background image


, OCTOBER 2017, 68, 5, 464–478

doi: 10.1515/geoca-2017-0030

Asteriacites and other trace fossils from the Po Formation 

(Visean–Serpukhovian), Ganmachidam Hill, Spiti Valley 

(Himalaya) and its paleoenvironmental significance















Center of Advanced Study in Geology (CAS), Panjab University, Chandigarh 160014, India


Honorary Scientist (Indian National Science Academy), 103, Sector-7, Panchkula (Haryana), India


Czech Academy of Sciences, Institute of Geology, Rozvojová 269, Prague, Czech Republic;

(Manuscript received November 16, 2016; accepted in revised form June 9, 2017)

Abstract: An assemblage of trace fossils comprising Asteriacites stelliformisA. quinquefoliusBiformites insolitus

Helminthoidichnites? isp., Lingulichnus isp., Lockeia siliquariaPalaeophycus tubularisPlanolites isp., Protovirgularia 

isp. A, Protovirgularia isp. B,  Protovirgularia isp. C, Psammichnites isp., Rusophycus isp., and Treptichnus isp. from the 

Po Formation (Visean–Serpukhovian) exposed along the base of Ganmachidam Hill near the village of Chichong, Spiti 

Valley in the Himalaya, is described. Storm beds (tempestites) are highly bioturbated. Sedimentary structures such as 

hummocky cross-stratification (HCS), low-angle planar and trough cross beds, and shallow, slightly asymmetrical gutter 

casts are observed. The overall trace fossil assemblage indicates the presence of upper shoreface to lower shoreface  

Cruziana ichnofacies of an open shelf.

Keywords: Po Formation, Visean–Serpukhovian, Spiti, Trace fossils, Cruziana ichnofacies.  


The trace fossil assemblage reported here derives from the 

Po Formation (Visean–Serpukhovian) cropping out at the base 

of Ganmachidam Hill, close to the Chichong village in the 

Spiti Valley of the Tethyan Himalaya (Figs. 1, 2). The Po  

Formation is exposed in the northwestern (Losar section), 


northern (Lingti Valley) and northeastern (Poh–Kaurik 

 section) parts of the Spiti Valley, forming an arch-like pattern. 

It is not deve loped in the central and southern parts of the  

Spiti Valley and is entirely missing in the adjacent Kinnaur 


The Po Formation constitutes a part of the Kanawar Group 

(Hayden 1904; Bhargava & Bassi 1998), exposed at various 

sites at Poh (old spelling Po), Thabo, Ganmachidam Hill 

(Chichong village, SW of Losar), Takche Nala, Kabjiama 

Nala, upper Lahaul and Zanskar valleys (Hayden 1904; 

Srikantia l981; Gaetani et al. 1986; Bagati 1990; Vannay 1993; 

Garzanti et al. 1994; Bhargava & Bassi 1998). It conformably 

overlies the siliciclastic-carbonate Lipak Formation (Givetian 

to Tournaisian; Draganits et al. 2002) which includes gypsum 

beds in its upper part, particularly at Dhuna Dangse (in the 

vicinity of Takche) and Hurling–Shalkar stretch in the lower 

Spiti Valley (Hayden 1904; Bhargava & Bassi 1998). The Po 

and the overlying Ganmachidam formations are intimately 

related and nowhere developed independently; they are 


either both present or both absent. The absence of the Po–

Ganmachidam Formations in most parts of the Himalaya is 

related to shallowing/regression of the sea initiated during the 

deposition of gypsum in the upper part of the underlying Lipak 

Formation (Bhargava & Bassi 1998). As a consequence, the 

sedimentation of the Po Formation was confined to the distal 

and deeper parts of the erstwhile basin. The southern and 

 central parts not only remained a topographically positive area 

but were also uplifted during the late Carboniferous and con-

tributed to diamictons of the Ganmachidam Formation (?early 

Pennsylvanian–early Asselian). In some parts even the under-

lying Lipak Formation (Givetian–Tournaisian) was also 

eroded; as a result, the Gechang Formation (Asselian–

Sakmarian) and Gungri Formation (Wuchiapingian–early 

Changhsingian) were deposited over the Devonian Muth 

Formation during the Permian transgression (Bhargava & 

Bassi 1998; Fig. 1b). However, Gaetani & Garzanti (1991) and 

Garzanti et al. (1994, 1996) considered that the selective 

development of the Lipak Formation results from the origin of 

complex half-graben structures related to the opening of the 


The Po Formation in the vicinity of its type section at Poh 

village is 600 m thick and contains plant fossils, nautiloids, 

crinoids, bryozoans and other invertebrate fauna (Hayden 

1904; Ranga Rao et al. 1984; Bhargava & Bassi 1998). At 

Thabo (old spelling Tabo), the basal part of the Po Formation 

contains plant fossils which were named as the “Tabo Plant 

Stage” (Hayden 1904). The Po Formation, on the basis of 

 brachiopod and associated fauna, is considered to range from 

Visean to Serpukhovian (Bhargava & Bassi 1998). 

A wide range of depositional settings have been suggested 

for the Po Formation, including shallow marine (Hayden 

background image




, 2017, 68, 5, 464–478

1904; Ranga Rao et al. 1984), shallow inner shelf to 


shoreface with high sediment input (Shanker et al. 1993),  

tide- dominated coastal setting to middle shelf (Garzanti et  

al. 1996), and  middle shelf to upper shoreface (Bhargava & 

Bassi 1998).

Previous workers also reported trace fossils including 

Asteriacites,  Aulichnites,  Gyrochorte,  Phycodes,  Planolites

Rusophycus,  Rhizocorallium and Skolithos from the Po 

Formation (Bhargava & Bassi 1998) but the trace fossils have 

never been subjected to ichnotaxonomic considerations or 

analysed in terms of their paleoenvironmental implications. 

This study presents a fresh collection of trace fossils from 

the Po Formation and includes documentation of 11 ichno-

genera comprising 14 ichnospecies, including resting traces  

of asteroids and ophiuroids (ichnogenus Asteriacites  von 

Schlotheim, 1820) found in the Po Formation (Visean–

Serpukhovian) exposed along the slope of Ganmachidam Hill, 

Spiti region of  northwestern Himalaya. 

Stratigraphic section and lithological details  

Along the Chichong village (the present study section),  

the upper part of the Po Formation (up to 163 m thick) is 

exposed at the base of Ganmachidam Hill (Figs. 1, 2). It com-

prises dark blackish shale, fine-grained siltstone and massive 

to bedded sandstone beds. We measured the lowermost 65 m 

of the section at the base of Ganmachidam Hill which is exten-

sively bioturbated in three specific levels (Fig. 3). The measu-

red section consists of black shales, fine-grained siltstones/

sandstones and medium-grained thickly bedded to massive 

sandstone beds (Fig. 3). The lithological contact between the 

Po Formation and the underlying Lipak Formation is fully 

covered by debris at the base of the measured section. The Po 

Formation is conformably overlain by the Ganmachidam 

Diamictite Formation (?Bashkirian–early Asselian).  

The measured section is subdivided into seven vertically 

stacked upwards-coarsening parasequences (PA to PG), 

 separated by transgressive surfaces (TS1 

to TS6) (Fig. 3). An ideal parasequence  

is sub 

divided into three units (A–C) 


(Fig. 2b). Unit A is represented by trans-

gressive dark shale, B by strongly biotur-

bated alternation of fine-grained sand stone, 

shale and siltstone intervals, and C by 

unbioturbated medium-grained thickly 

bedded sandstone beds. However, in 


TS 2, 3 and 6, Unit A is directly overlain 

by Unit C, indicating a rapid shallowing 

and an abrupt influx of coarser material. 

The parasequences (PA) comprise tem-

pestites composed of prominent shale–

siltstone-thinly bedded fine-grained 

sand stone, and preserve the maximum 

number and diversity of trace fossils.  

