background image

GEOLOGICA CARPATHICA

, APRIL 2018, 69, 2, 129–148

doi: 10.1515/geoca-2018-0008

www.geologicacarpathica.com

The Early to Middle Triassic continental–marine transition 

of NW Bulgaria: sedimentology, palynology  

and sequence stratigraphy

GEORGE AJDANLIJSKY

1

, ANNETTE E. GÖTZ

2, 

 

and ANDRÉ STRASSER

3

 

1 

University of Mining and Geology “St. Ivan Rilski”, Department of Geology and Geoinformatics, Sofia 1700, Bulgaria; g.ajdanlijsky@mgu.bg

2 

University of Portsmouth, School of Earth and Environmental Sciences, Portsmouth PO1 3QL, United Kingdom; 

annette.goetz@port.ac.uk

3

University of Fribourg, Department of Geosciences, Geology-Palaeontology, 1700 Fribourg, Switzerland; andreas.strasser@unifr.ch

(Manuscript received September 11, 2017; accepted in revised form February 13, 2018)

Abstract: Sedimentary facies and cycles of the Triassic continental–marine transition of NW Bulgaria are documented 

in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya.  

The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous 

Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions  

in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for 

dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan 

Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to  

the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional 

correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first 

step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle 

Triassic in NW Bulgaria. 

Keywords: Lithofacies, sedimentary cycles, palynology, continental–marine transition, sequence stratigraphy, Triassic, 

NW Bulgaria.

Introduction 

Among the prominent features of the Triassic continental– 

marine transition in NW Bulgaria is the pronounced cyclic 

character of its sedimentation, recorded at different hierar-

chical scales. Although this stratigraphic interval has been  

the focus of many previous lithological and lithofacies studies 

(Tronkov  1983;  Mader  &  Čatalov  1992;  Ajdanlijsky  2002, 

2010a, b;  El-Ghali  et  al.  2006,  2009;  Stefanov  &  Chatalov 

2015; Chatalov et al. 2015; Chatalov 2018), the lack of bio-

stratigraphic dating hampers the genetic interpretation of  

the deposits and their time range. 

The good exposure and only minor tectonic disturbance of 

the Lower–Middle Triassic succession along the central and 

northern parts of the Iskar river gorge provide excellent condi-

tions for detailed lithological and stratigraphical studies.  

The study area includes the Iskar river valley between the 

 villages of Tserovo and Opletnya (Fig. 1) where the complete 

Triassic succession is well exposed and where some of the 

reference sections of the Lower and Middle Triassic series  

in Western Bulgaria are located. The current study covers  

the transitional interval from the upper parts of the entirely 

continental facies to the lowermost shallow-marine parts of 

the succession. The here presented sections were selected on 

the basis of stratigraphic significance, number of lithological 

and lithofacies studies previously done, and last but not least 

the accessibility allowing for the establishment of regional 

reference sections. 

The new palynological data, combined with the well-recog-

nizable lithological levels and surfaces and the characteriza-

tion of sedimentary cyclicity of different orders are a good 

basis for developing an improved, high-resolution strati-

graphic scheme and better regional correlations of this strati-

graphic interval.

 Geological setting 

The study area belongs to the central-eastern part of the 

alpine Western Balkan Tectonic zone (Western Balkanides) of 

Ivanov (1998). The Triassic succession forms the base of its 

Mesozoic cover and lies over pre-Mesozoic basement, inclu-

ding high-grade metamorphosed lower Palaeozoic sedimentary 

and igneous rocks and upper Palaeozoic sedimentary, igneous 

and volcanic rocks (Fig. 1). Here, the Triassic succession is 

referred to as “Balkanide type” (Ganev 1974; Zagorchev & 

Budurov 2009) and is subdivided into three parts. The lower 

part is dominated by continental terrigenous red beds repre-

senting mainly fluvial and rare alluvial deposits that litho-

stratigraphically are referred to as Petrohan Terrigenous Group 

(Tronkov 1981). The middle part consists of carbonate and 

mixed siliciclastic-carbonate rocks of the Iskar Carbonate 

background image

130

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

Group (Tronkov 1981; Fig. 2), and the upper part is represen-

ted by terrigenous-carbonate and carbonate rocks of the Moesian 

Group (Chemberski et al. 1974). In the study area the Petrohan 

Terrigenous Group and the lowermost part of the Iskar Carbo-

nate Group show a pronounced cyclic character (Fig. 3). 

Previous studies

According to the published data (Tronkov 1968, 1983; Čatalov 

1974, 1975; Assereto et al. 1983; Tronkov & Ajdanlijsky 

1998a, b; Ajdanlijsky  et  al.  2004),  the  Petrohan Terrigenous 

Group and the lowermost part of the Iskar Carbonate Group 

(Svidol Formation and lower part of the Mogila Formation) 

were deposited during the Early Triassic (Fig. 2). During that 

time the study area was located between 30° and 40° palaeo-

latitude as a part of the Eurasian passive margin of the Tethys 

Ocean (Philip et al. 1996), with overall semi-arid to arid 

 climatic conditions (Nachev 1980; Tronkov 1983; Mader & 

Čatalov 1992; Chatalov 1994, 1997a, b, 1998, 2005a, b, 2006; 

Ajdanlijsky 2002, 2005). 

The Petrohan Terrigenous Group is composed of sand-

stones, siltstones and mudstones, which were deposited in 

braided, anastomosing and high-sinuosity (i.e., meandering) 

Fig. 1. Geological map of the Berkovitza unit and the study area in NW Bulgaria with position of the studied and palynologically sampled 

sections.

background image

131

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

Fig. 2. Stratigraphic column of the lower part of the Triassic sequence exposed in outcrops of the Iskar river gorge, NW Bulgaria, with range 

of the studied sections shown in Figures 4, 6 and 9. Sequence-stratigraphic interpretation according to El-Ghali et al. (2006, 2009) and 

 sedimentary cyclicity according to Ajdanlijsky et al. (2004) and Ajdanlijsky (2005, 2010a). Abbreviations used: SB — sequence boundary;  

LST — lowstand systems tract; TST — transgressive systems tract; MFS — maximum-flooding surface; HST — highstand systems tract;  

Te — Tenuis Bed; Zi — Zhitolub Bed; Sf — Sfrazen Bed; Se — Sedmochislenitzi Bed; Pr — Prebointitza Bed.

background image

132

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

fluvial systems (Ajdanlijsky 2001a, 2005, 2009; Ajdanlijsky 

et al. 2004). Because of the very irregular terrain on which  

the Petrohan Terrigenous Group rests in some parts of the 

Iskar river gorge (Tronkov 1960, 1963; Rashkov 1962; Tronkov 

et al. 1965; Ajdanlijsky 2010a) its thickness varies from 32 to 

over 145 m, but most of the sections measured reveal a range 

from 90 to 110 m (Ajdanlijsky 2005). 

Tronkov (1995) proposed a lithostratigraphic subdivision of 

the Petrohan Terrigenous Group distinguishing three units: 

a lower conglomerate, a middle sandstone, and an upper sand-

stone–siltstone unit. Along with Tronkov’s subdivision of the 

continental Lower Triassic red beds, a complex stratigraphic 

subdivision of sequences was proposed by Mader & Čatalov 

(1992). They established in the section named by them the 

“Buntsandstein in Bulgaria” four informal units that formed 

during two tectonic and palaeoenvironmental megacycles. 

Later, based on well-developed, regional bounding surfaces 

with erosional amplitudes of 30–35 m, lithofacies architecture, 

changes in regional pattern of fluvial palaeotransport and  

the degree of development and the position of the palaeosol 

levels, Ajdanlijsky (2005, 2010a) subdivided the clastic suc-

cession of the Petrohan Terrigenous Group into three main 

units (MC-0, MC-1, MC-2; Fig. 2). Within these units, repre-

senting medium-scale sedimentary cycles, Ajdanlijsky (2005) 

recognized small-scale cyclic patterns, thus introducing 

a hierarchic nomenclature of cyclicity: elementary fluvial 

cycles (EFC) representing the basic building blocks of meso-

cycles (MC), correspond to the third-order cycles (sequences) 

of Miall (1997, 2010) and Wright & Marriott (1993). Based on 

similarity in lithofacies of the elementary fluvial cycles, the 

second and third mesocycle of the Petrohan Terrigenous 

Group are subdivided into sub-mesocycles, reflecting the 

stages of development of the alluvial system from the ero-

sional base-level change to the re-establishment of the river 

equilibrium profile. Later, El-Ghali et al. (2009) interpreted 

these mesocycles as sequence units and the sub-mesocycles as 

sequence systems tracts. 

The lowermost part of the Iskar Carbonate Group is repre-

sented by a transitional continental to marine, mixed silici-

clastic–carbonate, tide-dominated succession referred to as 

Svidol Formation (Čatalov 1974) that is overlain by the shal-

low-marine  Mogila  Formation  (Assereto  &  Čatalov  1983;  

Assereto et al. 1983). The unit is comprised of sandstones, 

silt- and mudstones, dolomitic to clayey limestones and dolo-

mites.  According  to  Čatalov  (1975)  its  origin  is  connected 

with sedimentation in a low-relief coastal sandy to silty plain, 

a supratidal evaporite clayey-carbonate setting and an inter-

tidal to shallow subtidal carbonate flat. Its thickness ranges 

from 27 m in the southern part to 46 m in the northern part of 

the study area. Based on bivalve, gastropod and ammonoid 

findings, Tronkov (1968, 1976, 1995) placed the Svidol 

Formation in the Spathian.

