background image

GEOLOGICA CARPATHICA

, FEBRUARY 2018, 69, 1, 30–50

doi: 10.1515/geoca-2018-0003

www.geologicacarpathica.com

Life in the fluvial hinterland of the late Sarmatian Sea 

(middle Miocene): a rare terrestrial fossil site  

in the Styrian Basin (Austria)

MONIKA DOUBRAWA

1

, MARTIN GROSS

2

 and MATHIAS HARZHAUSER

3

1

Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, D-69120 Heidelberg, Germany; doubrawa@stud.uni-heidelberg.de

2

Universalmuseum Joanneum, Weinzöttlstrasse 16, A-8045 Graz, Austria; martin.gross@museum-joanneum.at

3

Natural History Museum Vienna, Burgring 7, A-1010 Vienna, Austria; mathias.harzhauser@nhm-wien.ac.at

(Manuscript received April 11, 2017; accepted in revised form December 12, 2017)

Abstract: This paper describes the section and fossil content of a former gravel pit in the Eastern Styrian Basin  

(SE Austria), which exposes sediments of a fluvial system, ranging from within channel to overbank environments. 

A predominately terrestrial gastropod fauna of 15 species so far, was recovered from a palaeosol formed in a moist and 

vegetated, floodplain or abandoned channel. Up-section, a shallow freshwater pond/lake developed within the floodplain, 

settled by fishes, molluscs and ostracods. By integrating regional geological and biostratigraphical data derived from  

the terrestrial gastropod fauna as well as from the other recovered biota, these strata are of late middle Miocene (late 

Sarmatian s.str.) age. Hence, this fossil site provides a rare insight into the terrestrial habitats in the hinterland of  

the Sarmatian Sea and their biota, which are otherwise barely known in Central Europe.

Keywords: Middle Miocene, Sarmatian s.str, gastropoda, Styria/Austria, terrestrial environments.

Introduction

Outcrops, exposing terrestrial sediments of late Sarmatian 

(late Serravallian) age are rare in Austria and the Central  

Paratethys as well due to a major hiatus at the middle–late 

Miocene  transition  (e.g.,  Kováč  et  al.  2004;  Schreilechner  

& Sachsenhofer 2007; Harzhauser et al. 2008; Gross et al. 

2011a; Stworzewicz et al. 2013; Neubauer et al. 2015a,  

2017; Fig. 1). While the marine system of the Sarmatian  

Sea is well investigated and a lot of data have been 

 

gathered about palaeobiological and geological changes 

 

(e.g., Papp et al. 1974a; Harzhauser & Piller 2004;  

Piller & Harzhauser 2005; Piller et al. 2007), information  

on the surrounding continental environments is still 

 

fragmentary.

An abandoned gravel pit (Badenbrunn), situated in the 

Eastern Styrian Basin (46°53’51.1” N, 15°46’21.3’’ E; 32 km 

SE Graz, 5 km NW Gnas; 320 m a.s.l., Fig. 2A, B), is treated 

here. It exposes a palaeosol, rich in terrestrial gastropods. 

Additional fossil findings, which include plants, ostracods, 

fish remains and mammals, are quite diverse. Hence, this 

locality promises a further insight into the so far poorly  studied 

hinterland of the Paratethyan aquatic system during late 

 middle Miocene times. The present study focuses on the 

 taxonomic evaluation of the found gastropods and their 

palaeo 

environmental and stratigraphic indication, supple-

mented by sedimentological and additional palaeontological 

information.

The geological context

The Badenbrunn gravel pit is located in the Eastern Styrian 

Basin, more precisely in the Gnas Subbasin (Kröll et al. 1988; 

Gross et al. 2007; Fig. 2A). According to detailed geological 

mappings by Kollmann (1965) the outcrop exposes upper 

Sarmatian sediments (Gleisdorf Formation; Fig. 2B). Close by 

exploration drillings of the crude oil mining company RAG  

(= Rohöl-Aufsuchungs AG; e.g., F 883 and F 884; ~ 1000 m 

SE,  ~ 298  m  a.s.l.;  Fig.  2B)  penetrated  at  a  depth  of  about  

9 m clays and marls with abundant “Pirenella picta”  

[= Granulolabium bicinctum (Brocchi, 1814)] shells, which is 

a marine batillariid gastropod (unpublished report RAG, 

1954). In a regional context, these gastropods and the nearby 

(around the town of Gnas) occurring oolitic limestones are 

typical for the marine upper Sarmatian deposits of the Central 

Paratethys (Kollmann 1965; Piller et al. 2007). About 1400 m 

to the west (~ 370 m a.s.l.; “Kratzlwirt”, see Fig. 2B), Mytilopsis 

ornithopsis (Brusina, 1892) findings are mentioned by Winkler 

(1927) and Kollmann (1965). They are indicative for the early 

Pannonian (“Zone B” sensu Papp 1951). Drilling F 868 

reached at the same sea level, about 500 m towards the W, 

beds with abundant dreissenid bivalve fragments (“Congeria 

sp.”), which most probable refer to the early Pannonian (early 

Tortonian) as well. Accordingly, the section of Badenbrunn is 

bracketed by sediments of the late Sarmatian Sea in the foot-

wall and by deposits of brackish Lake Pannon (e.g., Magyar et 

al. 1999; Gross et al. 2011b) in the hanging wall.

background image

31

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Langhian

Tortonian

Series

Standard

stages

Messinian

Serra-
vallian

Miocene

Age (Ma)

15

10

9

8

7

11

12

14

13

Middle

Late

7.25

11.62

13.82

Central

Paratethys

Badenian

Pannonian

Chrons

Molluscs

Upper

Zone

Ervilia

Lower

Z.

Ervilia

Mohren-

sternia

Zone

Sarmati-

mactra

vitaliana

Zone

Mytilopsis

ornithopsis

Zone

Mytilopsis

hoernesi

Zone

C5r.2n

C5r.2r-1n

C5n.2n

C5An.1n

C5An.2n

C5Ar.1r

C5An.1r

C5r.3r

C5r.2r

C5r.2r-1r

C5r.1r

C5r.1n

Age

(Ma)

Early Pannonian

Late Sarmatian

Early Sarmatian

11

12

11.5

12.5

Ries Fm.

Gratk.

CG

F

. & P

.

Gleisdorf Fm.

Gleisdorf Fm.

Rollsdorf

SH

Rollsdorf Fm.

Fm./Styrian Basin

proximal      -      distal

major

hiatus

major

hiatus

further Fms.

not displayed

G

M

gravel

sand

pelite

siliciclastic-oolitic

Badenbrunn

Gratkorn

Mataschen

G

M

SH (Stallhofen Fm.)

Gratk. (Gratkorn Fm.)

CG (Carinthian Gravel)

F. & P. (Feldbach Fm. & Paldau Fm.)

Sar.

Material and sample preparation

The outcrop was vertically logged by visual inspection of the 

lithofacies (thickness, colour, grain size, bedding planes, sedi-

mentary structures, macrofossil content); lithofacies  coding 

follows the scheme of Miall (1996). Samples were taken from 

bed 4 and 5 for more detailed palaeontological analyses (Fig. 3). 

About 10 kg from layer 4b were repeatedly soaked in water 

and dried over 4 weeks and washed through standard sieves 

(250/500  μm).  Both  fractions  were  picked  out  completely. 

About 400 g of layers 5a and 5b were disintegrated by using 

diluted hydrogen peroxide (H

2

O

2 

: H

2

O = 1 : 4) and sieved (stan-

dard sieves: 63/125/250/500 μm). Sieve  resi duals were picked 

out completely. Inspections of microfossils were done through 

an optical microscope (Leica M205 C; camera: Leica DFC290; 

software: Leica Application Suite) and/or using a scanning 

electron microscope (JEOL JSM- 6610LV).

The Badenbrunn section

The lowermost 1.50 m (bed 1) of the outcrop is formed by 

orange to yellow, trough cross-bedded, clast-supported, sandy 

coarse–medium gravel (Gt) and dm-thick, cross-bedded sand 

interlayers (St; Fig. 3). A general fining upward trend is visi-

ble. The uppermost 0.20 m consists of partly carbonatic 

cemented fine gravel including irregular, 

lateritic encrustations. Above (bed 2), 

0.70 m thick grey, trough cross-bedded 

medium sand (St) with partly ripple bed-

ded fine sand layers (Sr) is developed. 

Scattered pebbles and clay intraclasts are 

embedded. From section metres 2.20 to 

2.90 (bed 3), the sediments consist of 

grey and orange, parallel bedded, badly 

sorted sandy silt and silty clay alterna-

tions (cm-scale; Fl) with cm- thick con-

cretionary layers; the bedding planes are 

inclined (250/30). Up-section (layer 4a), 

1.10 m yellow, indistinctly parallel bed-

ded silt and silty fine sand alternations 

(Fl; partly convolute bedded) follow; the 

bedding planes are inclined (30–0°) with 

about the same dip as bed 3. In the upper-

most 0.10 m rare gastropods are present. 

The transition upwards to layer 4b is 

gradual. Layer 4b is 0.15 m thick and 

comprises orange-yellow to olive-grey 

mottled, massive silt (Fr). It contains 

abundant gastropods and oxidized root 

traces (reaching down into layer 4a) as 

well as a few characean gyrogonites and 

rare vertebrate remains. This stratum is 

conformably overlain by bed 5 (Fm), 

which is divided into 0.12 m brown grey, 

discontinuously laminated fine sandy silt, 

containing abundant leaves and other plant fragments as well 

as rare bivalves and ostracods (layer 5a), and 0.13 m grey or 

light yellow, laminated clay (layer 5b) with bivalves (union-

ids), plant fragments (i.e., Glyptostrobus cones and twigs; 

gyro gonites), fish remains, ostracods and rare gastropods (i.e., 

Ferrissia). A cm-thick layer of light grey, thin laminated clay 

forms the boundary with bed 6. 1.00 m of light grey to orange-

brown, horizontal bedded silt and sand alternations follow 

above (bed 6; Fl). In the lower 0.15 m abundant plant frag-

ments (i.e., Trapa nuts) are incorporated. About 0.50 m from 

the base, a grey, cm-thick, massive clay layer is intercalated. 

Close to the upper boundary a ripple-bedded fine sand lens 

(Sr), up to 40 cm thick, is developed. The upper boundary is 

formed by 50 mm thick, dark–light grey, laminated silty clay 

(Fm), containing fragments of plants, mostly leaves. Above 

(bed 7), 0.55 m of reddish brown, laminated alterations of silty 

clay without plant fragments and silt with plant fragments 

(leaves, wood) are recorded (Fl). A thin layer of white, calcic 

nodules marks the beginning of bed (8): 0.25 m greyish brown, 

horizontal bedded fine to medium sand (Sh). Bed 9 is inter-

nally differentiated by layers of white calcic nodules and its 

sedimentary structures: 9a consists of 0.20 m of grey–orange 

ripple-bedded sand (Sr). Above (layer 9b), 0.80 m of grey–

orange, low-angle cross-bedded medium sand (Sl) is deve-

loped. A 10 mm thick layer of white, calcic nodules separates 

it from the topmost, >2.00 m thick part of the section (layer 9c), 

Fig. 1. Stratigraphic position of the Badenbrunn outcrop (modified after Gross et al. 2014; 

international and regional stratigraphic scheme based on Neubauer et al. 2015a).

background image

32

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

which consists of dm-thick sets of grey–orange, ripple- and 

horizontal bedded medium sand (Sr, Sh) with cm-thick layers 

of calcic nodules.

Systematic palaeontology

The fossil material is stored in the collection of the 

Universal museum Joanneum, Department for Geology & 

Palaeontology, Graz (UMJGP). Chronostratigraphic correla-

tions are based on Neubauer et al. (2015b).

Molluscs

The systematic arrangement follows Bouchet et al. (2005), 

Jörger et al. (2010) and Welter-Schultes (2012). Names in the 

synonymy lists are reproduced strictly as originally provided 

by the authors. 

Fig. 2. Location of the Badenbrunn pit. A — Geological 

sketch of the Styrian Basin (modified after Gross et al. 

2007); B — Simplified geological map of the Badenbrunn 

area (modified after Kollmann 1965).

background image

33

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Class: Gastropoda Cuvier, 1795

Subclass: Caenogastropoda Cox, 1960

Order: Littorinimorpha Golikov & Starobogatov, 1975

Superfamily: Truncatelloidea Gray, 1840

Family: Bithyniidae Troschel, 1857

Genus: Bithynia Leach, 1818

Bithynia sp.

Fig. 4 A–B

Material: layer 4b: 3 opercula (UMJGP 211.480).

Dimensions: largest specimen: height: 2.6 mm, diameter: 

1.8 mm.

Remarks:  The drop-shaped outline is characteristic for 

Bithynia. Identification on the species level, however, is diffi-

cult without the shells.