TS 6 to 7 are 2.7 to 23 m thick, respec-

tively; the thickness of the parasequences 

decreases in the middle part of the section 

and then increases upward. Bioturbate 

structures were recorded in parasequences 

PA, PE and PG, conspicuously in the tem-

pestite parts. Overall, the frequency and 

diversity of trace fossils decrease upward 

in these parasequences.

Unit A is interpreted to have been depo-

sited in a low-energy setting (offshore).  

Fine-grained sandstone and siltstone beds 

(Unit B) in the lower 12.2 to 22.7 m of  

the section exhibit hummocky cross-

strati fication (HCS) (Fig. 4d,c), low-angle 

planar and trough cross beds (Fig. 4f, g) 

and a shallow, slightly asymmetrical gutter 

cast  at  the  base  of  the  unit  (Fig.  4d, e).  

The gutter cast is square-shaped (i.e., flat-

based), 56 mm deep and 148 mm wide. 

Ripple cross-lamination is the dominant 

Fig. 1. a — simplified geological map of the study area near the Chichong village and 

Ganmachidam Hill in the NW part of the Spiti Basin (modified after Bhargava & Bassi 

1998); b — lithostratigraphic classification scheme of the Po Formation in Spiti region of the 

Tethyan Himalaya (after Bhargava & Bassi 1998).

background image




, 2017, 68, 5, 464–478

internal sedimentary structure in fine-grained sandstone and 

siltstone, although low-angle cross bedding and oscillatory 

cross-lamination are also present (Fig. 4f, g).  The transition 

from offshore mudstone (Unit A) to the hummocky cross-

strati fied fine-grained sandstone–siltstone interval (Unit B) 

indicates a deposition in storm-dominated shoreface. This unit 

is strongly bioturbated in the lowermost parasequence (PA) 

and partially bioturbated in other parasequences (PE and PG). 

The recorded trace fossils include Asteriacites stelliformis,  

A. quinquefolius,  Biformites insolitus,  Helminthoidichnites

isp.,  Lingulichnus  isp.,  Lockeia siliquaria,  Palaeophycus 

tubularis,  Planolites  isp.,  Protovirgularia  isp.  A, Proto­

virgularia ispB, Protovirgularia ispC, Psammichnites isp., 

Rusophycus isp. and Treptichnus isp. Microbial mat structures 

(MISS) found in the lower part of the section are confined  

to interfaces of fine-grained siltstone and sandstone within 

Unit B.

Unit C represents the upper shoreface. Upward in the sec-

tion, the cycles are thinner with a higher proportion of sand 

together with a decrease in the frequency and abundance of 

HCS beds and bioturbation. The abundance of trace fossils in 

the tempestite sequence suggests that the storm flushed not 

only silt/sand, but also nutritive material creating ideal condi-

tions for proliferation of fauna. These parasequences record 

shoreline progradation (cf. van Wagoner et al. 1990) and 

reflect a progressive increase in hydraulic energy, sand content 

and mobility of the substrate which, in turn, controlled the 

 distribution of trace fossils in the stratal packages of the 

Po Formation.

Systematic ichnology

The collected specimens that are described in the following 

chapter are housed in the collection of the Centre of Advanced 

Study in Geology, Panjab University, Chandigarh, India.

Asteriacites von Schlotheim, 1820

Star-shaped burrows consisting of five arms departing from 

a central discoid area and tapering towards the tips, preserved 

as convex hyporelief at the base of hummocky cross-stratified 

sandstone and siltstone interval in the lower and middle part of 

the studied section. High-density (per m


) occurrences are not 

Fig. 2. a — field photograph of the section measured at the base of the Ganmachidam Hill near Chichong village, Spiti region of Northwest 

Himalaya; b —  an ideal upward-coarsening parasequence with sub-environments (Unit: A–C); c — highly bioturbated unit B of the para-

sequence PA; d — transition from parasequence PA to PB. 

background image




, 2017, 68, 5, 464–478

observed but isolated specimens are randomly distributed on 

the sole of HCS beds. Two species of Asteriacites, namely  

A. stelliformis and A. quinquefolius, were identified based on 

morphometric analysis (Fig. 5) (maximum width vs. maxi-

mum length of arm) suggested by Knaust & Neumann (2016). 

These two ichnospecies differ from A. lumbricalis which is 

restricted to imprints with slender and elongated arms 

 emerging from a discoid centre (produced by an ophiuroid). 

Asteriacites is generally interpreted as a resting trace of 

asterozoans, such as sea stars (Asteroidea) and brittle stars 

(Ophiuroidea) and has been reported from shallow marginal- 

marine to deeper sea from the Cambrian to Recent (Seilacher 

1953; Crimes & Zhiwen 1986; West & Ward 1990; Mikuláš 

1992; Mángano et al. 1999; Chen & McNamara 2006; Schatz 

et al. 2013; Baucon & Carvalho 2016). It was originally 

described as a body fossil (Walch 1773). Recently, Schlirf 

(2012) considered Asteriacites as a nomen dubium (conside-

ring the type material of the type ichnospecies is lost) and 

recommended its discontinuation in favour of Heliophycus

Therefore, the taxonomical attri-

butes of the Asteriacites were 

disputed until recently (Knaust 

2012; Schlirf 2012; Paranjape 


et al. 2013; Gurav et al. 2014). 

Rediscovery of the type material 

in the von Schlotheim collection 

and an efficient revision of 


the ichnogenus Asteriacites by 

Knaust & Neumann (2016) 

 justified the validity of Asteria­

cites von Schlotheim, 1820 as 

an  ichno genus. 

Asteriacites stelliformis  

(Miller and Dyer, 1878)

Fig. 6a, d; Fig. 7b, c, e

Material: Approximately one 

third from the overall number of 

76 specimens of Asteriacites 

ispp. documented in the outcrop 

(29 specimens of Asteriacites isp. 

collected) belong to A.  stelli­

formis. The remaining two thirds 

of  Asteriacites isp. belong to 


A.  quinquefolius  or cannot be 

determined on the ichnospecies 


Star-shaped imprints (convex 

hyporeliefs) consisting of rela-

tively short arms. Most speci-

mens bear five arms, but only 

a few specimens show approxi-

mately even angles between the 

neighbouring ones. For a regular 

pentagram, the angle of 72° is 

determined, which is close to that in some specimens (e.g., 

Fig. 6d). Angles measured on the figured specimens (Figs. 6a, d; 

7b, c, e) range from 26° (Fig. 7e) to 120° (Fig. 6a); the diffe-

rence in angles can be understood by movements of the trace-

maker rather than by water currents. The length of arms varies 

between 10 and 50 mm.

Asteriacites  arms sometimes exhibit broad U-shaped or 

chevron-like imbricate ornamentation. Such features are 

attributed to the tube feet / ambulacra activity during the 

 burrowing process (Seilacher 1953).

Asteriacites quinquefolius Quenstedt, 1876 

Fig. 6 b–c, e–f; Fig. 7a, d, f

Material: See the listing of specimens of A. stelliformis

Star-shaped imprints (convex hyporeliefs) composed of 

typi cally five wide arms; width:length ratio of the arms is less 

than 1:2. The ground plan of the specimens varies from 

a nearly regular pentagram (Fig. 7a) to asymmetrical 

Fig. 3. Lithocolumn of the Po 

Formation measured at the 

Chichong village (base 


of the Ganmachidam Hill) 

showing coarsening upward 

parasequences (PA–PG) and 

sub-environments (Unit A–C), 

and distribution of observed 

and recorded trace fossils and 

sedimentary structures.

background image




, 2017, 68, 5, 464–478

Fig. 4. Sedimentary structures in the Po Formation; a — HCS in sandstone (Unit B, parasequence PB), scale = rod is 50 cm; b — rippled surface 

in sandstone (unit C, parasequence PA); c–e — HCS and gutter cast in unit B of parasequence PA; (e) enlargement of c; scale = rod is 100 cm; 

f,g — low-angle planar and trough cross beds preserved as internal structures in bioturbated sandstone and siltstone of unit B of  

Parasequence (PA).

background image




, 2017, 68, 5, 464–478

structures still consisting of five arms (Figs. 6e, 7d). The sur-

face of the arms is typically ornamented by fine chevron-like 

(Fig. 6e) imbricate (Fig. 7d) structures, similarly to that of  

A. stelliformis (described above). In certain specimens, 


some arms (typically one arm) show the width:length ratio 

higher than 1:2 but most arms have the ratio less than 1:2.  