The Opletnya Member of the Mogila Formation, showing 

thickness ranges from 134 m to over 180 m, is dominated by 

micritic and clayey limestones and dolostones that form 

a well-pronounced cyclicity described by Tronkov (1983) as 

uniform hemirhythms, bounded by transgressive surfaces. 

Another feature of the lower part of the Opletnya Member is 

the occurrence of hardgrounds in parts of the Western 

Balkanides. In the Iskar river gorge section and the Vratza 

Mountains, the same author distinguished four beds that can 

be traced over a long distance: the Tenuis, Zhitolub, Sfrazen 

and Sedmochislenitzi beds (Fig. 2). Additionally, Asseretto & 

Čatalov (1983) defined the Prebointitza Bed. Later, Tronkov 

(1993) recognized this bed as part of the Sedmochislenitzi 

Bed. Ajdanlijsky et al. (2004) subdivided the Opletnya Member 

into five medium-scale sedimentary cycles (I–V; Fig. 2). 

These medium-scale cycles are subdivided into small-scale 

cycles (1–14; Fig. 2), which in turn are subdivided into elemen-

tary cycles (or parasequences) bounded by transgressive 

 surfaces. The palaeogeography of the study area during the 

deposition of the Opletnya Member is interpreted as part of 

a carbonate platform (Chatalov 1998, 2000a) or ramp (Čatalov 

1988; Chatalov 2002, 2007, 2011) that Tronkov (1993) named 

as Opletnya Carbonate Ramp and Chatalov (2013) defined as 

homoclinal ramp.

Materials and methods 

The sections studied, situated along the Iskar river gorge 

between the villages Tserovo and Opletnya (Fig. 1; Opletnya:  

N 43°06’01” E 23°25’42”, Sfrazen:  N 43°05’39” E 23°25’32”, 

Tserovo:  N 43°00’19” E 23°21’26”), are among the most 

 representative for the Triassic continental–marine transition of 

NW Bulgaria and provide continuous vertical and satisfactory 

lateral exposure. 

The lithological characteristics of the uppermost part of the 

Petrohan Terrigenous Group are documented in nine detailed 

logged sections. The section description is based on lithofacies 

logging following the scheme of Miall (1977, 1978, 2006), 

adapted and modified to the features of the study area 

(Ajdanlijsky 2012, 2013a, b) and developed for the needs of 

carbonate and mixed clastic-carbonate systems. A total of 216 

samples and 141 thin-sections has been analyzed for this 

Group. The fluvial style is interpreted on the base of archi-

tectural-element  analysis  (Ajdanlijsky  2014,  2015a, b)  and 

measurement of the sedimentary palaeotransport indicators 

(Ajdanlijsky 2009).

Lithofacies documentation of the Svidol Formation is based 

on seven sections (Fig. 1), all of them sampled and studied in 

detail (142 samples and 92 thin-sections). Lithology and facies 

studies of the Opletnya Member of the Mogila Formation 

were performed in three complete sections near Tserovo and 

Oletnya villages and north of the Lakatnik railway station 

(406 samples and 138 thin-sections). 

The sequence-stratigraphic nomenclature follows that of 

Catuneanu et al. (2011). The high-resolution sequence- 

stratigraphic analysis is based on the concepts of Strasser  

et al. (1999). Parasequences are defined as being limited by 

 flooding surfaces (van Wagoner et al. 1990). However, the 

sequence- stratigraphic nomenclature discussed by Schlager 

background image

133

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

(2004, 2010) introducing a scale-invariant sequence model 

might overcome the challenge of future basin-wide correlation 

of sequences and systems tracts, once major third-order 

 

flooding surfaces and sequence boundaries have been 

 

defined.

Palynological samples from siltstones and limestones of  

the Opletnya and Sfrazen sections span the upper fluvial 

 

interval of the Petrohan Terrigenous Group, the Svidol 

Formation (transitional interval) and the lowermost part  

of the shallow- marine Opletnya Member of the Mogila 

Formation (Fig. 2). The 8 samples were prepared using 

 

standard palynological processing techniques, including 

 

HCl (33 %) and HF (73 %) treatment for dissolution of carbo-

nates and silicates, and  saturated ZnCl

2

 solution (D ≈ 2.2 g/ml) 

for density separation. Residues were sieved at 15 μm mesh 

size. Slides have been mounted in Eukitt, a commercial, 

 resin-based mounting medium. Sedimentary organic matter 

was studied under a Leica DM2000 transmitted light 

microscope. 

Results 

Sedimentology and facies

The uppermost 50–55 m of the Petrohan Terrigenous Group 

are composed of fluvial channel and near-channel sandstone 

bodies and overbank fines. The sandstones are medium- to 

fine-, rare coarse-grained, poorly to moderately sorted quartz 

arenites, sublitharenites and subarkoses. Detrital mono-

crystalline quartz grains are dominant (average over 50 %), 

with polycrystalline quartz being present (average 6 %). 

Detrital feldspar occurs in small amounts, mainly presented by 

potassium feldspar. The lithic fragments are mainly volcanic 

(ave rage 2.5 %), and plutonic fragments are present as single 

grains. Mica is mainly muscovite with biotite being present. 

Mud intraclasts are very rare. 

In the lower 25–35 m of this part of the Petrohan Terrigenous 

Group sandstones show trough, planar and low-angle 

cross-bedding and ripple cross-lamination (Fig. 4) forming 

Fig. 3. Cyclic architecture of deposits of the Triassic continental–marine transition exposed in outcrop sections along the Iskar river: a — lower 

part of the Svidol Formation near Sfrazen hamlet (the bush to the left of the picture is about 1.8 m high); b — Petrohan Terrigenous Group east 

of Tserovo village (the cliff is about 87 m high); c – lower part of the Mogila Formation (Opletnya Member) near Zitolub spring, north-west of 

the Lakatnik railway station (the lowermost cycle shown is 4.4 m thick). Lines and arrows mark the base of elementary fluvial cycles (b) and 

sequence boundaries of elementary sequences (c), respectively. Abbreviations used: SB — sequence boundary; PTG — Petrohan Terrigenous 

Group; SvF — Svidol Formation.

background image

134

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

downstream accretion and rarely lateral accretion bodies   

(Fig. 5c). They are overlain by a package of massive, low- 

angle cross-bedded sandstones with ripple cross-lamination 

and massive to laminated sandy and silty mudstones. Small-

scale load cast structures and local erosional features can be 

observed at the base of the sandstone bodies. Carbonate pedo-

genic features, mainly powder calcrete levels (Figs. 4, 5e), 

occur mainly in overbank deposits. Rarely and weakly deve-

loped, they can be found in near-channel deposits. The thick-

ness of the elementary fluvial cycles varies from 9.7 to 11.1 m. 

Fig. 4. Lithological column, depositional setting and stratigraphy of the upper part of the Petrohan Terrigenous Group exposed west of Opletnya 

village. The fluvial cyclicity is presented by elementary fluvial cycles (EFC). A marked change in palynological key taxa is documented in the 

uppermost Petrohan Terrigenous Group (sample OPL-III-007). Abbreviations used: TST — transgressive deposits; HST — highstand deposits. 

Palynological samples: OPL-II-004, OPL-II-005, OPL-III-006, OPL-III-007.

background image

135

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

Fig. 5. Petrohan Terrigenous Group: a — upper part of elementary fluvial cycle (EFC) with near-channel fines (marked by hammers) preserved, 

covered by cross-bedded channel sandstones of the next EFC with muddy intraclast lags (arrows); braided river part (MC-1/1) of mesocycle 

MC-1, Opletnya section; b — upper part of thick overbank fines (sample OPL-II-004) intercalated by a set of crevasse-splay sandstone beds 

(between arrows) and their boundary (dashed line) with the overlying channel sands of the upper part of the anastomosing fluvial interval of 

MC-2 (MC-2/2), Opletnya section; c — lateral accretion sandy point bar bed with erosional base (arrows) that forms the base of an elementary 

fluvial cycle within the anastomosing fluvial interval of mesocycle MC-2 (MC-2/2), Tserovo section; d — synsedimentary deformation 

(slumping) in the upper part of the point bar rich in reworked palaeosol materials; lower part of an elementary fluvial cycle within the 

 meandering fluvial part of mesocycle MC-2 (MC-2/3), Opletnya section; e — small powder concretions in palaeosol profile formed in  overbank 

fines, upper part of the Tserovo section; f — allochthones reworked as cross-bedded lag lenses (Bröckelbank breccia lithofacies; Bbr) and 

autochthones (dense clarets; Pc) with palaeopedogenetic products at the base and within a crevasse-splay body from the uppermost part of  

the Petrohan Terrigenous Group (PTG); (MC-2/3), Sfrazen section. The boundary with the overlying Svidol Formation (SvF) is marked by 

solid line.

background image

136

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

In the uppermost 15 to 25 m of the Petrohan Terrigenous 

Group the thickness of the elementary fluvial cycles decreases 

more than twice ranging from 3.2 to 5.4 m (Fig. 4). The lateral 

distribution of the overbank fines is much more restricted as 

well as their portion within a cycle. Multiple erosional  surfaces 

are typical for the channel part of the cycles. Often the lag 

deposits contain much more reworked calcrete nodules than 

muddy intraclasts (Fig. 5f). Flaser and lenticular bedding as 

well as climbing ripple cross-lamination are common in  

the upper parts of the elementary fluvial cycles (Fig. 4). 