Palaeoecology:  Recent  Bithynia species live in vegetated 

slow moving or standing freshwater (Welter-Schultes 

 

2012).

gravel

medium sand

fine sand
silt

clay

calcic nodules

clay intraclasts

massive, blocky 

parallel bedding

ripple bedding

low-angle cross bedding

cross bedding

convolute bedding

gastropod sample

ostracod sample

gyrogonites

leaves / plant fragments

fructifications

roots

bivalves

gastropods

ostracods

fish scales

fish teeth

mammal remains

2

3

4a

4b

5a

5b

6

7

8

9a

9b

9c

1

cla

y

sand

silt fine

medium coar

se

gra

ve

l

bed number

6

5a

1

4b

9b

 

= 0.50 m

Gt

St

St

Sr

Fl

Fl

Fr

Fm

Fl

Fl

Fl

Sr

Sh

Sr

Sl

Sr, Sh

2 cm

2 cm

0.5 cm

10 cm

10 cm

Fig. 3. Lithological section of the Badenbrunn 

outcrop.

background image

34

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Subclass: Heterobranchia Burmeister, 1837

Clade: Panpulmonata Jörger, Stöger, Kano, Fukuda,  

Knebelsberger & Schrödl, 2010

Order: Hygrophila Férussac, 1822

Superfamily: Planorboidea Rafinesque, 1815

Family: Planorbidae Rafinesque, 1815

Subfamily: Ancylinae Rafinesque, 1815

Genus: Ferrissia Walker, 1903

Ferrissia cf. wittmanni (Schlickum, 1964)

Fig. 4 C

cf. 1964 Ancylus wittmanni n. sp. – Schlickum, p. 15, pl. 2, figs. 

36–38.

cf. 2014 Ferrissia wittmanni (Schlickum, 1964) – Harzhauser et al., 

p. 18, pl. 5, figs. 3–4, 13 [cum syn.].

Material: layer 5b: 1 specimen (UMJGP 211.481).

Dimensions: length: 0.60 mm.

Remarks: A single fragment of a Ferrissia is available 

showing a blunt apex with smooth initial part and broad collar 

of prominent radial ribs as described for F. wittmanni by 

Kowalke & Reichenbacher (2005) and Harzhauser et al. 

(2014). This sculpture allows a separation from the wide-

spread middle Miocene Ferrissia deperdita (Desmarest, 

1814), which has faint radial threads (see Harzhauser et al. 

2014; Salvador & Rasser 2014; Salvador et al. 2016; Neubauer 

et al. 2017).

Distribution:  F. wittmanni was originally described from 

the Ottnangian (early Miocene) of Bavaria (Schlickum 1964) 

but was subsequently also documented from middle Miocene 

strata of Hungary and Austria (Kókay 2006; Harzhauser et al. 

2014).

Palaeoecology: Ferrissia species are freshwater inhabitants 

(Welter-Schulte 2012).

Superorder: Eupulmonata Haszprunar & Huber, 1990

Infraorder: Acteophila Dall, 1885

Superfamily: Ellobioidea Adams & Adams, 1855

Family: Carychiidae Jeffreys, 1830

Genus: Carychium Müller, 1773

Carychium sandbergeri Handmann, 1887

Fig. 5 A–F

* 1887 Carychium Sandbergeri Handm. – Handmann, p. 46.

1923 Carychium sandbergeri Handmann – Wenz, p. 1199.

1942 Carychium sandbergeri Handmann – Wenz & Edlauer, p. 84, 

pl. 4, fig. 4.

1977 Carychium (Saraphia) sandbergeri Handmann – Strauch, 

p. 167, pl. 16, figs. 36, 38.

1974b Carychium sandbergeri Handmann – Papp, p. 381, pl. 17, fig. 2.

1978 Carychium (Saraphia) sandbergeri Handmann – Schlickum, 

p. 248, fig. 1.

1981 Carychium (Saraphia) pachychilus Sandberger – Lueger, p. 14, 

pl. 1, figs. 5–8, 9–10.

2004 Carychium sandbergeri Handmann – Harzhauser & Binder, 

p. 14, pl. 6, figs. 1–2, 11, 14.

Material:  layer 4b: 5 specimens and fragments (UMJGP 

211.482).

Dimensions: height: 1.80 mm, diameter: 0.75 mm.

Description: Fusiform, slender shells with 4 convex spire 

whorls. Bulbous protoconch of 0.3 mm diameter with inflated 

initial part and faintly pitted surface. Early teleoconch with 

faint spiral threads close to the lower and upper sutures.  

Later teleoconch whorls with prominent, prosocline growth 

lines. Last whorl high, subcylindric. Aperture with strongly 

thicke 

ned peristome, well-rounded basal lip and broad, 

reflected inner lip. Three prominent lamellae comprising 

a slender and large parietal lamella, a slightly weaker and 

lower columellar lamella and a knob-like palatal lamella. 

Parietal lip well demarcated from base with straight margin, 

forming a distinct angulation with the weakly rounded 

 

inner lip.

Remarks:  As only a few complete specimens were 

 avai lable, and they turned out to be very fragile, the columellar 

area was not opened for closer inspection, although it  

is suggested in Strauch (1977) and Stworzewicz (1999a)  

to be essential for identification. The Badenbrunn 

 

specimens agree with shells of C. sandbergeri from 

 

the Pannonian of the Vienna Basin (e.g., Harzhauser &  

Binder 2004) in sculpture and apertural features. Extremely  

slender morphotypes as described by Strauch (1977) 

 

and Stworzewicz (1999a), however, are  

missing at 

 

Badenbrunn.

Distribution:  Middle to late Miocene in the Carpathian 

Foredeep, Pannonian Basin and Vienna Basin (late Badenian: 

Oppeln (Poland); Sarmatian: Rákosd, Várpalota (Hungary); 

middle–late Pannonian: Richardhof, Eichkogel (Austria), Öcs 

(Hungary); Wenz & Edlauer 1942; Schütt 1967; Harzhauser & 

Binder 2004; Kókay 2006).

Palaeoecology:  Most probably riparian areas and very 

moist habitats, as well as woodlands (Schütt 1967; Harzhauser 

& Binder 2004).

Fig. 4.  A, B:  Bithynia sp.; C:  Ferrissia  cf.  wittmanni (Schlickum, 

1964).

background image

35

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Carychium nouleti Bourguignat, 1857

Fig. 5 G–I

*1857 Carychium nouleti Bourguignat, p. 226.

1923 Carychium nouleti nouleti Bourguignat – Wenz, p. 1195.

1977 Carychium (Saraphia) nouleti Bourguignat – Strauch, p. 162, 

pl. 15, figs. 24–27, pl. 18, fig. 61, pl. 20, fig. 83.

1999a Carychium nouleti Bourguignat – Stworzewicz, p. 269, figs. 

19–22.

2004 Carychium nouleti Bourguignat – Binder, p. 194, pl. 3, fig. 2.

2016 Carychium (Saraphia) nouleti Bourguignat – Salvador et al., 

p. 136, fig. 2U.

2017 Carychium nouleti Bourguignat, 1857 s.l. – Neubauer et al., 

p. 740, fig. 4 A–E, J, O.

Material: layer 4b: 2 specimens (UMJGP 211.483).

Dimensions: height: 1.65 mm, diameter: 0.75 mm.

Description: Stout shell of 4.5 whorls with conical spire 

and deep sutures. Spire whorls strongly convex; last whorl 

very high. Bulbous protoconch 2.5 mm in diameter with 

weakly convex initial part and faintly pitted surface, persis-

ting on the first teleoconch whorl, which bears faint spiral 

threads. Sculpture of teleoconch consisting of moderately 

prominent, densely spaced, prosocline growth lines.  

Ovoid aperture with moderately thickened peristome and 

weakly reflected inner lip; columellar lamella broad and low, 

parietal lamella large and slender, palatal lamella broad, 

knob-like.

Remarks:  The identification remains tentative without 

information on the internal columellar apparatus. At first 

glance, the shells might be identified as stout specimens of  

C. sandbergeri from which they differ in the much weaker 

sculpture, broader aperture and much higher last whorl. In 

addition, the parietal lamella is weaker and has a more adapi-

cal position compared to C. sandbergeri. In overall outline, the 

shells are reminiscent of the late Miocene Carychiopsis 

 berthae (Halaváts, 1903), as described by Strauch (1977), 

Harzhauser & Binder (2004) and Katona et al. (2015) from 

Austria and Hungary. A clear difference, however, is the much 

weaker axial sculpture and the absence of the second parietal 

lamella.

Distribution: C. nouleti appears during the early Miocene 

in France, Austria and Poland and is widespread during the 

middle Miocene with records from Austria, Germany and 

France (Wenz 1923; Stworzewicz 1999a; Binder 2004; 

Salvador et al. 2016). The youngest reliable records are men-

tioned from the late Miocene mammal zone MN9 by 

Stworzewicz (1999a) from Poland.

Palaeoecology:  Most probably riparian areas and very 

moist habitats, as well as woodlands (Schütt 1967).

Infraorder: Stylommatophora Schmidt, 1855

Non-achatinoid clade: sensu Wade et al., 2006

Unassigned “subclade”: Orthuretha Pilsbry, 1900

Superfamily: Pupilloidea Turton, 1831

Family: Vertiginidae Fitzinger, 1833

Subfamily: Gastrocoptinae Pilsbry, 1916

Genus: Gastrocopta Wollaston, 1878

Gastrocopta fissidens (Sandberger, 1863)

Fig. 5 J–O

* 1863 Pupa fissidens sp. nov. – Sandberger, p. 57, pl. 5, figs. 16a–c.

1914 Leucochilus fissidens (Sandberger) – Fischer & Wenz, p. 97, 

pl. 6, fig. 19.

1999b Gastrocopta cf. ferdinandi (Andreae 1902) – Stworzewicz, 

p. 165, fig. 63.

2013 Gastrocopta fissidens (Sandberger, 1863) – Stworzewicz et al., 

p. 188, fig. 4D.

Material: layer 4b: 13 specimens, many fragments (UMJGP 

211.484).

Dimensions: largest specimen: height: 1.80 mm, diameter: 

0.91 mm.

Description: Small, ovate-turreted shell with 3.5 strongly 

convex teleoconch whorls separated by deeply incised sutures. 

Protoconch consisting of 1.2 convex whorls of 0.4 mm dia-

meter with wrinkled microsculpture. Shell surface covered by 

prominent, prosocline growth lines. Last whorl moderately 

high, convex, terminating in subcircular aperture. Peristome 

continuous, broad, weakly reflexed, well detached from base. 

Umbilicus narrow, largely covered by inner lip. Parieto-

angular tooth strongly divided into two bent teeth. A weak 

infraparietal tooth may be largely reduced in some specimens; 

columellar lamella large, subhorizontal; knob-shaped basal 

lamella appears deeper in aperture. Three long parietal 

 lamellae, becoming successively smaller adapically.

Remarks:  The species is characterized by its strongly 

 convex whorls and the bifid parieto-angular tooth. Both 

 features allow a separation from the similar middle and late 

Miocene  Gastrocopta ferdinandi (Andreae, 1902) and 

 

G. serotina sensu Stworzewicz et al. (2013). Wenz (1923, 

p. 930) doubted, that the Sarmatian specimens from Poland are 

conspecific with the Oligocene and early Miocene G. fissidens 

and suggested a relation with G. obstructa (Sandberger, 1875), 

which however is higher and more cylindrical.

Distribution: The oldest records of G. fissidens derive from 

the Oligocene of Germany, where it is also frequently recorded 

from lower Miocene sites (Wenz 1923). In Poland, this species 

is recorded from the latest early to middle Miocene (mammal 

zones MN5 to MN7/8) by Stworzewicz (1999b) and 

Stworzewicz et al. (2013). A smaller morphotype was described 

as Gastrocopta fissidens infrapontica by Wenz (1927) from the 

late Miocene (early Pannonian) of the Vienna Basin.

Palaeoecology:  Recent  Gastrocopta are found in meso-

phytic and swamp forests (Stworzewicz et al. 2013).

Family: Vertiginidae Fitzinger, 1833

Subfamily: Nesopupinae Steenberg, 1925

Genus: Negulopsis Nordsieck, 2014

Negulopsis suturalis (Sandberger, 1858)

Fig. 5 P–R

* 1858 Pupa suturalis A. Braun – Sandberger, p. 54, Pl. 6, figs. 

2–2a.

background image

36

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

1919 Negulus suturalis gracilis n. var. – Gottschick & Wenz, p. 9, 

pl. 1, figs. 11–13.

1981 Negulus suturalis gracilis Gottschick u. Wenz – Lueger, p. 18, 

pl. 2, figs. 2a–b.

2004 Negulus gracilis Gottschick & Wenz – Harzhauser & Binder, 

p. 18, pl. 6, figs. 9–10.

2008 Negulus gracilis Gottschick & Wenz – Harzhauser et al., p. 50, 

fig. 5.4.

2013 Negulus suturalis (Sandberger, 1858) – Stworzewicz et al., 

p. 191, fig. 4L.

2014 Negulus suturalis (Sandberger, 1858) – Harzhauser et al., 

p. 854, figs. 8K–N.

2015 Negulopsis suturalis (Sandberger, 1858) – Harzhauser et al., 

p.29, pl. 5, figs. 5–6.

Material:  layer 4b: 1 specimen, 1 aperture fragment 

(UMJGP 211.485).

Dimensions: height: 1.70 mm, diameter: 0.80 mm.

Remarks:  This widespread species was described and 

 discussed in detail recently by Stworzewicz et al. (2013) and 

Harzhauser et al. (2014, 2015). We follow these authors and 

especially Stworzewicz (1999b) who treat the late Miocene 

Negulopsis gracilis (Gottschick & Wenz, 1919) as a subjec-

tive junior synonym of N. suturalis. The alleged morphologi-

cal features characterizing N. gracilis (smaller size and slender 

shape) are also observed in various early and  middle Miocene 

populations of N. suturalis.

