background image

GEOLOGICA CARPATHICA

, APRIL 2018, 69, 2, 117–127

doi: 10.1515/geoca-2018-0007

www.geologicacarpathica.com

Carbon cycle history through the Middle Jurassic 

(Aalenian – Bathonian) of the Mecsek Mountains,  

Southern Hungary

GREGORY D. PRICE 

1, 

, ISTVÁN FŐZY 

2

 and ANDRÁS GALÁCZ 

3

1 

School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom;  

 g.price@plymouth.ac.uk

2 

Department of Palaeontology and Geology, Hungarian Natural History Museum, POB 137, Budapest, H-1431 Hungary; fozy.istvan@nhmus.hu

3 

Department of Palaeontology,

 

Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, H-1117 Hungary; galacz@ludens.elte.hu

(Manuscript received June 9, 2017; accepted in revised form January 16, 2018)

Abstract: A carbonate carbon isotope curve from the Aalenian–Bathonian interval is presented from the Óbánya valley, 

of the Mecsek Mountains, Hungary. This interval is certainly less well constrained and studied than other Jurassic time 

slices. The Óbánya valley lies in the eastern part of the Mecsek Mountains, between Óbánya and Kisújbánya and provides 

exposures of an Aalenian to Lower Cretaceous sequence. It is not strongly affected by tectonics, as compared to other 

sections of eastern Mecsek of the same age. In parts, a rich fossil assemblage has been collected, with Bathonian 

 ammonites being especially valuable at this locality. The pelagic Middle Jurassic is represented by the Komló Calcareous 

Marl Formation and thin-bedded limestones of the Óbánya Limestone Formation. These are overlain by Upper Jurassic 

siliceous limestones and radiolarites of the Fonyászó Limestone Formation. Our new data indicate a series of carbon 

isotope anomalies within the late Aalenian and early-middle Bajocian. In particular, analysis of the Komló Calcareous 

Marl Formation reveals a negative carbon isotope excursion followed by positive values that occurs near the base of the 

section (across the Aalenian–Bajocian boundary). The origin of this carbon-isotope anomaly is interpreted to lie in 

 significant changes to carbon fluxes potentially stemming from reduced run off, lowering the fertility of surface waters 

which in turn leads to lessened primary production and a negative δ

13

C shift. These data are comparable with carbonate 

carbon isotope records from other Tethyan margin sediments. Our integrated biostratigraphy and carbon isotope 

 stratigraphy enable us to improve stratigraphic correlation and age determination of the examined strata. Therefore, this 

study of the Komló Calcareous Marl Formation confirms that the existing carbon isotope curves serve as a global  standard 

for Aalenian–Bathonian δ

13

C variation.

Keywords: Carbon, isotope stratigraphy, Aalenian, Bajocian, Óbánya, Mecsek, Hungary.

Introduction

The δ

13

C curve of the Aalenian–Kimmeridgian interval shows 

a series of major Jurassic isotope events within the Aalenian, 

early-middle Bajocian, Callovian and middle Oxfordian 

(Hoffman et al. 1991; Bill et al. 1995; Jenkyns 1996; Weissert 

& Mohr 1996; Bartolini et al. 1999; Rey & Delgado 2002; 

O’Dogherty et al. 2006; Sandoval et al. 2008; Nunn et al. 

2009; Price et al. 2016) recorded in both southern and northern 

Tethyan margin sediments. The potential of these δ

13

C records 

for regional and global correlation of ancient marine sedi-

ments is evident. Some of these excursions (e.g., during the 

Oxfordian) are intrinsically coupled with climatic changes and 

have been extensively studied in many parts of the world (e.g., 

Bill et al. 1995; Jenkyns 1996). With respect to the Middle 

Jurassic interval (e.g., the Aalenian–Bathonian) it is the carbon 

isotope curves of Bartolini et al. (1999) and Sandoval et al. 

(2008) that often serve as a global standard (e.g., Ogg & 

 Hinnov 2012). Major carbon-cycle perturbations in the  Middle 

Jurassic are also recognised in terrestrial organic matter (fossil 

wood) (Hesselbo et al. 2003). Although the excursions of  

the Middle Jurassic have received only modest attention, they 

occur on more than one continent and may thus serve for 

 global correlation of strata (e.g., Wetzel et al. 2013; Hönig & 

John 2015; Dzyuba et al. 2017). The goal of this study is to 

examine Aalenian–Bathonian carbon isotope stratigraphy from 

Hungary for comparison. A further aim of this study is to 

 examine linkages between the δ

13

C record of past global biotic 

and climatic change.

Geological setting

The Lower Jurassic of the Mecsek Mountains of Hungary 

(Fig. 1) is characterized by coal bearing continental and 

 shallow marine siliciclastic sediments (Haas et al. 1999). 

From Late Sinemurian times onwards, deposition consisted of 

deeper marine hemipelagic facies with mixed siliciclastic– 

carbonate lithologies (the Hosszúhetény and Komló Calca-

reous Marl formations, Raucsik & Merényi 2000). The site of 

this hemipelagic marly and calcareous marly sedimentation 

was most probably on or distally beyond the northern outer 

background image

118

PRICE, FŐZY and GALÁCZ

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

shelf of the Tethys Ocean (Fig. 2), whilst shallower conditions 

occurred towards the western margins (Enay et al. 1993). 

Although the precise age of the Komló Calcareous Marl 

Formation is uncertain, an Aalenian to Bajocian age is indi-

cated (Forgó et al. 1966, Fig. 3). Overlying the Komló 

Calcareous Marl Formation, in the Mecsek, is the pelagic 

Bathonian–Callovian Óbánya Limestone Formation  consisting 

of thin-bedded limestones and marls (Galácz 1994). The Upper 

Jurassic is represented by a siliceous limestone and radiolarite 

(the Fonyászó Limestone) as well as thin-bedded limestone 

(the Kisújbánya and Márévár limestones). 

The Óbánya valley (Fig. 1) lies in the eastern part of the 

Mecsek Mountains, between Óbánya and Kisújbánya and 

 provides exposures of the Komló Calcareous Marl Formation. 

