background image

GEOLOGICA CARPATHICA

, OCTOBER 2017, 68, 5, 445–463

doi: 10.1515/geoca-2017-0029

www.geologicacarpathica.com

Geochemical characteristics and conditions of formation  

of the Chah-Bazargan peraluminous granitic patches, 

ShahrBabak, Iran

ABDOLNASER FAZLNIA

Department of Geology, Urmia University, 57153-165 Urmia, Islamic Republic of Iran; a.fazlnia@urmia.ac.ir, nfazlnia@yahoo.com

(Manuscript received November 27, 2016; accepted in revised form June 9, 2017)

Abstract:  Xenoliths of garnet–biotite–kyanite schist from the Qori metamorphic complex (southern part of the  

Sanandaj–Sirjan zone, northeast Neyriz, Zagros orogen in Iran) in the 173.0±1.6 Ma Chah-Bazargan leuco-quartz diorite 

intrusion were studied. This intrusion caused these schist xenoliths to be metamorphosed to the pyroxene hornfels facies 

(approximately 4.5±1.0 kbar and 760±35 °C), converting them to diatexite migmatite as a result of partial melting of the 

xenoliths. These melts are granites in composition. Melt volumes of 20 to 30 vol. % were calculated for small patches of 

the peraluminous granites. It is possible that anatectic melting affected only the leucosome, such that melting was more 

than 20 to 30 vol. %. It is possible that a large amount of melt was not extracted due to balanced in situ crystallization, 

the adhesion force between melt and crystal (restite), and high viscosity of the leucosome. The Chah-Bazargan 

 peraluminous granites are depleted in trace elements such as REEs, HFSE (Ti, Zr, Ta, Nb, Th, U, Hf, Y), Ba, Pb, and Sr. 

These elements are largely insensitive to source enrichment, but sensitive to the amounts of main and accessory minerals. 

These elements were hosted by minerals such as garnet, biotite, muscovite, K-feldspar, plagioclase, ilmenite, apatite, 

monazite, and zircon in the source (diatexitic migmatitic xenoliths).

Keywords: geochemistry, partial melting of xenoliths, peraluminous granitic patches, Jurassic.

Introduction

Migmatites provide examples of nascent granites, but detailed 

studies often reveal that their leucosomes are the locations of 

melt depletion rather than crystallization, or at best status, 

crystal-melt mixes (e.g., Mehnert 1968; Ashworth 1985; 

­Sawyer­2008a, b).­In­some­instances,­segregated­and­homoge-

neous granites within migmatitic terrains of the mid-crust can 

be related to specific sedimentary sources and melting reac-

tions as exemplified by Himalayan leucogranites, (Harris et al. 

1995) because the melts have not migrated far from their 

sources. However, some recent studies (Carvalho et al. 2016) 

have shown that leucosome can also be connected to the gra-

nite melt far from their sources.

The processes of melt formation and extraction and crustal 

source composition strongly influence the chemistry of 

granitic melts. The melts have very low levels of trace ele-

ments such as Rb, Zr, Th, U, and Y where melt-residue separa-

tion is very efficient, as in leucosomes of stromatic migmatites 

(metatexites), (Bea 1996a; Sawyer 1996; Sheppard et al. 

2003). The depleted nature of the melts is typically ascribed to 

disequilibrium melting where the rate of melt extraction 

exceeds the rate at which accessory phases dissolve (Sawyer 

1991), or to shielding of accessory phases by inclusion in 

mafic minerals during melt formation and extraction (Bea 

1996b). Metatexite is a migmatite heterogeneous at the out-

crop scale and coherent pre-partial melting structures are 

widely preserved in the paleosome (where the microstructure 

appears unchanged) and possibly in the melanosome (resi-

duum) part of the neosome where the fraction of melt was low 

(Makrygina 1977; Bucher & Grapes 2011).

Diatexite is a migmatite in which neosome is dominant and 

melt was pervasively distributed throughout. Pre-partial-

melting structures are absent from the neosome and commonly 

replaced by syn-anatectic flow structures (e.g., magmatic or 

submagmatic foliations, schlieren), or isotropic neosome. 

Neosomes are diverse, reflecting a large range in the fraction 

of melt, and they can range from predominantly leucocratic to 

predominantly mesocratic (e.g., unsegregated melt and resi-

duum) to predominantly melanocratic. Palaeosome occurs as 

rafts and schollen, but may be absent (Sawyer 2008b). 

Diatexite migmatites represent high degrees of partial melting, 

typically in the highest grade parts of migmatite terrains 

(Mehnert 1968; Sawyer 2008b), and contain large and variable 

proportions of restite. Diatexites are more homogenous than 

metatexites, because there is considerable movement of the 

melt fraction from one place to another within the diatexite 

migmatites (Sawyer 2008b).

Terms appropriate to metatexite migmatites are patch, dila-

tion, net, and stromatic structures. These structures are formed 

at the very onset of partial melting of the source. At the onset 

of partial melting, the fraction of melt in a migmatite is very 

small of course and this precludes the development of 

an eye-catching morphology. Nevertheless, it is very impor-

tant to identify these migmatites because their appearance 

defines the lower-grade limit to migmatite terrains. Partial 

background image

446

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

melting in a rock typically starts at a few dispersed sites where 

the conditions are optimal for the melt-producing reaction to 

proceed­(Raymond­2007;­Sawyer­2008a, b).

Terms appropriate to diatexite migmatites are nebulitic, 

schollen, and schlieren structures. As the fraction of melt and 

neosome creation increase in a metatexite migmatite, the 

pre-anatectic structures in the migmatite are progressively 

destroyed. However, new micro- and macrostructures are pro-

duced during anatexis and become evident in the neosome. 

The precise morphology that develops depends on whether 

deformation occurred or the original distribution of fertile 

rock­types­(Raymond­2007;­Sawyer­2008a, b).

This study presents field, petrographic and geochemical 

data and uses them to reconstruct the partial melting history of 

migmatitic metapelitic xenoliths from Chah-Bazargan batho-

lith, in the southern part of the Sanandaj–Sirjan zone, north-

east Neyriz, Zagros orogen in Iran. This study demonstrates 

the relationships among the migmatites, leucogranites, and 

pegmatites, and shows that these rocks formed in the middle 

crust as a consequence of advective heating by quartz dioritic 

magma.

Geological setting

Southern Iran can be divided into a set of three parallel 

NW–SE trending tectonic zones including: the Zagros Fold-

Thrust Belt, the Sanandaj–Sirjan Zone, and the Tertiary–

Quaternary Urumieh–Dokhtar magmatic arc (Alavi 1994; 

Mouthereau et al. 2012; Mohajjel & Fergusson 2014; Hassan-

zadeh & Wernicke 2016), (Fig. 1). The Zagros is the largest 

mountain belt and the most active collisional orogen associ a-

ted with Arabia/Eurasia convergence. It belongs to the Alpine–

Himalayan orogenic system that resulted from closure of the 

Neotethys Ocean during the Cenozoic (Alavi 1994; McQuarrie 

et al. 2003; Mouthereau et al. 2012; Hassanzadeh & Wernicke 

2016). The tectonic history of these zones as part of the 

Tethyan region has been summarized by many authors (e.g., 

Berberian & King 1981; Alavi 1994; Omrani et al. 2008; 

Khadivi et al. 2012; Mouthereau et al. 2012; Fazlnia et al. 

2013; Mohajjel & Fergusson 2014; Shafaii Moghadam et al. 

2014; Hassanzadeh & Wernicke 2016). The Sanandaj–Sirjan 

zone juxtaposed various metamorphic and magmatic rocks 

that mostly formed in the Mesozoic era. It is believed that  

the zone mostly consists of arc-related calc-alkaline granitoid, 

gabbro and some volcanic rocks along with amphibolite  

and kyanite-garnet schist formed during the subduction of 

Neotethys beneath the Iranian plate (Berberian & King 1981; 

Alavi 1994; Mouthereau et al. 2012). During the Palaeozoic 

period, the Sanandaj–Sirjan zone was a part of northeast 

Gondwanaland separated from the Eurasian plate by the Palaeo-

Tethys Ocean (Golonka 2004; Mouthereau et al. 2012; Fazlnia 

& Alizade 2013). A north-dipping subduction system develo-

ped along the Palaeotethys margin (Golonka 2004). This sub-

duction system played a significant role in driving the Late 

Palaeozoic and Early Mesozoic movement of plates in this area.

From early Permian to early Triassic times, the Sanandaj–

Sirjan zone had been situated along the southern margin of the 

Eurasian plate and separated from northern Gondwanaland by 

the Neotethyan Ocean (Mouthereau et al. 2012). During Late 

Triassic–Early Jurassic times, several microplates were 

sutured to the Eurasian margin, closing the Palaeotethys Ocean 

(Golonka 2004). A north-dipping Neotethys subduction zone 

beneath the Sanandaj–Sirjan plate was started approximately 

in the Bajocian (Middle Jurassic; Golonka 2004; Yousefirad 

2011; Fazlnia et al. 2013; Sheikholeslami 2015; Hassanzadeh 

& Wernicke 2016). The formation and evolution of the 

Neotethys started from Late Palaeozoic times (Hassanzadeh & 

Wernicke 2016). Therefore, the tectonic regime between the 

Arabian margin and Sanandaj–Sirjan plate altered from 

 passive to convergent (Ricou 1994). During the Mesozoic,  

the oceanic crust of the Neotethys was subducted beneath  

the Eurasian plate (Golonka 2004; Molinaro et al. 2005; Agard 

et al. 2011; Yousefirad 2011; Mouthereau et al. 2012; Karimi 

et al. 2012; Fazlnia et al. 2013; Mohajjel & Fergusson 2014; 

Sheikholeslami 2015), and the Sanandaj–Sirjan zone occupied 

the position of a magmatic arc (Berberian & Berberian 1981; 

Agard et al. 2005; Agard et al. 2011; Karimi et al. 2012; 

Mouthereau et al. 2012; Fazlnia et al. 2013; Chiu et al. 2013; 

Mohajjel & Fergusson 2014; Akbari et al. 2016; Hassanzadeh 

& Wernicke 2016). Subduction and arc magmatism began in 

latest Triassic/Early Jurassic time, culminating at ~170 Ma 

(Hassanzadeh & Wernicke 2016). The final closure of the 

Neotethys and the collision of the Arabian and Eurasian plates 

took place during the Tertiary period (Berberian & Berberian 

1981; Alavi 1994; Golonka 2004; Molinaro et al. 2005; 

Omrani et al. 2008; Agard et al. 2011; Mouthereau 2011; 

Yousefirad 2011; Khadivi et al. 2012; Mouthereau et al. 2012; 

Mohajjel & Fergusson 2014; Sheikholeslami 2015). Based on 

Hassanzadeh & Wernicke (2016) the collision took place 

 

during the mid-Tertiary. During the same period, the Zagros 

Fold-Thrust Belt formed as part of the Alpine–Himalayan 

mountain chain, extending about 2000 km from eastern Turkey 

to the Oman line in southern Iran (Berberian & King 1981; 

Alavi 1994; Agard et al. 2005; Omrani et al. 2008; Agard et al. 

2011; Mouthereau 2011; Mouthereau et al. 2012; Mohajjel & 

Fergusson 2014; Sheikholeslami 2015). The Chah-Bazargan 

intrusion is located in northeast Neyriz which is a part of the 

south Sanandaj–Sirjan zone.

There are several outcrops of intrusion-bordering migmatites 

in the middle part of the Sanandaj–Sirjan zone. The migma-

tites occurred around the Alvand aureole near Hamadan  

(Fig. 1), western Iran (Saki et al. 2012). They suggested that 

regional metamorphism, granitic magmatism (Alvand pluton), 

and contact metamorphism reflect arc construction and colli-

sion during subduction of a Neotethyan seaway and subsequent 

Late Cretaceous–early Tertiary oblique collision of Afro-Arabia 

(Gondwana) with the Iranian microcontinent. The Chah-

Bazargan intrusion and migmatitic xenoliths within the intru-

sion are like those in the Alvand aureole near Hamadan (Fig. 1).