In  such  cases  (Fig.  7d, f),  we  determine  these  specimens  as  

A. quinquefolius

Biformites Linck, 1949

The ichnogenus of Biformites Linck, 1949 was recently 

revised by Schlirf (2012) and Knaust & Neumann (2016) as 

narrow, bedding-parallel, vermiform, hook-shaped or sinuous 

imprints with slightly tapering terminations, unbranched or 

with secondary successive branching, with or without orna-

ment. Knaust & Neumann (2016) erected the ichnofamily 

Biformitidae for imprints resulting from locomotion using 

asterozoan arms, selected Biformites Linck, 1949 as the  

type ichnogenus, and included the other ichnogenera Arcichnus 

Sutcliffe, 1997, Harpichnus Vallon et al., 2015 and 


Pentichnus Maerz et al., 1976 under this family. They also 

stated that  ichnogenera Zhadaichnus Yang and Song, 1985  

and  Ophioichnus Bell, 2004 are junior synonyms of 



Biformites insolitus Linck, 1949

Fig. 8f

Material: Three specimens; all collected.

Narrow (0.2–0.6 cm), short (0.5–2.6 cm), vermiform, 

slightly tapering, straight to curved, bisymmetrically arranged 

sets of transverse, elongate ridges or protuberances preserved 

on lower bedding planes. They can be, considering all aspects 

of morphology, determined as Biformites insolitus; this 


trace fossil is interpreted as imprints of arms  of walking  

ophiuroids (cf. Boyer 1979; Schlirf 2012; Knaust & Neumann 


Helminthoidichnites Fitch, 1850

Simple, horizontal, small, thin, unbranched, non-meande-

ring, straight or curved, more rarely circular trails or burrows 

that commonly display overlap between specimens but lack 

self-overcrossing (Buatois et al. 1998). Helminthoidichnites is 

regarded as a grazing trace probably produced by vermiform 

animals (Buatois et al. 1998).

Helminthoidichnites isp. 

Fig. 8a

Material: Ten specimens observed in the outcrop; three 


Small, mostly straight to slightly curved, smoothly horizontal 

trails displaying some angular turns in their path and preserved 

as positive hyporelief. No lateral grooves or levees have been 

observed. One end of the path of trail displays  circular mounds. 

Diameter of the trace varies from 0.5 to 1.2 mm and the 

 figured/collected trail is 47 mm long. The speci men also 

shows close morphological resemblance to Haplotichnus 

 indianensis  Miller, 1889 recorded from the lower 

Pennsylvanian of Orange County, Indiana (Rindsberg & 

Kopaska-Merkel 2005). However, recently Getty & Bush 

(2017) convincingly illustrated that Haplotichnus indianensis 

Miller, 1889 exhibits bifurcating projections at the bends sim-

ilar to Treptichnus  bifurcus; therefore, they synonymized 

Haplo tichnus with the ichnogenus Treptichnus. Demircan & 

Uchman (2016) considered Haplotichnus indianensis Miller, 

1889 as Gordia indianensis. Our specimens do not exhibit the 

ichnogeneric character of either Treptichnus or Gordia;  

hence they were grouped under the ichnogenus 


Lingulichnus Hakes, 1976

Vertically to obliquely orientated sediment-filled tubes  

with elliptical to sub-circular cross sections (Zonneveld & 

Pemberton 2003). Lingulichnus has been interpreted as 

a dwelling trace of a lingulid brachiopod (Hakes 1976; Szmuc 

et al. 1976; Zonneveld & Pemberton 2003; Zonneveld et al. 

2007; Alonso-Muruaga et al. 2013).

Lingulichnus isp.

Fig. 9j

Material: Two bedding planes with dozens of specimens 

observed in the outcrop and collected.

Circular to elliptical, endichnial, vertically to near-vertically 

orientated sediment-filled structures preserved in full relief. 

They occur as dense assemblages of specimens tightly 

arranged (ca. 10 specimens per 2×2 cm; Fig. 9j). The determi-

nation of these trace fossils as Lingulichnus follows the 

description of Zonneveld & Pemberton (2003). 

Fig. 5. Morphometric analysis of maximum arm length and width of 

the 19 specimens of Asteriacites  von Schlotheim, 1820 recovered 

from basal part of the Po Formation, showing grouping of A. stelli­

formis (As) and A. quinquefolius (Aq). Measurement method adopted 

from Knaust & Neumann (2016).

background image




, 2017, 68, 5, 464–478

Lockeia James, 1879

Lockeia is a cubichnion produced mostly by bivalves 

(Seilacher & Seilacher 1994) in various environments. Lockeia 

is known to occur in a wide range of mostly marine environ-

ments from shallow to deep marine and even in non-marine 

continental deposits (Seilacher 1953; Pickerill 1977; Bromley 

& Asgaard 1979; Crimes et al. 1981; Archer & Maples 1984) 

and considered as a resting trace of bivalves (Seilacher 1953; 

Osgood 1970; Pickerill 1977; Vossler & Pemberton 1988; 

Seilacher & Seilacher 1994) or a dwelling trace (domichnion) 

of suspension feeders (Mángano et al. 2002a).

Lockeia siliquaria James, 1879

Fig. 9 e, f, h, k; Fig. 8c

Material: 15 specimens observed in the outcrop; 7 of them 

were collected.

  Bilaterally  symmetrical,  almond  -shaped,  sandstone-filled 

bodies tapering at both ends to a sharp point, variously orien-

tated,  den sely aggregated (Fig. 9 e), preserved as convex hypo-

reliefs. They are 0.8–1.5 cm long and 0.5–0.8 cm wide. The 

central median ridge or crest is poorly developed or missing.  

Palaeophycus Hall, 1847

Trace fossils of Palaeophycus are open burrows, horizontal, 

slightly sinuous. They are both smooth and ornamented bur-

rows, variable in diameter; the crucial determination features 

are a prominent wall lining and a passive fill (Osgood 1970; 

Alpert 1975; Pemberton & Frey 1982; Fillion & Pickerill 

1990; Stanley & Pickerill 1994; Keighley & Pickerill 1995; 

Jensen 1997). Palaeophycus is interpreted as dwelling struc-

tures of suspension feeders or preda tors (Osgood 1970; 

Pemberton & Frey 1982; Uchman 1995; Tchoumatchenco & 

Uchman 2001; Mángano & Buatois 2003).

Palaeophycus tubularis Hall, 1847

Fig. 9k; Fig. 8a, b, d  

Material: About 20 specimens observed in the outcrop;  

5 of them collected.

Straight to slightly curved, horizontal, undulose, essentially 

horizontal, thinly lined, smooth-walled cylindrical to subcy-

lindrical open burrows preserved as full relief in fine grained 

sandstone and siltstone. Burrow diameters and lengths vary 

from 2 to 8 mm and 30 to 90 mm, respectively. The burrow fill 

is similar to the host rock, typically massive. The burrows 

occur very frequently in most of the rocks. Palaeophycus was 

found in association with Lockeia siliquaria (Fig. 9 k) as well 

as with Helminthoidichnites-type traces (Fig. 8a). One speci-

men of Palaeophycus is preserved as a convex epirelief and 

shows a burrow collapse (Fig. 8a). 

Planolites Nicholson, 1873

Straight or moderately curved, smooth, exceptionally 

branching tunnels of circular outline, parallel to bedding, 

Fig. 6. Resting traces Asteriacites von Schlotheim, 1820 burrowed by sea stars (Asteroidea); basal part of the Po Formation at Chichong 

(Ganmachidam Hill) section (Spiti region, Himalaya), scale bar =1 cm. a — Asteriacites 

 stelliformis,  CAS/LO/2016/-PO-4; b — A. quinque­

folius, CAS/LO/ 2016/-PO-3;  c — A.  quinque folius,  CAS/LO/2016/-PO-15; d — A. stelliformis, CAS/LO/2016/-PO-6; e — A. quinquefolius, 

CAS/LO/2016/-PO-9; f — A. quinquefolius, CAS/LO/   2016/-PO-7.

background image




, 2017, 68, 5, 464–478

filled with material differing from the host rock (



Pemberton & Frey 1982). 