The succession is not strongly affected by tectonics, as com-

pared to other sections of eastern Mecsek of the same age 

(Velledits et al. 1986). The exposed Aalenian and Bajocian 

sediments (the Komló Calcareous Marl Formation) can be 

seen as alternating limestone beds (0.2–0.5 m) and laminated 

beds consisting of dark grey, spotted, bituminous, micaceous 

marls (Fig. 4). The laminated beds become harder upwards 

with increasing carbonate content (from 36 to 55 %; Velledits 

et al. 1986). Aside from some bivalve and plant imprints 

within the lower part of the succession, an ammonite (Ludwigia 

sp.) has been found indicating an Aalenian age (Velledits et al. 

1986). The total thickness of the Aalenian has been estimated 

by Velledits et al. (1986) to be ~75 m although only the top 

~25 m was exposed. Fossils from the middle part of the 

 succession include the ammonites Dorsetensia  (at  ~105 m) 

and Stephanoceras (indicative of the Humphriesianum Zone), 

bivalve moulds together with carbonized plant fragments 

(Velledits et al. 1986). Age diagnostic ammonites (e.g., Lepto­

sphinctesAdabofoloceras of the Niortense Zone) are recorded 

within the upper part of the Komló Calcareous Marl (Velledits 

et al. 1986). The total thickness of sediments of Bajocian  

age is ~170 m. The Komló Calcareous Marl is overlain by 

a red calcareous marl and nodular limestone (Fig. 4) rich  

in age diagnostic ammonites (e.g., Parkinsonia, Morphoceras 

and Procerites) and pelagic microfossils (Galácz 1994).  

This 20 m thick formation (the Óbánya Limestone For mation) 

is of Bathonian age (Galácz 1994) and was 

deposited in a pelagic environment. During this 

time major flooding events also occur elsewhere 

in northern Europe, with a peak trans gression  

at the Bajocian–Bathonian boundary (Hallam 

2001). 

Materials and methods

For this study, 273 bulk carbonate samples were 

derived from the outcrop of the Óbánya  valley 

(from 46°13’17” N, 18°24’15” E to 46°12’47” N, 

18°23’20” E). Samples were taken from both 

marl and limestone lithologies (Fig. 5). The ave-

rage spacing of samples was ~0.3 m. Subsamples 

(250 to 400 micrograms) avoiding macrofossils 

and sparry calcite veins, were then analysed for 

stable isotopes using a GV Instruments Isoprime 

Mass Spectrometer with a Gilson Multiflow 

 carbonate auto-sampler at Plymouth University. 

Isotopic results were calibrated against the 

 NBS-19 international standard. Reproducibility 

for both δ

18

O and δ

13

C was better than ± 0.1 ‰, 

based upon duplicate sample analyses.

Results

The isotope results are presented in Figures 6 

and 7. As isotopic analyses were undertaken from 

both marl and limestone lithologies a comparison 

of the isotopic composition of the two lithologies 

can  be  made.  For  the  limestone  (n = 181)  the 

mean δ

13

C value is 1.0 ‰ and −3.5 ‰ for δ

18

O. 

For the marl (n = 92) the mean δ

13

C value is less 

Fig. 1. A — Map showing the location of the Óbánya valley within Hungary.  

Grey inset box shows location of the Mecsek Mountains. B — Distribution  

of Mesozoic volcanic and sedimentary units within the Mecsek Mountains from 

Galácz (1994).

background image

119

MIDDLE JURASSIC CARBON CYCLE HISTORY OF THE MECSEK MOUNTAINS, SOUTHERN HUNGARY

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

Fig. 2. Middle Jurassic palaeogeographic map of the Western Tethyan realm (modified from Enay et al. 1993). Localities: 1 — Óbánya;  

2 — Wadi Naqab, United Arab Emirates; 3 — Southern Iberia; 4 — Umbria-Marche Basin (Central Italy); 5 — Cabo Mondego, Portugal;  

6 — Chaudon Norante, SE France.

Fig. 3. Lithostratigraphical  scheme  for  the  Jurassic  deposits  of  the  Mecsek  Zone  (Hungary)  modified  from  Némedi  Varga  (1998)  and  

Főzy (2012). 

background image

120

PRICE, FŐZY and GALÁCZ

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

positive, 0.4 ‰ and −4.3 ‰ for δ

18

O. The greater number of 

limestone vs. marl samples analysed reflects the generally 

 better exposure of the limestones and poorer quality of the 

marl outcrops. It is for this reason that the carbon isotope 

curve (Fig. 7) is plotted though the limestone data only. Using 

Student’s T-Test the isotopic difference between limestones 

and marls is also significant (at p < 0.05). These data are also 

consistent with stable isotope data from Raucsik (1997)   

who also isotopically analysed both limestone and marlstone 

carbonate samples from the Komló Calcareous Marl Formation 

(Fig. 6). 

With respect to the carbon isotope stratigraphy (derived 

from the limestone data) a number of features of the curve  

are of particular note. Firstly, there is a negative excursion 

 followed by positive values occurring near the base of the 

 section (across the Aalenian–Bajocian boundary). The carbon- 

isotope values then become more positive, reaching the most 

positive values seen (at about 100 m height in Fig. 7). Although 

showing a good deal of scatter, values remain fairly positive, 

until towards the top of the Komló Calcareous Marl Formation 

where there is a drop in 

13

C values (at 166 m). Carbon isotope 

values then increase again, where they reach a maximum  

(of  2.4 ‰),  within  the  Bathonian.  The  carbon  isotope  data 

derived from the marls also follow this trend. 