Rocks of the Chah-Bazargan intrusion are composed of 

quartz-diorite (Table S1) along with small patches of gabbroic 

background image

447

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

intrusions (Fazlnia et al. 2013), migmatitic xenoliths (several 

centimetres to several tens of metres in size), tourmaline- 

bearing pegmatites and peraluminous garnet- and cordie rite-

bearing granites (metre to several tens of metres in size; 

Fazlnia et al. 2007; Fig. 1; Table S1). The initial Chah-

Bazargan intrusion is mostly composed of plagioclase 

 

(90–95 vol. %) and quartz (5–10 vol. %), as granular and cumu-

lative textures, along with accessory minerals (1–2 vol. %) 

such as clinopyroxene and titanite. This intrusion crystallized 

at 173.0±1.6 Ma (Fazlnia et al. 2007) into medium to high 

grade parts of the arc-related Qori Barrovian-type metamor-

phic complex (QMC; Fazlnia et al. 2013; Sheikholeslami 

2015), which primarily consists of meta-basites (actinolite 

schist to garnet amphibolite) and meta-pelitic (biotite to 

garnet–kyanite–biotite schist), interspersed with meta-psam-

mitic, meta-ultramafic (olivine–orthopyroxene–spinel–horn-

blende schist), and marbles layers (Table S1). The Talle-   

Pahlevani gabbroic intrusions (Fig. 1) infiltrated into the  

Qori metamorphic complex as a result of Neotethys sub-

duction beneath central Iran 170.5±1.9 Ma (Fazlnia et al. 

2009; Sheikholeslami 2015). Therefore, there is a possibility 

that the Chah-Bazargan quartz-dioritic and Talle-Pahlevani 

gabbroic intrusions (Table S1) were formed of the same 

magma. This is highlighted by the very similar spider diagram 

patterns (Fazlnia et al. 2009, 2013) of the intrusive rocks. 

Consequently, it is probable that the Chah-Bazargan quartz- 

diorites are most likely cumulates of a basaltic to andesitic 

magma and the Talle-Pahlevani gabbroic intrusions were 

Fig. 1. Simplified geological map of north-eastern Neyriz (modified after Sabzehei et al. 1992). More information about sample locations are 

present in Table S2.

background image

448

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

formed at the base of the Chah-Bazargan quartz-dioritic 

intrusions.

The Barrovian-type metamorphic event in the QMC 

occurred ca. 187.0±2.6 Ma (Fazlnia et al. 2007, 2009; Sheik-

holeslami 2015). Regional metamorphic mineral assemblages 

in­meta-pelites­mainly­consist­of­Ky + St + Grt + Bt + Ms + Pl + Qtz 

and­ Ky + Grt + Bt + Pl + Qtz ± Ms.­ Some­ outcrops­ of­ sedimen-

tary and low grade metasedimentary rocks can be found 

among the high grade metamorphic rocks due to late stage 

shearing of the Zagros fold belt (Berberian & King 1981; 

Sabzehei et al. 1992; Saki et al. 2012; Sheikholeslami 2015). 

All rock types are sheared strongly and thrust as imbricate 

slices over the Neyriz ophiolite (Berberian & King 1981; 

Sabzehei et al. 1992; Alavi 1994; Babaei et al. 2001; Mohajjel 

et al. 2003; Sheikholeslami et al. 2008; Fazlnia et al. 2009; 

Sarkarinejad et al. 2009; Sheikholeslami 2015). The peak 

pressure and temperature for the Qori metamorphic complex 

(Fig.­1)­have­been­estimated­to­be­9.2±1.2­kbar­and­705±40­˚C­

resulting from crustal thickening during the Early Cimmerian 

orogeny between 187 and 180 Ma (Fazlnia et al. 2007, 2009). 

This event occurred as a result of the beginning of Neotethys 

subduction beneath central Iran (Fazlnia et al. 2013; 

Sheikholeslami 2015). The studied rock types are related to 

this event.

The host rock (medium to high grade parts of the QMC) was 

disrupted as the primary magma (Chah-Bazargan gabbroic 

intrusions) was injected. Xenoliths of the host rock underwent 

high temperature contact metamorphism. Some meta-pelitic 

xenoliths were completely assimilated by magma and con-

verted the mineral assemblage of the surrounding Chah-

Bazargan quartz-diorite to biotite granodiorite-tonalite 

intru sion (Fazlnia et al. 2007). Small peraluminous patches of 

two-mica granite and tourmaline-bearing pegmatites occur in 

association with aggregations of meta-pelitic xenoliths within 

the intrusion (Fazlnia et al. 2007). Previous studies (Sabzehei 

et al. 1992; Jamshidi 2003) did not report any migmatitic 

 xenoliths and peraluminous two-mica granite in the intrusion. 

Sheikholeslami et al. (2003) concluded that the Chah-Bazargan 

intrusion was emplaced at ca. 160±10 Ma on the basis of biotite 

K–Ar ages. Fazlnia et al. (2007) demonstrate that the crystal-

lization of the primary quartz-dioritic magma and peralumi-

nous granite occurred 173.0±1.6 Ma and 164.3±8.1 Ma, 

respectively, and melting recorded by the migmatitic xenoliths 

167±3.1 Ma considering the zircon SHRIMP U–Pb ages.

Additionally, the western edge of the QMC underwent 

another Barrovian-type metamorphism at 147.4±0.76 Ma as 

a result of crustal thickening during the initiation of the 

Neotethyan mid-ocean ridge subduction beneath central Iran. 

The metamorphic circumstance generated garnet amphibolites 

occurred at pressures and temperatures between 7.5 and 9.5 

kbar (at depth of 28 to 36 km) and 680 and 720 °C, respec-

tively,­based­on­the­Grt – Hbl­and­Hbl – Pl­thermometers­and­

Grt – Hbl – Pl – Qtz­ barometer­ (Fazlnia­ et­ al.­ 2009;­ also­ see­

Sheikholeslami 2015). There is no evidence for the occurrence 

of this metamorphism in the eastern part of the study area 

(e.g., Chah-Bazargan, Chah-Dozdan, and Chah-Sabz).

Field and petrographic observations

      Quartz diorites are leucocratic and contain xenoliths of 

meta-pelitic migmatite. These xenoliths are between several 

centimetres and several decimetres in diameter.  The mag-

matic rocks contain up to 93 % plagioclase, with minor quartz, 

apatite, epidote, titanite, ilmenite, and zircon. Zircon grains 

obtained from two samples have prismatic euhedral shapes 

and probably crystallized from quartz dioritic magma (Fazlnia 

et al. 2007). The initial texture of quartz-diorites was granular, 

but this early magmatic texture has been overprinted to 

mylonite as a result of shearing during the Neotethys closing 

in the Late Cenozoic (Mohajjel et al. 2003; Golonka 2004; 

Davoudian et al. 2008). The accessory minerals mentioned are 

euhedral and form the matrix along with quartz, suggesting 

magmatic crystallization in small pegmatitic and coarse-

grained patches.

There are five types of xenoliths: (a) cognate enclaves: fine-

grained inclusions of quartz diorite, (b) basaltic andesite to 

andesite, (c) meta-pelite, (d) meta-basite,  and (e) xenoliths 

with large grains of quartz which contain abundant inclusions 

of orthopyroxene, clinopyroxene, two types of amphibole, 

plagioclase, biotite, muscovite and tourmaline. Here we 

describe only the meta-pelitic xenoliths derived from the 

country rocks, because they are plentiful and played a signifi-

cant role in contaminating the quartz dioritic magma and also 

producing peraluminous granites and tourmaline pegmatites. 

It should be noted that many of the xenoliths are migmatite.

Many meta-pelitic xenoliths throughout Chah-Bazargan 

batholith underwent high-grade contact metamorphism within 

the batholith. Some of them have abundant bands, pods and 

patches of leucocratic quartzo-feldspathic leucosome that is 

interpreted as former melt visible in hand specimens (Fig. 2) 

and­ microscopic­ scale­ (Fig.­3a, b).­ Segregation­ of­ the­ melt­

from­the­residual­phases­(melanosome;­Fig.­2a–c, e)­of­meta-­

pelitic (migmatitic) xenoliths such as cordierite, biotite and 

garnet (in some xenolithic aggregations) have formed small 

peraluminous granite patches in the intrusion. The small dark 

patches are fragments of melanosome just to the right of the 

mesosome (a mixture of melt and the refractory and relic 

parts; Fig. 2b), up and center of the Fig. 2e.

Metapelitic xenoliths in the Chah-Bazargan batholith can be 

subdivided into stromatic migmatites with mesosomes and 

leucosomes­(Fig.­2a, c),­and­nebulitic­migmatites­(Fig.­2b,­d–e). 

Stromatic migmatites represent the lower-grade migmatites, 

extensively similar to metatexites as defined and described by 

Brown (1979; also see geochemistry section). Stromatic mig-

matites consist of small-scale (several mm to several cm) 

alternating layers of neosome and mesosome. The pre- 

migmatisation fabric is well preserved within the paleosome 

(Fig.­2a, c)­and­the­ratio­of­leucosome­to­melanosome­in­the­

neosome may vary. The relationship between the melano-

somes and leucosomes of the stromatic migmatites is mostly 

gradational­(Fig.­2a, c).

Nebulitic­migmatites­(Fig.­2b, d)­are­similar­to­the­diatexites­

(there­are­schlieren­in­the­Fig.­2b, e)­of­Mehnert­(1968),­Brown­

background image

449

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

(1979), and Sawyer (2008b). They usually represent higher- 

grade migmatites. Nebulitic migmatites (migmatite with dif-

fuse relics of pre-existing rocks or rock structures) contain 

irregular islets of neosome dispersed in the paleosome, the 

limits between these two are blurred and irregular. Typically, 

they are located close to small patches of peraluminous granite 

in the Chah-Bazargan intrusion. Leucosomes occur mostly as 

concordant veins with diffuse and irregular borders towards 

the melanocratic rock portions. There is considerable variation 

in the proportion of mafic relative to leucocratic material, 

 usually the mafic material forms ample mafic schlieren orien-

ted parallel to the foliation (Fig. 2b). The relationship between 

the nebulitic migmatites and small peraluminous granitic 

patches is mostly gradational. Diatexite migmatites with 

Fig. 2. Photos of migmatitic xenoliths. a — Outcrop of stromatic- 

structured metatexite migmatites with mesosomes and leucosomes;  

b — Morphology of nebulitic-structured diatexite migmatites. This is 

a mafic schlieren oriented parallel to the foliation in the upper right;  

c — Outcrop of stromatic-structured metatexite migmatites. The rela-

tionship between the mesosomes and leucosomes is gradational;  

d — Diatexite migmatites with a simple morphology. They are 

 characteristic of the highest grade parts of xenoliths where the propor-

tion of neosome is very high. Schlierens (melanosome) are dispersed 

throughout the leucosome.; e — The individual melanosome (mafic 

schlieren) in nebolitic-structured diatexite migmatite.

a

e

d

c

b

background image

450

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

a mixed morphology of melanosome and leucosome (Fig. 2d) 

are characteristic of the highest grade parts of the xenoliths 

where the proportion of neosome is very high (see also Sawyer 

(2008b) for more discussion).

K-feldspar in the meta-pelitic (migmatitic) xenoliths occurs 

as small to large irregular to regular perthitic crystals 

 

(0.2–5 mm), which shows eutectic intergrowth with quartz. 