Planolites is a eurybathic, 

extremely facies-crossing ichnogenus and has been interpreted 

as a product of vermiform deposit-feeders (Häntzschel 1975; 

Pemberton & Frey 1982; Frey & Howard 1985, 1990; Fillion 

& Pickerill 1990; Uchman 1995).

Planolites isp.

Fig. 9e, g; Fig.  8e

Material: 16 specimens observed in the outcrop; 5 of them 


Small, simple, unlined, horizontal to slightly inclined,  

rarely branched, straight to curved burrows without a wall.  

The burrows are 6–35 mm long and 1–4 mm wide. One  

of the specimens shows faintly developed transverse 


annulae and irregular morphology with thinning at one end 


8g). This specimen shows some morphological 


aspects of Planolites reinecki (Stanley & Pickerill 1994; 

Uchman 1998; Mángano & Buatois 2003) but differs 


in the absence of both transverse annulae and longitudinal 


Protovirgularia M’Coy, 1850

The ichnogenus Protovirgularia is described as horizontal 

or subhorizontal cylindrical burrows, trapezoidal, almond-

shaped, or triangular in cross section, distinctly or indistinctly 

bilobated, occasionally with oval, mound-like terminations of 

the trace (Pickerill & Narbonne 1995; Uchman 1998; Uchman 

& Gazdzicki 2006; Fernandez et al. 2010). Protovirgularia is 

interpreted as being produced by bivalves (Han & Pickerill 

1994; Seilacher & Seilacher 1994). Several preservational 

variants of Protovirgularia are known (Carmona et al. 2010); 

they are attributed to substrate conditions (Maples & West 

1989; Mángano et al. 1998; Carmona et al. 2010).

Protovirgularia ispA

Fig. 9b

Material: About a dozen specimens of Protovirgularia isp. 

were observed in the outcrop; collected specimens include  

2 specimens of Protovirgularia  isp. A, 2 specimens of 

 Proto virgularia  isp. B, and one specimen of Protovirgularia 

isp. C.

Fig. 7. Resting trace of Asteriacites von Schlotheim, 1820 burrowed by sea star (Asteroidea); basal part of the Po Formation at Chichong 

(Ganmachidam  Hill)  section  (Spiti,  Himalaya),  scale  bar = 1  cm.  a — A. quinquefolius, CAS/LO/2016/-PO-8;  b — A. stelliformis,  

CAS/LO/2016/-PO-1;  c — A. stelliformis, CAS/LO/2016/-PO-14;  d — A. quinquefolius, CAS/LO/2016/-PO-2;  e — A. stelliformis,  

CAS/LO/2016/-PO-13; f — A. quinquefolius, CAS/LO/2016/-PO-19.

background image




, 2017, 68, 5, 464–478

This slightly curved, unbranched, horizontal structure con-

sists of a central furrow flanked by regular closely spaced oval 

lobes or pads, which are well-preserved only on one side of the 

trace (Fig. 9b). The outer margins of some lobes show fine 

striations. The specimen is grouped here under a common 

epirelief preservational variant of Protovirgularia. A similar 

trace from the Vallès-Penedès Basin in NE Spain was described 

as Protovirgularia dichotoma (Gibert & Domènech 2008).

Protovirgularia ispB

Fig. 9h 

An elongated and slightly curved trace, 85 mm long and 

5–6 mm wide, preserved as a positive hyporelief. Chevron-

like lamellar ornamentation is developed but reduced towards 

one of the extremes where Protovirgularia is terminated by 

a  Lockeia-like body. Lockeia siliquaria is almond-shaped, 

smooth, and lacks a well-developed keel and ornamentation.  

It shows a compound trace fossil of the resting trace of  

Lockeia siliquaria and the locomotion trace of Protovirgularia 

(cf. Han & Pickerill 1994). Protovirgularia specimens that 

terminate with Lockeia siliquaria are assigned to 

Protovirgularia rugosa. Ekdale & Bromley (2001) stated that 

L.  siliquaria  represents the place where the bivalve tempo-

rarily stopped for feeding.

Protovirgularia ispC

Fig. 8c

A poorly preserved Protovirgularia isp. with effaced upper 

surface of the specimen. The trace is 13 mm long and 8 mm 

wide, with prominent chevron markings on one side. 

Psammichnites Torell1870 

The ichnogenus Psammichnites Torell 1870 includes a wide 

variety of predominantly horizontal, sinuous to looped, back-

filled traces, characterized by a distinctive median dorsal 

Fig. 8. Trace fossils from basal part of the Po Formation (Visean-Serpukhovian), Spiti Himalaya, India. a — (He) Helminthoidichnites isp.and 

(Pt) Palaeophycus tubularis, CAS/LO/2016/-PO-24; b — (Pal) Palaeophycus tubularis, CAS/LO/2016/-PO-25; c — (Pv) Proto virgularia  isp. C

and (Ls) Lockeia siliquaria, CAS/LO/2016/-PO-28; d — (Pals) Palaeophycus tubularise — (Pl) Planolites isp., CAS/LO/2016/-PO-42;  

f — (Bi) Biformites insolitus, CAS/LO/2016/-PO-48.

background image




, 2017, 68, 5, 464–478

structure (Mángano et al. 2002b). Mángano et al. (2002b) 

revised the Carboniferous Psammichnites and stated that 

Carboniferous  Olivellites  Fenton and Fenton 1937a  and 

Aulichnites Fenton and Fenton 1937b are junior synonyms of 

Psammichnites.  Based on taxonomic revision they further 

stated that Carboniferous Psammichnites specimens can be 

Fig. 9. Trace fossils from basal part of the Po Formation (Visean-Serpukhovian), Spiti Himalaya, India. a — Rusophycus  isp.,  

CAS/LO/2016/-PO-20;  b — Protovirgularia  isp. A, a preservational variant of Protovirgularia, CAS/LO/2016/-PO-21; c — Microbially 

Induced Sedimentary Structures (MISS), probably algal mat, CAS/LO/2016/-PO-33; d — Treptichnus isp., CAS/LO/2016/-PO-29; e — (Pl) 

Planolites isp., and (Ls) Lockeia siliquaria, CAS/LO/2016/-PO-30; f — (Ls) Lockeia siliquaria; g — (Pl) Planolites isp., CAS/LO/2016/-PO-31; 

h — Protovirgularia isp. B, temporary resting site Lockeia siliquaria (Ls) and locomotion trace Protovirgularia (Pv), CAS/LO/2016/-PO-37; 

i — (Ps) Psammichnites isp., CAS/LO/2016/-PO-39; j — (Li) Lingulichnus isp., CAS/LO/2016/-PO-22; k — (Pt) Palaeophycus tubularis, 


background image




, 2017, 68, 5, 464–478

attributed to three ichnospecies, namely, P. plummeri (Fenton 

& Fenton 1937a), P. grumula (Romano & Meléndez 1985), 

and P. implexus (Rindsberg 1994). Psammichnites plummeri is 

the most common Carboniferous ichnospecies and is charac-

terized by a relatively straight, continuous dorsal ridge/groove, 

fine transverse ridges, a wider size range, and a non-looping 

geometric pattern (Mangano et al. 2002b). Psammichnites 

grumula differs from the other ichnospecies of Psammichnites 

by having median dorsal holes or protruding mounds. 

Psammichnites implexus is characterized by its consistently 

narrower size range, subtle backfill structure, and tendency to 

scribble.  Psammichnites  records the feeding activities of 

a subsurface animal using a siphon-like device.

Psammichnites isp.

Fig. 9i

Material: Two specimens observed in the field; one of them 

was collected and measured.