Distribution: N. suturalis is known from the Oligocene of 

Germany, the early Miocene of Germany, Czech Republic, 

Poland, Austria, Hungary and the middle Miocene of Poland, 

Hungary and Austria (Stworzewicz 1999b; Kókay 2006; 

Harzhauser et al. 2014). During the late Miocene, it is 

 widespread in Austria, Hungary and Slovakia (Harzhauser  

& Binder 2004). The last occurrence is documented from  

the Messinian of the Po Basin in Italy (Harzhauser et al. 2015).

Palaeoecology: N. suturalis seems to have preferred moist 

habitats in riparian areas.

Unassigned “subclade”

Superfamily: Clausilioidea Gray, 1855

Family: Filholiidae Wenz 1923

Genus: Triptychia Sandberger, 1875

Fig. 5. A–FCarychium sandbergeri Handmann, 1887; G–ICarychium nouleti Bourguignat, 1857; J–OGastrocopta fissidens (Sandberger, 

1863); P–RNegulopsis suturalis (Sandberger, 1868).

background image

37

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Triptychia sarmatica Kókay, 2006

Fig. 6 D–G

2006 Triptychia leobersdorfensis sarmatica nov. ssp. – Kókay , 

p. 82, pl. 31, figs. 5–7, pl. 41, figs. 6–7.

2006 Triptychia (Triptychia) leobersdorfensis sarmatica Kókay, 

2006 – Schnabel, p. 153, pl. 4, figs. 53–54.

Material:  layer 4b: 11 specimens (UMJGP 211.354, 

211.355, 211.357, 211.361, 211.367, 211.370, 211.372, 

211.382, 211.404, 211.405a, 211.405b).

Dimensions: largest specimen (without initial spire whorls): 

height: 42 mm, diameter: 11 mm.

Description: Moderately large, slender shell consisting of 

>12 teleoconch whorls (due to sediment compaction most 

Fig. 6. A–C: Palaeotachea sylvestrina (Schlotheim, 1820); D–G: Triptychia sarmatica Kókay, 2006; H–I: Archaeozonites costatus Sandberger, 

1875; J: Klikia giengensis Klein, 1846; K–N: Pseudochloritis gigas (Pfeffer, 1930); O–P: Pseudoleacina sp.; Q: Anodonta cf. carinthiaca 

Modell, 1957.

background image

38

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

specimens appear very broad); earliest spire whorls turreted, 

weakly convex; later spire whorls widening, nearly flat. Early 

spire whorls with very prominent, regular and densely spaced 

axial ribs, which become weaker, thinner and slightly wavy on 

later spire whorls and continue on last whorl. Weak, narrow 

spiral incisions may appear in the upper half of the last whorl. 

Adapical tips of the axial ribs produce a weakly crenulate, 

slightly wavy suture. Aperture not wide, drop-shaped; two 

 columellar lamellae with a slightly more prominent upper 

lamella; parietal lamella larger; none of the lamellae reach the 

peristome. Sinulus long, narrow, acute. Columellar lip and 

parietal lip well detached from base.

Remarks: This species is frequently found at Badenbrunn. 

Despite the moderate preservation, its size, characteristic axial 

sculpture and the long, narrow and acute sinulus correspond 

well with T. sarmatica from the Sarmatian of Várpalota in 

Hungary. The late Miocene Triptychia leobersdorfensis (Troll, 

1907) has a shorter and wider sinulus and its axial sculpture is 

less prominent.

Palaeoecology: Triptychia species are considered as indica-

tors for moist and warm forests (Binder 2002, 2008; Schnabel 

2007). 

Unassigned “subclade”: Limacoidea

Superfamily: Limacoidea Lamarck1801

Family: Limacidae Lamarck, 1801

Limacidae gen. et sp. indet.

Fig. 7 A

Material:  layer 4b: 4 specimens and fragments (UMJGP 

211.486).

Dimensions: largest specimen: width: 2 mm, length: 3 mm.

Remarks: The elongate ovoid outline of the calcitic plates 

and their projecting, asymmetrical nucleus support their place-

ment in the Limacidae. For the same reasons as for the 

Milacidae, the authors refrain from identification on species or 

genus level.

Family: Agriolimacidae Wagner, 1935

Agriolimacidae gen. et sp. indet.

Fig. 7 B

Material: layer 4b: 1 specimen (UMJGP 211.487).

Dimensions: width: 1.9 mm, length: 3.2 mm.

Remarks: Based on the outline with the subparallel mar-

gins and the only moderately displaced nucleus, this single 

specimen is placed here in the Agriolimacidae as described by 

Reuse (1983) and Frank (2006). As for all slugs, a more 

detailed identification is impossible.

Superfamily: Zonitoidea Mörch, 1864

Family: Zonitidae Mörch, 1864

Genus: Archaeozonites Sandberger, 1875

Archaeozonites costatus Sandberger, 1875

Fig. 6 H–I

* 1875 Archaeozonites costatus Sandberger – Sandberger, p. 604.

1916 Zonites (Aegopsis) costatus (Sandberger) – Gottschick & 

Wenz, p. 21, pl. 1, figs. 1a–c.

1976 Archaeozonites costatus Sandberger – Schlickum, p. 18, pl. 5, 

fig. 66.

2002 Miozonites costatus (Sandberger) – Binder, p. 168, pl. 1, figs. 

14–16, pl. 3, fig. 8, pl. 7, fig. 3, pl. 8, fig. 4.

2013 Miozonites costatus (Sandberger, 1874) – Stworzewicz et al., 

p. 194, fig. 5L.

2014 Miozonites costatus (Sandberger) – Harzhauser et al., p. 33, pl. 

10, figs. 13–19.

2015a Archaeozonites costatus Sandberger – Salvador et al., p. 259, 

figs. 3Q–R.

2015b Archaeozonites costatus Sandberger, 1875 – Salvador et al., 

p. 206, figs. 2O–P.

2016 Archaeozonites costatus Sandberger, 1875 – Salvador & 

Rasser, p. 49, fig. 2Z.

Material:  layer 4b: 2 specimens (UMJGP 211.383, 

211.396).

Dimensions: Both specimens are deformed, which makes 

precise measurements difficult. 211.383 is vertically com-

pressed: height: 12 mm, diameter: 22 mm. 211.396 shows 

horizontal compression: height: 4 mm, diameter: 15 mm.

Description: Medium sized shells consisting of at least 4 

teleoconch whorls; spire whorls moderately convex with deep 

sutures. Last whorl with weak angulation at mid-whorl, coin-

ciding with the maximum diameter. Sculpture consisting of 

densely spaced and slightly irregular prosocline ribs on spire 

whorls; ribs become slightly sigmoidal on last whorl and fade 

out below angulation. Umbilicus moderately wide and deep. 

Aperture destroyed.

Remarks:  The fragmented (or subadult) specimens are 

rather high spired and have a very strong axial sculpture. In 

these features, they correspond well to the shells described by 

Binder (2004) from the late early Miocene of the Korneuburg 

Basin in Austria. The sculpture is also identical to specimens 

from the early middle Miocene of Styria described by 

Fig. 7. A: Limacidae gen. et sp. indet.; B: Agriolimacidae gen. et sp. 

indet.; C–D: Milacidae gen. sp. indet.

background image

39

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Harzhauser et al. (2014) supporting the identification of the 

poorly preserved material.

Distribution: A widespread species, which appears during 

the late early Miocene and becomes ubiquitous in the middle 

Miocene. Occurrences are documented from Switzerland, 

southern Germany, the North Alpine Foreland Basin (Germany, 

Austria), the Korneuburg Basin (Austria) and the Rein Basin 

(Austria; Wenz 1923; Binder 2002, 2004; Harzhauser et al. 

2014; Salvador & Rasser 2014, 2016; Salvador et al. 2015a). 

The northernmost distribution was described by Stworzewicz 

et al. (2013) from the Sarmatian of Poland. Middle Miocene 

specimens from drillings in Hungary, described by Kókay 

(2006) as “Aegopsis costatus might rather represent another 

species.

Palaeoecology: Moist woodland (Binder 2002; Harzhauser 

et al. 2014).

Superfamily: Parmacelloidea Fischer, 1856

Family: Milacidae Ellis, 1926

Milacidae gen. et sp. indet.

Fig. 7 C–D

Material:  layer 4b: 7 specimens and fragments (UMJGP 

211.488).

Dimensions: largest specimen: width: 3 mm, length: 5 mm. 

Remarks: Based on their symmetrical, calcitic, broad ovoid 

plates with nearly straight sides and a peripheral, convex 

nucleus, we place these specimens in the Milacidae. The iden-

tification of Milacidae species or genera based solely on plates 

is nearly impossible, because diagnostic features of slugs are 

mostly related to soft body anatomy (Wiktor & Likharev 

1979).

Unassigned “subclade”

Superfamily: Helicoidea Rafinesque, 1815

Family: Elonidae Gittenberger, 1979

Genus: Klikia Pilsbry, 1895

Klikia giengensis (Klein, 1846)

Fig. 6 J

* 1846 Helix giengensis – Klein, p. 69, pl. 1, fig. 9.

1911 Klikia giengensis Krauss – Wenz, p. 85, pl. 4, figs. 6–10.

1916 Klikia (Klikia) giengensis (Klein) – Gottschick & Wenz, p. 56.

1923 Klikia (Klikia) giengensis giengensis (Klein) – Wenz, p. 539.

1976 Klikia (Klikia) giengensis (Klein) – Schlickum, p. 16, pl. 4, fig. 58.

2006 Klikia (Klikia) giengensis (Klein) – Kókay, p. 91, pl. 25, fig. 9.

2013 Klikia giengensis (Klein) – Stworzewicz et al., p. 195, fig. 6A.

2014 Klikia giengensis (Klein) – Harzhauser et al., p. 33, pl. 11, figs. 

9–11, 22.

Material:  layer 4b: 1 fragmentary specimen (UMJGP 

211.348b).

Dimensions: about 10 mm diameter. 

Description: A single fragment is available comprising 5 

densely coiled spire whorls with flat spire. Microsculpture 

consisting of a dense pattern of tiny papillae on entire spire. 

Base and aperture are destroyed or covered by sediment.

Remarks:  Despite the fragmentary preservation, the flat 

spire, the tightly coiled spire whorls and the dense pattern of 

papillae are very characteristic for K. giengensis and allow 

a separation from all other species of the genus.

Distribution: This species appears already during the early 

Miocene (Binder 2004) and occurs around the early/middle 

Miocene boundary in France and southern Germany. In the 

Styrian Basin, it is recorded from lower Badenian strata 

(Harzhauser et al. 2014) and is frequently mentioned from  

the middle Miocene Silvana-beds in Germany (Mörsingen, 

Hohenmemmingen, Zwiefaltendorf) (Schlickum 1976). 

Sarmatian occurrences are documented from Várpalota in 

Hungary (Kókay 2006).

Palaeoecology: This species seems to have preferred moist 

woodlands (Harzhauser et al. 2014).

Family: Helicidae Rafinesque, 1815

Genus: Palaeotachea Jooss, 1912

Palaeotachea sylvestrina (Schlotheim, 1820)

Fig. 6 A–C

* 1820 Helicites sylvestrinus – Schlotheim, p. 99.

1923 Cepaea sylvestrina sylvestrina (Schlotheim) – Wenz, p. 690.

1974b Cepaea sylvestrina (Schlotheim) – Papp, p. 391, pl. 19, figs. 

1–5.

2016 Palaeotachea sylvestrina (Schlotheim, 1820) – Höltke & 

Rasser, p. 245, figs. 5.6–5.9, 6.5.

Material:  layer 4b: 8 specimens (UMJGP 211.408, 

211.409a, 211.409b, 211.410, 211.411a, 211.412, 211.416, 

211.418).

Dimensions: largest specimen: height: 15 mm, diameter: 

21 mm.

Description: Ovoid-conical shells comprising 3.5 teleoconch 

whorls and 1.25 smooth and weakly convex protoconch 

whorls. Spire whorls moderately convex with distinct growth 

lines on early whorls and deep sutures; last whorl high, 

strongly convex. Peristome reflexed, distinctly prosocline in 

lateral view. Surface smooth except for growth lines. Colour 

pattern in UV-light consisting of three spiral bands on last 

whorl; the uppermost spiral band occurs slightly above the 

position of the maximum diameter followed by a second one 

slightly below and a third one on the base.

Remarks: All specimens are deformed by sediment com-

paction and the apertures are filled by sediment. Therefore, the 

identification is tentative. Nevertheless, the high spire and 

deep suture allow a separation from the similar Palaeotachea 

silvana (Klein, 1853) (see Höltke & Rasser 2016) and the 

colour pattern agrees with typical P. sylvestrina from the 

Sarmatian of Austria and Hungary (Papp 1974b).

Distribution: Middle Miocene in the North Alpine Foreland 

Basin, Southern Germany and the Vienna Basin spanning 

mammal zones MN6 to MN7/8 (Papp 1974b; Höltke & Rasser 

2016). Early Miocene occurrences, mentioned as Cepaea cf. 

background image

40

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

sylvestrina by Salvador (2013) need confirmation and are not 

listed under this species by Höltke & Rasser (2016). Late 

Miocene occurrences might rather represent P. etelkae 

(Halaváts, 1923) (Lueger 1981).

