifera indet.

BeS1 1380

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BeS1 1400

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BeS1 1420

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BeS1 1430

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

?

0

1

BeS1 1440

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BeS1 1450

1

0

0

0

1

0

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

?

0

0

BeS1 1460

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

BeS1 1480

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1500

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1520

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

?

0

1

BeS1 1540

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

BeS1 1550

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1560

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

BeS1 1570

1

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

BeS1 1580

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1590

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

BeS1 1600

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

1

0

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

?

0

1

BeS1 1610

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

BeS1 1620

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

?

0

1

BeS1 1630

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1640

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1660

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

Supplementary Table 2: List of foraminifers identified from cuttings of BeS1 (1 = presence).

background image

viii

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Ammonia

 ssp.

Amphicoryna ottnangiensis 

(T

oula, 1914)

Amphicoryna 

sp.

Bathysiphon 

sp.

Bigenerina/Martinotiella

 spp.

Bolivina budensis 

(Hantken, 1875)

Bolivina fastigia 

Cushman, 1936

Bolivina/Brizalina 

spp.

Bulimina 

spp.

Cibicidoides austriacus 

(d'Orbigny

, 1846)

Cibicidoides budayi 

(Cicha & Zapletalova, 1960)

Cibicidoides 

spp.

Cyclammina 

spp.

Elphidium, Elphidiella

 spp.

Globigerinoides 

spp.

Globobulimina 

spp.

Globocassidulina 

sp.

Globor

otalia bykovae

 (Aisenstat in Subbotina et al., 1960) 

Gyr

oidinoides 

sp.

Hanzawaia 

sp.

Heter

olepa dutemplei 

(d'Orbigny

, 1846)

Lagena

 sp.

Lenticulina 

spp.

Mar

ginulina

 spp.

Melonis pompilioides 

Fichtel & Moll, 1798

Nonion commune

 (d'Orbigny

, 1846)

Orbulina suturalis 

Brönnimann, 1951

Pappina parkeri 

(Karrer

, 1877)

Paraglobor

otalia

? mayeri 

(Cushman & Ellisor

, 1939)

Plectofr

ondicularia 

sp.

Por

osononion granosum 

(d'Orbigny

, 1846)

Praeorbulina cir

cularis

 (Blow

, 1956)

 

Pullenia bulloides

 (d'Orbigny

, 1846)

Quinqueloculina 

sp.

Schlumber

gerina 

sp.

Schlumber

gerina transilvaniae 

(Karrer

, 1865)

Sigmoilopsis 

sp.

Spir

orutilus 

sp.

Textularia 

sp.

Trilobatus trilobus

 (Reuss, 1850)

Uvigerina 

cf.

 posthantkeni 

Papp, 1971

Uvigerina macr

ocarinata 

Papp & 

Turnovsky

, 1953

Uvigerina multistriata 

Hantken, 1871

Uvigerina parviformis 

Papp, 1953

Uvigerina semiornata

 d'Orbigny

, 1846

Valvulineria 

sp.

Planktonic foraminifera indet.

BeS1 1680

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

BeS1 1720

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

1

0

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1740

0

0

0

0

1

0

0

0

0

0

0

1

1

1

0

1

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

BeS1 1760

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1780

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

0

0

0

0

0

0

0

0

1

BeS1 1785

1

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

1

1

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

1

BeS1 1790

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

BeS1 1810

1

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1830

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1850

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1870

1

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1890

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1910

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1920

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1930

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

?

0

0

0

0

0

0

0

0

0

1

BeS1 1940

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1950

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

BeS1 1960

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

1

0

1

1

0

?

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

BeS1 1970

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 1980

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2010

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2030

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2040

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

background image

ix

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Ammonia

 ssp.

Amphicoryna ottnangiensis 

(T

oula, 1914)

Amphicoryna 

sp.

Bathysiphon 

sp.

Bigenerina/Martinotiella

 spp.

Bolivina budensis 

(Hantken, 1875)

Bolivina fastigia 

Cushman, 1936

Bolivina/Brizalina 

spp.

Bulimina 

spp.

Cibicidoides austriacus 

(d'Orbigny

, 1846)

Cibicidoides budayi 

(Cicha & Zapletalova, 1960)

Cibicidoides 

spp.

Cyclammina 

spp.

Elphidium, Elphidiella

 spp.

Globigerinoides 

spp.

Globobulimina 

spp.

Globocassidulina 

sp.

Globor

otalia bykovae

 (Aisenstat in Subbotina et al., 1960) 

Gyr

oidinoides 

sp.

Hanzawaia 

sp.

Heter

olepa dutemplei 

(d'Orbigny

, 1846)

Lagena

 sp.

Lenticulina 

spp.

Mar

ginulina

 spp.

Melonis pompilioides 

Fichtel & Moll, 1798

Nonion commune

 (d'Orbigny

, 1846)

Orbulina suturalis 

Brönnimann, 1951

Pappina parkeri 

(Karrer

, 1877)

Paraglobor

otalia

? mayeri 

(Cushman & Ellisor

, 1939)

Plectofr

ondicularia 

sp.