A poorly preserved, nearly straight, smooth, unbranched, 

bilobed ridge with a faintly developed median furrow, pre-

served as a convex epirelief. The trace is 5.1 cm long and 

1.0 cm wide. The specimen is weathered and shows a faint 

meniscate structure; however, the median furrow is clearly 

visible along one part of the specimen. No internal backfill 

structural pattern is visible. The specimen morphologically 

closely resembles Psammichnites plummeri (Fenton & Fenton 

1937c) in its pattern of straight ridges but lacks fine, closely 

spaced transverse ridges (Mángano et al. 2002b). The speci-

men differs from the other bilobate trace of Archaeonassa in 

lacking a broad central flat area between the lobes (Jensen 


Rusophycus Hall, 1852

The ichnogenus of Rusophycus Hall, 1852 refers to a short, 

bilobate, coffee-bean shaped trace fossil, usually with 

a median furrow. The lobes are transversely wrinkled by ante-

rolaterally orientated fine striae (Häntzschel 1975). Paleozoic 

Rusophycus indicates nesting or resting behaviours of trilo-

bites (Osgood 1970). Rusophycus is furthermore interpreted as 

resting traces of arthropods (Bergström 1973; Jensen 1990) 

and notostracan branchiopods (Bromley & Asgaard 1979). 

Rusophycus isp.

Fig.  9a

Material: Three specimens observed in the field; two of 

them were collected.

A butterfly-shaped (anterior and posterior, broad openings), 

relatively shallow, horizontal, bilobate structure with a distinct 

cleft separating two strongly striated lobes. The bilobate struc-

ture is 10 mm wide and 14 mm long, and preserved as positive 

hyporelief in fine- to very fine-grained sandstone. Lobes are 

strongly convex; median furrow deepens and widens towards 

the anterior end of the trace. The scratchings seem to be clearly 

clustered in groups and these groups open (or expand) towards 

the axial area.

Treptichnus Miller, 1889

Treptichnus Miller, 1889 is a burrow consisting of segments 

connected at their ends, each to the next one, characteristically 

but not invariably in a zigzag pattern. Ichnotaxonomy of 

Treptichnus has been discussed in detail by Maples & Archer 

(1987), and Buatois & Mángano (1993). The ichnogenera of 

Plangtichnus and Haplotichnus are junior synonyms of 

Treptichnus (Buatois & Mángano 1993; Getty & Bush 2017).  

Treptichnus is interpreted as feeding structures (fodinichnia) 

produced by vermiform animals or insect larvae (Buatois & 

Mángano 1993; Getty & Bush 2017). 

Treptichnus isp

Fig. 9d

Material: A depicted and described specimen only.

A burrow system consisting of more-or-less straight six to 

seven segments, joined to each other at very blunt angles 

(approximately 160°); other segments are orientated at 

an oblique angle, namely, 20–40°, to the main axis of the trace. 

The trace is 87 mm long; segments are 10–22 mm long and 

4–6 mm wide, preserved in hyporelief. The fill is identical to 

the host rock. 

Microbially induced sedimentary structures (MISS)

Wrinkle structures consisting of ridges surrounding elon-

gated depressions (Fig. 9c) were recorded on the upper bed-

ding plane of a fine-grained sandstone bed in the lower part of 

the section. The ridges are flat and horizontal, slightly curved, 

and interconnected at some places. Microbially induced sedi-

mentary structures (MISS) result from the response of micro-

bial mats to physical sediment dynamics (Lowe 1980; Walter 

et al. 1980; Byerly et al. 1986; Hofmann et al. 1999; Allwood 

et al. 2006, 2007, 2009; Noffke 2009). Wrinkle structures 

(MISS) are found primarily in wave-dominated, low-energy 

shoreface settings (Calner & Eriksson 2011) but also occur in 

a wide range of environmental settings (Hagadorn & Bottjer 

1997, 1999; Pflüger 1999; Bottjer et al. 2000; Noffke et al. 

2002, 2006; Noffke 2009).

Paleoenvironmental significance

The recorded trace fossils of Asteriacites stelliformis,  

A. quinquefolius,  Biformites insolitus,  Helminthoidichnites

isp.,  Lingulichnus  isp.,  Lockeia siliquaria,  Palaeophycus 

tubularis,  Planolites  isp.,  Protovirgularia  isp.  A,  Proto­

virgularia isp. B,  Protovirgularia isp. C, Psammichnites isp., 

Rusophycus isp., and Treptichnus isp. are characteristic for the 

Cruziana ichnofacies.


background image




, 2017, 68, 5, 464–478

This ichnofacies is characterized by the dominance of hori-

zontal traces of mobile organisms and subordinate presence of 

vertical and inclined permanent structures, a wide variety of 

ethologic categories, the dominance of deposit- and detritus- 

feeding traces, a limited participation of suspension feeders 

and predators, and a high ichnodiversity and abundance  


MacEachern & Pemberton 1992; MacEachern et al. 1999; 

Buatois & Mángano 2011). The shallowing-upward, hetero-

lithic interval of interbedded fine-grained sandstone and silt-

stone of the parasequences, highly bioturbated in the lower 

part of the section, is interpreted as deposits from a lower 

shoreface environment. The heterolithic successions of fine-

grained sandstone and siltstone provided a favourable setting 

for the preservation of trace fossils. The dark shale interval at 

the base of the parasequences indicates a transgressive phase 

(offshore setting), followed by a deposition of heterolithic suc-

cessions of fine-grained siltstone and sandstone (lower shore-

face). Higher up in the section, it is followed by coarser, 

thick-bedded sandstone beds indicating an upper shoreface 

setting. The high sediment supply can be related to tectonic 

uplift in adjacent areas. 

Baucon & Carvalho (2016) suggested that Asteriacites-

bearing beds may be considered ichnological proxies for 

marine settings, low bioturbation intensity, shallow tiering, 

high sedimentation rate and/or event-bed deposition, signifi-

cant levels of hydraulic energy, and low predation pressure. 

The presence of hummocky cross stratification, planar and 

trough cross bedding, and traces of Cruziana ichnofacies indi-

cate a paleoenvironment slightly above the fair-weather wave 

base to the storm wave base, in a zone ranging from the lower 

shoreface to the lower offshore setting.

Acknowledgements: BPS is thankful to the University Grant 

Commission (UGC, New Delhi) for providing financial sup-

port within grant No. F.20-1/2012(BSR)/20-8(12)/2012(BSR). 

ONB acknowledges the Indian National Science Academy 

(No. 567-3. 2015) for its financial assistance. The work of RM 

was supported by the RVO67985831 Project of the Institute of 

Geology of the Czech Academy of Sciences. We are thankful 

to the reviewers Gabriela Mángano, Alfred Uchman and 

 Lothar Vallon for constructive reviews of the manuscript.


Alpert S. 1975: Planolites and Skolithos from the Upper Precambrian–

Lower Cambrian White-Inyo Mountains, California. J. Paleontol. 

49, 508-521.

Allwood A.C., Walter M., Kamber B., Marshall C. & Burch I. 2006: 

Stromatolite reef from the early Archaean era of Australia. 

 Nature 441, 714–718.

Allwood A.C., Walter M.R., Burch I.W. & Kamber B.S. 2007: 3.43 

billion year old Stromatolite reef from the Pilbara Craton of 

Western Australia: ecosystem scale insights to early life on 

Earth. Precambrian Res. 158, 198–227.

Allwood A.C., Grotzinger J.P., Knoll A.H., Burch I.W., Anderson 

M.S., Coleman M.L. & Kanik I. 2009: Controls on development 

and diversity of early Archaean Stromatolites. Proc. Natur. 

Acad. Sci. USA 106, 9548–9555.

Archer A.W. & Maples C.G. 1984: Trace-fossil distribution across 

a marine- to nonmarine gradient in the Pennsylvanian of south- 

western Indiana. J. Paleontol. 58, 448–466.