Palaeoecology: The ecological requirements of this extant 

genus are unknown. Like the recent species of Cepaea, the 

Palaeotachea species seem to have settled a broad range of 

habitats (see Welter-Schultes 2012 for Cepaea ecology).

Genus: Pseudochloritis Boettger, 1909

Pseudochloritis gigas (Pfeffer, 1930)

Fig. 6 K–N

* 1930 Tropidomphalus (Pseudochloritis) gigas – Pfeffer, p. 76.

1957 Tropidomphalus (Pseudochloritis) gigas Pfeffer – Papp, p. 86.

1967 Tropidomphalus (Pseudochloritis) gigas Pfeffer – Schütt, 

p. 219, fig. 23.

1974b Tropidomphalus (Pseudochloritis) gigas Pfeffer – Papp, 

p. 389, pl. 18, figs. 2a–c.

1981 Tropidomphalus (Pseudochloritis) gigas Papp – Lueger, p. 58, 

pl. 12, fig. 4, pl. 13, fig. 4, pl. 16, fig. 5.

2008 Pseudochloritis gigas (Pfeffer) – Binder, p. 174, pl. 2, figs. 

4a–c.

Material:  layer 4b: 10 specimens (UMJGP 211.340, 

211.346, 211.347, 211.348a, 211.380, 211.381, 211.413, 

211.415, 211.417a, 211.417b).

Dimensions: largest specimen: height: 26 mm, diameter: 

33 mm.

Description:  Large helicoid shells with depressed spire; 

protoconch comprising 1.5 feebly convex whorls with delicate 

ribs and tiny papillae. Teleoconch consisting of 3.5 whorls 

with incised suture and wide, high and regularly convex last 

whorl; sculpture consisting of weak prosocline growth lines, 

being typically most prominent close to the upper suture. 

Terminal last whorl bends down abruptly close to the aperture; 

peristome thickened with strongly reflexed lip and slight 

 constriction right before aperture. Deep, moderately wide 

umbilicus partly covered by inner lip. No colour pattern  visible 

in UV-light.

Remarks: This is the largest gastropod species at 

Badenbrunn and can be recognized easily by its depressed 

spire, strongly reflexed peristome and only partly covered 

umbilicus. The Pannonian Pseudochloritis depressus (Wenz, 

1927) is smaller and the spire whorls are less tightly coiled; 

P. richarzi (Schlosser, 1907) is much smaller and has a higher 

spire (see Lueger 1981).

Distribution: P. gigas is widespread during the Sarmatian 

in the North Alpine Foreland Basin, the Vienna Basin, the 

Lavanttal Basin and the Bakony Mountains (Lueger 1981; 

Kókay 2006; Binder 2008). The youngest records derive from 

the early Pannonian of the Vienna Basin (Lueger 1981).

Palaeoecology:  Lueger (1981) proposed vegetated areas 

near creeks or ponds as the habitat of this species; 

 

Binder (2008) and Höltke & Rasser (2015) discussed moist 

habitats.

Achatinoid clade: sensu Wade et al., 2006

Superfamily: Testacelloidea Gray, 1840

Family: Oleacinidae H. & A. Adams, 1855

Genus: Pseudoleacina Wenz, 1914

Pseudoleacina sp.

Fig. 6 O–P

2006 Palaeoglandina gracilis porrecta (Gobanz) 1854 – Kókay, p. 85, 

pl. 32, fig. 8 [non Paleoglandina porrecta (Gobanz, 1854)].

2006 Poiretia ex. aff. taurinensis (Sacco) 1886 – Kókay, p. 86, pl. 

32, fig. 11 [non Palaeoglandina taurinensis (Sacco, 1886)].

Material:  layer 4b: 1 compressed specimen (UMJGP 

211.358), 2 fragments (UMJGP 211.369, 211.375).

Dimensions: UMJGP 211.358 height of fragment: 36 mm, 

diameter (compressed): 15 mm.

Description: The available specimens show an elongated 

ovoid shell, with high, nearly straight-sided spire whorls and 

moderately high, subcylindric last whorl, attaining about 1/3 

of the total height. Suture narrow but deeply incised. Sculpture 

consisting of prominent, densely spaced, slightly irregular, 

weakly prosocline axial ribs. The axial ribs are united in 

an indistinct narrow adsutural cord along the upper suture. 

Peristome thin; aperture drop-shaped; columella slightly 

twisted, anteriorly truncated. Inner lip forming a distinct callus 

attached to the base. 

Remarks:  Kókay (2006) documented this species under 

two names from Sarmatian deposits of Várpalota in Hungary. 

All his specimens are fragmentary and derive from drillings. 

One specimen was identified by Kókay (2006) as 

Palaeoglandina gracilis porrecta (Gobanz, 1854), which 

 differs in its inflated last whorl and much shorter spire (see 

Harzhauser et al. 2014 for discussion on this species). The 

same features allow a clear separation from the Miocene 

Palaeoglandina gracilis (von Zieten, 1832) (see Harzhauser et 

al. 2014 and Salvador et al. 2015a). Another specimen was 

identified by Kókay (2006) as Poiretia ex. aff. taurinensis 

(Sacco, 1886) from which it differs clearly in its fusiform out-

line and much stronger sculpture (see Ferrero-Mortara et al. 

1984 for the syntype of the early Miocene Italian Glandina 

taurinensis Sacco, 1886). Pseudoleacina eburnea (Klein, 

1853), from the middle and late Miocene of Germany and 

Austria, is much smaller and has much more delicate sculpture 

(see Harzhauser & Binder 2004; Salvador et al. 2015a). 

Pseudoleacina rakosdensis (Gaál, 1911), from the Sarmatian 

of Hungary, differs in its slender outline and the axial ribs, 

which fade out below the shoulder. Pseudoleacina kleiniana 

(Pilsbry, 1909), from the middle Miocene of southern Germany, 

differs in its fusiform last whorl (see Schlickum 1976).

The specimen from Badenbrunn and the coeval specimens 

from Hungary seem to represent a new, undescribed species. 

Unfortunately, the preservation of the available material is  

not suitable to serve as type specimens to formally establish 

a new species.

Distribution: This species is known so far only from the 

Sarmatian of Várpalota in Hungary and Badenbrunn in Styria.

background image

41

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Class: Bivalvia Linnaeus, 1758

Subclass: Palaeoheterodonta Newell, 1965

Superfamily: Unionoideae Rafinesque, 1820

Family: Unionidae Rafinesque, 1820

Genus: Anodonta Lamarck, 1799

Anodonta cf. carinthiaca Modell, 1957

Fig. 6 Q

cf. 1957 Anodonta splendens carinthiaca n. ssp. – Modell, p. 98, 

figs. 3–4.

cf. 2001 Anodonta (Anodonta) splendens carinthiaca Modell, 1957 

– Schultz, p. 379, figs. 8a–b.

Material:  layer 5b:  1 specimen and several fragments 

(UMJGP 211.489).

Dimensions: length: 54.9 mm, height: 32.8 mm.

Description:  An articulated specimen with moderately 

fragile valves is available; hinge and umbonal area are 

destroyed. Dorsal margin straight, passing into evenly rounded 

anterior margin. Ventral margin rounded; posterior margin 

subangulate with long, nearly straight posterodorsal area. 

Maximum height in posterior third.

Remarks: Based on the characteristic outline and the rather 

thin shell, the specimen seems to represent an Anodonta carin­

thiaca, which was described by Modell (1957) from the 

Sarmatian of Slovenia. This species was separated by Modell 

(1957) from the mainly early Miocene Anodonta splendens 

(Goldfuss, 1837) because of stratigraphic reasons. A syste-

matic revision of this group, however, is beyond the scope of 

this paper.

Palaeoecology: Anodonta species prefer calm freshwater in 

lakes, and oxbow lakes with muddy or sandy substrate and 

rarely appear in running waters (Welter-Schultes 2012).

Ostracods

Suprageneric classification and terminology of valve 

 characters follow Meisch (2000) and Sames (2011), respec-

tively. Abbreviations: L = left valve, R = right valve; f = female, 

j = juvenile, A-1, ... = juvenile stages; l = length, h = height (both 

in millimetres).

Class: Ostracoda Latreille, 1802

Order: Podocopida Sars, 1866

Superfamily: Cypridoidea Baird, 1845

Family: Candonidae Kaufmann, 1900

Subfamily: Candoninae Kaufmann, 1900

Genus: Fabaeformiscandona Krstić, 1972

Fabaeformiscandona cf. balatonica (Daday, 1894)

Fig. 8. A–C

Material: layer 5b: 4 valves, 28 fragments (UMJGP 

211.490).

Dimensions: Rf: l = 0.98–1.01 mm, h = 0.52–0.54 mm; Lf:  

l = 1.02 mm, h = 0.52– 0.63 mm.

Remarks: At Badenbrunn only few, fragmented female 

valves have been found. They are very similar to F. balatonica 

– at least in a wider sense (e.g., Absolon 1970; Janz 1997; 

Meisch 2000; Pipík 2001; Gross 2004; Fuhrmann & Goth 

2011; Witt 2011; Fuhrmann 2012). The early Karpatian–middle 

Badenian (Central Paratethyan distribution) species Fabae­

formiscandona pokornyi (Kheil, 1964), which could be the 

ancestor of F. balatonica, differs by its more pointed postero-

ventral end (e.g., Witt 1998, 2000; Gross 2006; Reischenbacher 

et al. 2007). Due to the limited material and the still unresolved 

variability of this species(-group), an assured determination is 

not possible (Janz 1997; Meisch 2000).

Distribution: (of F. balatonica s.l.): middle Miocene 

(Badenian) to recent (Pipík 2001; Witt 2011).

Palaeoecology: Extant F. balatonica favours shallow 

ephemeral pools and swampy marginal lake settings but also 

occurs in the littoral of lakes, in rivers and densely vegetated 

rivulets. Potentially, it is able to cope with slightly elevated 

(oligohaline) salinity (Meisch 2000; Pipík 2001; Gross 2004).

Fabaeformiscandona sp. 1

Fig. 8 E–H

Material: layer 5a: 2 valves, 6 fragments; layer 5b: 112 

juvenile valves, 14 fragments (UMJGP 211.491).

Dimensions: Lj: l = 0.61– 0.65 mm, h = 0.31– 0.33 mm; Rj:  

l = 0.61– 0.62mm, h = 0.31– 0.32 mm.

Remarks: These juvenile (?A-2) candoninae shells are the 

most frequent ostracod remains occurring at the Badenbrunn 

locality. Perhaps, these valves represent larval stages of F. cf. 

balatonica (see Gross 2004).

Palaeoecology: See F. cf. balatonica.

Fabaeformiscandona sp. 2

Fig. 8 I

Material: layer 5a: 1 R fragment (UMJGP 211.492).

Dimensions: l = ? mm, h = 0.42 mm.

Remarks: This specimen displays some similarity with 

Fabaeformiscandona fabaeformis (Fischer, 1851), which is, 

however, more elongated (Janz 1997; Fuhrmann 2012). By 

neglecting its significantly larger size, Fabaeformiscandona 

hyalina (Brady & Robertson, 1870) match very well solely 

based on the outline (see Fuhrmann 2012). As the posterior 

end of the shell is missing and only one fragment is available, 

specific identification is unfeasible.

Palaeoecology: See F. cf. balatonica.

Genus: Pseudocandona Kaufmann, 1900

Pseudocandona cf. praecox (Straub, 1952)

Fig. 8 J

Material: layer 5a: 1 Lj, 1 Rj; layer 5b: 1 Rj, 1 fragment 

(UMJGP 211.493).

Dimensions: Rj: l = 0.63 mm, h = 0.32 mm.

background image

42

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Fig. 8. A–C: Fabaeformiscandona cf. balatonica (Daday, 1894) (A: L; B: R; C: R, central muscle scars); 

D: Ilyocypris ?ex gr. gibba (Ramdohr, 

1808), R; 

E–H: Fabaeformiscandona sp. 1 (E: L; F: L; G: R; H: R); I: Fabaeformiscandona sp. 2, R; J: Pseudocandona cf. praecox (Straub, 

1952), R; K–L: Paralimnocythere rostrata (Straub, 1952) (K: L; L: L).

background image

43

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Remarks: These valves probably represent the A-2 stage of 

Pseudocandona species and resemble juveniles of P. praecox 

(e.g., Witt 1998; Schäfer 2005), which is suggested to be 

a junior synonym (Janz 1992, 1997; Witt 2000) or not (Schäfer 

2005, 2011) of Pseudocandona steinheimensis (Sieber, 1905). 

The material available at present does not enable a more pre-

cise identification as well as a decision about this possible 

synonymy (see Janz & Matzke-Karasz 2001; Gross 2004).

Distribution: (of P. praecox): lower Oligocene to late mid-

dle Miocene (Sarmatian) in the Swiss Molasse Basin, North 

Alpine  Foreland  Basin  and  Třeboň  Basin  (see  Witt  1998, 

2000; Schäfer 2005, 2011).

Palaeoecology: Presumably a dweller in stagnant fresh-

waters (ponds and lakes; see Janz 1997).