Por

osononion granosum 

(d'Orbigny

, 1846)

Praeorbulina cir

cularis

 (Blow

, 1956)

 

Pullenia bulloides

 (d'Orbigny

, 1846)

Quinqueloculina 

sp.

Schlumber

gerina 

sp.

Schlumber

gerina transilvaniae 

(Karrer

, 1865)

Sigmoilopsis 

sp.

Spir

orutilus 

sp.

Textularia 

sp.

Trilobatus trilobus

 (Reuss, 1850)

Uvigerina 

cf.

 posthantkeni 

Papp, 1971

Uvigerina macr

ocarinata 

Papp & 

Turnovsky

, 1953

Uvigerina multistriata 

Hantken, 1871

Uvigerina parviformis 

Papp, 1953

Uvigerina semiornata

 d'Orbigny

, 1846

Valvulineria 

sp.

Planktonic foraminifera indet.

BeS1 2080

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2090

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2120

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2130

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2140

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

BeS1 2160

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BeS1 2179

0

1

1

0

0

1

1

0

1

1

0

1

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

1

BeS1 2180

0

0

0

0

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

1

BeS1 2190

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BeS1 2200

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

BeS1 2210

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

?

0

0

1

BeS1 2230

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

BeS1 2240

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

BeS1 2250

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

1

0

0

0

1

1

1

BeS1 2260

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

BeS1 2270

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

background image

x

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Supplementary Table 3: Micro- and macrofossils (exclusive Foraminifera) from Bernhardsthal and Bernhardsthal-Sued boreholes (1 = presence).

Species/Genus/Family

Be S1 2362-2367 (2/2)

Be S3 1730-1746 (2/2)

Mü 100 1740-1745 (3/14)

Mü 100 1450-1455 (2/4)

Be 3 1520-1529 (1/3)

Be 3 1520-1529 (5)

Be 4 2134-2141 (3/5)

Be 4 2134-2141 (3/2)

Be 4 2100-2109 (2/9)

Be 4 2100-2109 (2/4)

Be 5 2070-2078.5 (1/1)

Be 5 2338-2343 (2/4)

Be 6 2082-2091 (3/1)

Be 6 1500-1509 (2/5)

Be 6 1500-1509 (2/1)

Be 6 1397-1406 (1/7)

Be 6 1397-1406 (1/8)

Be 6 1397-1406 (1/5)

Be 6 1397-1406 (1/2)

Be 7 1895-1900 (3/2) 

Be 7 1420-1429 (1/5) 

Be 7 1420-1429 (1/2) 

Be 7 1429-1434.5 (2/4)

Be 7 1429-1434.5 (2/3)

Be 7 1429-1434,5 (2/7) 

Hexactinosida 

Craticulariidae indet.

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bivalvia

Anomia ephippium Linnaeus, 1758

0

0

0

0

0

0

0

1

0

0

1

1

1

0

0

1

0

0

1

0

1

1

0

0

1

Bivalvia

Anadara diluvii (Lamarck, 1805)

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bivalvia

Striarca lactea (Linnaeus, 1758)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

Bivalvia

Perna aquitanica (Mayer-Eymar, 1858)

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bivalvia

Pinnidae indet.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

0

0

Bivalvia

Aequipecten sp.

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

Bivalvia

Ostrea digitalina (Dubois, 1831)

0

0

0

0

0

0

0

1

1

0

1

1

1

0

0

0

0

0

1

0

1

1

0

0

0

Bivalvia

Megaxinus bellardianus (Mayer, 1864)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

Bivalvia

Microloripes dentatus (Defrance, 1823)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Bivalvia

Mioerycina letochai (Hörnes, 1865)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

Bivalvia

Cardiidae indet.

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bivalvia

Plicatiforma parvissima (Švagrovský, 1960)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

Bivalvia

Papillicardium papillosum (Poli, 1791)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

Bivalvia

Solen marginatus Pultney, 1799

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

1

Bivalvia

Lutraria sanna Basterot, 1825

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

Bivalvia

Corbula gibba (Olivi, 1792)

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bivalvia

Tellina sp. 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Bivalvia

Pisidium sp.

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

Gastropoda

Vitta tuberculata (Schréter in Horusitzky, 1915)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

0

1

Gastropoda

Cerithium sp.

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Gastropoda

Granulolabium bicinctum (Brocchi, 1814)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

Gastropoda

Potamides schaueri (Hilber, 1882)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

Gastropoda

Oligodia pythagoraica (Hilber, 1882)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

1

1

0

1

Gastropoda

Petaloconchus intortus (Lamarck, 1818)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Gastropoda

Martinietta sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Gastropoda

 “Hydrobia” sp. 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

Gastropoda

 “Hydrobia” sp. 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

1

1

1

0

Gastropoda

 “Hydrobia” sp. 3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

0

0

Gastropoda

Gibborissoia varicosa (de Basterot, 1825)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Gastropoda

Alvania sp.