The wide range of oxygen isotopes and the low values, 

 possibly points to a diagenetic overprint. Although a tempera-

ture control on oxygen isotopes cannot be excluded (see below), 

deep burial diagenesis and precipitation of calcite cement, 

commonly results in depleted in δ

18

O values (Hudson 1977; 

Weissert 1989: Hönig & John 2015). The preservation of δ

13

values or trends during carbonate diagenesis is, however, quite 

typical, and is likely due to the buffering effect of carbonate 

carbon on the diagenetic system, as this is the largest carbon 

reservoir (e.g., Scholle & Arthur 1980; Weissert 1989). Hence, 

with respect to the oxygen isotope data, a diagenetic overprint 

affecting the samples analysed and results is likely. Although 

showing some scatter, oxygen isotope values remain fairly 

negative at the base of the section (the Aalenian) and become 

increasingly more positive upsection. The most positive 

 oxygen isotope values are identified in the Bathonian (the Óbánya 

Limestone Formation). 

Discussion

Limestone–marl alternations

The conspicuous limestone–marl alternations of the Komló 

Calcareous Marl Formation are likely to be caused by temporal 

variations in environmental parameters. It is generally 

accepted that the cause of the cyclical alternation of limestone 

beds and marls represents a direct response to changes in envi-

ronmental conditions, such as productivity cycles (e.g., 

Wendler et al. 2002); dilution, i.e. changes in the influx of 

 

terrigenous non-carbonate material (e.g., Raucsik 1997; 

Weedon & Jenkyns 1999) or changes in input of carbonate 

mud from adjacent shallow-water carbonate factories (e.g., 

Pittet & Strasser 1998). Based on stable isotope data, Raucsik 

(1997) suggested that the higher δ

13

C of the limestones was 

associated with higher productivity, whilst terrigenous dilution 

may have formed the limestone-marlstone alternation. Given 

that the data presented here are consistent with the data of 

Raucsik (1997), in that the limestones typically record more 

positive  δ

13

C values (Fig. 6), the same conclusion could be 

reached. A similar pattern could also be related to relatively 

short term changes in the export of neritic carbonate mud,  

as the δ

13

C of neritic muds, derived from relatively shallow 

waters, tend to show more positive values than carbonate ooze 

produced by planktonic organisms (e.g., Swart & Eberli 2005). 

Indeed, Bajocian shallow-water carbonate factories on the 

southern Tethyan shelf (Leinfelder et al. 2002) are likely to 

show relatively positive carbon isotope values, although are 

somewhat distal to the study site of hemipelagic sedimen-

tation on northern outer shelf of the Tethys Ocean (Fig. 2).  

The Bajocian was a time of widespread oolite formation along 

the Northern (and southern) Tethys margin (Wetzel et al. 2013). 

Isotope values from these Northern Tethyan oolites (Wetzel et 

al. 2013)  do not show particularly  positive values expected 

for aragonite oolites. Indeed textures indicate that these oolites 

were calcitic (Wetzel et al. 2013) (i.e. a calcite sea sensu 

Sandberg 1983) and therefore this region exporting aragonite 

during this time appears unlikely.  Of note is that the oxygen 

isotope data for the marls are more negative than the data 

derived from the limestones (Fig. 6), a pattern consistent with 

carbonate ooze produced in relatively warm surface waters.

Bodin et al. (2016), have also suggested lithological, rather 

than  oceanographic  controls  on  δ

13

C trends (e.g., during  

the earliest Toarcian of Morocco), whereby neritic δ

13

C

micrite

 

 signatures show more positive values than carbonate ooze 

 produced by planktonic organisms. Changes in carbon isotope 

values in marine carbonate successions have also been 

attributed to changes in organic matter remineralization and 

subaerial exposure around hardgrounds and subsequent carbo-

nate  precipitation from meteorically influenced fluids (e.g., 

Immenhauser et al. 2002; Hönig & John 2015). Evidence for 

subaerial exposure (e.g., signs of palaeokarst) was not observed 

in the Óbánya valley.

Climatic and eustatic influences on carbon cycle changes

The negative excursion followed by positive values that 

occurs near the base of the section (across the Aalenian–

Bajocian boundary), observed in this study, appears to cor-

relate with a major carbon cycle perturbation recognized 

elsewhere (Fig. 8) as a widespread phenomenon on the basis 

of its carbon–isotope expression in both oceanic (Bartolini et 

al. 1996; O’Dogherty et al. 2006; Suchéras-Marx et al. 2012; 

Hönig & John 2015) and terrestrial reservoirs (Hesselbo et al. 

2003).  It cannot be excluded that an earlier negative excursion 

followed by positive values occurring in the Aalenian 

background image

121

MIDDLE JURASSIC CARBON CYCLE HISTORY OF THE MECSEK MOUNTAINS, SOUTHERN HUNGARY

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

Fig. 4. A, B — Sections of the Komló Calcareous Marl Formation in the Óbánya valley, (notebook for scale). C — The Óbánya Limestone 

Formation. D — Upper Jurassic siliceous limestones and radiolarites of the Fonyászó Limestone Formation. 

background image

122

PRICE, FŐZY and GALÁCZ

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

Concavum  Zone  at  Agua  Larga  (O’Dogherty  et  al.  2006; 

Sandoval et al. 2008), is correlatable with the lowermost 

 negative excursion. However, this possibility is not favoured 

as no sizable negative shift  is located above, in the Bajocian 

part of the sucession. Carbon isotopes reach their most posi-

tive values, within the Óbánya succession, during the Early to 

mid-Bajocian, before declining across the Bajocian–Bathonian 

boundary. This same trend, is seen, for example in the 

Terminilletto section, Apennines, Italy (Bartolini et al. 1999) 

and the Betic Cordillera of southern Spain (O’Dogherty et al. 

2006). Although there are evident differences in facies between 

these sections, due to deposition under differing conditions 

across  the  Tethys  Ocean,  the  δ

13

C signatures are similar.  

The carbon-isotope trends are therefore likely to represent at 

least supraregional perturbations in the carbon cycle. Hence, 

wide scale mechanisms need to be considered to account for 

the observed trends. 