Plagioclase occurs as a large and euhedral mineral (Fig. 3) 

with­ zoning­ (Fig.­ 3c, e;­ mineral­ chemistry­ section­ shows­

plagio clase composition). Cordierite is commonly subhedral 

to euhedral with inclusions of spinel, quartz, and biotite in the 

same­grain­(Fig.­3d, e, i).­Garnet­in­meta-pelitic­xenoliths­was­

either consumed or present as relict phases in quartz and pla-

gioclase­(Fig.­3b, e)­as­a­result­of­partial­melting­in­meta-­pelitic­

(migmatitic) xenoliths. Sillimanite is found as both fibrolite 

mats and prismatic grains (Fig. 3d) during contact metamor-

phism in the meta-pelitic xenoliths. The former is present as 

a retrograde phase along with biotite, poikilobastic plagioclase 

and ilmenite. The latter is present in prograde mineral assem-

blages (Table S2) along with garnet, spinel, cordierite and 

K-feldspar (Fig. 3d) during contact metamorphism; it is also 

presented as a result of a replacement process in late-stage 

muscovite (Fig. 3h). Muscovite in many meta-pelitic xenoliths 

is only present within quartzo-feldspathic veins (Fig. 3f), 

 suggesting that it may have been formed during the late stage 

of crystallization of the melt (restite-melt back reaction), but 

in the other parts it is probably a retrograde phase around 

 cordierite and/or sillimanite (Fig. 3h). Spinel occurs together 

with prograde mineral assemblages in the matrix (Table S2; 

Fig. 3g) or as an inclusion phase in cordierite (Fig. 3f), but 

spinel and quartz are not in contact together. Some metapelitic 

xenoliths that have up to 80 % cordierite, biotite, and 

K-feldspar have corundum in the matrix (Fig. 3j) but no 

quartz. Some meta-pelitic xenoliths have ~75 % cordierite, 

suggesting that they are residues after partial melting or reflect 

an unusual starting bulk composition.

Small patches of peraluminous granite (one metre to several 

tens metres across) that occur as sharp lenses and tourmaline 

pegmatites (tens centimetres to several metres across and tens 

of metres in length; average grain size is 1–50 mm), veins or 

sheets are located adjacent to diatexitic xenoliths. Peraluminous 

granites have two kinds of mineral assemblages (average grain 

size is 0.2–5 mm): (a) Kfs–Pl–Qtz–Bt–Ms–Crd–Sil–Tur, and 

(b) Kfs–Pl–Qtz–Bt–Ms–Grt–Sil–Tur±Crd (Tables S1, S2; 

mine ral abbreviations after Kretz (1983)). K-feldspar, quartz 

and plagioclase are abundant minerals in this rock type. 

Mineralogically and texturally, they are similar to quartzo- 

feldspathic melt veins within metapelitic xenoliths (leuco-

some; Fig. 2). Texturally, all peraluminous granites are 

granular and granophyric with perthitic alkali feldspar sug-

gesting that quartz, K-feldspar and albite crystallized as eutec-

tic intergrowths. Cordierite and garnet occur as porphyroblastic 

xenocrysts similar to the diatexitic xenoliths. Garnet is sub-

hedral and generally rounded without inclusions. Cordierite is 

subhedral with many inclusions of quartz, spinel, biotite, mus-

covite, and tourmaline. Sillimanite occurs as prismatic inclu-

sions in muscovite, whereas muscovite and other minerals are 

presented in a granular texture.  This suggests that sillimanite 

is xenocrystic from the metapelitic xenoliths whereas musco-

vite is the result of late magmatic crystallization.

Analytical methods

All microprobe analyses were performed with a JEOL JXA 

8900 microprobe at the University of Kiel, Germany. For the 

analyses of major phases we used a 15 or 20 nA probe current 

at an accelerating potential of 15 kV. Selected standard names 

of the oxides SiO

2

, MnO, CaO, MgO, TiO

2

, Al

2

O

3

, FeO, Na

2

O, 

and K

2

O for all minerals are wolMAC, teph, wolMAC, 

foMAC, rt_st8, crn657s, fay85276, ano133868, and 

mic143966, respectively. Standard deviations (S.D. (%)) of Si, 

Mn, Ca, Mg, Ti, Al, Fe, Na, and K for all analysed points are 

0.12, 0.26, 0.15, 0.14, 0.12, 0.09, 0.26, 0.4, and 0.23, respec-

tively. Composition of perthitic K-feldspar was calculated by 

analyses of BSE images and point-counting of the perthite. 

Major-element mineral compositions in selected samples of 

the Chah-Bazargan batholith are listed in Table S3. Analyses 

of coexisting minerals were obtained for Sil–Crd–Grt- 

 

and Crd–Kfs–Grt–Sil-bearing xenoliths, peraluminous 

 

granites, host rocks (quartz-diorite), and contaminated 

 

host rocks.

Table 1 lists the chemical compositions of 20 representative 

samples obtained by XRF (X-ray florescence instrument; 

Philips PW 1480) at the University of Kiel, Germany. Major 

elements were measured using fusion beads. H

2

O

 of samples 

(moisture) was determined by heating powders at 110 °C for 

2 hours and calculated from the decrease in powder weights. 

LOI (loss on ignition) of samples was determined by heating 

powders of the samples at 1000 °C for 2 hours. The decrement 

Fig. 3. Photos of migmatitic metapelitic xenoliths. a — (XPL light) and b — (PPL light) high-grade contact metamorphism (nebulitic- structured 

diatexite migmatite) along with bands, pods and patches of leucocratic quartzo-feldspathic melt (leucosome). Biotite shows a poikiloblastic 

texture, suggesting dehydration melting of biotite; c — Plagioclase with oscillatory zoning surrounded the cordierite and biotite suggesting the 

presence of melt in the migmatitic xenoliths (XPL light); —­Prismatic­sillimanite­along­with­biotite + cordierite + plagioclase + K-feldspar + quartz­

in the migmatitic xenoliths (PPL light). Spinel is present within cordierite; e — Plagioclase with oscillatory zoning surrounding absorbed garnet 

and biotite manifest that melt is present in the migmatitic xenoliths (XPL light); f , — Presence of spinel within cordierite (XPL light) and in 

matrix (PPL light), respectively, suggests high-grade contact metamorphism in the migmatitic xenoliths; h — Presence of late-stage muscovite 

around sillimanite; i — Picture of leucosome from nebulitic-structured diatexite migmatite. There is late-stage muscovite around biotite;  

j — Presence of corundum in the matrix. This sample contains cordierite, biotite, and K-feldspar up to 80 %. Abbreviations are after  

Kretz (1983).

background image

451

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

background image

452

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

of powders weights was then calculated. 

Method Detection Limits (MDL) are deter-

mined by the X-ray florescence lab. For trace 

elements, fourteen samples were analysed 

with an AGILENT 7500cs ICP–MS (induc-

tively coupled plasma- 

mass spectrometry) 

instrument at the Uni versity of Kiel, Germany, 

and six samples were analysed with an 

 

ICP–MS instrument at the ALS Chemex 

Company of Canada (Table 2). Method 

Detection Limits (MDL) were determined by 

the ICP–MS lab.

Mineral chemistry

Garnet

Garnet from all the meta-pelitic xenoliths 

has a narrow range in Mg, Fe, Ca and Mn con-

tents, and is characterized by Fe-rich compo-

sitions and flat zoning profiles. Garnet from 

Grt–Crd–Sil meta-pelitic xenoliths displays 

higher Mg content with wide cores that have 

uniform compositions (approximately Alm

79

Prp

13

, Sps

06

, Grs

04

) and rims up to 0.5 mm 

wide, displaying a smooth increase in Mn and 

decrease in Mg with constant Fe and Ca 

(Fig. S1a). Garnet from Grt–Crd-bearing 

meta-pelitic xenoliths is slightly zoned and 

contains higher Mn (Alm

67

, Prp

08

, Sps

22

Grs

04

) (Fig. S1b). It also shows a slight 

increase of Fe and Mn towards rims indica-

ting retrogression. Garnet of peraluminous 

granites is weakly zoned and shows a slight 

increase in Fe from the core to the inner rim 

and then a slight decrease from the inner rim 

towards the outer rim as well as a slight 

decrease in Mn from the core to the inner rim 

and then a slight increase from the inner rim 

towards the outer rim with constant Mg and 

Fe, suggesting retrogression (Fig. S1c).

Cordierite

The­ Mg#­ (= 100×­ atomic­ Mg / (Mg + Fe

+2

)) 

values of cordierite in several meta-pelitic 

xenoliths are in the range of 49 to 56. In some 

xenoliths, Mg content of cordierite decreases 

from the core to the rim. Some meta-pelitic 

xenoliths have ~75 % cordierite, suggesting 

that they are residues after partial melting or 

reflect an unusual starting bulk composition. 

Cordierite composition in peraluminous gra-

nite is broadly similar to that in the meta- 

pelitic xenoliths.

Sample

140-1

187

190-B

189-E

260

264

272

181-E

182-E2

183-E1

188-E1

189-E3

190-E1

191-E5

192-E2

193-E3

111

-c

114-a

220

221

Average

Average

Average

Rock  type

P-g

P-g

P-g

P-g

P-g

P-g

P-g

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Pelite

Pelite

Pelite

Pelite

of

migmatite

metapelite

MDL

Grt

Grt

Grt

Grt

Crd

Crd

Crd

Mig

Mig

Mig

Granite

Xenolith

& Xenolith

wt.