Synsedimentary deformations occur some meters to tens of 

meters laterally apart of similar erosional surfaces (Fig. 5d).

Based on the facies and the sedimentary structures described 

above, the lower part of the Petrohan Terrigenous Group is 

inter  preted as belonging to an anastomosing fluvial system, 

while the upper part characterizes a meandering system  

(Fig. 4). 

The Svidol Formation shows a large variety of siliciclastic 

terrigenous, siliciclastic-carbonate and carbonate rocks. Its 

basal part is represented by an 8 to over 10 m thick interval 

(unit A of Tronkov & Ajdanlijsky 1998b) of alternating tidal- 

and fluvial-influenced deposits showing a distinct cyclic 

 pattern (Figs. 6, 7a, b). The base of the small-scale sedimen-

tary cycles is characterized by sharp-based sandstone beds 

with tidal ripples that periodically overlie claystones or silt-

stones (Fig. 8). In places, this surface is developed as a shal-

low scour (Fig. 6). Mainly vertical bioturbation and small-scale 

synsedimentary deformation features such as sliding and con-

volute lamination are observed in the lower parts of the cycles  

(Figs. 6, 7c, 8). Upsection, sandstones become thinner and 

finer, claystones predominate, and thin beds of marly dolo-

stones appear (Fig. 7e), often with evidence of prolonged 

 subaerial exposure resulting in intrabasinal mud- and doloclast 

redeposition (Figs. 6, 7f). An increase of sand content together 

with carbonate pedogenic features such as powder spots and 

small nodular calcretes and cluster-like aggregates of calcite 

or dolomite composition as well as desiccation cracks are 

observed (Figs. 6, 8). 

Upsection, the small-scale cycles show a reduction in thick-

ness. The sandy siliciclastic lithofacies are still prevailing, but 

the carbonate content of the rocks is increasing. This 9 to 12 m 

thick interval (unit B of Tronkov & Ajdanlijsky 1998b) is 

characterized by bi-directional small-scale cross-lamination 

(ripple marks), the gradual disappearance of carbonate palaeo-

pedogenic features (here represented only by powder spots), 

the shift of bioturbated intervals to the middle part of the cycles 

as well as occurrence of mica in the sediments (Figs. 6, 8). 

Wavy, flaser, lenticular and nodular bedding are common.  

The red colors are gradually replaced by ochre and whitish- 

beige ones. Cycles form coarsening-upward successions, built 

up predominantly of marls, dolomarls and argillaceous dolo-

mites. Limestones with single and poorly preserved fragments 

of brachiopods and bivalves are also present. The trend of 

cycle thickness reduction is maintained.

The following interval (unit C of Tronkov & Ajdanlijsky 

1998 b)  is  characterized  by  intertidal  grey  limy  sandstones, 

beige-grey marls, and limy siltstones with intercalated micritic 

limestones (Fig. 8) rich in brachiopods and bivalves. Evidence 

of erosion is rarely observed and mainly associated with 

small-scale scour-and-fill structures. 

The uppermost part of the Svidol Formation (unit D of 

Tronkov & Ajdanlijsky 1998b) consists of cycles built up by 

carbonates and marls with supratidal dolomites and dolomarls 

prevailing upsection (Fig. 8). Fragments of marine bivalves 

and crinoids are common. The top of this unit is marked by 

an erosional and transgressive surface. The depositional envi-

ronment of the Svidol Formation thus reflects alternating flu-

vial and tidal influences (Fig. 6).

The lowermost part of the Mogila Formation (Opletnya 

Member) is dominated by carbonates displaying a great facies 

variety. Detrital quartz and clay still occur but are limited to 

discrete and thin levels. Grainstones and rudstones containing 

ooids and bioclasts (Figs. 9, 10b) are most prominent, with 

well-developed cross-bedding (Fig. 10d) and absence of 

micritic matrix. Grain- and packstones can also contain a high 

amount of peloids and mudstone lithoclasts. They are com-

monly strongly bioturbated and may show overpacking. 

Wackestones are often bioturbated and contain benthic fora-

minifera and ostracods. Mudstones, often laminated and com-

prising pyrite, some of them bioturbated as well, are also 

common in the lowermost part of the member. In some mud-

stone beds solitary fragments or thin lenses of gagate are 

observed (Fig. 10g). Birdseyes occur occasionally both in 

wacke stones and mudstones. Wackestones as well as mud-

stones may be dolomitized (Fig. 10e). Small-scale synsedi-

mentary deformation, some of it with sigmoidal texture, is 

also observed in several levels (Figs. 9, 10f). 

Dolomites commonly are associated with tepees and flat 

pebbles that form local lags (Fig. 10b) and/or lenses with 

 chaotic orientation of the clasts. Some of them exhibit also 

imbrication structures

,

 or the clasts form short bands lying on 

the foreset lamina in cross-stratified levels. On top of distinct 

dolomite beds, hardgrounds are developed (Fig. 10c). The facies 

and sedimentary structures of the Opletnya Member point to 

a peritidal to shallow-marine environment (Fig. 9).

Palynology

Sedimentary organic matter is poorly preserved in the lower 

part of the studied interval within the Petrohan Terrigenous 

Group (samples OPL-II-004 and OPL-II-005 from MC-2/2, 

and OPL-III-006 from MC-2/3; Fig. 4). Samples from the 

uppermost Petrohan Terrigenous Group (sample OPL-III-007; 

MC-2/3; Fig. 4), from the Svidol Formation (transitional 

 interval, samples SFR-IV-008, SFR-IV-009, and SFR-IV-010; 

Fig. 6) and from the lowermost shallow-marine Mogila For-

ma tion (lower Opletnya Member, sample SFR-013 (TST); 

Fig. 9) show well-preserved organic particles. 

A palynomorph assemblage dominated by Densoisporites 

nejburgii,  Platysaccus leschikii and Voltziaceaesporites 

hetero morphus places the lower part of the studied fluvial 

Petrohan Terrigenous Group (samples OPL-II-004, OPL-II-005, 

background image

137

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

OPL-III-006; MC-2/2-3) in the Early Triassic (Olenekian). 

An early Anisian (Aegean) palynomorph assemblage is 

 iden tified from the uppermost fluvial Petrohan Terrigenous  

Group (sample OPL-III-007; MC-2/3), the Svidol Formation 

(tran 

sitional interval, samples SFR-IV-008, SFR-IV-009, 

 

and SFR-IV-010) and the lowermost shallow-marine Mogila 

 

For 

mation (lower Opletnya Member, sample SFR-013), 

 

including Anisian index taxa such as Illinites  chito noides

Stella pollenites  thiergartii,  Tsugaepollenites oriens

Cris tiani   sporites  triangulatus, and Triadispora crassa (Fig. 11). 

There fore, the studied interval is stratigraphically placed at  

the Early–Middle Triassic boundary. Marine acritarchs 

(Micrhystridium spp.) were identified about 6 m above the 

onset of shallow-marine limestones (sample SFR-013; Fig. 9) 

in the basal part of the Opletnya Member of the Mogila 

Formation. 

Palynofacies is dominated by opaque phytoclasts of diffe-

rent size and shape (equidimensional and needle-shaped), 

Fig. 6. Lithological column, depositional setting and stratigraphy of the lower part of the continental–marine transitional interval exposed west 

of Sfrazen hamlet. Abbreviations used: TST — transgressive deposits; HST — highstand deposits; SB — third-order sequence boundary;  

TS — transgressive surface; FS — flooding surface; PS — parasequence. A–B — units according to Tronkov and Ajdanlijsky (1998b). 

Palynological samples: SFR-IV-008, SFR-IV-009, SFR-IV-010.

background image

138

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

translucent particles being present. Degraded organic matter 

consists mainly of pollen grains, the dominant palynomorph 

group; spores are rare. The change in fluvial style from anas-

tomosing to meandering is reflected in the sorting and preser-

vation of sedimentary organic matter (Fig. 12). A higher 

variety of phytoclast sizes and shapes as well as a high amount 

of degraded organic matter occurs in samples from fluvial 

deposits representing anastomosing rivers (samples OPL-II-004, 

OPL-II-005; Fig. 12a). In contrast, samples from meandering 

river systems (samples OPL-III-006, OPL-III-007; Fig. 12b) 

Fig. 7. Svidol Formation: a — units A and B (Tronkov and Ajdanlijsky, 1998b) exposed at Sfrazen hamlet; b — lower part of the Sfrazen 

hamlet section showing the boundary between the Petrohan Terrigenous Group and the Svidol Formation (solid line), and between units A and 

B of the Svidol Formtion (dashed line); c — convolute structure as result of synsedimentary small-scale sliding during cut-and-fill channel 

processes; d — herringbone cross-stratification in the middle part of unit A; e — supratidal terrigenous-carbonate alternation in the lower part 

of unit B; — intraformational clasts as result of re-deposition of desiccation-cracked and re-deposited supratidal carbonate and terrigenous 

materials in the lower part of unit B.

background image

139

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

show a high amount of small, equidimensional opaque phyto-

clasts, a higher amount of translucent particles, and a better 

preservation of palynomorphs. The palynofacies of tidal-flat 

deposits (sample SFR-IV-010; Fig. 6) is dominated by opaque 

phytoclasts. The onset of the transgressive phase within the 

basal Mogila Formation is documented by an acritarch peak 

(sample SFR-013; Fig. 9). 