Gradual negative carbon isotope excursions in the geolo-

gical record have, for example, been explained by reduced 

primary production (e.g., Weissert & Channell 1989) whereby, 

increasingly oligotrophic conditions, caused by reduced run 

off and nutrient fluxes to the oceans, lower the fertility of 

 surface waters which in turn leads to lessened primary produc-

tion  and  a  negative  δ

13

C  shift.  Such  a  mechanism  for  δ

13

decreases has been associated with regressive conditions in 

the latest Jurassic Tethyan seaway (e.g., Weissert & Channell 

1989; Tremolada et al. 2006). During the Aalenian–Bajocian 

boundary  interval  δ

13

C decreases have also been correlated 

with regressive intervals (Sandoval et al. 2008). O’Dogherty 

et al. (2006) also point out the coincidence between carbon 

cycle perturbations and major changes in marine biota. For 

example the latest Toarcian–Early Aalenian is marked by the 

coexistence of very low radiolarian content, high proportions 

of the nannofossil Schizosphaerella spp., and moderate pro-

portions of C. crassus, indicative of oligotrophic to meso-

trophic palaeoceanographic conditions (Aguado et al. 2008).

 

Although, there is no evidence of a regressive Aalenian–

Bajocian boundary interval at Óbánya, a significant regressive 

event in Europe took place in Late Aalenian times (e.g., 

Hardenbol et al. 1998; Haq & Al-Qahtani 2005) followed by 

Early Bajocian transgression and deepening (Hallam 2001). 

As noted by Hallam (2001), Underhill & Partington (1993) 

demonstrated that the Aalenian eustatic sea-level fall in the 

Jurassic was in fact a phenomenon of regional tectonics. 

Within Europe the effects of an Early Bajocian transgression 

can be recognised widely, for example, in Morocco (Bodin et 

al. 2017), north eastern Spain (e.g., Aurell et al. 2003) and in 

the Jura Mountains of southern France (e.g., Razin et al. 1996). 

Major perturbations in the carbon cycle have also been asso-

ciated with pulses of magmatism (e.g., Pálfy et al. 2001; 

Wignall 2001; Hesselbo et al. 2003). However, the carbon 

isotope excursion reported here and any association with 

a large pulse of magmatism is not clearly demonstrated. For 

example, radiometric data from the Karoo basalts indicates 

that the main volume of the Karoo Large Igneous Province 

(LIP) was emplaced between 181 and 184 Ma (i.e. during the 

Fig. 5. A — Photomicrograph of the limestone lithology (from the 

Komló Calcareous Marl Formation) dominated by calcite micro-

spar (sample OB115, scale bar 1 mm). Small patches of coarser 

sparry calcite may have formed as a cement during diagenesis 

within primary porosity or by neomorphism of aragonite. 

 

B — Photomicrograph of marl lithology (from the Komló 

Calcareous Marl Formation) showing abundant small sparry 

 bioclasts, including crinoids within a micritic and organic rich 

matrix (sample OB546, scale bar 0.2 mm). C — Photomicrograph 

of the Óbánya Limestone Formation showing abundant sparry 

small bioclast fragments within a muddy matrix (sample OB125, 

scale bar 0.2 mm). 

background image

123

MIDDLE JURASSIC CARBON CYCLE HISTORY OF THE MECSEK MOUNTAINS, SOUTHERN HUNGARY

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

Late Pliensbachian to Early Toarcian) with limited late 

 

stage basaltic activity at 176 Ma (e.g., Jourdan et al. 2008). 

Younger episodic magmatic activity, associated with the 

break- up of Gondwana following the formation of the Karoo 

LIP, is reported from Patagonia and the Antarctic Peninsula 

(Pankhurst et al. 2000). Aalenian–Bathonian volcanism is also 

reported from the Crimea (Meijers et al. 2010), the Caucasus 

region (Odin et al. 1993) and Mexico (Rubio-Cisneros & 

Lawton 2011). Interestingly, the Aalenian–Early Bajocian 

interval also overlaps with the birth of the Pacific Plate and 

a major pulse of subduction related magmatism (Bartolini & 

Larson 2001; Koppers et al. 2003). Evidence for the impact of 

this magmatic activity can be assessed through 

87

Sr / 

86

Sr data. 

The Aalenian–Early Bajocian seawater 

87

Sr / 

86

Sr curve shows, 

however, a flat segment alluding to the limited impact of 

this magmatic activity. This contrasts with the relatively rapid 

fall in the seawater 

87

Sr / 

86

Sr ratio seen through the Late 

Bathonian and Early Callovian (Wierzbowski et al. 2012). 

Hence it appears likely that the volcanogenic CO

2

 associated 

with these events certainly represents a potential source for 

light carbon, although possibly not of sufficient magnitude 

and sufficiently light to achieve the observed isotopic change.

Alternatively, an injection of isotopically light carbon into 

the ocean and atmosphere from a remote source, such as 

 methane from clathrates, wetlands, or thermal metamorphism 

organic rich sediments (e.g., McElwain et al. 2005; Bachan et 

al. 2012) has been considered as means to explain negative 

carbon isotope excursions. Similar events have been consi-

dered to have been a result of more regional events caused by 

recycling of isotopically light carbon from the 

lower water column (e.g., McArthur et al. 2008). 

However, that the Aalenian–Bajocian boundary 

event is observed in both marine (Fig. 8) and 

 terrestrial settings (e.g., Hesselbo et al. 2003) has 

been considered to be an indication that the 

observed isotopic signals may have recorded 

a global (rather than regional) perturbation of  

the carbon cycle. As noted above, changes in  

the export of neritic carbonate mud (e.g., Swart & 

Eberli 2005) could also conceivably result in 

a negative isotope excursion in the geological 

record (e.g., Bodin et al. 2016; Ait-Itto et al. 

2017). Hence a shift in the δ

13

C

micrite

 signature is 

possible without any relation to variations in  

the global carbon isotope trend (Bodin et al. 2016, 

2017). For this latter mechanism to be consi-

dered, sustained changes in the export of neritic 

mud are required to reach the study site and affect 

carbonate factories across Tethys. Furthermore, 

the negative excursion occurring in both oceanic 

and terrestrial reservoirs, provides an additional 

challenge for this to be a viable mechanism.