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

background image

xi

MIDDLE AND LATE BADENIAN PALAEOENVIRONMENTS IN THE NORTHERN VIENNA BASIN

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Species/Genus/Family

Be S1 2362-2367 (2/2)

Be S3 1730-1746 (2/2)

Mü 100 1740-1745 (3/14)

Mü 100 1450-1455 (2/4)

Be 3 1520-1529 (1/3)

Be 3 1520-1529 (5)

Be 4 2134-2141 (3/5)

Be 4 2134-2141 (3/2)

Be 4 2100-2109 (2/9)

Be 4 2100-2109 (2/4)

Be 5 2070-2078.5 (1/1)

Be 5 2338-2343 (2/4)

Be 6 2082-2091 (3/1)

Be 6 1500-1509 (2/5)

Be 6 1500-1509 (2/1)

Be 6 1397-1406 (1/7)

Be 6 1397-1406 (1/8)

Be 6 1397-1406 (1/5)

Be 6 1397-1406 (1/2)

Be 7 1895-1900 (3/2) 

Be 7 1420-1429 (1/5) 

Be 7 1420-1429 (1/2) 

Be 7 1429-1434.5 (2/4)

Be 7 1429-1434.5 (2/3)

Be 7 1429-1434,5 (2/7) 

Gastropoda

Alvania oceani (d'Orbigny, 1852)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

Gastropoda

Tornus kuemeli Harzhauser, 2002

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

1

1

1

0

Gastropoda

Idioraphe defrancei (de Basterot, 1825)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

Gastropoda

Tritia longitesta (Beer-Bistrický, 1958)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

1

1

0

1

Gastropoda

Tritia schoenni (Hoernes & Auinger, 1882)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

Gastropoda

Cyllenina ancillariaeformis (Grateloup, 1834)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Gastropoda

Epitonium sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

Gastropoda

Favriella sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

0

Gastropoda

Mangelia sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

Gastropoda

Bela sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

Gastropoda

Perrona sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

Gastropoda

Chemnitzia sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

Gastropoda

Turbonilla sp. 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

Gastropoda

Tragula fenestrata (Jeffreys, 1848)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

Gastropoda

Turbonilla gastaldi auct.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

0

Gastropoda

Odostomia sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

0

0

1

0

Gastropoda

Acteocina heraclitica Berger, 1949

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

0

0

0

0

0

Gastropoda

Retusa truncatula (Bruguière, 1792)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Gastropoda

Ringicula sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Gastropoda

Bithynia sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

Gastropoda

Planorbarius mantelli (Dunker, 1848)

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

Gastropoda

Megalotachea sp.

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

Scaphopoda

Antalis cf. mutabilis (Hörnes, 1856)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

Polychaeta

Ditrupa sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

Bryozoa

Schizostomella grinzingensis David & Pouyet, 1974

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

Cirripedia

Balanidae

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ostracoda

Cytheridea acuminata Bosquet, 1852 

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Asteroidea

Astropecten sp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

0

0

Echinodea

Brissopsis sp.

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Anthozoa

Octocorallia

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

Amphibia

Rana?

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Chondrichthyes 

Dasyatis sp.

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Chondrichthyes 

Myliobatiformes 1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

background image

xii

HARZHAUSER et al.

GEOLOGICA CARPATHICA

, 2018, 69, 2, 149–168

Species/Genus/Family

Be S1 2362-2367 (2/2)

Be S3 1730-1746 (2/2)

Mü 100 1740-1745 (3/14)

Mü 100 1450-1455 (2/4)

Be 3 1520-1529 (1/3)

Be 3 1520-1529 (5)

Be 4 2134-2141 (3/5)

Be 4 2134-2141 (3/2)

Be 4 2100-2109 (2/9)

Be 4 2100-2109 (2/4)

Be 5 2070-2078.5 (1/1)

Be 5 2338-2343 (2/4)

Be 6 2082-2091 (3/1)

Be 6 1500-1509 (2/5)

Be 6 1500-1509 (2/1)

Be 6 1397-1406 (1/7)

Be 6 1397-1406 (1/8)

Be 6 1397-1406 (1/5)

Be 6 1397-1406 (1/2)

Be 7 1895-1900 (3/2) 

Be 7 1420-1429 (1/5) 

Be 7 1420-1429 (1/2) 

Be 7 1429-1434.5 (2/4)

Be 7 1429-1434.5 (2/3)

Be 7 1429-1434,5 (2/7) 

Chondrichthyes 

Myliobatiformes 2

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

Decapoda

Alpheidae

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Osteichthyes

Gobiidae 

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0 0

0

0

0

0

0

Osteichthyes

Spondyliosoma sp. 

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0 0

0

0

0

0

0

Osteichthyes

Lesueurigobius vicinalis (Koken, 1891) 

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0 0

0

0

0

0

0

Osteichthyes

Umbrina sp. 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0 0

0

0

0

0

0