So far, the studied succession was interpreted as Lower 

Triassic deposits (cf. Tronkov 1981; Mader & Čatalov 1992). 

The here presented new palynological data reveal an early 

Middle Triassic age for the uppermost Petrohan Terrigenous 

Group, and the Early–Middle Triassic boundary is placed 

within the late highstand of the MC-2 sequence, about 1 m 

below the base of the Svidol Formation (basal Iskar Carbonate 

Group). The marine plankton peak in the basal Mogila For-

mation may represent a first transgressive pulse of the carbo-

nate ramp evolution during Anisian times. 

Depositional sequences 

In the study area, the Petrohan Terrigenous Group is com-

posed of three mesocycles (Ajdanlijsky et al. 2004; Ajdanlijsky 

2005, 2010a) that correspond to third-order cycles (sensu 

Miall 1997) or third-order sequences (sensu Miall 2010),  

the base of which are marked by distinctive erosion surfaces 

(Fig. 2). Only the uppermost mesocycle (MC-2) is completely 

developed and comprises three parts. Its base marks a regional 

sequence boundary incised a few to over 30 meters into  

the underlying fluvial sequence.   

The lowermost part of mesocycle MC-2 (sub-mesocycle 

MC-2/1) is represented by an amalgamated braided fluvial 

succession representing lowstand or early transgressive depo-

sits. They are stacked, multistory medium- to coarse-grained 

sandstone channel fills with a very restricted portion of near- 

channel or overbank deposits (Fig. 5a; Ajdanlijsky 2010a). 

The channel-fill deposits are dominated by sandy bedforms 

and show a high width/thickness ratio. The fluvial palaeo-

transport pattern is unidirectional (Ajdanlijsky 2005, 2009). 

The palaeosol products are represented mainly as reworked 

channel lag conglomerates. 

Transgressive deposits consist of mud-rich, anastomosing 

isolated fluvial channels in the middle part of the sequence 

(sub-mesocycle MC-2/2), indicating base-level change. In this 

part of the sequence elementary fluvial cycles (EFC) with 

maximum thicknesses (over 11 m) are identified. They are 

formed by channel, near-channel (levee and crevasse splay) 

and overbank deposits (Fig. 4). The channel part, where down-

stream accretion sand bodies dominate over the lateral 

 accretion ones, forms only 25 to 30–35 % of the EFC and  

the crevasse splay beds are separated by relatively thick over-

bank fines. A similar proportion leads to ribbon morphology of 

the channel complex. Here, in overbank intervals, silty beds and 

even pure claystones are present, suitable for palyno lo gical 

sampling. In braided and meandering fluvial settings, silt- and 

claystones are completely absent or relatively rare, documen-

ted as very thin isolated lenses. The palaeosol levels are in 

an initial stage of development, mainly in crevasse splay beds 

and in overbank fines, represented by powder nodules or spots. 

The uppermost 15 to 25 m thick siliciclastic package of  

the Petrohan Terrigenous Group (sub-mesocycle MC-2/3) 

formed in a high-sinuosity (i.e. meandering) fluvial setting, 

documenting highstand deposits. An abrupt reduction of the 

overbank part of the EFC is observed, while maintaining  

the thickness of the channel and levee deposits, which in turn 

leads to a reduction of the EFC more than twice compared to 

the underlying interval (Fig. 4). Multiple erosional surfaces 

and palaeosols are typical for this part. Frequent channel 

 erosion, caused by restricted accommodation space, led to the 

development of calcrete lags in channel and near-channel beds 

(Fig. 5d, f; Ajdanlijsky 2000) or caused synsedimentary slide 

and slump structures (Ajdanlijsky 2001b). The top of the 

Petrohan Terrigenous Group is marked by the next third-order 

sequence boundary (Fig. 6).

The Svidol Formation represents a third-order depositional 

sequence. Its lower part exhibits transgressive deposits (TST) 

with a prominent transgressive surface that closely follows  

the sequence boundary at the top of the Petrohan Terrigenous 

Group, documenting a rapid shift from terrigenous facies to 

a tidally influenced depositional environment (Figs. 6, 7b, 8). 

Lowstand deposits are absent or thin because accommodation 

was lacking. The siliciclastic-dominated lower part of the for-

mation is formed during rising sea level that remobilized sands 

and clays. Accommodation space was created but constantly 

filled by sediment, thus maintaining a tidal-flat or tidally-

domi nated environment. High-frequency sea-level fluctua-

tions were superimposed on this general trend and created 

a cyclic succession that is interpreted to be formed by elemen-

tary sequences (sensu Strasser et al. 1999) or parasequences 

(sensu van Wagoner et al. 1990). In Figure 6, the parasequence 

concept is applied, the limits of the parasequences (PS) corre-

sponding to marine flooding surfaces (FS). The lower part of 

the TST records more coarsening-upward than fining-upward 

parasequences, each passing from tidally to fluvially influen-

ced sedimentation. They are interpreted as corresponding to 

prograding bodies in a deltaic sedimentary environment. As 

a whole, however, the TST is built up of retrogradational para-

sequence sets and only in its uppermost part features of aggra-

dational stacking are present (Fig. 6). 

Upsection, the marked change from siliciclastic to carbo-

nate deposits is interpreted as being related to maximum 

flooding, when reduction of clastics in the water column may 

have allowed the carbonate-producing organisms to proli-

ferate, and carbonate mud accumulated in a shallow-water 

environment. The maximum-flooding interval (MF in PS 12; 

Fig. 8) is marked by a finely laminated, dark-gray, silty marl 

layer. The upper part of the Svidol Formation, featuring dolo-

mitic limestones, is interpreted as highstand deposits (HST), 

although a shallowing-up trend is not visible. The sequence 

boundary is not clearly defined but must be placed below  

the transgressive surface of the following sequence that 

 initiates the deposition of the carbonate-dominated Mogila 

Formation (Fig. 9).

background image

140

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

Fig. 8. Lithological column, depositional setting and stratigraphy of the Svidol Formation in the studied outcrop east of Tserovo village. 

Abbreviations used: SB – third-order sequence boundary; TST – transgressive deposits; HST – highstand deposits; TS – transgressive surface; 

FS – flooding surface; MF – third-order maximum-flooding interval; PS – parasequence; A-D – units according to Tronkov and Ajdanlijsky 

(1998b).

background image

141

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

In the lowermost, carbonate-dominated part of the Opletnya 

Member, the depositional sequences are interpreted following 

the methodology of Strasser et al. (1999). Elementary sequen-

ces commonly start with high-energy facies representing  tidally 

influenced oolitic and/or bioclastic bars formed during trans-

gression, when the previously very shallow, intertidal or supra-

tidal environment was flooded (Fig. 10b). The corres ponding 

transgressive surface is well developed and commonly erodes 

into the underlying sediment (Fig. 9). The increased water 

depth and diminished current energy led to the abandonment 

of the high-energy bars. Low-energy wacke- and mudstones 

then predominate. Intense bioturbation may indicate tempo-

rarily low sedimentation rates. A rapid shift from high-energy 

to low-energy as well as reduced sedimentation rate are 

interpreted to be related to maximum flooding on the scale of 

an elementary sea-level cycle. Also the preservation of gagate 

(Figs. 9, 10g) around maximum-flooding surfaces seems to 

reflect a change in the hydrodynamic conditions. Highstand 

deposits in the elementary cycle are mud-dominated, part of 

them dolomitized, with evaporite pseudomorphs and/or 

tepees. If siliciclastics occur, they are more abundant in  

the late highstand. This suggests that they have been washed 

into the system when relative sea level dropped, contrary to 

the ones in the Svidol Formation that are associated to trans-

gression. The boundaries of the elementary sequences cannot 

always be placed at a discrete bedding surface and rather 

define thin sequence-boundary zones (Strasser et al. 1999). 

Below the following transgressive surface, thin lowstand or 

Fig. 9. Lithological column, depositional setting and stratigraphy of the lowermost part of the shallow-marine interval of the Opletnya Member 

(Mogila Formation) exposed between Opletnya village and Sfrazen hamlet. Fossil macrofauna distribution according to Tronkov (1968). 