 %

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

SiO

2

0.01

74.12

73.91

73.58

74.45

74.29

75.30

75.24

43.39

62.68

57.22

66.82

64.25

59.22

63.05

65.1

1

60.22

59.04

64.16

58.2

60.64

74.35

54.43

62.07

Al

2

O

3

0.01

13.85

14.03

14.18

13.85

13.65

13.18

13.1

1

26.77

17.71

20.12

16.41

16.65

18.83

17.13

16.36

17.35

19.41

16.96

19.48

16.09

13.73

21.53

17.47

Ti

O

2

0.01

0.06

0.05

0.05

0.09

0.07

0.09

0.08

2.14

0.92

1.17

0.29

0.58

0.39

0.85

0.75

0.87

0.81

0.74

0.88

0.85

0.07

1.41

0.70

MgO

0.01

0.14

0.1

1

0.13

0.27

0.31

0.26

0.28

5.17

2.07

4.87

1.90

2.15

3.75

2.55

2.01

3.55

1.87

3.56

3.46

3.65

0.20

4.04

2.85

FeO*

0.04

1.28

1.10

1.38

1.21

1.20

1.24

1.23

15.74

6.92

10.53

5.84

4.85

6.27

6.33

5.88

7.49

5.80

5.65

6.96

7.50

1.24

11.06

6.26

CaO

0.01

0.65

0.72

0.59

0.71

0.66

0.63

0.56

0.84

1.34

1.21

2.44

3.05

1.59

2.21

2.45

1.22

0.64

0.74

0.52

0.75

0.65

1.13

1.56

P

2

O

5

0.01

0.10

0.1

1

0.12

0.1

1

0.1

1

0.12

0.12

0.03

0.15

0.08

0.05

0.12

0.13

0.09

0.1

1

0.19

0.17

0.15

0.21

0.21

0.1

1

0.09

0.14

Na

2

O

0.01

2.04

1.82

2.32

2.95

2.73

2.87

2.83

0.79

1.79

0.84

2.16

2.88

2.44

1.73

1.81

1.94

0.43

1.58

1.71

1.93

2.45

1.14

1.86

K

2

O

0.01

5.95

6.20

6.10

5.05

5.21

5.04

5.10

1.76

3.90

1.55

1.70

2.55

4.12

3.87

2.94

4.18

6.81

2.33

3.75

4.09

5.59

2.40

3.63

MnO

0.01

0.06

0.07

0.06

0.04

0.05

0.05

0.04

0.40

0.1

1

0.34

0.18

0.24

0.20

0.24

0.18

0.17

0.27

0.06

0.08

0.16

0.05

0.28

0.18

Total

98.25

98.16

98.51

98.77

98.28

98.81

98.64

97.21

97.75

97.93

97.86

97.32

96.94

98.05

97.60

97.18

95.25

95.93

95.25

95.87

98.47

97.63

96.73

LOI

1.25

1.08

0.75

0.91

1.12

0.86

0.84

2.02

2.07

1.81

2.03

2.32

1.65

1.48

1.88

1.68

3.45

3.43

3.52

2.4

0.98

1.97

2.38

CIPW

 norm

Qtz

37.09

37.26

34.79

35.37

35.91

36.91

36.98

10.74

26.62

28.56

35.01

24.51

15.51

25.04

30.89

19.82

22.33

35.36

23.00

21.54

36.275

21.97

25.3

Or

35.16

36.64

36.05

29.84

30.79

29.78

30.14

10.40

23.05

9.16

10.05

15.07

24.35

22.87

17.37

24.70

40.24

13.77

22.14

24.17

33.035

14.20

21.45

Ab

17.26

15.40

19.63

24.96

23.1

24.29

23.95

6.68

15.15

7.1

1

18.28

24.37

20.65

14.64

15.32

16.42

3.64

13.37

14.47

16.33

20.775

9.65

15.74

An

2.57

2.85

2.14

2.80

2.56

2.34

1.99

3.97

5.67

5.48

11.78

14.35

7.04

10.38

11.44

4.81

2.06

2.69

1.21

2.35

2.45

5.04

6.82

Crn

3.1

1

3.28

2.98

2.50

2.58

2.15

2.20

22.1

1

8.47

15.05

6.7

3.89

7.78

6.29

6.01

7.87

10.57

10.85

12.17

7.63

2.75

15.21

7.98

Hy

2.71

2.34

2.24

2.82

2.95

2.87

2.90

38.99

16.55

30.17

15.31

13.75

20.58

17.02

14.90

21.47

14.47

18.13

20.09

21.76

2.775

28.57

17.77

Ilm

0.1

1

0.09

0.10

0.17

0.13

0.17

0.15

4.06

1.75

2.22

0.55

1.10

0.74

1.61

1.42

1.65

1.54

1.41

1.67

1.61

0.12

2.68

1.33

Ap

0.23

0.25

0.28

0.25

0.25

0.28

0.28

0.07

0.35

0.19

0.12

0.28

0.30

0.21

0.25

0.44

0.39

0.35

0.49

0.49

0.265

0.20

0.32

FeO* is total FeO; Kiel = Kiel University; Xeno = Xenolith; P-g = Per

-aluminous granite; Grt = Garnet; Crd = Cordierite; MDL: Method Detection Limit.

Table 1:

 Representative whole rock geochemical analyses (XRF) of major elements of Chah-Bazar

gan rocks along with CIPW

 norm.

background image

453

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Sample

140-1

187

190-B

189-E

260

264

272

181-E

182-E2

183-E1

188-E1

189-E3

190-E1

191-E5

192-E2

193-E3

111

-c

114-a

220

221

Average 

of

Granite

Average 

of

migmatite Xenolith

Average 

of

metapelite & Xenolith

Average 

of

Shale Li, 2000

Rock type

P-g

P-g

P-g

P-g

P-g

P-g

P-g

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Xeno

Pelite

Pelite

Pelite

Pelite

MDL

Grt

Grt

Grt

Grt

Crd

Crd

Crd

Mig

Mig

Mig

wt.%

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

Kiel

CCC

CCC

Kiel

CCC

CCC

CCC

CCC

0.2

3.32

2.23

2.85

5.05

6.65

7.59

7.32

266.33

138.90

185.42

64.41

85.25

112.20

106.2

73.6

98.32

108.2

137.7

123.1

110.7

5.00

196.88

101.97

130.00

Cr

0.1

1.06

0.89

0.97

2.46

2.89

3.23

2.12

153.54

79.94

94.01

64.61

58.60

74.13

60.2

81.1

71.43

69.4

58.6

82.7

75.3

1.95

109.16

69.61

90.00

Co

0.1

0.69

0.49

0.88

1.02

0.95

0.77

0.59

30.24

14.06

19.73

8.97

10.12

17.98

12.1

14.2

15.59

18.2

13.1

10.3

14.1

0.77

21.34

13.47

19.00

Ni

0.1

0.91

1.08

1.12

1.62

1.55

1.30

1.41

106.1

1

34.16

62.31

25.48

19.87

32.54

30.5

34.4

31.58

31.2

46.4

22.9

38.8

1.28

67.53

31.37

50.00

Rb

0.1

165.12

144.19

148.56

114.38

138.95

157.08

165.05

67.66

132.61

88.47

47.81

40.32

54.17

77.1

39.5

54.67

114.1

75.3

85.6

63.5

147.62

96.25

65.21

140.00

Sr

0.5

6.08

6.28

5.69

15.04

11.21

7.54

13.17

43.25

102.21

80.25

52.49

75.71

41.21

69.4

68.9

58.62

47.4

79.5

94.1

83.7

9.29

75.24

67.10

170.00

Y

0.1

3.78

3.54

4.56

6.31

7.42

5.57

6.14

53.41

26.60

35.34

43.55

51.13

67.14

55.8

55.2

59.12

38.3

53.7

48.9

65.4

5.33

38.45

53.82

26.00

Zr

0.1

65.12

55.29

49.67

46.60

55.15

50.81

44.42

352.27

175.40

241.31

178.87

191.32

219.31

263.3

155.7

207.32

148.6

174.3

170.5

193.8

52.44

256.33

190.30

160.00

Nb

0.1

42.85

32.22

38.65

4.22

4.58

3.43

3.93

38.41

13.77

19.12

9.14

12.15

31.24

21.3

17.6

20.12

25.3

51.6

43.7

34.8

18.55

23.77

26.70

11.00

Ba

1.0

36.78

47.43

43.15

76.43

58.99

24.25

66.08

132.92

389.15

120.31

54.24

72.61

157.19

187.3

122.3

131.54

432.1

201.5

345.6

398.3

50.44

214.13

210.27

580.00

La

0.1

0.87

0.96

1.08

1.40

1.27

1.14

1.32

47.33

34.34

40.27

15.76

13.20

32.74

28.4

18.7

25.24

39.2

31.3

44.8

50.9

1.15

40.65

30.02

43.00

Ce

0.1

4.39

4.12

5.12

6.03

5.87

5.55

5.06

98.18

66.96

76.48

31.26

30.15

65.34

58.2

42.1

52.12

64.1

60.3

79.7

83.2

5.16

80.54

56.65

82.00

Pr

0.02

0.31

0.26

0.23

0.45

0.40

0.36

0.41

11.32

8.37

10.26

3.88

4.45

8.43

7.5

6.1

7.21

6.8

8.3

9.8

11.2

0.35

9.98

7.37

9.80

Nd

0.3

0.88

0.97

1.13

1.77

1.46

1.37

1.58

41.77

31.40

35.89

14.52

17.89

32.12

29.4

21.4

25.71

27.3

34.1

32.5

41.8

1.31

36.35

27.67

33.00

Sm

0.05

0.35

0.28

0.30

0.63

0.50

0.46

0.54

7.37

6.1

1

6.73

3.26

5.07

8.49

7.1

4.9

7.33

5.2

8.3

7.4

9.1

0.44

6.74

6.62

6.20

Eu

0.02

0.05

0.03

0.04

0.07

0.05

0.04

0.06

0.37

1.20

0.71

0.66

1.02

1.31

1.2

0.8

1.21

0.94

1.3

1.1

1.5

0.05

0.76

1.10

1.20

Gd

0.05

0.41

0.34

0.49

0.79

0.62

0.57

0.67

7.33

5.50

6.63

4.19

6.27

9.28

8.9

6.4

8.07

6.3

8.5

7.6

9.8

0.56

6.49

7.53

5.10

Tb

0.01

0.07

0.08

0.09

0.18

0.17

0.13

0.15

1.44

0.84

1.12

0.91

1.25

2.02

1.8

1.2

1.67

1.2

1.8

1.6

2.1

0.12

1.13

1.56

0.84

Dy

0.05

0.71

0.62

0.67

1.18

1.07

0.96

1.1

1

10.30

5.08

7.24

6.87

8.45

12.83

11.3

9.1

11.09

7.6

11.5

9.8

13.5

0.90

7.54

10.20

4.70

Ho

0.02

0.14

0.13

0.15

0.23

0.20

0.19

0.22

2.20

1.03

1.57

1.54

1.88

2.75

2.5

1.9

2.37

1.7

2.5

2.2

2.9

0.18

1.60

2.22

1.10

Er

0.03

0.51

0.43

0.40

0.65

0.63

0.56

0.61

6.29

2.86

3.93

4.46

5.68

7.56

6.7

5.8

6.73

5.2

7.5

6.4

8.2

0.54

4.36

6.42

3.00

Tm

0.01

0.07

0.08

0.09

0.1

1

0.1

1

0.09

0.10

0.96

0.43

0.59

0.68

0.87

1.15

1.0

0.9

0.92

0.8

1.2

0.9

1.2

0.09

0.66

0.96

0.44

Yb

0.05

0.64

0.69

0.76

0.84

0.76

0.65

0.69

6.35

2.91

3.79

4.44

5.79

7.71

6.7

5.5

6.46

5.1

7.5

6.2

8.4

0.72

4.35

6.38

2.80

Lu

0.01

0.12

0.10

0.14

0.12

0.1

1

0.09

0.09

0.94

0.43

0.60

0.66

0.87

1.13

1.0

0.8

0.91

0.8

1.1

0.9

1.2

0.1

1

0.66

0.94

0.42

Hf 

0.1

3.12

2.37

2.75

2.23

2.50

2.21

1.88

10.95

5.33

4.89

5.72

4.84

9.78

7.6

6.3

8.41

6.3

8.6

8.1

9.8

2.44

7.06

7.55

5.00

Ta

0.1

2.68

2.16

3.1

1

1.120

0.89

0.40

0.72

3.1

1

0.98

2.46

0.94

1.37

2.68

1.8

1.5

2.25

2.7

2.5

2.9

3.4

1.58

2.18

2.20

1.30

Pb

0.1

15.25

17.46

20.12

25.92

20.45

14.47

13.39

5.26

24.59

18.34

13.51

19.87

21.23

29.7

16.4

23.55

17.7

20.8

24.2

28.7

18.15

16.06

21.57

20.00

Th

0.2

1.14

0.90

1.39

2.67

2.24

1.91

1.76

18.93

13.92

15.72

9.73

10.68

14.28

11.5

9.1

15.88

13.1

14.2

16.4

12.2

1.72

16.19

12.71

12.00

U

0.1

0.72

0.90

1.01

2.24

1.52

0.88

0.68

1.68

2.1

1

2.04

2.1

1

2.61

2.75

2.3

2.5

2.71

2.3

3

1.8

2.1

1.14

1.94

2.42

2.70

Ti

751

626

626

1126

876

1126

1001

26783

11514

14643

3630

7259

4881

10638

9387

10889

10138

9262

11014

10638

876

17647

8773

4600

P

704

775

845

775

775

845

845

211

1057

564

352

845

916

634

775

1339

1198

1057

1479

1479

795

611

1007

700

K

63166

65820

64759

53612

55310

53505

54142

18684

41403

16455

18047

27071

43739

41085

31212

44376

72296

24736

3981

1

43420

58616

25514

38579

28239

Na

44367

39582

50457

64158

59374

62418

61548

17181

38930

18269

46977

62636

53067

37625

39365

42192

9352

34363

37190

41975

54558

24793

40474

12832

Rb/St

27.16

22.96

26.1

1

7.61

12.40

20.83

12.53

1.56

1.30

1.10

0.91

0.53

1.31

1.1

1

0.57

0.93

2.41

0.95

0.91

0.76

18.51

1.32

1.04

0.82

Rb/Ba

4.49

3.04

3.44

1.50

2.36

6.48

2.50

0.51

0.34

0.74

0.88

0.56

0.34

0.41

0.32

0.42

0.26

0.37

0.25

0.16

3.40

0.53

0.40

0.24

K/Ba

1717.4

1387.7

1500.8

701.4

937.6

2206.4

819.3

140.6

106.4

136.8

332.7

372.8

278.3

219.4

255.2

337.4

167.3

122.8

115.2

109.0

1324.4

127.9

231.0

48.69

Eu*

0.1

1

0.09

0.12

0.21

0.17

0.15

0.18

2.16

1.71

1.97

1.10

1.67

2.62

2.36

1.67

2.27

1.70

2.47

2.21

2.78

0.15

1.95

2.09

1.66

Eu/Eu*

0.30

0.22

0.23

0.22

0.20

0.18

0.22

0.1

1

0.47

0.24

0.40

0.41

0.33

0.34

0.32

0.36

0.37

0.35

0.33

0.36

0.22

0.26

0.35

0.48

La

n

/Yb

n

0.14

0.18

0.14

0.22

0.22

0.24

0.28

0.94

1.50

1.26

0.45

0.28

0.54

0.53

0.44

0.52

0.92

0.53

0.93

0.80

0.20

1.16

0.60

1.92

La

n

/Sm

n

0.54

0.75

0.79

0.49

0.56

0.54

0.53

1.40

1.23

1.31

1.06

0.57

0.84

0.88

0.83

0.75

1.65

0.82

1.32

1.22

0.57

1.32

0.99

1.52

Gd

n

/Yb

n

0.43

0.33

0.43

0.63

0.54

0.58

0.65

0.77

1.26

1.17

0.63

0.72

0.80

0.89

0.78

0.83

0.82

0.76

0.82

0.78

0.52

0.99

0.79

1.21

Sm

n

/Yb

n

1.33

1.28

1.17

2.20

1.97

0.34

0.26

0.25

0.47

0.41

0.44

0.49

0.73

1.32

1.12

0.46

0.55

0.69

0.67

0.56

0.75

0.70

0.64

0.71

Kiel = Kiel University; CCC=ALS Chemex Company of Canada; Xeno = Xenolith; P-g = Per

-aluminous granite; Mig = Migmatite; Grt = Garnet; Crd = Cordierite; MDL: Method Detection Limit.