Bagati T.N. 1990: Lithostratigraphy and facies variation in the Spiti 

Basin (Tethys), Himachal Pradesh, India. Himalayan Geol. 1, 


Baucon A. & Carvalho C.N. 2016: Stars of the aftermath: Asteriacites 

beds from the Lower Triassic of the Carnic Alps (Werfen Forma-

tion, Sauris Di Sopra), Italy. Palaios 31, 161–176.

Bell C.M. 2004: Asteroid and ophiuriod trace fossils from lower Cre-

taceous of Chile. J. Palaeontol. 47, 51–66.

Bergström J. 1973: Organization, life and systematics of trilobites. 

Fossils and Strata 2, 1-69.

Bhargava O.N. & Bassi U.K. 1998: Geology of Spiti-Kinnaur 

 Himachal  Himalaya.  Memoirs Geol. Soc. Ind. 124, 1–210.

Bottjer D.J., Hagadorn, J.W., & Dornbos, S.Q.  2000: The Cambrian 

substrate revolution. GSA Today 10, 1–7.

Boyer P.S. 1979: Trace fossil Biformites and Fustiglyphus from the 

Jurassic of New Jersy. Bull. New Jersey Acad. Sci. 24, 73–74.

Bromley R.G. & Asgaard U. 1979: Triassic freshwater ichnocoenoses 

from Carlsberg Fjord, East Greenland. Palaeogeogr. Palaeo­

climatol. Palaeoecol. 28, 39–80.

Buatois L.A. & Mángano M.G. 1993: The ichnotaxonomic status of 

Plangtichnus and TreptichnusIchnos 2, 217–224.

Buatois L.A. & Mángano M.G. 2011: Ichnology: Organism-Substrate 

Interaction in Space and Time. Cambridge University Press

Cambridge, 1–358.

Buatois L.A., Mángano M.G., Maples C.G. & Lanier W.P. 1998: 

 Taxonomic reassessment of the ichnogenus Beaconichnus and 

additional examples from the Carboniferous of Kansas, USA. 

Ichnos 5, 287–302.

Byerly G., Lowe D. & Walsh M. 1986: Stromatolites from the 3300–

3500 Myr Swaziland Supergroup, Barberton Mountain Land, 

South Africa. Nature 319, 489–491.

Calner M. & Eriksson M.E. 2011: The record of microbially induced 

sedimentary structures (MISS) in the Swedish Paleozoic. SEPM 

Spec. Publ. 101, 29–35.

Carmona N., Cuadrado D. & Bournod C. 2010: Biostabilization of 

sediments by microbial mats in a temperate siliciclastic tidal flat, 

Bahia Blanca estuary (Argentina). Sediment. Geol. 237, 95–101.

Chen Z.Q. & McNamara J.R. 2006: End-Permian extinction and 


subsequent recovery of the Ophiuroidea (Echinodermata). 

 Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 321–344.

Crimes T.P. & Zhiwen J. 1986: Trace fossils from the Precambrian–

Cambrian boundary candidate at Meishucuan, Jinning, Yunnan, 

China. Geol. Mag. 123, 641–649.

Crimes T.P., Goldring R., Homewood V., Stuijvenberg J. & Winker 

W. 1981: Trace fossils assemblage of deep-sea fan deposits, 

Gurnigel and Schlierenflysch (Cretaceous-Eocene). Eclogae 

Geol. Helv. 74, 953–995. 

Demircan H. & Uchman A. 2016: Ichnology of prodelta deposits of 

the Mezardere Formation (late Eocene – early Oligocene) in  

the Gökçeada island, western Turkey. Geodinamica Acta 28, 


Draganits E., Mawson R., Talent J.A. & Krystyn L. 2002: Lithostra-

tigraphy, conodont biostratigraphy and depositional environ-

ment of the Middle Devonian (Givetian) to Early Carboniferous 

(Tournaisian) Lipak Formation in the Pin Valley of Spiti (NW 

India). Riv. Ital. Paleont. Stratigr. 108, 7-35.

Ekdale A.A. & Bromley R. 2001: A day and a night in the life of 

a cleft-foot clam: Protovirgularia-Lockeia-Lophoctenium

Lethaia 34, 119–124.

Fenton  C.L. & Fenton M.A. 1937a: Olivellites, a Pennsylvanian snail 

burrow. Amer. Midland Natur. 18, 452–453.

Fenton C.L. & Fenton M.A. 1937b: Archaeonassa: Cambrian snail 

trails and burrows. Amer. Midland Natur. 18, 454–456.

background image




, 2017, 68, 5, 464–478

Fenton C.L. & Fenton M.A. 1937c: Burrows and trails from 


Pennsylvanian rocks of Texas. Amer. Midland Natur. 18, 



Fernandez E.D., Pazos J.P. & Aguirre-Urreta M.B., 2010: Protovirgu­

laria dichotomaProtovirgularia rugosa: an example of a com-

pound trace fossil from the Lower Cretaceous (Agrio Formation) 

of the Neuquén Basin, Argentina. Ichnos 17, 40–47. 

Fillion D. & Pickerill R.K. 1990: Ichnology of the upper Cambrian? 

to lower Ordovician Bell island and Wabana Group of eastern 

Newfoundland Canada. Palaeontographica Canad. 7, 1-119.

Fitch A. 1850. A historical, topographical and agricultural survey of 

County of Washington. Part 2–5. Trans. New York Agricultur. 

Soc. 9, 753-944.

Frey R.W. & Howard J.D. 1985: Trace fossils from the Panther 

 Member, Star Point Formation (Upper Cretaceous), Coal Creek 

Canyon, Utah.  J. Paleontol. 59, 370–404.

Frey R.W. & Howard J.D. 1990: Trace fossils and depositional 

 sequences in a clastic shelf setting, Upper Cretaceous of Utah.  

J. Paleontol. 64, 803–820.

Gaetani M. & Garzanti E. 1991: Multicyclic history of the northern 

margin (NW Himalaya). Amer. Assoc. Petrol. Geolog. Bull. 75, 


Gaetani M., Casnedi R., Fois E., Garzanti E., Jadoul F., Nicora A. & 

Tintori A. 1986: Stratigraphy of the Tethys Himalaya in Zanskar, 

Ladakh. Riv. Ital. Paleont. Stratigr. 91, 443–478. 

Garzanti E., Nicora A. & Tinotori A. 1994: Late Paleozoic strati-

graphy and petrology of the Tinin Chu Group (Manang Central 

Nepal): sedimentary record of Gondwana glaciation and rifting 

of Neo-tethys. Riv. Ital. Paleont. Stratigr.100, 155–194.

Garzanti E., Angiolini L. & Sciunnach D. 1996: The mid-Carboni-

ferous to lowermost Permian succession of Spiti (Po Group and 

Ganmachidam Formation, Tethys Himalaya, Northern India): 

Gondwana glaciation and rifting of Neo-Tethys. Geodinamica 

Acta 9, 78–100.

Getty P.R. & Bush A.M. 2017: On the Ichnotaxonomic Status of 

 Haplotichnus indianensis (Miller, 1889). Ichnos, doi: 10.1080/ 


Gibert J.M. & Domènech R. 2008: Trazasfósiles de nuculoideos 


Protovirgularia) del Miocenomarino de la Cuenca del Vallès-

Penedès. Revista Española Paleontol. 23, 129–138. 

Gurav S.S., Kulkarni K.G., Paranjape A.R. & Borkar V.D. 2014: 


Palaeoenvironmental implications of Middle Jurassic trace 

 fossils from the Jaisalmer Formation, India, with emphasis on 

the ichnogenus Asteriacites lumbricalis von Schlotheim, 1820. 

Annales Societatis Geol. Poloniae 84, 249–257.

Hagadorn J.W. & Bottjer D.J. 1997: Wrinkle structures: microbially 

mediated sedimentary structures in siliciclastic settings at the 

Proterozoic–Phanerozoic transition. Geology 25, 1047–1050.

Hagadorn J.W. & Bottjer D.J. 1999: Unexplored microbial worlds. 

Palaios 14, 1–93.

Hakes W.G. 1976: Trace fossil and depositional environments of four 

clastic units upper Pennsylvanian mega cyclone northeast 

 Kansas.  Univ. Kansas Palaeont. Contrib. 63, 1–46.