Abbreviations used: Te — Tenius Bed; TST — transgressive deposits; HST — highstand deposits; SB — sequence boundary of elementary 

sequence; FS — flooding surface; TS — transgressive surface; MFS — maximum-flooding surface of elementary sequence. Palynological 

sample: SFR-013.

background image

142

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

Fig. 10. Opletnya Member (Mogila Formation): a — elementary sequence with maximum-flooding surface (MFS) and sequence boundary 

(SB), and interval with sigmoidal structures (between arrows), Sfrazen section (hammer for scale); b — top of the elementary sequence over-

lain by grainstones with large, slightly rounded dolomitic intraclasts, Sfrazen section; c — hardground marking the top of an elementary 

sequence, Sfrazen section; d — allochemical trough cross-bedded limestone at the bottom of an elementary sequence, Lakatnik section;  

e — upwards dolomitized package of massive wacke- and mudstones that forms the top of an elementary sequence, Lakatnik section;  

f — sigmoidal structure in the upper part of an elementary sequence, interpreted as the result of small-scale synsedimentary slumping, Lakatnik 

section; g — thin gagate lenses developed in the maximum-flooding zone of the elementary sequence below the Tenius level, Lakatnik section; 

h — Beneckeia tenuis level, Lakatnik section.

background image

143

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

early transgressive deposits may occur. In some cases, how-

ever, a prominent transgressive surface directly overlies the 

sequence boundary, implying very low accommodation. 

A striking feature of highstand deposits in elementary 

sequences is the development of sigmoidal and other types of 

small-scale synsedimentary deformation, as recorded in the 

lower 30 m of the Opletnya Member. In previous studies, they 

have been interpreted as product of periodic palaeoseismic 

activity  (Chatalov  2001a, b),  related  to  the  onset  of  oblique 

rifting in the Palaeo-European shelf (Michalík 1997). However, 

the present study reveals that most of them developed  

during a stage of decreasing accommodation space when  

the weakly lithified mainly wacke- and mudstones became 

unstable because of shallow channel erosion and slumped over 

a very short distance, forming thin lens- and/or wedge-like 

disturbed bodies. Their repeating presence in the same level of 

the elementary sequences (Figs. 9, 10f) indicates a cyclic 

 sedimentary rather than a palaeoseismic control. 

Elementary sequences are composed of several beds, and 

facies reflect different sub-environments in the shallow-sub-

tidal, intertidal, and supratidal realms. Autocyclic processes 

such as shifting mudbanks or tidal channels are common in 

Fig. 11. Palynomorphs of the Opletnya (OPL) and Sfrazen (SFR) sections: a — Stellapollenites thiergartii (Mädler 1964) Clement-Westerhof 

et al. 1974 (sample SFR-IV-008); b — Tsugaepollenites oriens Klaus 1964 (sample OPL-III-007); c — Cristianisporites triangulatus Antonescu 

1969 (sample SFR-IV-009); d — Triadispora crassa Klaus 1964 (sample OPL-II-005); e — Illinites chitonoides Klaus 1964 (sample 

SFR-IV-010); f — Micrhystridium sp. (sample SFR-013).

background image

144

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

such environments (e.g., Pratt & James 1986; Strasser 1991). 

Consequently, the unequivocal definition of an elementary 

sequence that is related to a sea-level cycle (i.e. that is allo-

cyclic) is not always possible. 

Elementary sequences stack into larger sequences, termed 

small-scale sequences that again show characteristic facies 

trends: many contain ooids preferentially in their lower part 

and muddy facies in their upper part (Fig. 9). This is inter-

preted as being related to the long-term transgressive- 

regressive sea-level evolution, over which the higher-frequency 

elementary cycles were superimposed.

Discussion 

To date, the lack of precise age control of the studied 

 interval, documenting the continental–marine transition within 

the Lower to Middle Triassic of NW Bulgaria, hampers its 

chronostratigraphic subdivision. Previously, the chronostrati-

graphic placement of the Petrohan Terrigenous Group, the 

Svidol Formation and the Opletnya Member of the Mogila 

Formation in the area of the Iskar river gorge was based on 

regional geological criteria and data from adjacent areas 

(Ganev et al. 1965, 1970; Assereto et al. 1983; Chatalov 1994, 

1997a, 1999, 2000b, 2005a, b). By analogy with the German 

Triassic deposits, Tronkov (1968, 1983) used the bivalve 

Costatoria costata (Zenker), which in Germany indicates the 

Costatoria costataBeneckeia tenuis zone, as an index fossil 

for the uppermost parts of the Lower Triassic series, and  

the lowermost parts of the Anisian stage were defined by  

the presence of Plagiostoma radiatum (Goldfuss). Accordingly, 

he placed the Lower–Middle Triassic boundary about 12 m 

below the boundary between the Opletnya Member and the 

dolo mites of the upper member of the Mogila Formation 

(Lakatnik Member) (Fig. 2). Some authors (Tronkov & 

Ajdanlijsky  1998  a, b;  Chatalov  &  Stanimirova  2001; 

Ajdanlijsky et al. 2004) accept and use these biostratigraphic 

index fossils, while others place the boundary in the middle 

(Chatalov 2000a) or even lower parts of the Opletnya Member 

(Chatalov 2005a, 2007, 2013, 2018), sometimes quite 

 arbitrarily and without giving biostratigraphic evidence.

On the other hand, independent local studies of different 

researchers within the continental, transitional and marine 

intervals of the Lower–Middle Triassic led to the introduction 

of different terminologies in the literature, using cyclostrati-

graphic or sequence-stratigraphic terms.

Scale, composition, lateral extent and nature of the boun-

ding surfaces of the three mesocycles within the Petrohan 

Terrigenous Group (Ajdanlijsky 2005, 2009) correspond with 

the third-order sequences sensu Miall (2010). However,  

the identification of systems tracts of third-order sequences 

following the non-marine sequence model of Wright & 

Marriot (1993), Shanley & McCabe (1994), and Gibling  

& Bird (1994) is still hampered by the lack of studies on 

a basin scale. 

Based on the here presented palynostratigraphic data, the 

boun dary  between  the  uppermost  mesocycle  МС-2  of  the 

Petrohan Terrigenous Group and the base of the Svidol 

Formation (Iskar Carbonate Group) is dated and correlated 

with a major sequence boundary Ol4 in the upper Olenekian 

(Hardenbol et al. 1998; Ogg 2012) of the Tethyan realm.  

Using this boundary as a time line, the three mesocycles of  

the Petrohan Terrigenous Group (MC-0, MC-1, MC-2; 

 

Fig. 2) may be interpreted as medium-scale sequences within 

Fig. 12. Palynofacies of fluvial deposits: a — Anastomosing river systems (sample OPL-II-005) are characterized by a high variety of phyto-

clast sizes and shapes (op — opaque particles, tr — translucent particles) as well as a high proportion of degraded organic matter (DOM);  

b — meandering river systems (sample OPL-III-006) show a high percentage of small, equidimensional opaque phytoclasts (ope). Scale   

(100 µm) applies to (a) and (b).

background image

145

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

the Olenekian Stage, bounded by the Ol3 and Ol2 sequence 

boundaries. On the other hand, this boundary may also be 

 correlated with the S2/An1 and An1/An2 sequence boundary 

in the late Olenekian of the Peri-Tethys realm and the southern 

Alpine basins (Rüffer & Zühlke 1995; Szulc 2000; Feist-

Burkhardt et al. 2008).

The new palynological data obtained from the Triassic 

 continental–marine transitional interval allow redefinition of 

the age range of both the Petrohan Terrigenous Group and  

the Iskar Carbonate Group (Fig. 2), which is important not 

only for the intrabasinal correlation but also for the application 

of sequence- and cyclostratigraphy for precise stratigraphic 

sub division and interregional correlation. Previously, the Petrohan 

Terrigenous Group and the continental–marine transitional 

succession of the basal Iskar Carbonate Group (Svidol For-

mation and the lowermost Mogila Formation) were placed  

in the Early Triassic (Tronkov 1983; Chatalov 2018; Fig. 2).  

The new biostratigraphic data indicate an Anisian age for the 

uppermost Petrohan Terrigenous Group, the Svidol Formation 

and the lowermost Mogila Formation.  

Refinement of the early Anisian age range of the Triassic 

continental–marine transition interval also serves to interpret 

the palaeogeography of the area studied. Recently published 

data on the benthic foraminifera association of Triassic sec-

tions along an east–west transect of the Western Balkanides 

(Chatalov et al. 2016; Ivanova et al. 2016) provided an Aegean/

Bithynian age for the transitional interval. This confirms 

a  significant E–W surface leveling at the end of the Early 

Triassic in NW Bulgaria as documented in sub-mesocycle  

MC 2/3 (highstand deposits) of the Petrohan Terrigenous 

Group (Ajdanlijsky 2005, 2010b), which led to a meandering 

fluvial sedimentation style. Later, during the continental–

marine transition interval, the relatively flat palaeotopography 

enabled preservation of minor fluctuations in sea level with 

high- frequency transgressions and regressions, generating 

para sequences and elementary sequences with significant 

 lateral extent. Such conditions continued during the initial 

stage of accumulation of the sediments of the Opletnya 

Member. 