Table 2:

 Representative whole rock geochemical analyses (ICP-MS) of minor and rare earth elements of the Chah-Bazar

gan rocks.

background image

454

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Biotite and muscovite

Biotite from different rock types has a wide range of compo-

sitions (Fig. S2; Table S3). It is more enriched in Mg in 

meta-pelitic xenoliths compared to the peraluminous granites, 

suggesting that biotite in peraluminous granite may have crys-

tallized from magma or changed in composition due to restite- 

melt back reaction (also see Erdmann et al. 2009; Taylor & 

Stevens 2010 for more information). In addition, the biotite 

might also change composition because it has reacted with the 

very large volume of granite around it (Lavaure & Sawyer 

2011). Biotite in meta-pelitic xenoliths and contaminated 

quartz diorite is similar in composition, suggesting that biotite 

in the contaminated quartz diorites is not a result of magmatic 

crystallization and so must have come from the meta-pelitic 

xenoliths in the host magma. Biotite from meta-pelitic xeno-

liths with many veins (diatexite) has much higher Ti content 

than meta-pelitic xenoliths lacking such veins (without mig-

matitic structure). This is probably due to higher metamorphic 

temperature (see Henry & Guidotti 2002 for more discussion) 

of the diatexite. Biotite in all rock types have a wide range of 

Ti, which might be due to diffusional exchange, so that it is 

confirmed by very small grains of ilmenite within biotite coro-

nas around garnet which are a result of retrograde reactions 

after magma solidification.

Muscovite in all rock types, both prograde and retrograde, 

has a similar composition (Table S3).

Spinel, ilmenite, and apatite

All analysed spinel grains are rich in FeAl

2

O

4

 component, 

with­Cr­(~ 0.07­p.f.u.)­and­relatively­high­Zn­(~ 0.55­p.f.u.).­

Hercynite (spinel) from matrix is similar to that included in 

cordierite.

All analysed ilmenites have compositions close to the 

FeTiO

3

 end-member (Table S3). Apatite from all rock types 

has higher Mn and F but lower Cl contents.

K-feldspar

Many K-feldspar grains are perthitic. Perthitic K-feldspar 

has a re-integrated composition of X

kfs

 0.85–0.88. These com-

positions were calculated by analyses of BSE images and 

point-counting of the perthite.

Plagioclase

Plagioclase has a wide range of Ca and Na contents  

(Fig. S3). In quartz-diorites, plagioclase is andesine and shows 

a narrow range of Ca and Na and a slight decrease in Ca and 

increase in Na near the rim, but the main part of their profiles 

are approximately flat (Table S3; Fig. S3a). Plagioclase grains 

from contaminated quartz diorites are also mostly andesine, 

showing a flat profile and a main decrease in Ca content near 

the rim. Other plagioclase grains (Fig. S3a–c) have different 

profiles, and indicate a pronounced decrease in Ca from the 

core towards the rim, then a sharp increase in Ca towards the 

outermost part of the rim, suggesting a magma mixing process 

(Fig. S3b). In cordierite-rich metapelitic xenoliths (nebulitic 

migmatites; diatexite), plagioclase is mostly andesine but 

shows a decrease in Ca near the rim (Fig. S3c). Plagioclase in 

the peraluminous granites (Fig. S3d) indicates a profile similar 

to that from contaminated quartz diorites, but more enriched in 

Na (oligoclase). The cores from the peraluminous granite 

shown in Fig. S3d are substantially less calcic compared to the 

plagioclase from the quartz diorite. The plagioclase core of 

rocks may have been a part of plagioclase minerals crystal-

lized from primary quartz dioritic magma. It is possible that 

the amount of calcium in cores of plagioclase from the peralu-

minous granite has fallen due to diffusion (see also García-

Arias­&­Stevens­(2017a, b)­and­Moyen­et­al.­2017­for­more­

discussion).

Oscillatory zoning occurs within both core and rim domains 

(e.g., Fig. 3c, e). Such zoning patterns are normally present 

only in plagioclase of igneous rocks, rim wards enrichment in 

Na is commonly interpreted as reflection of decreasing tem-

peratures during fractional crystallization. Therefore, these 

zoning patterns strongly suggest that plagioclase in all rock 

types, especially in metapelitic xenoliths, crystallized in the 

presence of melt, with rims crystallized during cooling, and 

also indicate that plagioclase with oscillatory zoning sur-

rounded­the­cordierite­and­biotite­(Fig.­3c, e).­These­observa-

tions indicate that melt was present in the metapelitic 

xenoliths.

Geothermobarometry

In this section thermobarometry has been used to estimate 

the peak P–T conditions of metamorphism in the studied 

metapelitic xenoliths and peraluminous granites. These results 

provide information about (1) the conditions of partial melting 

in metapelitic xenoliths, and (2) the crustal level of emplace-

ment of the quartz diorite.

Kriegsman (2001) discussed that the ultimate effect of mig-

matization comes from four successive processes: prograde 

partial melting; melt extraction close to peak temperatures; 

incomplete retrograde reactions between restite and in situ 

crystallizing melts; and crystallization of remaining melt at  

the solidus. Mineral assemblages formed in the peak and 

 retrograde metamorphic stages of the Chah-Bazargan migma-

titic­xenoliths­are­Bt + Grt + Sil + Crd + Spl + Crn + Pl + Kfs + Qtz­ 

(Fig.­ 2a–g, i, j)­ and­ Ms + Chl + fibrous­ Sil + Qtz,­ respectively.­

Based on Kriegsman (2001) and White and Powell (2002), 

retrograde mineral assemblage in anatectic migmatites is 

a result of partial retrograde reactions (back reaction) between 

in situ crystallizing melt and restite. Kriegsman & Hensen 

(1998) demonstrated that back reaction has significant impli-

cations for geothermobarometry. For this reason, suitable 

mine rals, near the peak temperatures for geothermobarometry, 

were selected.  The minerals were chosen from sections far 

from retrograde mineral assemblages. Analytical point of the 

background image

455

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

different minerals such as garnet, plagioclase, and biotite were 

defined on the basis of parts close to the peak temperatures 

and chemical compositions (Table S3) and profiles of different 

minerals (Figs. S1–S3).  To investigate the peak metamorphic 

conditions, garnet with high pyrope component, biotite with 

low X

Fe

 and high Ti level and plagioclase with high anorthite 

component were selected.

Peak metamorphic conditions of regional metamorphic 

rocks to the southwest of the Chah-Bazargan quartz diorite, in 

the Qori metamorphic complex, were estimated by Fazlnia  

et al. (2007) using several conventional geothermobarometers, 

such as Grt–Ky–Qtz–Pl (GASP), Grt–Bt–Pl–Qtz, Grt–Ms– 

Pl–Qtz, Grt–Pl–Bt–Ms and Grt–Hbl–Pl–Qtz barometers and 

Grt–Bt, Grt–Hbl and Hbl–Pl thermometers. The peak pressure 

and temperature of regional metamorphism in the Seghalaton 

outcrop of QMC (eastern part of the study area; Fig. 1) at 187 

to 180 Ma were estimated to be 7.5±1.2 kbar and 660±40 °C 

(Fazlnia et al. 2007, 2009). The pressure estimation allows 

depth of burial to be estimated at ca. 29 km. Following the 

emplacement of the intrusion, a secondary metamorphic event 

affected the QMC at 147 Ma due to the initiation of Neotethyan 

mid ocean ridge subduction beneath the southern Sanandaj–

Sirjan zone. Trondhjemitic dykes were created as a result of 

this event (Fig. 1). The peak P–T estimations of the arc-related 

metamorphism are 9±1.2 kbar and 700±30 °C (Fazlnia et al. 

2009; also see Sheikholeslami 2015).

Peak metamorphic contact condi-

tions in metapelitic xenoliths and per-

aluminous granites were estimated 

using conventional calibrated thermo-

barometers, thermometric diagrams 

are shown in (Fig. 4). The calibrations 

include the Grt–Bt thermometers 

(Thompson 1976; Holdway & Lee 

1977; Ferry & Spear 1978; Hodges & 

Spear 1982; Perchuk & Lavrent’eva 

1983; Dasgupta et al. 1991; Bhatta-

charya et al. 1992; Gessmann et al. 

1997; Kaneko & Miyano 2004; 

 

Table S4), and Grt–Sil–Pl–Qtz 

(Hodges & Spear 1982) and Grt–Bt–

Pl–Qtz (Wu et al. 2004), barometers 

(Table S5). A thermometric diagram 

of Zr-M index (Watson & Harrison 

1983) was used for peraluminous 

granites (Fig. S4). On the basis of X

Fe

 

in cordierite (Thompson 1976), meta-

pelitic xenoliths and peraluminous 

granites, which include assemblage 

Grt–Crd–Sil–Qtz (Table S2), are 

 plotted at pressures between 4.5 and 

5.5 kbar (Fig. 4).

The current thermobarometeric 

results are based on mineral core 

com positions of matrix phases. The 

thermobarometric results estimate 

peak P–T conditions for metapelitic xenoliths, peraluminous 

granite and partial melting of metapelitic xenoliths to be 

~4.5±1.0 kbar and ~760±35 ºC (Fig. 4). The temperature value 

is in agreement with petrographic evidence for the initiation of 

hydrate breakdown melting of biotite in the presence of garnet 

and sillimanite (Fig. 3a–b) and overlaps with the field of bio-

tite melting dehydration (Fig. 4).

Rock geochemistry

Peraluminous granites have restricted SiO

2

 contents between 

73–75 wt. %. CaO and MgO between 0.56–0.72 wt. %. and 

0.11–0.31 wt. %, respectively. K

2

O + Na

2

O have a range 

between 6.5 and 8 wt. %. These granites are enriched in Rb, 

Zr, Ba and Pb and depleted in Ni, Cr, V, Nd, Sr, Y, Nb, and 

have REE contents comparable to S-type granites (Brown 

1994; Harris et al. 1995; Bea 1996b; Patiño Douce 1999; 

Nabelek & Bartlett 2000; Healy et al. 2004; Stevens et al. 

2007; Villaros et al. 2009; García-Arias et al. 2012; Moyen et 

al. 2017). Low concentrations of Ni, Cr, V, Sr, Y, Nb, and REE 

indicate that they probably remained in the residuum (metape-

litic xenoliths) during partial melting and segregation. Based 

on Brown (1994), Brown (2007), García-Arias et al. (2012), 

Brown (2013), Sawyer (2014), and García-Arias & Stevens 

Fig. 4. Thermobarometric constraint on the P–T evolution of the Chah-Bazargan migmatitic 

xenoliths and peraluminous granites. Thin horizontal dashed lines of X

Fe

 cordierite values are 

after Thompson (1976). Wet granite solidus, approximate ranges of dehydration of micas in 

presence of quartz and plagioclase and minimum contents of felsic melts; modified from Patiño 

Douce & Harris (1998), Holtz & Johannes (1994) and Spear (1993). Three ellipsoid fields repre-

sent crustal-thickening regional metamorphism which occurred 187–180 Ma, contact metamor-

phism 173 Ma, which is related to intrusion of the Chah-Bazargan batholith, and arc-related 

regional metamorphism that occurred 147 Ma.

background image

456

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

(2017a, b)­several­potential­factors­that­may­control­the­com-

position of the S-type magmas include: melt loss, batch and 

fractional melting, spatially restricted equilibration of plagio-

clase during partial melting and the nature and amount of the 

entrained mineral assemblage.