Hall J. 1847: Palaeontology of New York, Volume 1. C. van Bent­

huysen, Albany, 1–338. 

Hall J. 1852: Palaeontology of New York, Volume 2. C. van Bent­

huysen, Albany, 1–363. 

Han Y. & Pickerill, R.K. 1994: Taxonomic reassessment of Proto­

virgularia M’Coy1850 with new examples from the Palaeozoic 

of New Brunswick, Eastern Canada. Ichnos 3, 203–212.

Häntzschel W. 1975: Trace fossils and problematica. In: Teichert C. 

(Ed.): Treatise on Invertebrate Paleontology, Part W, Miscellanea 

Supplement 1. Geological Society of America/University of 

 Kansas  Press,  Boulder/Lawrence, W1–W269.

Hayden H.H. 1904: The geology of Spiti with part of Bashahr and 

Rupshu. Mem. Geol. Surv.  Ind. 36, 1–124.

Hofmann H., Grey K., Hickman A. & Thorpe R. 1999: Origin of 3.45 

Gaconiform stromatolites in the Warrawoona Group, Western 

Australia. Geol. Soc. Amer. Bull. 111, 1256–1262.

James U.P. 1879: Description of new species of fossils and remarks 

on some others, from the Lower and Upper Silurian rocks of 

Ohio. The Paleontologist 3, 17–24.

Jensen S. 1990: Predation by early Cambrian trilobites on infaunal 

worms–evidence from the Swedish Mickwitzia Sandstone. 

Lethaia 23, 29–42.

Jensen S. 1997: Trace fossils from the lower Cambrian Mickwitzia 

sandstone, south-central Sweden. Fossils and Strata 42, 



Keighley  D.G. & Pickerill R.K. 1995: The ichnotaxa Palaeophycus 

and  Planolites: historical perspectives and recommendations. 

Ichnos 3, 301–309.

Knaust D. 2012: Trace fossil systematics. In: Knaust D. & Bromley 

R.G. (Eds.): Trace fossils as indicators of sedimentary environ-

ments. Elsevier, Amsterdam, 79–101. 

Knaust D. & Neumann C. 2016: Asteriacites von Schlotheim, 1820 

— the oldest valid ichnogenus name and other asterozoan- 

produced trace fossils. Earth

­Sci. Rev. 157, 111–120.

Linck O. 1949: Lebens-Spurenausdem Schilfsandstein (Mittl. 



Keuper,  km  2)  NW-Württembergs  und  ihre  Bedeutungfür  die 


Bildungs-geschichte der Stufe. Jh. Ver. Vaterl. Naturkd. 

 Württemberg 97–101, 1–100.

Lowe D. 1980: Stromatolites 3400 Myr old from the Archaean of 

Western Australia. Nature 284, 441–443.

M’Coy F. 1850: On some genera and species of Silurian Radiate in 

the collection of the University of Cambridge; Annals and 

 Magazine of Natural Hist. Ser. 2, 270–290.

MacEachern J.A. & Pemberton S.G. 1992: Ichnological aspects of 

Cretaceous shoreface successions and shoreface variability in 

the Western Interior Seaway of North America. In: Pemberton 

S.G. (Ed.): Applications of Ichnology to Petroleum Exploration: 

SEPM Core Workshop 17, Tulsa, 57–84.

MacEachern J.A., Zaitlin B.A. & Pemberton, S.G. 1999: A sharp-

based sandstone of the Viking Formation, Joffre Field, Alberta, 

Canada, criteria for recognition of transgressively incised shore-

face complexes. J. Sediment. Res. 69, 876–892.

Maerz R.H., Kaesler R.L. & Hakes W.G. 1976: Trace fossils from the 

Rock Bluff Limestone (Pennsylvanian, Kansas). The University 

of Kansas Paleontol. Contrib. 80, 1–6.

Mángano M.G. & Buatois L.A. 2003: Rusophycus leifeirikssoni in the 

Campanario Formation: implications to paleobiology, paleo-

ecology and paleoenvironment [

Rusophycus leifeirikssoni en la 

Formación Campanario: Implicancias paleobiológicas, paleo-

ecológicas y paleoambientales]

. In: Buatois L.A. & Mángano 

M.G. (eds.): Ichnology: Towards a convergence between geo-

logy and biology [Icnología: Hacia una convergencia entre 

geología y biología]. Publicación Especial de la Asociación 

 Paleontológica  Argentina  9, 65–84.

Mángano M.G., Buatois L.A., West R.R. & Maples C.G. 1998: Con-

trasting behavioral and feeding strategies recorded by tidal-flat 

bivalve trace fossils from the Carboniferous of eastern Kanas. 

Palaios 13, 335–351.

Mángano M.G., Buatois L.A., West, R.R. & Maples C.G. 1999:  

The origin and paleoecology significance of the trace fossil 

 Asteriacites  in the Pennsylvanian of Kansas and Missouri. 

Lethaia 32, 17–30.

Mángano M.G., Buatois L.A., West R.R. & Maples C.G. 2002a: 

 Ichnology of a Pennsylvanian equatorial tidal-flat the Stull  

Shale Member at Eastern Kansas. Kansas Geol. Surv. Bull. 245, 


Mángano M.G., Buatois L.A. & Rindsberg A. K. 2002b: Carboni-

ferous Psammichnites: systematic re-evaluation, taphonomy and 

autecology. Ichnos 9, 1–22.

background image




, 2017, 68, 5, 464–478

Maples C.G. & Archer A.W. 1987: Redescription of early Pennsyl-

vanian trace-fossil holotypes from the nonmarine Hindostan 

Whetstone beds of Indiana. J. Paleontol. 61, 890-897.

Maples C.G. & West R.R. 1990: Lockeia, not Pelecypodichnus.  

 J. Paleontol. 63, 694-696.

Mikuláš R. 1992: The ichnogenus Asteriacites: paleoenvironmental 

trends. Věst. Čes. geol. Úst. 67, 423–433.

Miller S.A. & Dyer, C.B. 1878: Contributions to Palaeontology, 2. 

Cincinnati, Ohio (Private Publication), 1–11. 

Miller S.A. 1889: North American geology and paleontology for the 

use of amateurs, students and scientists. Western Methodist Book 

Concern, Cincinnati, Ohio,  1–664.

Muruaga P.J.A., Buatois L.A. & Limarino C.O. 2013:  Ichnology of 

the Late Carboniferous Hoyada Verde Formation of western 

 Argentina: Exploring postglacial shallow-marine ecosystems of 


.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 


Nicholson H.A. 1873: Contributions to the study of the errant anne-

lids of the older Palaeozoic rock. Proc. Royal Soc. London 21, 


Noffke N. 2009: The criteria for the biogeneicity of microbially in-

duced sedimentary structures (MISS) in Archean and younger, 

sandy deposits. Earth­Sci. Rev. 96, 173–180.

Noffke N., Hazen R.M. & Nhleko N. 2002: Earth’s earliest microbial 

mats in a siliciclastic marine environment (2.9 Ga) Mozaan 

Group, South Africa). Geology 31, 673–676.

Noffke N., Beukes N., Gutzmer J. & Hazen R., 2006. Spatial and 

temporal distribution of microbially induced sedimentary struc-

tures: a case study from siliciclastic storm deposits of the 2.9 Ga 

Witwatersrand Supergroup, South Africa. Precambrian Res. 

146, 35–44.

Osgood R.G. 1970: Trace fossils of the Cincinnati area. Palaeontogr. 

Amer. 6, 281–444.

Paranjape A.R., Kulkarni K.G. & Gurav S.S. 2013: Significance of 

Lockeia and associated trace fossils from the Bagh Member, 

Jaisalmer Formation, Rajasthan. J. Earth Syst. Sci. 122, 


Pemberton S.G. & Frey R.W. 1982: Trace fossil nomenclature  

and the Planolites­Palaeophycus dilemma. J. Paleontol. 56, 


Pflüger F. 1999. Matground structures a and Redox facies. Palaios 14, 


Pickerill R.K. 1977: Trace fossils from the Upper Ordovician 

 (Caradoc) of the Berwyn Hills, Central Wales. Geol. J. 12,  


Pickerill R.K. & Narbonne G.M. 1995: Composite and compound 

ichnotaxa: a case example from the Ordovician of Quebec, 

 eastern  Canada.  Ichnos 4, 53–69.