The end-Spathian (Early Triassic) surface leveling deter-

mined the development of the boundary between the Petrohan 

Terrigenous Group and the Svidol Formation and the sedimen-

tary record of the early Anisian continental–marine transition. 

The lower part of the Svidol Formation documents the initial 

transgression with alternating tidal and fluvial packages, 

 limited terrigenous supply and gradual development of shal-

low-marine environments recorded in small-scale sequences 

(Figs. 6, 8). This gradual development of shallow-marine 

environments is also reflected in the palaeontological record. 

In the lowermost part of the Mogila Formation, Tronkov (1983) 

reports well-preserved single specimens of Beneckeia tenuis 

(Seebach) in the Tenuis Bed (Fig. 2), situated about 9.5 m 

above the boundary with the Svidol Formation. Later, the same 

author (unpublished data) reports on the presence of Beneckeia 

tenuis in various stratigraphic horizons in the Mogila For-

mation exposed along the Iskar River and to the north, in  

the Vratza region, within the Svidol Formation. Assuming that 

these horizons are synchronous, the difference in their position 

relative to the transitional interval along a south-north transect 

in the eastern part of the Western Balkanides could be inter-

preted as evidence of a northwards marine transgression. 

However, additional biostratigraphic control, e.g. conodont 

data, has to validate the use of the existing sparse information 

for further interpretation.   

The stratigraphic subdivision of the lower Iskar Carbonate 

Group based on lithofacies as well as on the nature and scale 

of the cyclicity has also been discussed in previous studies. 

Čatalov  (1974)  subdivided  the  Svidol  Formation  into  two 

cycles: a lower symmetrical transgressive-regressive cycle, 

and an upper one represented only by its transgressive part. 

Later, Mader & Čatalov (1992) established the informal strati-

graphical interval “Terminal Mudstones” that corresponds to 

the Svidol Formation (see also Chatalov 2006). Based on 

 characteristic parasequence sets (sensu van Wagoner et al. 

1988, 1990), Tronkov & Ajdanlijsky (1998b) subdivided the 

Svidol Formation into four sets (sets A–D; Fig. 2), forming the 

transgressive systems tract (sets A–C) and highstand systems 

tract (set D) of a third-order depositional sequence (sensu 

Miall 2010). Later, El-Ghali et al. (2006) interpreted the trans-

gressive systems tract as generated in tide-dominated deltaic 

settings and the highstand systems tract representing a tidal- 

flat environment. In the lower part of the Opletnya Member, 

Chatalov (1998, 2000a) identified peritidal hemicycles, as 

well as several well correlatable oolitic levels along the Iskar 

river gorge (Chatalov 2005a), some of them partially or com-

pletely matching with the beds introduced by Tronkov (1983). 

The same author (Chatalov 2005b) described two specific 

oolitic levels, one in the lowermost part of the Opletnya 

Member and another one in the uppermost part of the Svidol 

Formation, that he proposes as well correlatable in the study 

area. However, because of the lack of precise biostratigraphic 

dating of the section, the time range of the different orders of 

cyclicity has not been defined yet. Undoubtedly, the identifi-

cation of regionally traceable cycle boundaries based on bio-

stratigraphic age control is a first step towards more accurate 

basin-wide correlation and palaeogeographic interpretation of 

the Triassic successions in NW Bulgaria. However, a high- 

resolution palynostratigraphic zonation scheme is needed to 

further refine the existing stratigraphic framework by integra-

ting sequence stratigraphy and cyclostratigraphy. Ongoing 

research aims at providing high-resolution biostratigraphic 

data to perform regional and interregional correlations.

Conclusions 

The detailed analysis of facies and sedimentary structures of 

Triassic sections in the Iskar river gorge in NW Bulgaria 

reveals that the depositional environments evolved from 

 

anastomosing and meandering river systems (Petrohan 

Terrigenous Group) to alternating fluvial and tidal influences 

(Svidol Formation) and then to peritidal and shallow-marine 

background image

146

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

conditions (Opletnya Member of the Mogila Formation).   

New palyno stratigraphic data from these Triassic continental–

marine transitional deposits allow for a precise stratigraphic 

placement of a prominent sequence boundary between the 

fluvially dominated continental red beds of the Petrohan Terri-

genous Group and the shallow-marine deposits of the Iskar 

Carbonate Group. This boundary may correlate with the major 

sequence boundary Ol4 occurring in the upper Olenekian of 

the Tethyan realm and the S2/An1 sequence boundary of  

the northern Peri-Tethys Basin, thus enabling interregional 

correlation and refined palaeogeographic interpretation of  

the Early to early Middle Triassic in NW Bulgaria. Furthermore, 

the pronounced cyclic character of the transitional sedimen-

tary succession, recorded at different hierarchical scales, and 

its biostratigraphic age control enable pinpointing the first 

marine pulse during the early Anisian and reconstructing  

the evolution of depositional environments across the Early/

Middle Triassic boundary.

Acknowledgements: We would like to express our thanks to 

Dimitar Tronkov for his useful comments and remarks on 

some regional geological and biostratigraphical aspects, and 

to Ivan Petrov for his enthusiastic technical support during  

the field campaign in 2016. The reviews of János Haas 

 (Budapest), Carmen Heunisch (Hanover), and Joachim Szulc 

(Cracow) greatly improved the manuscript.

References 

Ajdanlijsky G. 2000: Paleopedogenic occurrences in the Petrohan 

Terrigenous Group of the Berkovitza Unit, NW Bulgaria. In: GSB 

Geological Conference, 11–13 October 2000, Sofia, 315–317.

Ajdanlijsky G. 2001a: Facial architecture of the Petrohan Terrigenous 

Group (Lower Triassic red bed succession) in part of NW 

 Bulgaria. In: Abstract Volume, 21

st

 IAS Meeting of Sedimento-

logists, Davos, 157. 

Ajdanlijsky G. 2001b: Synsedimentary deformations in the transi-

tional interval between the Petrohan Terrigenous Group and 

 Svidol Formation near Sfrazen hamlet, Western Bulgaria. Ann. 

Univ. Min. Geol. “St. Iv. Rilski”, 43–44, 1, Geol., 27–30. 

Ajdanlijsky G. 2002: Cyclicities in the Svidol Formation near Cerovo 

village, NW Bulgaria. Ann. Univ. Min. Geol. “St. Iv. Rilski”, 45, 

1, Geol., 7–11. 

Ajdanlijsky G. 2005: Facies, sedimentary environments and strati-

graphy of the Petrohan Terrigenous Group in part of Western Stara 

Planina Mountain. unpubl. PhD thesis, University of Mining and 

Geology „St. Ivan Rilski”, Sofia, 1–198 (in Bulgarian). 

Ajdanlijsky G. 2009: Palaeotransport directions in part of Stara Planina 

Mountain area during Petrohan Terrigenous Group forming. 

Ann. Univ. Min. Geol. “St. Iv. Rilski”,  52, 1, Geol., 7–12 (in  

Bulgarian). 

Ajdanlijsky G. 2010a: Cyclostratigraphical subdivision of the 

 Petrohan Terrigenous Group in part of Western Stara Planina 

Mountain. Ann. Univ. Min. Geol. “St. Iv. Rilski”, 53, 1, Geol., 

19–26 (in Bulgarian). 

Ajdanlijsky G. 2010b: Stages in evolution of the sedimentary paleo-

environments of the Lower Triassic continental successions in 

part of Western Stara Planina Mountain. Ann. Univ. Min. Geol. 

“St. Iv. Rilski”, 53, 1, Geol., 7–12 (in Bulgarian).

Ajdanlijsky G. 2012: Lithofacial characteristics of the Petrohan 

 Terrigenous Group in part of Western Stara Planina Mountain. II. 

Psammite-dominated fluvial lithofacies. Ann. Univ. Min. Geol. 

“St. Iv. Rilski”, 55, 1, Geol., 5–10 (in Bulgarian).

Ajdanlijsky G. 2013a: Lithofacial characteristics of the Petrohan 

 Terrigenous Group in part of Western Stara Planina Mountain. 

IV. Silty and pelite-dominated lithofacies. Ann. Univ. Min. Geol. 

“St. Iv. Rilski”, 56, 1, Geol., 7–12 (in Bulgarian).

Ajdanlijsky G. 2013b: Lithofacial characteristics of the Petrohan 

 Terrigenous Group in part of Western Stara Planina Mountain.  

V. Specific lithofacies. Ann. Univ. Min. Geol. “St. Iv. Rilski”, 56, 

1, Geol., 13–18 (in Bulgarian). 

Ajdanlijsky G. 2014: Characteristics of the architectural-element 

units in the sections of the Petrohan Terrigenous Group. I. 

 Channel  complexes.  Ann. Univ. Min. Geol. “St. Iv. Rilski”, 57, 1, 

Geol., 19–24 (in Bulgarian). 

Ajdanlijsky G. 2015a: Characteristics of the architectural-element 

units in the sections of the Petrohan Terrigenous Group. 

 

II. Psammite-dominated units. Ann. Univ. Min. Geol. “St. Iv. 

 Rilski”, 58, 1, Geol., 9–14 (in Bulgarian).

Ajdanlijsky G. 2015b: Characteristics of the architectural-element 

units in the sections of the Petrohan Terrigenous Group. 