The presence of normative corundum (Table 1) indicates 

that these granites are peraluminous, as seen in Fig. 5. All 

granites plot in the range of peraluminous granites (Fig. 5) and 

were probably extracted from migmatitic felsic metapelite- 

metagraywacke (Fig. 6). Leucocratic peraluminous granites 

are divided into garnet-bearing and cordierite-bearing granites 

based on main minerals of the rocks.

In REE and multi-element plots, garnet-bearing and 

 cordie rite-bearing granites have approximately the same pat-

terns (Figs. 7a, 8a, S5). The garnet-bearing granites are slightly 

enriched in REE in comparison with cordierite-bearing ones 

(Fig. 8; Table 2). Also, there are higher U but lower Nb and Ta 

values in the cordierite granites relative to the garnet granites 

(Figs. 7a, 8a), additionally, the garnet granites have, unexpec-

tedly, rather lower HREE contents (Fig. 7a; Table 2).

The Chah-Bazargan peraluminous granites are characterized 

by lower LREE but higher HREE contents and consequently 

lower La

n

/Yb

n

, La

n

/Sm

n

 and Gd

n

/Yb (Table 2) in comparison 

with common peraluminous granites (see Brown, 1994 for 

more discussions). Garnet-bearing granites show negative-Eu 

anomaly­(Eu/Eu* = 0.25)­and­are­slightly­enriched­in­HREE­in­

comparison with cordierite-bearing granites, especially Yb 

and Lu, reflecting the presence of garnet. All peraluminous 

granites have negative-Eu anomaly similar to metapelitic 

 xenoliths but less pronounced. Negative-Eu anomalies in 

granites and also negative-Eu and -Sr anomalies in migmatitic 

xenoliths, schist xenoliths, and metapelites show that plagio-

clase was not involved in partial melting reactions of meta-

pelitic xenoliths or had low percentages of contributions   

and/or it resulted from protolith composition, and also that 

negative-Eu and -Sr anomalies in granites resulted from the 

protolith. Peraluminous granites show negative-La anomaly 

because of few monazite grains in many metapelitic rock 

types from the study area. The REE plots show that these 

rocks have a Ce peak rather than La anomaly, reflecting the 

enrichment of the source (Figs. 8a, 9a, S5).

Negative-Ba anomalies in all rock types (Figs. 7, S5) show 

that abundance of Ba resulted from the protolith (metapelitic 

xenoliths). Positive-K anomaly in granites, metapelitic xeno-

liths, and metapelites is due to K-bearing phases such as 

K-feldspar and muscovite, which are still stable in all rocks.

Averages of Qori metamorphic metapelite and schist xeno-

liths plots between migmatitic xenoliths and peraluminous 

granites can be seen in Fig. 5. Therefore, decrease in K and 

Na and increase in Fe and Mg in the migmatitic xenoliths are 

consistent with partial melting and melt extraction from pelitic 

xenoliths with the mafic minerals such as garnet and cordierite 

remaining in the residue.

Total REE, Y, Zr, Hf, Sr, Ba, Th, U, Ti and Nb in the Chah-

Bazargan peraluminous granites is lower than in the meta-

pelites, metapelitic xenoliths and migmatitic metapelitic 

xenoliths (Fig. S5). Melts extracted from the metapelitic mig-

matites are depleted in trace elements such as Rb, Zr, Th, U, Y, 

and REE, in order to be equivalent to granite plutons and 

batholiths in the upper crust (Bea 1996a; Sawyer 1996; 

Sheppard et al. 2003). Stability of minerals such as garnet, 

cordierite, ilmenite, zircon, and monazite in the residuum 

 during partial melting causes them to be depleted during melt 

extraction.

Discussion

Modelling

Decrease of SiO

2

, P

2

O

5

, Na

2

O, and K

2

O and increase of 

Al

2

O

3

, TiO

2

, MgO, and FeO* in migmatitic xenoliths in 

 

comparison with metapelitic xenoliths and metapelites 

Fig. 5. ACF (A is Al

2

O

3 

– (Na

2

O + K

2

O),  C is CaO, and F is 

FeO

total 

+ MgO)­ plot­ delineating­ fields­ (Healy­ et­ al.­ 2004)­ for­ the­

Chah-Bazargan granites, migmatitic xenoliths, and metapelites and 

xenoliths without migmatite texture.

Fig. 6. Compositions of the study granites compared to melts pro-

duced by experimental dehydration melting of metasedimentary 

rocks (fields of melt compositions after Patiño Douce 1999).

background image

457

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

demon strate that residual minerals were 

stable phases of migmatitic xenoliths 

during partial melting. In contrast, other 

minerals were unstable phases during 

partial melting reactions and formed 

 felsic parts of migmatites and small 

patches of peraluminous granites.

Geochemical melting models based 

on both batch and Rayleigh melting 

modelling can be used to determine the 

possible amount of partial melting in the 

migmatitic xenoliths. Sawyer (1991), 

Acosta-Vigil et al. (2006), Brown 

(2007), Yakymchuk & Brown (2014), 

and García-Arias & Stevens (2017a) 

have discussed the most important fac-

tors influencing the composition of the 

peraluminous melts such as equilibrium 

and fractional melting and crystalliza-

tion during partial melting and crystalli-

zation, flow segregation, gravitational 

settling, filter-pressing fractionation, the 

amount of water in the original magma, 

path of emplacement and cooling, 

 mineral assemblage of the protolith, and 

P–T conditions. Based on presence and 

movement of melt in contact with the 

initial protolith (Figs. 2, 3a–b) batch 

melting equations (Shaw 1970) can be 

used for the Chah-Bazargan migmatitic 

xenoliths. Melting was modelled using 

the equilibrium batch melting equation:

C 

  =       1

C

0

     D (1−F)+F

C 

s

  =       D

C 

0

     F +D (1−F)

where i is the element of interest, C

i

0

 is 

the original concentration in solid phase 

(and the concentration in the whole 

 system),  C

i

 is the concentration in the 

liquid (or melt), C

i

s

 is the concentration 

remaining in the solid, F is the melt 

fraction (i.e. mass of melt/mass of sys-

tem) and D is partition coefficient of the 

interested element: D = C

i

s

/C

i

.

These equations are extremely useful 

in describing the relative enrichment or 

depletion of a trace element in the liquid 

as a function of melting degree.

The averages of metapelites, peralu-

minous granites, and migmatitic xeno-

liths trace elements were used. Thus, the 

concentrations of various elements of 

Fig. 7. Continental crust normalized multi-element plots of Chah-Bazargan batholith samples. 

a — Normalized multi-element diagram of peraluminous granites; b — Normalized multi- 

element diagram of metapelitic migmatitic xenoliths; c — Normalized multi-element diagram 

of schist xenoliths; d — Normalized multi-element diagram of metapelites from the Qori 

 metamorphic complex. Normalization values after Taylor & McLennan (1985).

i

i

i

i

background image

458

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

average initial protolith (C

i

0

; metapelitic xenoliths and 

metapelites), peraluminous granite (C

i

), and relict 

protolith (C

i

s

;­ as­ restite = migmatitic­ xenoliths)­ were­

considered (Tables 1, 2). The average composition of 

shale (Li 2000) was used for modelling because the 

Chah-Bazargan peraluminous granites are plotted in 

the field of metagraywackes-felsic metapelites (Fig. 6).

Partial melting

According to Fig. S5, the patterns of metapelitic 

xenoliths and metapelites were compared to shale.  

The Chah-Bazargan peraluminous granites were used 

as melt compositions (Tables 1, 2). Levels of the 

 migmatitic xenolith elements have not been altered 

(Table S6; for more details see Champion & Smithies 

2007).

Simple trace-element modelling was used to test 

whether the Chah-Bazargan peraluminous granites 

bear compositions that are consistent with derivation 

by partial melting at low pressures (4.5 kbar; the upper 

amphibolite facies) from a migmatitic metapelitic 

(xenolith) source. Bulk partition coefficients were cal-

culated assuming 1 %, 5 %, 10 %, 20 %, 30 %, 40 %, 

and 50 % partial melting (Table S7). Additionally, as 

a measure of suitability of the modelled source compo-

sitions, the degree of partial melting was calculated for 

highly incompatible elements and Cr assuming bulk 

partition coefficients calculated by partition coef ficient 

of different elements for each mineral (see the follo-

wing paragraphs; Table S8). Partition coefficients (K

d

of different elements are similar to those used above. 

For a full discussion of partition coefficients usage for 

modelling crustal melting see Harris et al. (2003).

We can infer from the results, summarized in  

Table S7, apparently the behaviour of all elements, 

such as the REEs (La to Lu). The HFSE (Ti, Zr, Ta, 

Nb, Th, U, Hf, Y), Ba, Pb, and Sr is largely insensitive 

to source enrichment, but sensitive to the amounts of 

main and accessory minerals in the residue (diatexitic 

migmatites). The abundance of garnet, biotite, plagio-

clase, apatite, ilmenite, zircon and monazite in the 

source has increased the values of bulk partition coef-

ficients for all the elements considered above (C

i

s

/C

i

0

). 

Therefore, the large proportion of these minerals were 

stable phases during partial melting of the source. 

Hence, partition coefficients increase with increasing 

levels of partial melting in the source (Table S7). 

Similar to this study, many studies of melts extracted 

from the migmatites indicate that these melts are 

excessively depleted in trace elements such as REEs, 

Nb, Rb, Zr, Th, U, and Y, to be the equivalent of  granite 

plutons and batholiths in the upper crust (Bea 1996a; 

Sawyer 1996; Sheppard et al. 2003).

The behaviour of Na, K, and Rb is quite sensitive to 

the proportions of main minerals such as biotite, 

Fig. 8. Continental crust normalized REE plots of Chah-Bazargan batholith 

samples.  a — Normalized REE diagram of peraluminous granites; 

 

b — Normalized REE diagram of metapelitic migmatitic xenoliths; 

 

c — Normalized REE diagram of schist xenoliths; d – Normalized REE 

 diagram of metapelites from the Qori metamorphic complex. Normalization 

values after Taylor & McLennan (1985).

background image

459

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

muscovite and K-feldspar in the residue (diatexitic migma-

tites). Abundance of these minerals in the source increases the 

bulk partition coefficients of the elements. Furthermore, 

decreases of these coefficients with increased degrees of mel-

ting would indicate that muscovite and less biotite would 

become unstable phases during partial melting of the source.

Considering more incompatible elements such as La, Ce, 

and Sm and compatible element Cr indicates that relatively 

moderate degrees (between 20 and 30 %) of partial melting 

are permissible (Table S8). Concentrations of LREEs such as 

La, Ce, and Nd and Cr in geochemical modelling of the 

 migmatitic xenoliths (C

i

s

) demonstrate that degrees of partial 

Fig. 9. Schematic model of the most important processes described in the Chah-Bazargan pluton. a — Schematic Figure which graphically 

summarizes the relationships between paleosome, melanosome, and neosome. b — Schematic relationships in the metatexites including 

 representations of patch dilation, net, and stromatic structures. c — Schematic relationships in the diatexite including nebulitic, schollen, and 

schlieren structures. Figures (b) and (c) were plotted base on Figure 2.

background image

460

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

melting between 20 and 30 % cause contents of these elements 

to be similar to the average of the observed concentrations of 

the elements (Table 2).