Quenstedt F.A. 1876: Petrefaktenkunde Deutschlands. 4. Die Aste-

riden und Encriniden nebst Cysti und Blastoideen. Fues‘s, 

Leipzig, 1–742.

Ranga Rao A., Dhar C.L., Ram J. & Shah S.K. 1984: Contribution to 

the stratigraphy of Spiti. Himalayan Geol. 12, 98–112.

Rindsberg A.K. 1994: Ichnology of the Upper Mississippian Hartselle 

Sandstone of Alabama, with notes on other Carboniferous for-

mations. Geol. Surv. Alabama Bull.158, 1–107.

Rindsberg A.K. & Kopaska-Merkel D.C. 2005: Treptichnus  and 

 Arenicolites from the Steven C. Minkin Palaeozoic footprint site 

(Langsettian, Alabama, USA). In: Buta R.J., Rindsberg A. K. & 

Kopaska-Merkel D.C. (Eds): Pennsylvanian Footprints in the 

Black Warrior Basin of Alabama. Alabama Paleontol. Soc. 

Monogr. 1, Alabama, 121–141.

Romano M. & Meléndez B. 1979: An arthropod (Merostome) ichno-

coenoses from the Carboniferous of northwest Spain. Compte 

Rendu Neuvième Congrès International de Stratigraphie et de 

Gèologie du Carbonifère, 317–325.

Schatz E.R., Mángano, M.G., Aitken, A.E. & Buatois L.A. 2013: 

 Response of benthos to stress factors in Holocene Arctic fjord 

settings:  Maktak, Coronation, and North Pangnirtung Fjords, 

Baffin Island, Canada. Palaeogeogr. Palaeoclimatol. Palaeo­

ecol. 386, 652–668.

Schlirf M. 2012: Heliophycus seilacheri n. isp. and Biformites 

 insolitus  Linck, 1949 (trace fossils) from the Late Triassic  

of the Germanic Basin: their taxonomy and palaeoecological  

relevance. Neues Jahrb. Geol. Paläont., Abh. 263, 185–198.

Seilacher A. 1953: Studien Zur Palichologie II. Die fossilen 

Ruhespuren (Cubichnia). Neu. Jb.  Geol. Paläont. Abh. 98,  


Seilacher A. & Seilacher E. 1994: Bivalvian trace fossils: A lesson 

from actuopalaeontology. Courier Forschungsinst. Senckenberg 

169, 5–15.

Shanker R., Bhargava O.N., Bassi U.K., Mishra R.S., Chopra S., 

Singh I.B. & Singh T. 1993: Biostratigraphic controversy in the 

Himalaya: an evaluation in Lahaul-Spiti, Himachal Pradesh. 

 Indian Minerals 47, 263–286.

Srikantia S.V. 1981: The lithostraitigraphy, sedimentation and struc-

ture of Proterozoic–Phanerozoic formations of Spiti Basin in the 

Higher Himalaya of Himachal Pradesh, India. In: Sinha A.K. 

(Ed.): Contemporary geoscientific researches in the Himalya. 

Mahendra Pal Singh, Dehradun, 31–48.

Stanley D.C.A. & Pickerill R.K. 1994: Planolites constriannulatus 

isp. nov. from the Late Ordovician Georgian Bay Formation of 

southern Ontario, eastern Canada. Ichnos 3, 119–123.

Sutcliffe O. 1997: An ophiuroid trackway from the Lower Devonian 

Hunsrück Slate, Germany. Lethaia 30, 33–39.

Szmuc E. J., Osgood R.G. & Meinke D.W. 1976: Lingulichnites,  

a new trace fossil genus for lingulid brachiopod burrow. Lethaia 

9, 163–167.

Tchoumatchenco P. & Uchman A. 2001: The oldest deep-sea Ophio-

morpha and Scolicia and associated trace fossils from the Upper 

Jurassic–Lower Cretaceous deep-water turbidite deposits of SW 

Bulgaria. Palaegeogr. Palaeoclimatol. Palaeoecol. 169, 85–99.

Torell O.M. 1870: Petrifacta Suecana Formationis Cambricae Lunds 

Universitet. Tidskrift 6, 1–14. 

Uchman A. 1995: Taxonomy and paleoecology of flysch trace fossils, 

the Marnoso–Arenacea Formations and associated facies (Northern 

Appenines, Italy). Beringeria 15, 3–115.

Uchman A. 1998: Taxonomy and ethology of flysch trace fossils: 

 revision of the Marian Ksiazkiewicz collection and studies of 

complementary  material. Ann.  Soc.  Geolog.  Poloniae 68, 


Uchman A. & Gazdzicki A. 2006: New trace fossils from the La  

Meseta Formation (Eocene) of Seymour Island, Antarctica. 

 Polish Polar Research 27, 153–167.

Valley L. 1995: Stratigraphy and palynology of Carboniferous– 

Permian–Triassic succession in Spiti Valley, Tethys Himalaya, 

India. J. Palaeontol. Soc. India 40, 55–76.

Vallon L.H., Schweigert G., Bromley R.G., Röper M. & Ebert M. 

2015: Ecdysichnia — a new ethological category for trace fossils 

produced by moulting. Ann. Soc. Geolog. Poloniae 85, 



Van Wagoner J.C., Mitchum R.M., Campion K.M. & Rahmanian V.D. 

1990: Siliciclastic Sequence Stratigraphy in Well Logs, Cores, 

and Outcrop. AAPG Methods in Exploration Series 7, Tulsa, 


Vannay J.C. 1993: Geologie des chaaines du haut Himalaya et du 

 PirPanjal au Jaut (NW- Himalaya  Inde. Memories De Geologie 

Lausanne 16, 1–148.

Von Schlotheim E.F.B. 1820: Die Petrefactenkunde auf ihrem jetzi-

gen Standpunkte durch die Beschreibung seiner Sammlung ver-

steinerter und fossiler Überreste des Their-und Pflanzenreichs 

der Vorwelt. Becker, Gotha, LXII + 1–438 + 15 pl.

background image




, 2017, 68, 5, 464–478

Vossler S.M. & Pemberton S.G. 1988: Skolithos in the Upper Creta-

ceous Cardium Formation: an ichnofossil example of opportu-

nistic ecology. Lethaia 21, 351–362.

Walch J.E.I. 1773: Die Naturgeschiche Der Verteinerungen Zur-

Erlauterung Der Knorrischen Sammlung Von Merkwurdigkeiten 

Der Natur. Part 9. Febecker, Nürnberg.

Walter M., Buick R. & Dunlop J. 1980: Stromatolites, 3400–3500 

Myr old from the North Pole area, Western Australia. Nature 

284, 443–445.

West R.R. & Ward E.L. 1990: Asteriacites lumbricalis and a protasterid 

ophiuroid. In: Boucot A.J. (Ed.): Evolutionary Paleo biology of 

Behavior and Coevolution. Elsevier, Amsterdam, 321–327.

Yang  S. & Song Z. 1985: Middle-Upper Triassic trace fossils from 

Zhada, Ngari, Southwest Xizang (Tibet), and its geologic signifi-

cance. Xizang (Tibet) Geol. 1, 1–14.

Zonneveld J.P. & Pemberton S.G. 2003: Ichnotaxonomy and beha-

vioral implications of lingulide-derived trace fossils from the 

Lower and Middle Triassic of Western Canada. Ichnos  10, 


Zonneveld J.P., Beatty T.W. & Pemberton S.G. 2007: Lingulide 


brachiopods and the trace fossil Lingulichnus from the 


Triassic of western Canada: Implications for faunal 


recovery after the end-Permian mass extinction. Palaios 22,