 

III. Overbank units. Ann. Univ. Min. Geol. “St. Iv. Rilski”, 58, 1, 

Geol., 15–20 (in Bulgarian). 

Ajdanlijsky G., Tronkov D. & Strasser A. 2004: Cyclicity in the 

 Lower Triassic Series between Opletnya railway station and 

Sfrazen hamlet. In: Sinnyovsky D. (Ed.): Geological routes in the 

northern part of the Iskar River Gorge. V. Nedkov Publ., 90–101. 

Assereto R. & Čatalov G. 1983: The Mogila Formation (Lower–Middle 

Triassic) and lithostratigraphical levels in the Triassic System of 

NW Bulgaria. Geologica Balc. 13, 6, 29–36 (in Russian).

Assereto R., Tronkov D. & Čatalov G. 1983: The Mogila Formation 

(Lower–Middle Triassic) in Western Bulgaria. Geologica Balc. 

13, 6, 25–27 (in Bulgarian).

Čatalov G. 1974: Facies types in the Svidol Formation (Lower Triassic) 

of the Teteven anticlinorium. C. R. Acad. bulg. Sci. 27, 2,  

239–242 (in Russian).

Čatalov  G.  1975:  Facies  analysis  of  the  Svidol  Formation  (Lower 

 Triassic) of the Teteven anticlinorium (Central Fore-Balkan). 

Geol. Balc. 5, 67–86. 

Čatalov  G.  1988:  Ladinian–Carnian  terrigenous  invasion  and  the 

 bifurcation of the Triassic carbonate platform in Bulgaria. C. R. 

Acad. bulg. Sci. 41, 11, 99–102. 

Catuneanu O., Galloway W., Kendall C., Miall A., Posamentier H., 

Strasser A. & Tucker M. 2011: Sequence stratigraphy: metho  do-

logy and nomenclature. Newsletter on Stratigraphy 44, 3, 

 173–245. 

Chatalov A. 1994: Gryptalgal laminated dolomicrites and related 

flat-pebble conglomerates from the Mogila Formation (Lower–

Middle Triassic) in the Iskar valley, Northwestern Bulgaria. Ann. 

Sofia Univ. “St. Kl. Ohridski”, Geol.–Geography Fac., Geol. 86, 

77–94. 

Chatalov A. 1997a: Bimineralic ooids and microstromatolites in the 

Mogila Formation (Spathian–Anisian), northwestern Bulgaria. 

In: Abstract Book, 18

th

 IAS Regional European Meeting, Heidel-

berg, 108–111. 

Chatalov A. 1997b: Sedimentology of the carbonate rocks from the 

Mogila Formation in Western Balkanides. PhD Thesis Abstract, 

Sofia University “St. Kl. Ohridski”, 1–46 (in Bulgarian).

Chatalov A. 1998: Arid carbonate tidal flat sedimentation imprinted 

in the Mogila Formation (Spathian–Anisian) from the Western 

Balkanides. Hall. Jb. Geowiss, Reihe B, Beiheft 5, 32–33. 

Chatalov A. 1999: Mimetic dolomitization of allochems from the 

 Svidol Formation (Spathian) in the Iskar River Valley, North-

western Bulgaria. C. R. Acad. bulg. Sci. 52, 11/12, 63–66. 

background image

147

THE EARLY TO MIDDLE TRIASSIC CONTINENTAL–MARINE TRANSITION OF NW BULGARIA

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

Chatalov A. 2000a: The Mogila Formation (Spathian–Anisian) in the 

Western Balkanides of Bulgaria — ancient counterpart of an arid 

peritidal complex. Zbl. Geol. Paläont., Teil I, 9/10, 1123–1135.

Chatalov A. 2000b: Authigenic fluorite from dolomudstones of the 

Svidol Formation (Spathian) in northwestern Bulgaria. C. R. 

Acad. bulg. Sci. 53, 12, 65–68. 

Chatalov A. 2001a: Signature of paleoseismic activity in the Triassic 

carbonate rocks from Northwestern Bulgaria. In: Abstract Vol-

ume, Sediment 2001, Jena, 29.

Chatalov A. 2001b: Deformational structures in the Iskar Carbonate 

group (Lower–Upper Triassic) from the Western Balkanides. 

Geol. Balc. 30, 3/4, 43–57.

Chatalov G. 2002: Inner ramp carbonate shoals from the Middle 

 Triassic in Northwestern Bulgaria. Rev. Bulg. Geol. Society 63, 

1/3, 3–20 (in Bulgarian).

Chatalov A. 2005a: Monomineralic carbonate ooid types in the  

 Triassic sediments from Northwestern Bulgaria. Geol. Balc. 35, 

1/2, 63–91. 

Chatalov A. 2005b: Carbonate-ferriferous ooids from the base of the 

Lower–Middle Triassic peritidal sequence in the Iskar River 

Gorge, Northwestern Bulgaria. C. R. Acad. bulg. Sci., 58, 11, 

1299–1306. 

Chatalov A. 2006: Calcrete paleosols in the Upper Buntsandstein 

from the Iskar River Gorge, northwestern Bulgaria. N. Jb. Geol. 

Paläont. Abh. 239, 1, 1–35. 

Chatalov A. 2007: Physicochemical precipitation of fine-grained 

 carbonate in seawater – an example of Triassic marine micrites 

from the Western Balkanides, Bulgaria. N. Jb. Geol. Paläont. 

Abh. 243, 2, 149–167. 

Chatalov G. 2011: New data on the Triassic carbonate ramp from 

Northwestern Bulgaria. In: Nat. conf. “Geosciences 2011”. Bulg. 

Geol. Soc., Abstract Vol., 83–84. 

Chatalov A. 2013: A Triassic homoclinal ramp from the Western 

Tethyan realm, Western Balkanides, Bulgaria: Integrated insight 

with special emphasis on the Anisian outer to inner ramp facies 

transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 34–58. 

Chatalov A. 2018: Global, regional and local controls on the develop-

ment of a Triassic carbonate ramp system, Western Balkanides, 

Bulgaria. Geol. Mag. 155, 641–673.

Chatalov A. & Stanimirova Ts. 2001: Diagenesis of Spathian–Anisian 

dolomites from the Western Balkanides, Bulgaria. N. Jb. Geol. 

Paläont. Mh. 5, 301–320.

Chatalov A., Stefanov Y. & Vetseva M. 2015: The Röt-type facies of 

the Western Balkanides revisited: Depositional environments 

and regional correlation. In: Abstract Volume, 31

st

 IAS Meeting 

of Sedimentologists, Cracow, 115. 

Chatalov A., Stefanov Y. & Ivanova D. 2016: New data on the stra-

tigraphy and sedimentology of the Triassic carbonate rocks in 

the Belotintsi strip, Northwestern Bulgaria. Review of the 

 Bulgarian Geological Society 77, 1, 27–49 (in Bulgarian).

Chemberski G., Vaptsarova A. & Monahov I. 1974: Lithostratigraphy 

of the Triassic variegated terrigenous-carbonate and carbonate 

sediments studied with deep drilling in Northwestern and  Central 

North Bulgaria. Ann. DSO Geol. Res. 20, 327–341 (in  Bulgarian).

El-Ghali M.A.K., Mansurbeg H., Morad S., Al-Aasm I. & Ajdanlijsky G. 

2006: Distribution of diagenetic alterations in fluvial and paralic 

deposits within sequence stratigraphic framework: Evidence 

from the Petrohan Terrigenous Group and Svidol Formation, 

Lower Triassic, NW Bulgaria. Sediment. Geol. 190, 299–321. 

El-Ghali M.A.K., Morad S., Mansurbeg H., Caja M.A., Ajdanlijsky G., 

Neil O., Al-Aasm I. & Sirat M. 2009: Distribution of diagenetic 

alterations within depositional facies and sequence stratigraphic 

framework of fluvial sandstones: Evidence from the Petrohan 

Terrigenous Group, Lower Triassic, NW Bulgaria. Mar. Petrol. 

Geol. 26, 1212–1227. 

Feist-Burkhardt S., Götz A.E. & Szulc J. (coord.), Borkhataria R., 

Geluk M., Haas J., Hornung J., Jordan P., Kempf O., Michalík J., 

Nawrocki J., Reinhardt L., Ricken W., Röhling G.-H., Rüffer T., 

Török Á. & Zühlke R. 2008: Triassic. In: McCann T. (Ed.):  

The Geology of Central Europe. Geological Society,  London,  

vol. 2, 749–821.

Ganev M. 1974: Stand der Kenntnisse über die Stratigraphie der Trias 

Bulgariens. In: Die Stratigraphie der alpin-mediterranen Trias. 

Symposium, Wien, Bd. 2, 93–96. 

Ganev M., Stefanov S. & Čatalov G. 1965: Basis of stratigraphy and 

petrography of the Triassic in Teteven Anticlinorium. Trav. Geol. 

Bulg., ser. stratigr. tectonique 6, 5–45.

Ganev M., Stefanov S. & Čatalov G. 1970: The boundary between the 

Lower and Middle Triassic in the Teteven area (Central Fore 

Balkan). Bull. Geol. Inst. Bulg. Acad. Sci, ser. stratigr. lithol. 19, 

5–13 (in Bulgarian).