Partial melting of pelitic metasediments around the south-

west contact of the Chah-Bazargan complex is a possible indi-

cation of advective heating as well as conductive transfer of 

heat by quartz diorite (Fig. 9). Balanced in situ crystallization, 

reactions between restite (mesosome) and melt (leucosome), 

and the adhesion force between melt (leucosome) and crystal 

(melanosome) prevent the melt separating from migmatitic 

xenoliths (Figs. 2, 3). Additionally, high viscosity of the magma 

and low temperature of the partial melting in the source were 

other important factors inhibiting melt extraction. It should be 

noted that mingling of some parts of peraluminious melt with 

quartz dioritic magma is possible (Fig. 9).

 The volumes of peraluminous granite patches within the the 

Chah-Bazargan quartz-diorite intrusion are between several 

tens of centimetres to several tens of cubic metres. The patches 

are near or adjacent to the swarms of the migmatitic xenoliths. 

The aggregated migmatitic xenoliths are between several tens 

of centimetres to several metres across. Therefore, the maxi-

mum temperature of Chah-Bazargan intrusion has easily 

spread to the all parts of the xenoliths. Continuous injections 

of new quartz-dioritic magma to the chamber may also have 

served to maintain the high temperature. Convection and 

movement of the quartz-dioritic magma were important fac-

tors in aiding the separation and exhaustion of the leucosome 

components. As a result of processes, it is possible that only 

20–30 vol. % of the melt could have left the migmatitic xeno-

liths and, so small patches of Chah-Bazargan peraluminous 

granites could be produced (Fig. 9a). Because the thermal and 

chemical composition of the melt was much different from the 

quartz-dioritic melt, the felsic melt remained as patches and 

did not mix into the quartz diorite.

Conclusion

Partial melting in the Chah-Bazargan metapelitic xenoliths, 

which are incorporated into the Chah-Bazargan quartz dioritic 

batholith (Fig. 9a) at 173 Ma, occurred at P and T conditions 

higher than the minimum melting curve of granite  

(ca. 4.5±1.0 kbar and 760±35 °C). A considerable volume of 

leucosome was generated, mostly as a stromatic type (Fig. 9b). 

Although these amounts of leucosomes do not represent  

pure melts, but contain entrained solid (residual, i.e. 

 

peritectic phases) material, textures and field relationships 

suggesting that the melt fraction was substantial. Melting 

reactions involved the incongruent breakdown of biotite. 

A portion of the leucosome (appro ximately 20–30 vol. %)  

was segregated from the diate 

xitic migmatitic xenoliths 

 

(Fig. 9c) during  contact metamorphism and these amal-

gamated to produce small patches of the Chah-Bazargan 

 per aluminous granites. A large part of the partial melts  

from migmatitic xenoliths could not be extracted due to 

a combi nation of situ crystallization, the adhesion force 

between melt and remaining crystal, and high viscosity of  

the magma.

Geochemical modelling indicates that in REEs plots, per-

aluminous melts are excessively depleted in trace elements 

such as REEs (La to Lu), HFSE (Ti, Zr, Ta, Nb, Th, U, Hf, Y), 

Ba, Pb, and Sr in comparison with xenoliths of migmatite. 

Furthermore, the modelling demonstrates that these elements 

are very sensitive to source enrichment and the amounts of 

major minerals such as garnet, biotite, muscovite, K-feldspar, 

plagioclase, and ilmenite, and accessory minerals, such as 

 apatite, monazite, and zircon, in the residue of the diatexite 

migmatites. Hence, a portion of these elements were hosted by 

non-melted part of the mineral assemblage minerals consi-

dered before in the source (migmatitic xenoliths).

Acknowledgements:  The authors would like to thank 

Prof. Dr. Volker Schenk, Dr. Peter Appel, Mrs. Barbara Mader, 

and Mrs. Astrid Weinkauf for their support during EMP and 

XRF analyses at Kiel University. Financial support from the 

Iranian Ministry of Science, Research and Technology, and 

Universities of Kerman and Urmia (Iran) and Institute für 

 Geowissenschaften, Christian-Albechts-Universität zu Kiel 

(Germany) are gratefully acknowledged. Last but not the least, 

I would like to thank Prof. Robert J. Stern from the University 

of Texas at Dallas for English and scientific editing the article. 

This paper is dedicated to Afzalipour who founded Kerman 

University.

References

Acosta-Vigil A., London D. & Morgan G.B. 2006: Experiments on 

the kinetics of partial melting of a leucogranite at 200 MPa H

2

and 690–800 °C: compositional variability of melts during the 

onset of H

2

O-saturated crustal anataxis. Contrib. Mineral. 

 Petrol. 151, 539–557.

Agard P., Omrani J., Jolivet L. & Mouthereau F. 2005: Convergence 

history across Zagros (Iran): constraints from collisional and 

earlier deformation. Geol. Rundsch. 94, 401–419.

Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., 

 Spakman W., Monie P., Meyer B. & Wortel R. 2011: Zagros 

orogeny: a subduction-dominated process. Geol. Mag. 148, 

 692–725.

Akbari K., Tabatabaei Manesh S.M. & Safaei H. 2016: Tectonic 

 Setting and Petrological Evidence for the Emplacement of 

 Mylonitic Granites Within the Middle Part of Sanandaj–Sirjan 

Shear Zone from East and South East of Chadegan, Iran. 

 Geotectonics 50, 313–326.

Alavi M. 1994: Tectonic of the Zagros orogenic belt of Iran: new data 

and interpretations. Tectonophysics 229, 211–238.

Ashworth J.R. 1985: Introduction. In: Ashworth J.R. (Eds.): Migma-

tites. Blackie and Son, 36–85.

Babaiea H.A., Ghazi A.M., Babaei A., La Tour T.E. & Hassanipak 

A.A. 2001: Geochemistry of arc volcanic rocks of the Zagros 

Crush Zone, Neyriz, Iran. J. Asian Earth Sci. 19, 61–76.

Bea F. 1996a: Controls on the trace element composition of crustal 

melts: Transactions of the Royal Society of Edinburg. Earth Sci. 

87, 133–141.

Bea F. 1996b: Residence of REE, Y, Th and U in granites and crustal 

protoliths: implications for the chemistry of crustal melts.  

J. Petrol. 37, 521–552.

background image

461

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Bea F., Pereira M.D. & Stroh A. 1994: Mineral/leucosome trace- 

element partitioning in a peraluminous migmatite (a laser abla-

tion — ICP-MS study). Chem. Geol. 117, 291–312.

Berberian F. & Berberian M. 1981: Tectono-Plutonic episodes in Iran. 

Geol. Surv. Mineral. Explor. IranReport 52, 566–593.

Berberian M. & King G.C.P. 1981: Towards a paleogeography  

and tectonic evolution of Iran. Can. J. Earth Sci. 18, 

 

210–265.

Bhattacharya A., Mohanty L., Maji A., Sen S.K. & Raith M. 1992: 

Non-ideal mixing in the phogopiteannite binary: constraints 

from­experimental­data­on­Mg−Fe­partitioning­and­a­reformula-

tion of the biotitegarnet geothermometer: Contrib. Mineral. 

 Petrol. 111, 87–93.

Brown M. 1979: The petrogenesis of the St. Malo migmatite belt, 

Armorican Massif, France, with particular reference to the dia-

texites. Neues Jahrb. Mineral. Abh. 135, 48–74.

Brown M. 1994: The generation, segregation, ascent and emplace-

ment of granite magma: the migmatite-to-crustally-derived 

 gra nite connection in thickened orogens. Earth Sci. Rev. 36, 

83–130.

Brown M. 2007: Crustal melting and melt extraction, ascent and 

 

emplacement in orogens: mechanisms and consequences. 

 

J. Geol Soc. London 164, 709–730.

Brown M. 2013: Granite: from genesis to emplacement. Geol. Soc. 

Am. Bulletin 125, 1079–1113.

Bucher K. & Grapes R. 2011: Petrogenesis of Metamorphic Rocks. 

Springer-Verlag, 1–428.

Carvalho B.B., Sawyer E.W. & Janasi V.A. 2016: Crustal reworking 

in a shear zone: transformation of metagranite to migmatite.  

J. Metamorph. Geol. 34, 237–264.

Champion D.C. & Smithies R.H. 2007: Geochemistry of Paleoarchean 

granites of the East Pilbara terrane, Pilbara craton, Western 

 

Australia: Implications for Early Archean crustal growth. 

 Develop Pr

ecambrian Geol. 15, 369–409.

Chiu H-Y., Chung S-L., Zarrinkoub M.H., Mohammadi S.S., Khatib 

M.M. & Iizuka Y. 2013: Zircon U–Pb age constraints from Iran 

on the magmatic evolution related to Neotethyan subduction and 

Zagros orogeny. Lithos 162–163, 70–87.

Dasgupta S., Sengupta P., Guha D. & Fukuoka M. 1991: A refined 

garnet-biotite Fe-Mg exchange geothermometer and its applica-

tion in amphibolites and granulites. Contrib. Mineral. Petrol. 

109, 130–137.

Davoudian A.R., Genser J., Dachs E. & Shabanian N. 2008: Petro-

logy of eclogites from north of Shahrekord, Sanandaj–Sirjan 

Zone, Iran. Mineral. Petrol. 92, 393–413.

Erdmann S., Jamieson R.A. & MacDonald M.A. 2009: Evaluating the 

Origin of Garnet, Cordierite, and Biotite in Granitic Rocks:  

a Case Study from the South Mountain Batholith, Nova Scotia. 

J. Petrol. 50, 1477–1503.

Fazlnia A.N. & Alizade A. 2013: Petrology and geochemistry of the 

Mamakan gabbroic intrusions, Urumieh (Urmia), Iran: Magma tic 

development of an intra-oceanic arc. Periodico di Mineralogia 

82, 263–290.

Fazlnia A.N., Moradian A., Rezaei K., Moazzen M. & Alipour S. 

2007: Synchronous Activity of Anorthositic and S-type Granitic 

magmas in Chah-Dozdan batholith, Neyriz, Iran: Evidence of 

Zircon SHRIMP and Monazite CHIME Dating. J. Sci., I. R. Iran 

18, 221–237.

Fazlnia A.N., Schenk V., van der Straaten F. & Mirmohammadi M.S. 

2009: Petrology, Geochemistry, and Geochronology of Trond-

hjemites from the Qori Complex, Neyriz, Iran. Lithos 112, 

 413–433.

Fazlnia A.N., Schenk V., Appel P. & Alizade A. 2013: Petrology, 

 geochemistry, and geochronology of the Chah-Bazargan gabbroic 

intrusions in the south Sanandaj–Sirjan zone, Neyriz, Iran. Inter. 

J. Earth Sci. 102, 1403–1426.

Ferry J.M. & Spear F.S. 1978: Experimental calibration of the parti-

tioning of Fe and Mg between biotite and garnet. Contrib. 

 Mineral.  Petrol. 66, 113–117.

García-Arias M. & Stevens G. 2017a: Phase equilibrium modelling of 

granite magma petrogenesis: A. An evaluation of the magma 

compositions produced by crystal entrainment in the source. 

Lithos 277, 131–153.

García-Arias M. & Stevens G. 2017b: Phase equilibrium modelling of 

granite magma petrogenesis: B. An evaluation of the magma compo-

sitions that result from fractional crystallization. Lithos 277, 109–130.

García-Arias M., Corretge L.G. & Castro A. 2012: Trace element 

 

behavior during partial melting of Iberian orthogneisses: 

 

An experimental study. Chem. Geol. 292–293, 1–17.

Gessmann C.K., Spiering B. & Raith M. 1997: Experimental study of 

the exchange between garnet and biotite: Constraints on the 

 mixing behavior and analysis of the cation-exchange mecha-

nisms. Am. Mineral. 82, 1225–1240.

Golonka J. 2004: Plate tectonic evolution of the southern margin of 

Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 

235–273.

Harris N., Ayres M. & Massey J. 1995: Geochemistry of granitic 

melts produced during the incongruent melting of muscovite- 

implications for the extraction of Himalayan leucogranite 

 magmas.  J. Geophys. Res. 100, 15767–15777.