Family: Ilyocyprididae Kaufmann, 1900

Subfamily: Ilyocypridinae Kaufmann, 1900

Genus: Ilyocypris Brady & Norman, 1889

Ilyocypris ?ex gr. gibba (Ramdohr, 1808)

Fig. 8 D

Material: layer 5b: 3 R, 1 fragment (UMJGP 211.494).

Dimensions: R: l = 0.75mm, h = 0.44 mm.

Remarks: Only few, to some degree fragmented Ilyocypris 

valves are available. This hampers a closer determination by 

considering the variability of Ilyocypris’ shell characters (e.g., 

nodes). Partly species-specific “inner marginal ripplets” are 

not preserved in the current specimens (Janz 1994; Meisch 

2000; Mazzini et al. 2014).

Among Central European Miocene Ilyocypris species, I. gibba 

of Witt (2000; although somewhat more elongated and larger) 

and the valve fragment (Ilyocypris sp.) of Gross (2004) are 

most similar. Equally, extant I. gibba (e.g., Triebel 1941; 

Fuhrmann 2012) resembles the present specimens. Due to the 

lack of knowledge about marginal ripplets neither species 

identification nor a profound allocation to the “gibba”-group 

are possible (Witt 2002).

Distribution: (I. gibba of Witt 2000 and Ilyocypris sp. of 

Gross 2004): early (Ottnangian) to late Miocene (early Panno-

nian) in the North Alpine Foreland Basin and Styrian Basin.

Palaeoecology: Ilyocypris occurs in shallow, fresh to slightly 

saline (oligohaline) water bodies (ponds, lakes, springs, rivers; 

e.g., Morkhoven 1963; Meisch 2000; Karanovic 2012).

Superfamily: Cytheroidea Baird, 1850

Family: Limnocytheridae Klie, 1938

Subfamily: Limnocytherinae Klie, 1938

Genus: Paralimnocythere Carbonnel, 1965

Paralimnocythere rostrata (Straub, 1952)

Fig. 8 K–L

* 1952 Limnocythere rostrata n. sp. – Straub, p. 499–500, pl. C, figs. 

55–56, text-fig. 23.

1965 Limnocythere rostrata Straub 1952 – Lutz, p. 310–311, text-

fig. 26.

1989 Limnocythere rostrata Straub 1952 – Reichenbacher, pl. 3, fig. 13.

2000 Paralimnocythere rostrata (Straub 1952) – Witt, p. 119, pl. 1, fig. 3.

2011 Paralimnocythere rostrata (Straub 1952) – Pirkenseer & 

Berger, p. 32–33, pl. 3, figs. 4a–b.

Material: layer 5a: 1 Lf; layer 5b: 1 Lf, 3 fragments 

(UMJGP 211.495).

Dimensions: Lf: l = 0.56–0.58 mm, h = 0.31 mm.

Remarks: These very fragile, female valves match well 

with P. rostrata in Pirkenseer & Berger (2011). In the latter, 

however, the reticulum forms low, oblique ridges in the antero-

ventral area, which are not developed in the specimens of 

Badenbrunn. Given the variation in ornamentation of this spe-

cies (fide synonyms included by Pirkenseer & Berger 2011), 

this slight difference is suggested to represent intraspecific 

variability. Potentially, Paralimnocythere sp. of Pipík (1998: 

Danube Basin; middle Pannonian) also belongs to P. 

rostrata 

but the provided (tilted) illustration does not allow a detailed 

comparison. The late Miocene (Tortonian) species Para­

limnocythere bouleigensis Carbonnel, 1965 is similar (com-

pare figures of paratypes in Martens 1992) but diverges by its 

more pronounced ventrolateral swelling and pitted surface 

(see also Carbonnel 1969). Paralimnocythere tenera  Sokač, 

1972 from the Pannonian of Croatia is similar but its anterior 

and posterior parts are finely punctuated. Sokač (1972) has not 

mentioned a reticulum, which is clearly visible in our speci-

mens. Unfortunately, the illustrations of this author do not 

allow a detailed examination and a reinvestigation of P. tenera 

is needed to clarify its relation to P. rostrata.

Distribution: (fide Pirkenseer & Berger 2011): Oligocene 

to middle Miocene (Badenian) in the Upper Rhine Graben, 

Swiss Molasse Basin, Aquitaine Basin, North Alpine Foreland 

Basin and North Croatian Basin (see Witt 2000; Hajek-Tadesse 

et al. 2009).

Palaeoecology:  P. rostrata probably inhabits shallow 

 freshwater environments, like ponds, lakes and rivers (see 

Pirkenseer & Berger 2011 and ecological demands summa-

rized for extant Paralimnocythere species in Meisch 2000).

Vertebrates

The taxonomy used here follows Böhme (2010: fishes), 

Prieto et al. (2010: rodents) and Aiglstorfer et al. (2014: 

proboscideans).

Class: Actinopterygii Cope, 1887

Order: Cypriniformes Bleeker, 1859

Family: Cyprinidae Bonaparte, 1832

Subfamily: Cyprininae Bonaparte, 1840

Genus: Palaeocarassius Obrhelová 1970

Palaeocarassius sp.

Fig. 9 A–C

Material:  layer 5b: 2 posterior teeth, 1 pharyngeal tooth 

(UMJGP 211.496; provisional determination M. Böhme). 

background image

44

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Distribution: Early Miocene to late Miocene (late 

Pannonian) in the Central Paratethys (Böhme & Ilg 2003; 

Böhme 2010 and personal comment M. Böhme, 2015).

Palaeoecology: An inhabitant of lacustrine environments 

(Böhme 1999, 2010).

Subfamily: Leuciscinae Howes, 1991

Genus: Palaeoleuciscus Obrhelová 1969

Palaeoleuciscus sp.

Fig. 9 D–E

Material: layer 5b: 7 pharyngeal teeth (UMJGP 211.497; 

provisional determination M. Böhme).

Remarks:  Four teeth have a pointed terminal hook, the 

other three show marks of usage or are fragments. The teeth 

show a wide tooth crown, narrowing towards the shaft.

Distribution:  Early Miocene to late Miocene (middle 

Pannonian) in the Central Paratethys (Böhme & Ilg 2003 and 

personal comment M. Böhme, 2015).

Palaeoecology: Probably an inhabitant of rivers and asso-

ciated backwaters (Böhme 2002).

Class: Mammalia Linne, 1758

Order: Rodentia Bowdich, 1821

Family: Muridae Illiger, 1811

Subfamily: Copemyinae Jacobs & Lindsay, 1984

Genus: Democricetodon Fahlbusch, 1964

Democricetodon sp. nov. (sensu Kälin & Engesser, 2001)

Fig. 9 F

Material: layer 4b: one isolated m1 (UMJGP 211.498; 

 provisional determination J. Prieto).

Remarks:  Democricetodon  sp. nov. (sensu Kälin & 

Engesser, 2001) is a small hamster. The anterocone of the m1 

is round to ovaloid, the long mesolophid reaches the edge of 

the tooth. The molar has two roots (see Prieto et al. 2010). 

Distribution: in Central Europe: late middle Miocene (Sarma-

tian) to late Miocene (middle Pannonian; Gross et al. 2011a).

Palaeo-ecology: A wet and wooded habitat has been sug-

gested for Democricetodon sp. nov. (sensu Kälin & Engesser, 

2001) (Wessels & Reumer 2009; Prieto et al. 2014).

Order: Proboscidea Illiger, 1811

Family: Deinotheriidae Bonaparte, 1845

Genus: Deinotherium Kaup, 1829

Deinotherium levius Jourdan, 1861

Remarks: Mottl (1958) described a tusk, which previously 

was found at Badenbrunn (UMJGP 54.563). She identified it 

as  Deinotherium levius Jourdan,  1861 and suggested a late 

Sarmatian age for the specimen. Nevertheless, Mottl (1958) 

mentioned that Deinotherium species identifications, solely 

based on tusks, are difficult and are not conclusive for strati-

graphic purposes (see Aiglstorfer et al. 2014).

Discussion

Sedimentology

Due to poor outcrop conditions, observations are confined 

to vertical section analysis, which renders an interpretation 

difficult (Bridge 1993). Our tentative facies interpretation is 

based on Miall (1996) and Einsele (2000). More detailed 

 sedimentological investigations are needed, but this is beyond 

our possibilities.

The basal (bed 1), cross-bedded gravels (Gt) with some 

cross-bedded sand lenses (St) indicate sedimentation from 

unidirectional currents and are interpreted as channel-fill or 

transverse bar deposits and remnants of 3-D dunes of a fluvial 

system. Up-section (bed 2), trough cross- and subordinately 

ripple-bedded sands (St, Sr) refer to the development of 3-D 

dunes/ripples. Bed 2 is overlain by silt–fine sand alternations 

(beds 3–4a; Fl), which display obliquely (~30°) oriented 

 bedding planes. Towards the hanging wall (top of layer 4a), 

the bedding gradually converts into subhorizontal stratifi-

cation (layer 4b). The lithofacies of these beds implies deposi-

tion from suspension and low velocity currents, for example, 

in overbank areas or abandoned channels. Due to the upward 

decrease in the dip of bedding planes, deposition by lateral 

accretion (point bar) can be suspected. The massive, blocky 

structured layer 4b (Fr) is rich in terrestrial gastropods and 

notably affected by roots, penetrating up to ~0.8 m into layer 

4a. This indicates incipient pedogenic overprint of suspension 

load deposits in an overbank environment or abandoned 

 channel. Bed 4b is topped by pelitic sediments (bed 5; Fm), 

containing aquatic biota (molluscs, ostracods, fishes). These 

characteristics refer to deposition from suspension in standing 

waters like in floodplain ponds or oxbow lakes.

Above (beds 6–9), the sediments coarsen upwards pointing 

to increased influx of the trunk river. Partly plant-rich 

Fig. 9.  A–C:  Palaeocarassius  sp. (A: pharyngeal tooth; B–C:  

posterior teeth); D–E:  Palaeoleuciscus  sp., pharyngeal teeth; 

 

F: Democricetodon sp. nov. (sensu Kälin & Engesser, 2001), m1.

background image

45

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

sand–silt alternations (beds 6–7; Fl), indicative for inter-

changes of weak traction current and suspension sedimenta-

tion, might be deposited during floodwaters (distal crevasse 

splays?) in a vegetated floodplain. Upper plane bed conditions 

are indicated by the horizontal bedded fine–medium sand (Sh) 

of bed 8, possibly formed during the initial stage of a crevasse 

splay and followed by ripple-bedded sand deposition (layer 

9a; Sr) as the flow diminished. The outcrop-wide, approxi-

mately uniformly low-angle bedded (Sl) layer 9b could repre-

sent a sandy channel fill (crevasse channel?). Cm-thick calcic 

layers of nodules in the ripple- and horizontal bedded layer 9c, 

possibly mark further individual sheet flooding/crevasse splay 

events.

Palaeoecology

In total, 15 gastropod and 1 bivalve species were found at 

the Badenbrunn section. Terrestrial taxa derive mainly from 

the palaeosol-layer 4b, where aquatic gastropods (only 3 

Bithynia-opercula) are almost absent. As discussed in the 

 taxonomic descriptions, most taxa indicate humid woodland, 

which is especially supported by the high number of Triptychia 

specimens. The presence of two Carychium species suggests 

moist bottom conditions, for example, with leaf litter. 

Therefore, the gastropod assemblage points to a vegetated, 

moist environment with nearby water bodies (e.g., poorly 

drained floodplain or abandoned 

channel). A rather moist  forest 

habitat has been assumed for the 

late Sarmatian Democricetodon 

species (Prieto et al. 2010, 2014). 

However, a single tooth is cer-

tainly not significant for palaeo-

environmental reconstructions.

The ostracod fauna of the over-

lying bed 5 gives a clear indica-

tion for a freshwater environment, 

most probably of a shallow pond or 

lake. No indications of any marine 

influx — for example, of  ostracods, 

typical for the Sarmatian Sea — 

have been found. In accordance, 

the recovered fish remains and 

molluscs (Anodonta,  Ferrissia

point to a limnic setting. Although 

more detailed sampling and taxo-

nomic works are necessary concer-

ning the plant material, abun dant 

Glyptostrobus remains in layer 5b 

hint at a swampy, very  shallow 

environment (Averyanov et al. 

2009). Shallow, nutrient-rich lentic 

waters are indicated by the pre-

sence of plentiful occurrences of 

Trapa nuts (Kovar-Eder et al. 

2002, Meller & Hofmann 2004). 

With the gradual return to a more proximal setting in respect 

to the trunk river (beds 6–7), only plant  fragments of the 

 riparian forest (e.g., AlnusSalix) can be found.

Biostratigraphy

The mollusc assemblage indicates a middle Miocene age. 

Taxa, such as Ferrissia cf. wittmanniTriptychia sarmatica

Klikia giengensisArchaeozonites costatus and Palaeotachea 

sylvestrina, are unknown from the late Miocene (Fig. 10).  

The frequent Pseudochloritis gigas persisted into the early 

Pannonian but is most widespread during the Sarmatian. 

Therefore, the stratigraphic ranges of the taxa exclude 

a Pannonian age (late Miocene) and point to a Sarmatian (late 

middle Miocene) age. A Badenian age can be excluded due to 

the presence of P. gigas.

The ostracod fauna found in layer 5, overlying the palaeosol 

(4b), is quite poor both in abundance and in diversity. 