Gibling M. & Bird D. 1994: Late Carboniferous cyclothems and allu-

vial paleovalleys in the Sydney Basin, Nova Scotia. Geol. Soc. 

Am. Bull. 106, 105–117.

Hardenbol J., Thierry J., Farley M., Jacquin T., de Graciansky P.-C. & 

Vail P. 1998: Mesozoic and Cenozoic sequence chronostrati-

graphic framework of European basins. SEPM Spec. Publ. 60, 

1–13.

Ivanov Zh. 1998: Tectonics of Bulgaria. Unpublished Habil. Thesis. 

Sofia University “St. Kliment Ohridski”, 1–634 (in Bulgarian). 

Ivanova D., Chatalov A. & Stefanov Y. 2016: Middle Triassic 

 (Anisian) benthic foraminifera in carbonate rocks from the 

northern part of the Western Balkanides, NW Bulgaria. In:  

XVII Paleontol.-stratigr. Workshop Ayvalik (Cunda), Balikesir, 

93–94.

Mader  D.  &  Čatalov  G.  1992:  Comparative  palaeoenvironmental 

modelling of Buntsandstein braided river evolution in Bulgaria 

and Middle Europe. Geol. Balc. 22, 6, 21–61. 

Miall A.D. 1977: A review of the braided river depositional environ-

ment. Earth Sci. Rev. 13, 1–62. 

Miall A.D. 1978: Lithofacies types and vertical profile models in 

braided rivers deposits: a summary. In: Miall A.D. (Ed.):  

Fluvial Sedimentology. Canad. Soc. Petrol. Geol., Memoir 5, 

597–604. 

Miall A. 1997: The Geology of Stratigraphic Sequences. Springer

Berlin-Heidelberg, 1–433. 

Miall A. 2006: The Geology of Fluvial Deposits. Sedimentary Facies, 

Basin Analysis and Petroleum Geology. Springer, Berlin- 

Heidelberg, 1–582.

Miall A. 2010: The Geology of Stratigraphic Sequences. Springer

Berlin-Heidelberg, 1–522.

Nachev I. 1980: Sedimentary geocomplexes in Bulgaria. Nauka 

i   Izkustvo, Sofia, 1–203.

Michalík J. 1997: Tsunamites in a storm-dominated Anisian carbo-

nate ramp (Vysoká Formation, Malé Karpaty Mts., Western 

 Carpathians).  Geol. Carpath. 48, 4, 221–229.

Ogg J. 2012: Triassic. In: Gradstein F., Ogg J., Schmitz M. & Ogg G. 

(Eds.): The geological time scale 2012. Elsevier, Amsterdam, 

681–730. 

Philip J., Masse J. & Camoin G. 1996: Tethyan carbonate platforms. 

In: Nairn, A.E.M., Ricou, L.-E., Vrielynck, B., Dercourt, J. 

(Eds.): The Ocean Basins and Margins. Vol. 8. The Tethys 

Ocean. Plenum Press, New York-London, 239–266. 

Pratt B. & James N. 1986: The St. George Group (Lower Ordovician) 

of western Newfoundland: tidal flat island model for carbo-

nate sedimentation in shallow epeiric seas. Sedimentology 33, 

313–343. 

Rashkov R. 1962: About Upper Paleozoic and Triassic relationships 

in Iskar River Gorge between Lakatnik railway station and Igna-

titza village. Mining and metallurgy 17, 8, 22–27 (in Bulgarian).

background image

148

AJDANLIJSKY, GÖTZ and STRASSER

GEOLOGICA CARPATHICA

, 2018, 69, 2, 129–148

Rüffer T. & Zühlke R. 1995: Sequence stratigraphy and sea-level 

changes in the Early to Middle Triassic of the Alps: a global 

comparison. In: Haq B.U. (Ed.): Sequence Stratigraphy and 

Depositional Response to Eustatic, Tectonic and Climatic 

 Forcing.  Kluwer, Dordrecht, 161–207.

Schlager W. 2004: Fractal nature of stratigraphic sequences. Geology 

32, 185–188.  

Schlager W. 2010: Ordered hierarchy versus scale invariance in 

 sequence  stratigraphy.  Int. J. Earth Sci. (Geol. Rundsch.) 99, 

139–151.

Shanley K. & McCabe P. 1994: Perspective on the sequence strati-

graphy of continental strata. AAPG Bull. 78, 544–568.

Stefanov Y. & Chatalov A. 2015: First evidence for marginal-marine 

sedimentation from the Petrohan Terrigenous Group (Lower 

 Triassic) in the Iskar River Gorge. In: Nat. Conf. “Geosciences 

2015”. Bulg. Geol. Soc., Sofia, 119–120. 

Strasser A. 1991: Lagoonal-peritidal sequences in carbonate environ-

ments: autocyclic and allocyclic processes. In: Einsele G., 

 Ricken W. & Seilacher A. (Eds.): Cycles and Events in Strati-

graphy. Springer, Berlin-Heidelberg, 709–721. 

Strasser A., Pittet B., Hillgärtner H. & Pasquier J.-B. 1999: Deposi-

tional sequences in shallow carbonate-dominated sedimentary 

systems: concepts for a high-resolution analysis. Sediment. 

Geol. 128, 201–221.

Szulc J. 2000: Middle Triassic evolution of the northern Peri-Tethys 

area as influenced by early opening of the Tethys Ocean. Ann. 

Soc. Geol. Polon. 70, 1–48.

Tronkov D. 1960: About the Triassic stratigraphy in Iskar River 

Gorge. Ann. Geol. res. Direct. 10, 131–153. 

Tronkov D. 1963: Character of the Early Cimmerian structural stage, 

type and time of Early Cimmerian tectonic movements in NW 

Bulgaria. Trav. sur geol. Bulg., stratigr. tect. ser. 5, 171–196 (in 

Bulgarian with French abstract). 

Tronkov D. 1968: The Lower–Middle Triassic boundary in Bulgaria. 

Comm. geol. inst. Bulg. Acad. Sci., paleont. ser. 17, 113–130 (in 

Bulgarian).

Tronkov D. 1976: Triassische Ammoniten-Sukzessionen im Westli-

chen Balkangebirge in Bulgarien. C. R. Acad. bulg. sci. 29, 9, 

1325–1328. 

Tronkov D. 1981: Stratigraphy of the Triassic System in part of the 

Western Srednogorie (West Bulgaria). Geol. Balc. 11, 1, 3–20   

(in Russian).

Tronkov D. 1983: The Mogila Formation (Lower–Middle Triassic) in 

Iskar River Gorge and Vratza Mountain (Western Stara Planina 

Mountain). Geol. Balc. 13, 6, 37–52 (in Russian).

Tronkov D. 1993: Triassic carbonate buildups in West Bulgaria. C. R. 

Acad. bulg. Sci. 46, 11, 77–80. 

Tronkov D. 1995: Triassic System. In: Haydutov I. (Ed.): Explanation 

notes to the geological map of Bulgaria on scale 1:100,000, 

Berkovitca map sheet. Avers, Sofia, 44–59 (in Bulgarian).

Tronkov D. & Ajdanlijsky G. 1998a: The Profile of the Petrohan 

 Terrigenous Group (PTG - Lower Triassic, Buntsandstein facial 

type) between Opletnja and Sfrazen, NW Bulgaria. Hall. Jb. 

 Geowiss. Reihe B, Beiheft 5, 175–176. 

Tronkov D. & Ajdanlijsky G. 1998b: Sequence Stratigraphy of the 

transition from continental to marine lower Triassic Sediments 

in Western Balkan (NW Bulgaria). In: Abstract Volume, 16

th

 

Congress of the Carpathian Balkan Geol. Assoc., Vienna, 

Austria, 607. 

Tronkov D., Encheva M. & Trifonova E. 1965: Stratigraphy of the 

Triassic system in NW Bulgaria. Comm. geol. inst. Bulg. Acad. 

Sci., paleont. stratigr. lithol. ser. 14, 261–292 (in Bulgarian). 

van Wagoner J., Posamentier H., Mitchum R., Vail P., Sarg J.,  

Loutit T. & Hardenbol J. 1988: An overview of sequence strati-

graphy and key definitions. In: Wilgus C., Hastings B., Kendall 

C., Posamentier H., Ross C. & van Wagoner J. (Eds.): Sea  

Level Changes — An Integrated Approach. SEPM Spec. Publ. 

42, 39–45.

van Wagoner J., Mitchum R., Campion K. & Rahmanian V. 1990: 

Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and 

Outcrops. AAPG Methods in Exploration 7, 1–55.

Wright V. & Marriott S. 1993: The sequence stratigraphy of fluvial 

depositional systems: the role of floodplain sedimentary storage. 

Sediment. Geol. 86, 203–210. 

Zagorchev I. & Budurov K. 2009: Triassic geology. In: Zagorchev I., 

Dabovski Ch. & Nikolov T. (Eds.): Geology of Bulgaria, vol. 2, 

Mesozoic geology, Acad. Publ. “Prof. Marin Drinov”, Sofia, 

39–131.