In contrast to the Aalenian–Bajocian boundary 

interval, more positive δ

13

C values (Fig. 8) in the 

Early Bajocian Tethyan seaway could have been 

linked to warmer climates and rising sea levels, 

increased runoff and nutrient fluxes to the oceans, increasing 

the fertility of surface waters (e.g., Sandoval et al. 2008; 

Suchéras-Marx et al. 2012). For example Suchéras-Marx et al. 

(2012) show that calcareous nannofossil fluxes increase mar-

kedly (mainly related to the rise of Watznaueria genus) from 

the upper part of the Aalenian to the Early Bajocian, coinci-

ding with a positive shift in carbon isotope compositions of 

bulk carbonate. High levels of CO

in the atmosphere could 

have also accelerated the transfer of nutrients from the conti-

nents to the oceans, through increasing weathering. Indeed, as 

noted above, significant injections of CO

2

 have been asso-

ciated with major pulses of subduction-related magmatism, 

linked to the opening of the Pacific Ocean and the breakup of 

Pangaea (e.g., Bartolini & Larson 2001). Equally, the evolu-

tion of Tethyan seawater temperatures during the Middle 

Jurassic period inferred from the oxygen isotopic composition 

of belemnite rostra, bivalve shells and from fish teeth (see 

Brigaud et al. 2009; Price 2010) reveal warmth during the 

Early Bajocian and cooling from late Bajocian times through 

into the Bathonian. Also, the oxygen isotope data of this study 

(Fig. 7) broadly replicate this trend, whereby more negative 

values are seen in the lower part of the succession and more 

positive values are observed in the upper part of the section 

and within the Bathonian. Such a pattern of warming and 

 cooling is consistent with an Early Bajocian transgression 

noted above.

Increasing δ

13

C values in the Bajocian Tethyan seaway have 

also been linked to elevated productivity, as shown by radio-

larian assemblages (Bartolini et al. 1999). O’Dogherty et al. 

Fig. 6.  Cross  plot  of  δ

18

O  and  δ

13

C data from the Aalenian–Bajocian interval, 

Óbánya valley, of the Mecsek Mountains, Hungary. Data from Raucsik (1997) is 

also shown.

background image

124

PRICE, FŐZY and GALÁCZ

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

(2006) further point out ammonite radiations during the Early 

Bajocian, concomitant with increasing δ

13

C values. The Early 

Bajocian positive excursion has also been correlated in the 

southern margin of western Tethys with a “carbonate 

production crisis” and concomitant with the onset of biosili-

ceous sedimentation in several basins (Bartolini et al. 1996). 

The Komló Calcareous Marl Formation shows, however, 

increasing carbonate content upwards (Velledits et al. 1986) 

Fig. 7. Isotopic results (δ

13

C and δ

18

O

micrite

) from the Óbánya section. The ammonite data is from Velledits et al. (1986) and Galácz (1994). 

Zonal boundaries are not possible to identify because of very scattered occurrences of diagnostic ammonites. Crosses are the data derived from 

marls. The isotope curves (and 5 point running means) are plotted though the limestone data only.

background image

125

MIDDLE JURASSIC CARBON CYCLE HISTORY OF THE MECSEK MOUNTAINS, SOUTHERN HUNGARY

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

rather than any marked decreases in carbonate. 

It is the Late Jurassic that sees biosiliceous 

sedi mentation in the Óbánya valley (Velledits 

et al. 1986). 

Conclusions

Our study of the Komló Calcareous Marl 

Formation of the Mecsek Mountains of 

Hungary reveals a negative carbon isotope 

excursion followed by positive values that 

occurs near the base of the section (across the 

Aalenian–Bajocian boundary). The origin of 

this carbon-isotope anomaly is interpreted to lie 

in significant changes to carbon fluxes stem-

ming from changes in primary production 

linked to increasingly oligotrophic conditions, 

caused for example, by reduced run off and 

nutrient fluxes to the oceans, lowering the fer-

tility of surface waters which in turn leads to 

lessened primary production and a negative δ

13

shift (e.g., O’Dogherty et al. 2006; Sandoval et 

al. 2008). That the Aalenian–Bajocian boun-

dary carbon isotope event is observed in both 

marine and terrestrial settings (e.g., Hesselbo et 

al. 2003) indicates that the observed isotopic 

signals record global (rather than regional) per-

turbation of the carbon cycle. Changes in the 

export of neritic carbonate mud could also con-

ceivably result in a negative  isotope excursion, 

but this mechanism required sustained changes 

affecting carbonate factories across Tethys. 

Furthermore, the negative  excursion occurring 

in both oceanic and terrestrial reservoirs, chal-

lenges this as a viable mechanism. In view of 

the gradual isotopic changes inferred from 

these Tethyan carbonates, an explanation in 

terms of the rapid dissociation of gas hydrates 

also appears unlikely. This study of the Komló 

Calcareous Marl Formation further confirms 

that the carbon isotope curves of Bartolini et al. 

(1999) and Sandoval et al. (2008), do indeed 

serve as a global standard for Aalenian–

Bathonian δ

13

C variation. 

Acknowledgments: This work has received 

support from the SYNTHESYS Project 

 

(http://www.synthesys.info/), financed by Euro-

pean Community Research Infrastructure 

 Action under the FP6 Structuring the European 

Research Area Program. We thank Béla  Raucsik 

for assistance with fieldwork. The manu script 

was considerably improved by constructive 

 reviews by Helmut Weissert and an anonymous 

reviewer. 

Fig. 8.

 Carbon 

isotope 

stratigraphies of the 

Aalenian–Bathonian interval from Óbánya compared with Southern Spain (from O'Dogherty et al. 2006), Cabo 

Mondego, Portugal (from 

Suchéras-Marx et

 

al. 2012); Chaudon Norante, SE France (from Suchéras-Marx et al. 2013); 

W

adi Naqab, United 

Arab Emirates (Hönig & John 2015) and the Umbria-Marche Basin, Italy(from Bartolini et al. 1999).

background image

126

PRICE, FŐZY and GALÁCZ

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

References

Aguado R., O’Dogherty L. & Sandoval J. 2008: Fertility changes in 

surface waters during the Aalenian (mid-Jurassic) of the Western 

Tethys as revealed by calcareous nannofossils and carbon-cycle 

perturbations. Mar. Micropaleontol. 68, 268–285.