Specimens are largely fragmented and juvenile valves are 

common. Due to these limitations, the biostratigraphic value 

of the ostracod fauna is restricted. However, there are some 

implications, arguing for a middle Miocene, possibly 

Sarmatian age: Fairly speculatively, Fabaeformiscandona 

balatonica s.l. appears in middle Badenian times as a des-

cendant of Fabaeformiscandona  pokornyi and may, hence, 

hint at an age not older than the middle Badenian. 

Fig. 10. Stratigraphic distribution of the Badenbrunn gastropod fauna.

background image

46

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Fabae formiscandona sp. 1 (possibly juveniles of F. cf. 

 balatonica) and Fabaeformiscandona sp. 2 do not offer 

a  biostratigraphic implication to date. Pseudocandona   praecox 

would point to an age not younger than Sarmatian times, 

 however, this claim remains tentative due to ambiguous 

 taxonomic identification of the current material. Due to 

 

similarities with Ottnangian–early Pannonian Ilyocypris 

 species,  Ilyocypris ?ex. gr. gibba vaguely refers to this time 

range. Despite some similarities with Pannonian 

Paralimnocythere species, Paralimnocythere rostrata is 

reported until now only from the Oligocene to the middle 

Miocene.

The isolated tooth of Democricetodon sp. nov. (sensu Kälin 

& Engesser, 2001) provides only a rough biostratigraphic indi-

cation. This species is found in Central Europe during the late 

Sarmatian to the middle Pannonian times.

Palaeocarassius and Palaeoleuciscus teeth have been found 

co-occurring in layer 5b. Both are reported separately through-

out the Miocene, up to the Pannonian. However, coexisting 

records of both are unknown from the late Miocene so far 

(personal comment, M. Böhme, 2015).

In consideration of the hitherto available palaeontological 

indications and the available geologic information, a late 

 middle Miocene (late Sarmatian) age is plausible for the 

Badenbrunn locality.

Conclusions

The Badenbrunn pit exposes fluvial sediments ranging from 

thalweg to point bar and overbank deposits (e.g., poorly 

drained floodplain, floodplain pond or abandoned channel, 

crevasse splay/channel).

A moderately diverse terrestrial gastropod fauna settling 

a moist and vegetated floodplain or abandoned channel has 

been found. Subsequently, this fauna was replaced by 

an aquatic (freshwater) assemblage due to floodplain pond or 

oxbow lake development. 

The recovered mollusc assemblage points to a Sarmatian 

age (late middle Miocene). Ostracod, fish and rodent remains 

support this dating. Based on the geolo gical background 

(marine upper Sarmatian sediments in the footwall; brackish 

lower Pannonian sediments in the hangingwall), a late 

Sarmatian age of this site is most plausible.

Terrestrial deposits, close to the Sarmatian/Pannonian 

boundary in age are virtually undescribed from the Styrian 

Basin and rare in the Central Paratethyan realm as well. For 

example,  the  localities  of  Gratkorn  (~ 42  km  NW)  and 

Mataschen (~14 km E) are slightly older or younger respec-

tively (Fig. 1). Both sites differ notably in their faunal compo-

sition (Gross 2008; Gross et al. 2011a, b, 2014; Harzhauser et 

al. 2008).

Our study contributes to a better understanding of the palae-

obiological and palaeoecological characteristics of the 

Paratethyan hinterland around the middle–late Miocene tran-

sition, which is, however, a period of critical turnovers in 

aquatic and continental ecosystems of Central Europe (e.g., 

Piller & Harzhauser 2005, Böhme et al. 2008, 2011).

Acknowledgements: We thank Madelaine Böhme (Tübingen) 

and Jérôme Prieto (Munich) for determination of the fish and 

rodent material. Thanks go to Norbert Winkler (UMJ, Graz) 

for his assistance during fieldwork and sample preparation. 

For access to the pit, we are grateful to Rupert Niederl (Baden-

brunn). We are thankful to two anonymous reviewers for their 

helpful comments.

References 

Absolon A. 1970: Fossiles Vorkommen von Candona balatonica 

 Daday 1894 (Ostracoda). Mitt. 

Bayer. Staatssamml. Paläontol. 

Hist. Geol. 10, 199–204.

Aiglstorfer M., Göhlich U.B., Böhme M. & Gross M. 2014: A partial 

skeleton of Deinotherium (Proboscidea, Mammalia) from the 

late Middle Miocene Gratkorn locality (Austria). Palaeobio. 

 Palaeoenv. 94, 49–70.

Andreae A. 1902: Zweiter Beitrag zur Binnenconchylienfauna des 

Miocäns von Oppeln in Schlesien. Mitt. Roemer. Mus.

Hildesheim 18, 1–31.

Averyanov L.V., Phan K.L., Nguyen T.H., Nguyen S.K., Nguyen T.V., 

Pham T.D. 2009: Preliminary Observation of Native Glypto­

strobus pensilis (Taxodiaceae) Stands in Vietnam. Taiwania 54, 

191–212.

Binder H. 2002: Die Land- und Süßwassergastropoden aus dem 

 

Karpatium des Korneuburger Beckens. Beitr. Paläont. 27, 

 161–203.

Binder H. 2004: Terrestrial, freshwater and brachyhaline Gastropoda 

from the Lower Miocene deposits of Oberdorf (Styria, Austria). 

Ann. Naturhist. Mus. Wien 105 A, 189–229.

Binder H. 2008: The systematic positions of the genera Pseudo­

chloritis C. Boettger 1909 and Joossia  Pfeffer 1929 (Gastro-

poda: Pulmonata: Heliocoidea: Helicidae). Arch. Molluskenkd. 

137, 167–193.

Böhme M. 1999: Die miozäne Fossil-Lagerstätte Sandelzhausen. 16. 

Fisch- und Herpetofauna - Erste Ergebnisse. N. Jahrb. Paläont. 

Geol. Abh. 214, 487–495.

Böhme M. 2002: New approaches investigating freshwater 

 palaeoecosystems.  Eur

op. Palaeont. Ass.: Workshop on Fresh­

water and Brackish (Palaeo)ecosystems, Fribourg University

23–30.

Böhme M. 2010: Ectothermic vertebrates (Actinopterygii, Allo-

caudata, Urodela, Anura, Crocodylia, Squamata) from the Mio-

cene of Sandelzhausen (Germany, Bavaria) and their implica-

tions for environment reconstruction and palaeoclimate. Paläont. 

Z. 84, 3–41.

Böhme M. & Ilg A. 2003: Database of Lower Vertebrates. fosFAR­

base: http://www.wahre-staerke.com.

Böhme M., Ilg A. & Winklhofer M. 2008: Late Miocene “washhouse” 

climate in Europe. Earth Planet. Sci. Lett. 275, 393–401.

Böhme M., Winklhofer M. & Ilg A. 2011: Miocene precipitation in 

Europe: Temporal trends and spatial gradients. Palaeogeogr. 

 Palaeoclimatol.  Palaeoecol. 304, 212–218.

Bouchet P., Rocroi J.P., Frýda J., Hausdorf B., Ponder W., Valdés Á. 

& Warén A. 2005: Classification and nomenclator of gastropod 

families. Malacologia. 47, 1–2, 1–397.

Bourguignat J.R. 1857: Aménités Malacologiques, LXIV. Du genre 

CarychiumRev. et Mag. de Zool. 2, 9, 5, 209–232.

Brady G.S. & Robertson D. 1870: The Ostracoda and Foraminifera of 

tidal rivers. Part 1. Ann. Mag. Nat. Hist. 4, 6, 1, 1–33.

background image

47

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Bridge J.S. 1993: Description and interpretation of fluvial deposits:  

a critical perspective. Sedimentology 40, 801–810.

Brusina S. 1892: Über die Gruppe der Congeria triangularis.  

Z. dtsch. Geol. Ges. 44, 488–497.

Carbonnel G. 1965: Sur un nouveau genre (Paralimnocythere) et une 

nouvelle espèce (P. bouleigensis) d’ostracodes du Tortonien. 

Arch. Sci. 18, 1, 146–150.

Carbonnel G. 1969: Les Ostracodes du Miocène Rhodanien (systéma-

tique, biostratigraphie, écologique, paéobiologie). Doc. Lab. 

Géol. Fac. Sci. Lyon. 32, 1, 1–228.

Daday J. 1894: Weitere Erkenntnisse zur Balaton-Mikrofauna (Nema-

toda, Rotaoria, Entomostraca) [Ujabb adatok a Balaton mikro-

faunájának ismeretéhez (Nematoda, Rotatoria, Entomostraca)]. 

Math. és Term. Ert. 12, 122–145 (in Hungarian).

Desmarest A.G. 1814: Note sur les Ancyles ou Patelles d’eau douce, 

et particulièrement sur deux espèces de ce genre, non encore 

 décrites, l’une fossile et l’autre vivante. Bull. Soc. Philom. Paris 

3, 18–20.

Einsele G. 2000: Sedimentary Basins: Evolution, Facies, and Sedi-

ment Budget. Springer­Verl., Berlin/Heidelberg, 1–792.

Ferrero-Mortara E., Montefameglio L., Novelli M., Opesso G., Pavia 

G. & Tampieri R. 1984: Katalog von Typen und Exemplaren der 

Bellardi und Sacco Sammlung [Catalogo dei tipi e degli 

 esemplari figurati della collezione Bellardi e Sacco]. Parte II. 

Mus. Reg. Sci. nat. Cat. 7, 1–484 (in Italian).

Fischer S. 1851: Abhandlung über das Genus Cypris und dessen in 

der Umgebung von St. Pétersbourg und von Fall bei Reval 

 vorkommenden  Arten.  Mém. Acad. Imp. Sci. St. Pétersbourg 7, 

127–167.

Fischer K. & Wenz W. 1914: Die Landschneckenkalke des Mainzer 

Beckens und ihre Fauna. Jahrb. Nassau. Ver. Naturkd. 67, 1–154.

Frank C. 2006: Plio-pleistozäne und holozäne Mollusken Österreichs. 

Mitt. Prähist. Komm. Österr. Akad. Wiss. 62, 1–860).

Fuhrmann R. 2012: Atlas quartärer und rezenter Ostrakoden Mittel-

deutschlands. Altenbg. naturwiss. Forsch. 15, 1–320.

Fuhrmann R. & Goth K. 2011: Neue und weitere bemerkenswerte 

Ostrakoden aus dem Quartär Mitteldeutschlands. Palaeontogr. A 

294, 95–201.

Gaál I. 1911: Eine sarmatische Schneckenfauna aus dem ungarischen 

Rákosd [A Hunyadmegyei Rákosd szarmatakorú csigafaunája]. 

Magy. Földt. Intéz. Èvk. 18, 1–108 (in Hungarian).

Gobanz J. 1854: Die fossilen Land- und Süsswasser-Mollusken des 

Beckens von Rein in Steiermark. Sitzb. K. Akad. Wiss., 

math.­naturwiss. Cl. Wien 13, 1, 180–201.

Goldfuss G.A. 1837: Petrefacta Germaniae tam ea, quae in museo 

universitatis regiae Borussicae Fridericiae Wilhelmiae Rhenanae 

servantur quam alia quaecunque in Museis Hoeninghusiano 

Muensteriano aliisque extant ; iconibus et descriptionibus illus-

trata. Abbildungen und Beschreibungen der Petrefacten Deutsch-

lands und der angränzenden Länder. Unter Mitwirkung des 

 Herrn Grafen Georg zu Münster; herausgegeben von August 

Goldfuss. 2 (1834–40), Divisio quarta: Molluscorum Acephali-

corum Reliquiae — Muschelthiere der Vorwelt, I. Bivalvia. Arnz 

& Co., Düsseldorf, 65–286.

Gottschick F. & Wenz W. 1916: Die Sylvanaschichten von Hohen-

memmingen und ihre Fauna. Nachr. Bl. dtsch. malak. Ges. 48, 

17–31, 55–71, 97–113.

Gottschick F. & Wenz W. 1919: Die Land- und Süßwassermollusken 

des Tertiärbeckens von Steinheim am Aalbuch. 1. Die Vertigi-

niden. Nachr. Bl. dtsch. malak. Ges. 51: 1–23.

Gross M. 2004: Zur Ostracodenfauna (Crustacea), Paläoökologie und 

Stratigrafie der Tongrube Mataschen (Unter-Pannonium, Stei-

risches Becken, Österreich). Joannea Geol. Paläont. 5, 49–129.

Gross M. 2006: Mittelmiozäne Ostracoden aus dem Wiener Becken 

(Badenium/Sarmatium, Österreich). Österr. Akad. Wiss., 

Schriftenr. Erdwiss. Komm., spec. issue 1, 1–224.

Gross M. 2008: A limnic ostracod fauna from the surroundings of the 

Central Paratethys (Late Middle Miocene/Early Late Miocene; 

Styrian Basin; Austria). Palaeogeogr. Palaeoclimatol. Palaeo­

ecol. 264, 263–276.

Gross M., Fritz I., Piller W.E., Soliman A., Harzhauser M., Hubmann 

B., Moser B., Scholger R., Suttner T.J., Bojar H.-P. 2007: The 

Neogene of the Styrian Basin - Guide to Excursions. Joannea. 

Geol. Paläont. 9, 117–193.