Ait-Itto F-Z., Price G.D., Addi, A.A., Chafiki D. & Mannani I. 2017: 

Bulk-carbonate and belemnite carbon-isotope records across the 

Pliensbachian-Toarcian boundary on the northern margin of 

Gondwana (Issouka, Middle Atlas, Morocco). Palaeogeogr. 

 Palaeoclimatol.  Palaeoecol. 466, 128–136. 

Aurell M., Robles S., Badenas B., Rosales I., Quesada S., Melendez 

G. & Garcıa-Ramos J.C. 2003: Transgressive–regressive cycles 

and Jurassic palaeogeography of northeast Iberia. Sediment. 

Geol. 162, 239–271.

Bachan A., van de Schootbrugge B., Fiebig J., McRoberts C.A., 

 Ciarapica C. & Payne J.L. 2012: Carbon cycle dynamics 

 following the end-Triassic mass extinction: Constraints from 

paired  δ

13

Ccarb  and  δ

13

Corg records. Geochem. Geophys. 

 Geosyst. 13, Q09008. 

Bartolini A., Baumgartner P.O. & Hunziker J.C. 1996: Middle and 

Late Jurassic carbon stable-isotope stratigraphy and radiolarite 

sedimentation of the Umbria-Marche Basin (Central Italy). 

Eclogae Geol. Helv. 89, 811–844.

Bartolini A., Baumgartner P.O. & Guex J., 1999: Middle and Late 

Jurassic radiolarian palaeoecology versus carbon-isotope 

 strati graphy.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 

43–60.

Bartolini A. & Larson R. 2001: The Pacific microplate and the  Pangea 

supercontinent in the Early-Middle Jurassic. Geology 29, 

 735–738.

Bill M., Baumgartner P.O., Hunziker J.C. & Sharp Z.D. 1995: Carbon 

isotope stratigraphy of the Liesberg Beds Member (Oxfordian, 

Swiss Jura) using echinoids and crinoids. Eclogae Geol. Helv. 

88, 135–155.

Bodin S., Krencker F., Kothe T., Hoffmann R., Mattioli E., Heimhofer U. 

& Kabiri L. 2016: Perturbation of the carbon cycle during the 

late Pliensbachian – Early Toarcian: New insight from high– 

resolution carbon isotope records in Morocco. J. Afr. Earth Sci. 

116, 89–104. 

Bodin S., Hönig, M.R., Krencker F-N., Danisch J. & Kabiri L. 2017: 

Neritic carbonate crisis during the Early Bajocian: Divergent 

 responses to a global environmental perturbation. Palaeogeogr. 

Palaeoclimatol. Palaeoecol. 468, 184–199

Brigaud B., Durlet C., Deconinck J-F., Vincent B., Pucéat E., Thierry 

J. & Trouiller A. 2009: Facies and climate/environmental chan-

ges recorded on a carbonate ramp: A sedimentological and geo-

chemical approach on Middle Jurassic carbonates (Paris Basin, 

France). Sediment. Geol. 222, 181–206.

Dzyuba O.S., Guzhikov A.Yu., Manikin A.G., Shurygin B.N., 

 Grishchenko V.A., Kosenko I.N., Surinskii, A.M., Seltzer V.B. & 

Urman O.S. 2017. Magneto- and carbon-isotope stratigraphy of 

the Lower–Middle Bathonian in the Sokur section (Saratov, 

Central Russia): implications for global correlation. Russ.   Geol. 

Geophys. 58, 206–224.

Enay R., Guiraud R., Ricou, L.E., Mangold C., Thierry J., Cariou E., 

Bellion Y. & Dercourt J., 1993: Callovian palaeoenvironments 

(162 to 158 Ma). In: Dercourt, J., Ricou, L.E., Vrielynck, B. 

(Eds.): Atlas Tethys Palaeoenvironmental Maps. Maps, BEICIP­ 

FRANLAB, Rueil-Malmaison.

Forgó L. Moldvay L. Stefanovics P. & Wein, G. 1966: Explanatory 

notes to the 1:200,000 scale geological map. Hungarian Geolo­

gical Survey, Budapest, 1–196 (in Hungarian).

Főzy  I.  (Ed.)  2012:  Lithostratigraphic  units  of  Hungary.  Jurassic. 

Magyarhoni Földtani Társulat, Budapest, 1–235 (in Hungarian).

Galácz A. 1994: Ammonite stratigraphy of the Bathonian red,  nodular 

marl in the Mecsek Mts (S Hungary). Annales Universitatis 

 Scientiarum Budapestinensis de Rolando Eötvös Nominatae, 

Sectio Geologica 30, 115–150.

Haas J., Hámor G. & Korpás L. 1999: Geological setting and tectonic 

evolution of Hungary. Geologica Hungarica series Geologica 

24, 179–196. 

Hallam A. 2001: A review of the broad pattern of Jurassic sea-level 

changes and their possible causes in the light of current 

 know ledge.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 167, 

 23–37.

Hardenbol J., Thierry J., Farley M.B., Jacquin T., De Graciansky P.C.  

& Vail P.R. 1998: Mesozoic and Cenozoic sequence chrono-

stratigraphic framework of European Basins. Jurassic sequence 

chronostratigraphy. In: De Graciansky, P.C., Hardenbol, J., 

 Jacquin, J. & Vail P.R. (Eds.): Mesozoic and Cenozoic Sequence 

Stratigraphy of European Basins. SEPM Spec. Publ. 60, 

 

chart 6.

Haq B.U. & Al-Qahtani A.M. 2005: Phanerozoic cycles of sea-level 

change on the Arabian Platform. GeoArabia 10, 127–160.

Hesselbo S.P., Morgans-Bell H.S., McElwain J.C., Rees P.M., 

 Robinson S.A. & Ross C.E. 2003. Carbon-Cycle Perturbation in 

the Middle Jurassic and accompanying changes in the terrestrial 

paleoenvironment. J. Geol. 111, 259–276.

Hoffman A., Gruszczynski, M., Malkowski K., Halas S. Matyja B.A. 

& Wierzbowski A. 1991: Carbon and oxygen isotope curves  

for the Oxfordian of central Poland. Acta Geol. Polonica 

43, 157–164. 

Hönig M.R. & John C.M. 2015: Sedimentological and isotopic 

 heterogeneities within a Jurassic carbonate ramp (UAE) and 

 implications for reservoirs in the Middle East. Mar. Petrol. Geol. 

68, 240–257. 

Hudson J.D., 1977: Stable isotopes and limestone lithification.  

J. Geol. Soc. London 133, 637–660.

Immenhauser A., Kenter J.A.M., Ganssen G., Bahamonde J.R.,  

Van Vliet A. & Saher M.H., 2002: Origin and significance of 

isotope Shifts in Pennsylvanian Carbonates (Asturias, NW 

Spain). J. Sediment. Res. 72, 82–94.

Jenkyns H.C. 1996: Relative sea-level change and carbon isotopes: 

data from the Upper Jurassic (Oxfordian) of central and  Southern 

Europe. 

Terra Nova 8, 75–85. 

Jourdan F., Féraud, G., Bertrand H., Watkeys M.K. & Renne P.R. 

2008: 

40

Ar/

39

Ar ages of the sill complex of the Karoo large 

 igneous province: implications for the Pliensbachian–Toarcian 

climate change. Geochem. Geophys. Geosys. 9, Q06009.

Koppers A.A.P., Staudigel H. & Duncan R.A. 2003: High-resolution 

40

Ar/

39

Ar dating of the oldest oceanic basement basalts in the 

western Pacific basin. Geochem. Geophys. Geosys. 4, art. no. 

8914.

Leinfelder R.R., Schmid, D.U., Nose M. & Werner W. 2002: Jurassic 

reef patterns: the expression of changing globe. In: Kiessling W., 

Flügel E. & Golonka J. (Eds): Phanerozoic reef patterns. SEPM 

Spec. Publ. 72, 465–520.

McArthur J.M., Algeo T.J., van de Schootbrugge B., Li Q. &  

Howarth R.J. 2008: Basinal restriction, black shales, and the 

Early Toarcian (Jurassic) oceanic anoxic event. Paleoceano­

graphy 23, PA4217. 

McElwain J.C., Wade-Murphy J. & Hesselbo S.P. 2005: Changes in 

carbon dioxide during an oceanic anoxic event linked to intru-

sion into Gondwana coals. Nature 435, 479–482.

Meijers M.J.M., Vrouwe B., Van Hinsbergen D.J.J., Kuiper K.F., 

 Wijbrans J., Davies G.R., Stephenson R.A., Kaymakci N., 

 Matenco L. & Saintot A., 2010: Jurassic arc volcanism on 

Crimea (Ukraine): Implications for the paleo-subduction zone 

configuration of the Black Sea region. Lithos 119, 412–426. 

background image

127

MIDDLE JURASSIC CARBON CYCLE HISTORY OF THE MECSEK MOUNTAINS, SOUTHERN HUNGARY

GEOLOGICA CARPATHICA

, 2018, 69, 2, 117–127

Némedi-Varga Z. 1998: The stratigraphy of the Jurassic units of the 

Mecsek Mountains and Villányi Mountains [A Mecsek és 

a Villányi Egység Jura képződményeinek rétegtana]. In: Bérci I. 

& Jámbor A. (eds): The stratigraphy of the Hungarian geological 

units  [Magyarország  geológiai  képződményekinek  rétegtana]. 

MOL Hun. Oil Gas Comp. and Geol. Inst. Hun., Budapest, 

 319–336 (in Hungarian).

Nunn E.V., Price G.D., Hart M. B., Page K.N. & Leng M.J. 2009: 

Terrestrial and marine carbon isotope signals from the Callo-

vian–Kimmeridgian (Late Jurassic) succession at Staffin Bay, 

Isle of Skye, Scotland. J. Geol. Soc. London 166, 633–641.

Odin G.S., Gillot P.Y., Lordkipanidze M., Hernandez J. & Dercourt J. 

1993: 1

st

 datings of ammonite-bearing Bajocian suites from 

 Caucasus (Georgia) — K–Ar ages of volcanic hornblendes. 

Comptes rendus de l’Académie des sciences, Série II 317,  

629–638.

O’Dogherty L., Sandoval J., Bartolini A., Bruchez S., Bill M. &  

Guex J. 2006: Carbon–isotope stratigraphy and ammonite faunal 

turnover for the Middle Jurassic in the Southern Iberian palaeo-

margin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 311–333.

Ogg, J.G. & Hinnov L.A. 2012: Chapter 26 – Jurassic. In: Gradstein F., 

Ogg J., Schmitz M. & Ogg G. (Eds.): The Geologic Time Scale 

2012. Elsevier, Boston, 731–791.

Pálfy J., Demény A., Haas J., Hetényi M., Orchard M.J. & Vető I. 

2001: Carbon isotope anomaly and other geochemical changes 

at the Triassic–Jurassic boundary from a marine section in 

 Hungary.  Geology 29, 1047–1050.

Pankhurst R.J., Riley T.R., Fanning C.M. & Kelley S.P. 2000: 

 Episodic silicic volcanism in Patagonia and the Antarctic 

 Peninsula: Chronology of magmatism associated with the break-

up of Gondwana. J. Petrol. 41, 605–625.

Pittet B. & Strasser A. 1998: Depositional sequences in deep-shelf 

environments formed through carbonate-mud export from the 

shallow platform (Late Oxfordian, German Swabian Alb and 

eastern Swiss Jura). Eclogae Geol. Helv. 91, 149–169.