Gross M., Böhme M. & Prieto J. 2011a: Gratkorn: A benchmark 

 locality for the continental Sarmatian sensu stricto of the Central 

Paratethys. Int. J. Earth Sci. 100, 1496–1913.

Gross M., Piller W.E., Scholger R. & Gitter F. 2011b: Biotic and 

 

abiotic response to palaeoenvironmental changes at Lake 

 Pannons’ western margin (Central Europe, Late Miocene). 

 Palaeogeogr., Palaeoclimatol., Palaeoecol. 312, 181–193.

Gross M., Böhme M., Havlik P. & Aiglstorfer M. 2014: The late 

 Middle Miocene (Sarmatian s.str.) fossil site Gratkorn — the 

first decade of research, geology, stratigraphy and vertebrate 

 fauna.  Palaeobiodivers. Palaeoenvir

on. 94, 5–20.

Hajek-Tadesse V., Belak M., Sremac J., Vrsaljko D. & Wacha L. 

2009: Early Miocene ostracods from the Sadovi section (Mt 

Požeška gora, Croatia). Geol. Carpathica 60, 3, 251–262.

von Halaváts G. 1903: Die Fauna der Pontischen Schichten in der 

Umgebung des Balatonsees. Result. wiss. Erforsch. Balatonsees 

1, 1, 1–80.

von Halaváts G. 1923: Eine baltavarsische Molluskenfauna vom 

oberen See [A baltavarsi felsöpontusi koru Molluszka fauna]. 

Magy. Földt. Intéz. Èvk. 24, 395–407 (in Hungarian).

Handmann P.R. 1887: Die fossile Conchylienfauna von Leobersdorf 

im Tertärbecken von Wien. Verl. Aschendorff’schen Buchhandl.

Münster, 1–55.

Harzhauser M. & Binder H. 2004: Synopsis of the Late Miocene 

 mollusc fauna of the classical sections Richardhof and Eich-

kogel in the Vienna Basin (Austria, Pannonian, MN 9-MN11). 

Arch. Molluskenkd. 133, 1–2, 1–57.

Harzhauser M. & Piller W.E. 2004: Integrated stratigraphy of the 

 Sarmatian (Upper Middle Miocene) in the western Central Para-

tethys. Stratigraphy 1, 65–86.

Harzhauser M., Gross M. & Binder H. 2008: Biostratigraphy of 

 Middle Miocene (Sarmatian) wetland systems in an Eastern 

 Alpine intramontane basin (Gratkorn Basin, Austria): the terres-

trial gastropod approach. Geol. Carpathica 59, 1, 45–58.

Harzhauser M., Neubauer T.A., Gross M. & Binder H. 2014: The 

 early Middle Miocene mollusc fauna of Lake Rein (Eastern 

Alps, Austria). Palaeontogr. A 302, 1–71.

Harzhauser M., Neubauer T.A., Georgopoulou E., Esu D., 

 

D’Amico C., Pavia G., Giuntelli P. & Carnevale G. 2015: Late 

Messinian continental and Lago-Mare gastropods from the 

 Tertiary Piedmont Basin, NW Italy. Boll. Soc. Paleontol. Ital. 54, 

1, 1–53.

Höltke O. & Rasser M. 2015: Pseudochloritis insignis — A peculiar 

large land-snail from the Miocene of SW Germany: Taxonomic 

status and census of morphologically related forms. J. Conchol. 

42, 1, 1–12.

Höltke O. & Rasser M. 2016: The Palaeotachea complex (Gastropo-

da: Pulmonata) in the Miocene of SW Germany: A morpho-

metric approach. J. Conchol. 42, 4, 239–256.

Janz H. 1992: Die miozänen Süßwasserostrakoden des Steinheimer 

Beckens (Schwäbische Alb, Süddeutschland). Stutt. Beitr. 

Naturkd. B 183, 1–117.

Janz H. 1994: Zur Bedeutung des Schalenmerkmals „Marginalrip-

pen“ der Gattung Ilyocypris (Ostracoda, Crustacea). Stutt. Beitr. 

Naturkd. B, 206, 1–19.

Janz H. 1997: Die Ostrakoden der kleini-Schichten des miozänen 

Kratersees von Steinheim am Albuch (Süddeutschland). Stutt. 

Beitr. Naturkd. B 251, 1–101.

background image

48

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Janz H. & Matzke-Karasz R. 2001: Holozäne Ostrakoden aus Karbo-

natablagerungen im Bereich der neolithischen Feuchtboden-

siedlung Unfriedshausen (Bayern) als ökologische Indikatoren. 

Mitt. Bayer. Staatssamml. Paläontol. Hist. Geol. 41, 33–63.

Jörger K.M., Stöger I., Kano Y., Fukuda H., Knebelsberger T. & 

Schrödl M. 2010: On the origin of Acochlidia and other enig-

matic euthyneuran gastropods, with implications for the sys-

tematics of Heterobranchia. BMC Evol. Biol. 10, 232, 1–20.

Jourdan C. 1861: Description de restes fossiles de deux grands mam-

mifères constituant deux genres, l’un le genre Rhizoprion de 

l’ordre des Cétecés et du groupe des Delphinoides; l’autre le 

genre Dynocyon de l’ordre des Carnassiers et de la familie des 

Canidés. Ann. Sci. Nat. 16, 369–374.

Kälin D. & Engesser B. 2001: Die jungmiozäne Säugertierfauna vom 

Nebelbergweg bei Nunningen (Kanton Solothurn, Schweiz). 

Schweiz. palaeontol. Abh. 121, 1–61.

Karanovic I. 2012: Recent Freshwater Ostracods of the World. 

Springer, Heidelberg, 1–608.

Katona L., Magyar I., Berta T., Varga A., Sztanó O. 2015: Panno-

nische Molluskenfauna aus zwei Ausgrabungen der Fűzfõ-Bucht 

[Pannóniai  puhatestű  fauna  a  Fűzfői-öböl  környékének  két 

feltárásából]. Földt. Közl. 145, 127–150 (in Hungarian).

Kheil J. 1964: Die Ostrakoden der Mydlovary-Schichtenfolge im süd-

böhmischen Třeboň-Becken. Sbor. Geol. Věd., Geol. 4, 7–46.

von Klein A. 1846: Conchylien der Süsswasserkalkformation Wür-

ttembergs. Jahresh. Ver. vaterl. Nat. kd. Württ. 2, 60–116.

von Klein A. 1853: Conchylien der Süsswasserkalkformation Wür-

ttembergs. Jahresh. Ver. vaterl. Nat. kd. Württ. 9, 203–223.

Kókay J. 2006: Nonmarine mollusc fauna from the Lower and Middle 

Miocene, Bakony Mts, W Hungary. Geol. Hun., ser. Palaeont. 

56, 1–196.

Kollmann K. 1965: Jungtertiär im Steirischen Becken. Mitt. Geol. 

Ges. Wien 57, 479–632.

Kováč  M.,  Baráth  I.,  Harzhauser  M.,  Hlavatý  I.  &  Hudáčková  N. 

2004: Miocene depositional systems and sequence stratigraphy 

of the Vienna Basin. Cour. Forsch.­Inst. Senckenberg 246,  187–212.

Kovar-Eder J., Schwarz J. & Wójcicki J.J. 2002: The predominantly 

aquatic flora from Pellendorf, Lower Austria, Late Miocene, 

Pannonian – a systematic study. Acta Palaeobot. 42, 125–151.

Kowalke T. & Reichenbacher B. 2005: Early Miocene (Ottnangian) 

Mollusca of the Western Paratethys - ontogenetic strategies and 

palaeoenvironments. Geobios 38, 609–635.

Kröll A., Flügel H.W., Seiberl W., Weber F., Walach G. & Zych D. 

1988: Erläuterungen zu den Karten über den prätertiären Unter-

grund des Steirischen Beckens und der Südburgenländischen 

Schwelle. Geol. Bundesanst., Wien, 4 maps.

Lueger J.P. 1981: Die Landschnecken im Pannon und Pont des  Wiener 

Beckens, I. Systematik, II. Fundorte, Stratigraphie, Faunen-

provinzen.  Oesterr. Akad. Wiss. Math.

­Natwiss. Kl., Denkschr. 

120, 1–157.

Lutz A.K. 1965: Jungtertiäre Süßwasser-Ostracoden aus Süddeutsch-

land. Geol. Jahrb. 82, 271–330.

Magyar I., Geary D.H. & Müller P. 1999: Paleogeographic evolution 

of the Late Miocene Lake Pannon in Central Europe. Palaeo­

geogr. Palaeoclimatol. Palaeoecol. 147, 151–167.

Martens K. 1992: A reassessment of Paralimnocythere Carbonnel, 

1965 (Crustacea, Ostracoda, Limnocytherinae), with a descrip-

tion of a new genus and two new species. Bull. Inst. R. Sci. Nat. 

Belg. Biol. 62: 125–158.

Mazzini I., Gliozzi E., Rossetti G. & Pieri V. 2014: The Ilyocypris 

puzzle: A multidisciplinary approach to the study of phenotypic 

variability. Int. Rev. Hydrobiol. 99: 1–14.

Meisch C. 2000: Freshwater Ostracoda of Western and Central 

 Europe. In: Schwoerbel, J. & Zwick, P. (Eds.): Süßwasserfauna 

von Mitteleuropa, 8, 3. Spektrum Akad. Verl., Heidelberg/Berlin, 

1–522.

Meller B. & Hofmann C.-C. 2004: Paläoökologische Interpretation 

von Diasporen- und Palynomorphen-Vergesellschaftungen aus 

obermiozänen Seesedimenten (Mataschen bei Fehring, Oststeier-

mark, Österreich). Joannea Geol. Paläont. 5: 177–217.

Miall A.D. 1996: The Geology of Fluvial Deposits. Springer­Verl.

Berlin/Heidelberg/New York, 1–582.

Modell, H. 1957: Najaden aus dem limnischen Tertiär Kärntens. 

Carinthia 2, 67, 95–100.

Morkhoven van F.P.C.M. 1963: Post-Palaeozoic Ostracoda, their 

morphology, taxonomy, and economic use. Volume 2, Generic 

descriptions. Elsevier Publishing Company, Amsterdam, 1–478.

Mottl M. 1958: Neue Säugetierfunde aus dem Jungtertiär der Steier-

mark. Mitt. Mus. Bergbau, Geol. Tech. Landesmus. „Joanneum“ 

19, 16–41.

Neubauer T.A., Harzhauser M., Kroh A., Georgopoulou E. & Mandic 

O. 2015a. A gastropod-based biogeographic scheme of the 

 European Neogene freshwater systems. Earth­Sci. Rev. 143, 

98–116.

Neubauer T.A., Georgopoulou E., Kroh A., Harzhauser M., Mandic 

O. & Esu D. 2015b: Synopsis of European Neogene freshwater 

gastropod localities: updated stratigraphy and geography. 

 Palaeontol. Electr

on. 18.1.3T, 1–7.

Neubauer T.A., Harzhauser M., Mandic O., Jovanović G. 2017: The 

late  middle  Miocene  non-marine  mollusk  fauna  of  Vračević 

(Serbia): filling a gap in Miocene land snail biogeography. 

 Bulletin of Geoscience, 91, 4, 731–778.

Papp A. 1951: Das Pannon des Wiener Beckens. Mitt. Geol. Ges. 

Wien 39–41, 99–193.

Papp A. 1957: Landschnecken aus dem limnischen Tertiär Kärntens. 

Mitt. naturwiss. Ver. Kärnten 67, 85–94.

Papp A., Marinescu F. & Senes J. 1974a: M5. Sarmatien. Chrono­

stratigr. Neostratotypen, Miozän Zentr. Paratethys 4, 1–707.

Papp A. 1974b: Landschnecken im Sarmatien der Zentralen  Paratethys. 

In: Papp A., Marinescu F. & Senes, J. (Eds.):  Chrono stratigr. 

Neostratotypen, Miozän Zentr. Paratethys 4, 377–395.

Pfeffer G. 1930: Zur Kenntnis tertiärer Landschnecken. Geol. 

Paläont. Abh. 3, 1–230.

Piller W.E. & Harzhauser M. 2005: The Myth of the Brackish Sarma-

tian Sea. Terra Nova, 17, 450-455.

Piller W., Harzhauser M. & Mandic O. 2007: Miocene Central Para-

tethys stratigraphy — current status and future directions. Strati­

graphy 4, 2, 3, 151–168.

Pilsbry H.A. 1909–1910: Caecilioides, Glessula and Partulidae. Man. 

Conchol.Second Ser.: Pulmonata 20, 1–336, Acad. Nat. Sci., 

Philadelphia.

Pipík R. 1998: Salinity changes recorded by ostracoda assemblages 

found in Pannonian sediments in the western margin of the 

 Danube  Basin.  Bull. centr. rech. explor.­prod. Elf­Aquitaine, 

Mém. 20, 167–177.

Pipík R. 2001: Les ostracodes d’un lac ancient et ses paléobiotopes au 

Miocène supérieur: le basin de Turiec (Slovaquie). Université 

Claude­Bernard, Lyon, thesis, 1–337.

Pirkenseer C. & Berger J.P. 2011: Paleogene Ostracoda from the 

southern Upper Rhine Graben: Taxonomy, palaeoecology and 

palaeobiogeography. Palaeontogr. A 295, 1–152.

Prieto J., Böhme M. & Gross M. 2010: The cricetid rodents from 

Gratkorn (Austria, Styria): a benchmark locality for the conti-

nental Sarmatian sensu stricto (late Middle Miocene) in the 

 Central  Paratethys.  Geol. Carpath. 61, 5, 419–436.

Prieto J., Angelone C., Casanovas-Vilar I., Gross M., Hír J., van den 

Hoek Ostende L.W., Maul L.C. & Vasilyan D. 2014: The small 

mammals from Gratkorn: an overview. Palaeobiodivers. 

 Palaeoenviron.  94, 1, 135–162.

Ramdohr F.A. 1808: Über die Gattung Cypris Müll. und drei zu 

 derselben gehörige neue Arten. Mag. neuesten Entd. Naturkd. 

Berlin 2, 83–93.

background image

49

LIFE IN THE FLUVIAL HINTERLAND OF THE LATE SARMATIAN SEA IN THE STYRIAN BASIN (AUSTRIA)

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Reichenbacher B. 1989: Feinstratigraphische Gliederung der Kirch-

berger Schichten (Unter-Miozän) an der Typuslokalität 

Illerkirchberg bei Ulm. Geol. Bavarica 94, 135–177.

Reischenbacher D., Rifelj H., Sachsenhofer R.F., Jelen B., Coric S., 

Gross M. & Reichenbacher B. 2007: Early Badenian paleo-

environment in the Lavanttal Basin (Mühldorf Formation): 

 Evidence from geochemistry and paleontology. Austrian J. 

Earth Sci. 100, 202–229.

Reuse C. 1983: On the taxonomic significance of the internal shell in 

the identification of European slugs of the families Limacidae 

and Milacidae (Gastropoda, Pulmonata). Biol. Jaarb. Dodonaea 

41, 180–200.

Sacco F. 1886: Neue Arten von terrestrischen Mollusken des Tertiärs 

aus den Süß- und Brackwassern des Piemonts [Nuove specie ter-

ziarie di molluschi terrestri, l’acqua dolce e salmastra del 

Piemonte]. Atti soc. ital. sci. nat. 29,  427–476 (in Italian).

Salvador R.B. 2013: The fossil pulmonate snails of Sandelzhausen 

(Early/Middle Miocene, Germany): Ellobiidae, Pupilloidea, and 

Clausilioidea. Paläont. Z. 89, 37–50.

Salvador R.B. & Rasser M.W. 2014: The fossil pulmonate snails of 

Sandelzhausen (Early/Middle Miocene, Germany) (Hygrophila, 

Punctoidea and limacoids). Arch. Molluskenkd. 143, 187–202.

Salvador R.B. & Rasser M.W. 2016: The fossil land and freshwater 

snails of Oggenhausen (Middle Miocene, Germany). Rev. Bras. 

paleont. 19, 41–52.

Salvador R.B., Rasser M.W. & Höltke O. 2015a: Fossil gastropods 

from Miocene Lake Randeck Maar and its hinterland (SW 

 Germany).  N. Jahrb. Geol. Paläont. 277, 251–273.

Salvador R.B., Sach V.J. & Valentas-Romera B.L. 2015b: The fossil 

continental mollusks in the Upper Freshwater Molasse (Middle 

Miocene) of the districts of Biberach, Ravensburg and Neu-Ulm, 

Germany. Rev. bras. paleont. 18, 201–216.

Salvador R.B., Prieto J., Mayr C. & Rasser M.W. 2016: New gastro-

pod assemblages from the Early/Middle Miocene of Riedens-

heim and Adelschlag-Fasanerie, southern Germany. N. Jahrb. 

Geol. Paläont. 279, 127–154.

Sames B. 2011: Glossary of morphologic terms of late Mesozoic non-

marine Ostracoda, relevant to Theriosynoecum Branson 1936 

and Cypridea Bosquet 1852. Micropaleont. 57, 433–454.

Sandberger F. 1858–1863: Die Conchylien des Mainzer Tertiär-

beckens. livr. 1, 1–40, pl.1–5 (1858); livr. 2, 41–72, pl. 6–10 

(1858); livr. 3, 73–112, pl. 11–15 (1859); livr. 4, 113–152, pl. 

16–20; livr. 5, 153–192, pl. 21–25; livr. 6: 193–232, pl. 26–30; 

livr. 7, 233–270, pl. 31–35 (1862); livr. 8, 271–468 (1863), C.W. 

Kreidel, Wiesbaden.

Sandberger F. 1870–1875: Die Land- und Süsswasser-Conchylien der 

Vorwelt. livr. 1, 1–48, pl. 1–4 (1870); livr. 2–3, 49–96, pl. 5–12 

(1870); livr. 4–5, 97–160, pl. 13–20 (1871); livr. 6–8, 161–256, 

pl. 21–32 (1872); livr. 9–10, 257–352, pl. 33–36 (1873); livr. 11, 

353–616 (1875); livr. 12, 617–1000, (1875), C.W. Kreidel

 Wiesbaden.

Schäfer P. 2005: Beiträge zur Ostracoden- und Foraminiferen-Fauna 

der Unteren Süßwassermolasse in der Schweiz und in Savoyen 

(Frankreich). 2. La Chaux (Kanton Waadt, Schweiz). Sencken­

bergiana leth. 85, 1, 95–117.

Schäfer P. 2011: Beiträge zur Ostracoden- und Foraminiferen-Fauna 

der Unteren Süßwassermolasse in der Schweiz und in Savoyen 

(Frankreich). 3. Das Findreuse-Profil (Départment Haute-

Savoie, Frankreich). Zitteliana A. 51, 255–283.

Schlickum W.R. 1964: Die Molluskenfauna der Süßbrackwasser-

molasse Niederbayerns. Arch. Molluskenkd. 93, 1–70.

Schlickum W.R. 1976: Die in der pleistozänen Gemeindekiesgrube 

von Zwiefaltendorf a. d. Donau abgelagerte Molluskenfauna der 

Silvanaschichten. Arch. Molluskenkd. 107, 1–31.

Schlickum W.R. 1978: Zur oberpannonen Molluskenfauna von Öcs, 

I. Arch. Molluskenkd. 108, 245–261.

Schlosser M. 1907: Die Land- und Süsswassergastropoden vom 

 Eichkogel bei Mödling. Nebst einer Besprechung der Gastro-

poden aus dem Miocän von Rein in Steiermark. Jahrb. K. K. 

Geol. Reichsanst. 57, 753–792.

Schlotheim E.F. 1820: Die Petrefaktenkunde auf ihrem jetzigen 

Standpunkte durch die Beschreibung seiner Sammlung verstei-

nerter und fossiler Ueberreste des Thier- und Pflanzenreichs der 

Vorwelt erläutert. Becker, Gotha, 1–438.

Schnabel T. 2006: Die känozoischen Filholiidae Wenz 1923. 

 

Teil 3: Die miozänen Vertreter der Gattung Triptychia. (Gastrop-

oda, Pulmonata, Clausilioidea). Arch. Molluskenkd. 135, 

 

133–203.

Schnabel T. 2007: The Cenozoic Filholiidae Wenz 1923. Part 4:  

The eo- and oligocene species of the genus Triptychia, inclu-

ding remarks on ecology, geo- and stratigraphic distribution of 

the Filholiidae and evolution of the genus Triptychia (Gastro-

poda, Pulmonata, Clausilioidea). Arch. Molluskenkd. 136, 

 25–57.

Schreilechner M.G. & Sachsenhofer R.F. 2007: High Resolution 

 Sequence Stratigraphy in the Eastern Styrian Basin (Miocene, 

Austria). Austrian J. Earth Sci. 100, 164–184.

Schultz O. 2001: Catalogus Fossilium Austriae, Band 1/Teil 1  

(Bivalvia neogenica). Oesterr. Akad. Wiss. Wien, XLVIII + 

1–379.

Schütt H. 1967: Die Landschnecken der untersarmatischen Rissoen-

schichten von Hollabrunn. Arch. Molluskenkd. 96, 199–222.

Sieber E. 1905: Fossile Süßwasser-Ostrakoden aus Würtemberg. 

Jahresh. Ver. vaterl. Naturkd. Württ. 61, 321–346.

Sokač A. 1972: Pannonian and Pontian ostracode Fauna of Mt. Med-

vednica. Palaeont. Jugoslav. 11, 1–140.

Straub E.W. 1952: Mikropaläontologische Untersuchungen im Tertiär 

zwischen Ehingen und Ulm a. d. Donau. Geol. Jahrb. 66, 433–523.

Strauch F. 1977: Die Entwicklung der europäischen Vertreter der 

 Gattung  Carychium O.F. Müller seit dem Miozän. Arch. 

 Molluskenkd.  107, 149–193.

Stworzewicz E. 1999a: Miocene land snails from Belchatów (Central 

Poland), III: Carychiinae (Gastropoda; Pulmonata: Ellobiidae). 

Paläont. Z. 73, 261–276.

Stworzewicz E. 1999b: Miocene land snails from Belchatów (Central 

Poland). IV: Pupilloidea (Gastropoda Pulmonata). Systematic, 

biostratigraphic and palaeoecological studies. Fol. Malacol. 7, 3, 

133–170.

Stworzewicz E., Prisyazhnyuk V.A. & Górka M. 2013: Systematic 

and palaeoecological study of Miocene terrestrial gastropods 

from Zwierzyniec (South Poland). Ann. Soc. Geol. Pol. 83, 

 179–200.

Triebel E. 1941: Zur Morphologie und Ökologie der fossilen Ostra-

coden. Mit Beschreibung einiger neuer Gattungen und Arten. 

Senckenbergiana 23, 4–6, 294–400.

Troll O.R. von 1907: Die pontischen Ablagerungen von Leobersdorf 

und ihre Fauna. Jahrb. Geol. Reichsanst. 57, 33–90.

Welter-Schultes F. 2012: European non-marine molluscs, a guide  

for species identification. Planet Poster Edition, Göttingen, 

1–760.

Wenz W. 1911: Gonostoma  (Klikia) osculum Thom. und ihre Ver-

wandten im mitteleuropäischen Tertiär. Jahrb. Nassau. Ver. 

Naturkd. 64, 75–101.

Wenz W. 1914: II. Paläontologischer Teil. Jahrb. Nassau. Ver. 

Naturkd. 67, 30–154.

Wenz W. 1923–1930: Fossilium Catalogus I: Animalia. Gastropoda 

extramarina tertiaria. 17, 1, 1–352 (1923), 18/2, 353–736  

(1923), 20/3, 737–1068 (1923), 21/4, 1069–1420 (1923), 

 

22/5, 1421–1734 (1923), 23/6, 1735–1862 (1923), 32/7, 

 

1863–2230 (1926), 38/8, 2231–2502 (1928), 40/9, 2503–2886 

(1929), 43/10, 2887–3014 (1929), 46/11, 3015–3387 (1930),  

W. Junk, Berlin.

background image

50

DOUBRAWA, GROSS and HARZHAUSER

GEOLOGICA CARPATHICA

, 2018, 69, 1, 30–50

Wenz W. 1927: Weitere Beiträge zur Fauna der pontischen Schichten 

von Leobersdorf. Senckenbergiana 9, 41–48.

Wenz W. & Edelauer A. 1942: Die Molluskenfauna der oberpon-

tischen Süßwassermergel vom Eichkogel bei Mödling, Wien. 

Arch. Molluskenkd. 74, 82–98.

Wessels W. & Reumer B.M. 2009: Democricetodon and Mega­

cricetodon (Mammalia, Cricetidae) from the Miocene of 

 Sandelzhausen,  Germany.  Paläont. Z. 83, 187–205.

Wiktor A. & Likharev M. 1979: Phylogenetische Probleme bei 

 Nacktschnecken aus den Familien Limacidae und Milacidae 

(Gastropoda, Pulmonata). Malacologia 18, 123–131.

Winkler A. 1927: Über die sarmatischen und pontischen Ablagerun-

gen im Südostteil des steirischen Beckens. Jahrb. Geol. Bundes­

anstalt 77, 393–456.

Witt W. 1998: Die miozäne Fossil-Lagerstätte Sandelzhausen. 14. 

 Ostracoden.  Mitt. Bayer

. Staatssamml. Paläonotol. Hist. Geol. 

38, 135–165.

Witt W. 2000: Süßwasserostracoden der miozänen Vorlandmolasse 

Süddeutschlands.  Mitt. Bayer. Staatssamml. Paläonotol. Hist. 

Geol. 40, 109–151.

Witt W. 2002: Zur Süßwasserostracodenfauna der oligo-miozänen 

Vorlandmolasse Süddeutschlands. Mitt. Bayer. Staatssamml. 

Paläonotol. Hist. Geol. 42, 35–49.

Witt W. 2011: Mixed ostracod faunas, co-occurrence of marine Oligo-

cene and non-marine Miocene taxa at Pınarhisar, Thrace,  Turkey. 

Zitteliana A. 51, 237–254.

von Zieten C.-H. 1830–1832: Die Versteinerungen Württembergs.  

I–VIII, 1–16, 1–12 pl. (1830); 17–32, 13–24 pl. (1831), 33–64, 

25–48 pl. (1832), 65–102, 49–72 pl. (1833), Verlag and Litho­

graphie der Expedition des Werkes unserer Zeit, Stuttgart.