Price G.D. 2010: Carbon–isotope stratigraphy and temperature 

change during the early–Middle Jurassic Toarcian–Aalenian), 

Raasay, Scotland, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 

285, 255–263. 

Price G.D., Főzy I. & Pálfy J. 2016: Carbon cycle history through  

the  Jurassic–Cretaceous  boundary:  A  new  global  δ

13

C stack. 

 Palaeogeogr. Palaeoclimatol. Palaeoecol. 451, 46–61.

Raucsik B. 1997: Stable isotopic composition of the Komló 

 Cal  ca reous Marl Formation (“spotted marl” s. str.), Mecsek   

Mountains, S. Hungary. Acta Mineralogica­Petrographica 38,  

95–109.

Raucsik B. & Merényi L. 2000: Origin and environmental signifi-

cance of clay minerals in the Lower Jurassic formations of the 

Mecsek Mts. Hungary. Acta Geol. Hung. 43, 405–429.

Razin P., Bonijoly D., Le Strat P., Courel L., Poli E., Dromart G. & 

Elmi S. 1996: Stratigraphic record of the structural evolution of 

the western extensional margin of the Subalpine Basin during 

the Triassic and Jurassic, Ardeche, France. Mar. Petrol. Geol.  

13, 625–652.

Rey J. & Delgado A. 2002: Carbon and oxygen isotopes: a tool for 

Jurassic and early Cretaceous pelagic correlation (southern 

Spain). Geol. J. 37, 337–345.

Rubio-Cisneros I. & Lawton T.F. 2011: Detrital zircon U–Pb ages of 

sandstones in continental red beds at Valle de Huizachal, 

 Tamaulipas, NE Mexico: Record of Early-Middle Jurassic arc 

volcanism and transition to crustal extension. Geosphere 7, 

 159–170.

Sandberg P.A. 1983: An oscillating trend in Phanerozoic non-skeletal 

carbonate mineralogy.  Nature 305, 19–22. 

Sandoval J., O’Dogherty L., Aguado R., Bartolini A., Bruchez S. & 

Bill M. 2008: Aalenian carbon-isotope stratigraphy: Calibration 

with ammonite, radiolarian and nannofossil events in the 

 Western  Tethys.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 267, 

115–137. 

Scholle P.A. & Arthur M.A. 1980: Carbon isotope fluctuations in 

 

Cretaceous pelagic limestones: potential stratigraphic and 

 petroleum exploration tool. Am. Assoc. Pet. Geol. Bull. 64, 

 67–87. 

Suchéras-Marx B., Guihou A., Giraud F., Lécuyer C., Allemand P., 

Pittet B. & Mattioli E. 2012: Impact of the Middle Jurassic 

 diversification of Watznaueria (coccolith-bearing algae) on the 

carbon cycle and δ

13

C of bulk marine carbonates. Global Planet. 

Change 86–87, 92–100.

Suchéras-Marx B., Giraud F., Fernandez V., Pittet B., Lecuyer C., 

 Olivero D. & Mattioli E. 2013: Duration of the early Bajocian 

and the associated δ

13

C positive excursion based on cyclostrati-

graphy. J. Geol. Soc. 170, 107–118.

Swart P.K. & Eberli G.P. 2005: The nature of the δ

13

C of periplatform 

sediments: Implications for stratigraphy and the global carbon 

cycle. Sediment. Geol. 175, 115–129. 

Tremolada F., Bornemann A., Bralower T.J., Koeberl C. & van de 

Schootbrugge B. 2006: Paleoceanographic changes across the 

Jurassic/Cretaceous boundary: The calcareous phytoplankton 

response. Earth Planet. Sci. Lett. 241, 361– 371.

Underhill J.R. & Partington M.A. 1993: Jurassic thermal doming and 

deflation: the sequence stratigraphic evidence. In: Parker J.R. 

(Ed.): Petroleum Geology of North-West Europe: Proceedings of 

the 4

th

 Conference, 337–345.

Velledits F., Híves T. & Bársony E. 1986: A Jurassic-Lower Creta-

ceous profile in Óbánya valley (Mecsek Mts. Hungary). Annales 

Universitatis Scientiarum Budapestinensis de Rolando Eötvös 

Nominatae, Sectio Geologica 26, 159–175.

Weedon G.P. & Jenkyns H.C. 1999: Cyclostratigraphy and the Early 

Jurassic timescale: data from the Belemnite Marls, Dorset, south 

England. Geol. Soc. Am. Bull. 111, 1823–1843. 

Weissert, H. 1989: C-isotope stratigraphy as monitor of paleoenviron-

mental changes: A case study from the early Cretaceous. Surveys 

in Geophysics 10, 1–61. 

Weissert H. & Channell, J.E.T., 1989: Tethyan carbonate carbon 

 isotope stratigraphy across the Jurassic-Cretaceous boundary: 

an indicator of decelerated carbon cycling. Paleoceanography 

4, 483–494.

Weissert H. & Mohr H. 1996: Late Jurassic climate and impact on 

carbon cycling. Palaeogeogr., Palaeoclimatol. Palaeoecol. 

122, 27– 42.

 

Wendler J., Gräfe K-U. & Willems H. 2002: Reconstruction of 

mid-Cenomanian orbitally forced palaeoenvironmental changes 

based on calcareous dinoflagellate cycts. Palaeogeogr. Palaeo­

climatol. Palaeoecol. 179, 19–41. 

Wetzel A., Weissert H., Schaub M. & Voegelin A.R. 2013: Sea-water 

circulation on an oolite-dominated carbonate system in 

 

an epeiric sea (Middle Jurassic, Switzerland). Sedimentology 60, 

19–35.

Wierzbowski H., Anczkiewicz R., Bazarnik J. & Pawlak J. 2012: 

Strontium isotope variations in Middle Jurassic (Late Bajocian–

Callovian) seawater: Implications for Earth’s tectonic activity 

and marine environments. Chem. Geol. 334, 171–181.

Wignall P.B. 2001: Large igneous provinces and mass extinctions. 

Earth­Sci. Rev. 53, 1–33.