Harris N., McMillan M., Holness M., Uken R., Watkeys M., Rogers 

N. & Fallick A. 2003: Melt generation and fluid flow in the ther-

mal aureole of the Bushveld Complex. J. Petrol. 44, 1031–1054.

Hassanzadeh J. & Wernicke B.P. 2016: The Neotethyan Sanandaj–

Sirjan zone of Iran as an archetype for passive margin-arc transi-

tions. Tectonics 35, 586–621.

Healy B., Collins W.J. & Richards S.W. 2004: A hybrid origin for 

Lachlan S-type granites: the Murrumbidgee Batholith example. 

Lithos 78, 197–216.

Henry D.J. & Guidotti C.V. 2002: Titanium in biotite from metapeli tic 

rocks: Temperature effects, crystal-chemical controls, and petro-

logic applications. Am. Mineral. 87, 375–382.

Hodges K.V. & Spear F.S. 1982: Geothermometry, geobarometry and 

the Al

2

SiO

5

 triple point at Mt. Moosilauke, New Hampshire. Am. 

Mineral. 67, 1118–1134.

Holdway M.J. & Lee S.M. 1977: Fe-Mg cordierite stability in high-

grade pelitic rocks based on experimental, theoretical and natu-

ral observations. Contrib. Mineral. Petrol. 63, 175–198.

Holtz F. & Johannes W. 1994: Maximum and minimum water con-

tents of granitic melts; implications for chemical and physical 

properties of ascending magmas. Lithos 32, 149–159.

Jamshidi F. 2003: Petrology and petrogenesis study on the Chah-

Dozdan granitoids, southeast ShahrBabak. M.Sc. Thesis,  Kerman 

University of Shahid-Bahonar, Iran, 1–214 (in Persian).

Kaneko Y. & Miyano T. 2004: Recalibration of mutually consistent 

garnet-biotite and garnet-cordierite geothermometers. Lithos 73, 

255–269.

Karimi S., Tabatabaei Manesh S.M., Safaei H. & Sharifi M. 2012: 

 Metamorphism and Deformation of Golpayegan Metapelitic 

Rocks, Sanandaj_Sirjan Zone, Iran. Petrology 20, 658–675.

Keskin M. 2002: FC–Modeler: a Microsoft® Excel© spreadsheet 

program for modeling Rayleigh fractionation vectors in closed 

magmatic systems. Comput. Geosci. 28, 919–928.

Khadivi S., Mouthereau F., Barbarand J., Adatte T. & Lacombe O. 

2012: Constraints on paleodrainage evolution induced by uplift 

and exhumation on the southern flank of the Zagros–Iranian 

 Plateau.  J. Geol. Soc. London 169, 83–97.

Kretz R. 1983: Symbols for rock-forming minerals. Am. Mineral. 68, 

277–279.

Kriegsman L.M. & Hensen B.J. 1998: Back reaction between restite 

and melt: implications for geothermobarometry and pressure–

temperature paths. Geology 26, 1111–1114.

background image

462

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Kriegsman L.M. 2001: Partial melting, partial melt extraction and 

partial back reaction in anatectic migmatites. Lithos 56, 75–96.

Lavaure S. & Sawyer E.W. 2011: Source of biotite in the Wuluma 

Pluton: Replacement of ferromagnesian phases and disaggre-

gation of enclaves and schlieren. Lithos 125, 757–780.

Li Y.H. 2000: A compendium of geochemistry: from Solar Nebula to 

the Human Brain. Princeton University Press, Princeton, 1–475.

Makrygina V.A. 1977: Role of metamorphic zonation in distribution 

of pegmatites and migmatites of different composition.  Inter. 

Geol. Rev. 19, 1133–1141. 

McQuarrie N., Stock J.M., Verdel C. & Wernicke B.P. 2003: Cenozoic 

evolution of Neotethys and implications for the causes of plate 

motions. Geophys. Res. Lett. 30, 2036–2039.

Mehnert K.R. 1968: Migmatites and the origin of granitic rocks. 

 Developments in Petrology 1, Elsevier, Amsterdam, 1–393.

Mohajjel M. & Fergusson C.L. 2014: Jurassic to Cenozoic tectonics 

of the Zagros Orogen in northwestern Iran. Inter. Geol. Rev. 56, 

263–287.

Mohajjel M., Fergusson C.L. & Sahandi M.R. 2003: Cretaceous– 

Tertiary convergence and continental collision, Sanandaj–Sirjan 

zone, Western Iran. J. Asian Earth Sci. 21, 397–412.

Molinaro M., Zeyen H. & Laurencin X. 2005: Lithospheric structure 

underneath the SE Zagros Mountains, Iran: recent slab break-

off? Terra Nova 25, 1–6.

Mouthereau F. 2011: Timing of uplift in the Zagros belt/Iranian 

 plateau and accommodation of late Cenozoic Arabia/Eurasia 

convergence. In: Lacombe O. Grasemann B. & Simpson G. 

(Eds.): Geodynamic Evolution of the Zagros. Geol. Mag. 148, 

726–738.

Mouthereau F., Lacombe O. & Vergés J. 2012: Building the Zagros 

collisional orogen: Timing, strain distribution and the dynamics 

of Arabia/Eurasia plate convergence: Tectonophysics 532–535, 

27–60.

Moyen J.-F., Laurent O., Chelle-Michou C., Couzinié S., Vander-

haeghe O. Zeh A. Villaros A. & Gardien V. 2017: Collision vs. 

subduction-related magmatism: Two contrasting ways of granite 

formation and implications for crustal growth.  Lithos 277,  

154–177.

Nabelek P.I. & Bartlett C. 2000: Fertility of metapelites and me-

tagraywackes during leucogranite generation: An example from 

the Black Hills, USA. Trans. Royal Soc. Edinburgh: Earth Sci. 

91, 1–14.

Nash W.P. & Crecraft H.R. 1985: Partition coefficients for trace 

 elements in silicic magmas. Geochim. Cosmochim. Acta 49, 

2309–2322.

Omrani J., Agard P., Whitechurch H., Benoit M., Prouteau G. & 

 Jolivet L. 2008: Arc-magmatism and subduction history beneath 

the  Zagros Mountains, Iran: A new report of adakites and geody-

namic consequences. Lithos 106, 380–398.

Patiño Douce A.E. 1999: What do experiments tell us about the rela-

tive contributions of crust and mantle to the origin of granitic 

magmas? In: Castro A. Fernandez C. & Vigneressese J.L. (Eds.): 

Understanding Granites: Intergrating New and Classical Tech-

niques. Geol. Soc. London 168, 55–75.

Patiño Douce A.E. & Harris N. 1998: Experimental constraints on 

Himalayan anatexis. J. Petrol. 39, 689–710.

Perchuk L.L. & Lavrent’eva I.V. 1983: Experimental investigation of 

exchange equilibria in the system cordierite-garnet-biotite. 

 

In: Saxena S.K. (Ed.): Kinetics and equilibrium in mineral 

 reactions.  Springer-Verlag, Berlin, Adv. Phys. Geoch. 3, 

 

199–240.

Raymond L.A. 2007: Petrology: the study of igneous, sedimentary 

and metamorphic rocks. McGraw-Hill, New York, 1–720.

Ricou L.E. 1994: Tethys reconstructed: Plates, continental fragments 

and their boundaries since 260 Ma from Central America to 

South-eastern Asia. Geodinamica Acta 7, 169–218.

Robinson P. 1991: The eye of the petrographer, the mind of the petro-

logist. Am. Mineral. 76, 1781–1810.

Sabzehei M., Navazi M., Ghavidel M. & Hamdi S.B. 1992: Geolo-

gical map of Neyriz (Scale 1:250,000). Geological Survey of Iran.

Saki A., Moazzen M. & Baharifar A.A. 2012: Migmatite microstruc-

tures and partial melting of Hamadan metapelitic rocks, Alvand 

contact aureole, western Iran. Inter. Geol. Rev. 54, 1229–1240.

Sarkarinejad K., Godin L. & Faghih A. 2009: Kinematic vorticity 

flow analysis and 

40

Ar/

39

Ar geochronology related to inclined 

extrusion of the HP–LT metamorphic rocks along the Zagros 

 accretionary prism, Iran. J. Struct. Geol. 1, 691–706.

Sawyer E.W. 1991: Disequilibrium melting and the rate of meltresi-

duum separation during migmatitization of mafic rocks from the 

Grenville Front, Quebec. J. Petrol. 32, 701–738.

Sawyer E.W. 1996: Melt segregation and magma flow in migmatites: 

implications for the generation of granite magmas. Transactions 

of the Royal Society of Edinburg, Earth Sci. 87, 85–94.

Sawyer E.W. 2008a: Atlas of migmatites. NRC Research Press, Cana-

dian Mineralogist, Spec. publ., 1–371.

Sawyer E.W. 2008b: Working with Migmatites: Nomenclature for  

the Constituent Parts. In: Sawyer E.W. (Eds.): Working 

 

with Migmatites. Mineral. Assoc. Can., Short Course Series 38, 

1–28.

Sawyer E.W. 2014: The inception and growth of leucosomes: micro-

structure at the start of melt segregation in migmatites. J. Meta-

morph. Geol. 32, 695–712.

Shafaii Moghadam H., Ghorbani G., Zaki Khedr M., Fazlnia N., 

 

Chiaradia M., Eyuboglu Y., Santosh M., Galindo 

 

Francisco C., Lopez Martinez M., Gourgaud A. & Arai S.  

2014: Late Miocene K-rich volcanism in the Eslamieh 

 

Peninsula (Saray), NW Iran: Implications for geodynamic 

 

evolution of the Turkish–Iranian High Plateau. Gondwana Res. 

26, 1028–1050.

Shaw D.M. 1970: Trace element fractionation during anatexis. 

 Geochim. Cosmochim. Acta 34, 237–243.

Sheikholeslami M.R. 2015: Deformations of Palaeozoic and Meso-

zoic rocks in southern Sirjan, Sanandaj–Sirjan Zone, Iran.  

J. Asian Earth Sci. 106, 130–149.

Sheikholeslami R., Bellon H., Emami H., Sabzehei M. & Pique I. 

2003: Nouvellés donneés structurales et datatious 

40

K–

40

Ar sur 

roches metamorphiques de lá region de Neyriz (Zone de 

Sanandaj–Sirjan, Iran meridional): Leur tethysien du Moy-

en-Orient. Compt. Rend. Geosci. 335, 981–991.

Sheikholeslami M.R., Pique A., Mobayen P., Sabzehei M., Bellon H., 

& Emami H. 2008: Tectono-metamorphic evolution of 

 

the  

Neyriz metamorphic complex, Quri-Kor-e-Sefid area 

(Sanandaj–Sirjan Zone, SW Iran). J. Asian Earth Sci. 31,  

504–521.

Sheppard S., Occhipinti S.A. & Tyler I.M. 2003: The relationship 

 

between tectonism and composition of granitoid magmas, 

 Yarlarweelor Gneiss Complex, Western Australia. Lithos 66, 

133–154.

Sisson T.W. & Bacon C.R. 1992: Garnet/high-silica rhyolite trace- 

element partition coefficients measured by ion microprobe. 

 Geochim. Cosmochim. Acta 56, 2133–2136.

Spear F.S. 1993: Metamorphic phase equilibria and pressure–tempe-

rature-time paths. Mineral. Soc. Am., New York, 1–799.

Stevens G., Villaros A. & Moyen J.F. 2007: Selective peritectic garnet 

entrainment as the origin of geochemical diversity in S-type 

granites. Geology 35, 9–12.

Taylor J. & Stevens G. 2010: Selective entrainment of peritectic 

 garnet into S-type granitic magmas: Evidence from Archaean 

mid-crustal anatectites. Lithos 120, 277–292.

Taylor S.R. & McLennan S.M. 1985: The Continental Crust: its com-

position and evolution. Blackwell Scientific Publishers, Oxford, 

1–312.

background image

463

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Thompson P.H. 1976: Isograd patterns and pressure-temperature 

 distributions during regional metamorphism. Contrib. Mineral. 

Petrol. 57, 277–295.

Villaros A. Stevens G. Moyen J.-F. & Buick I.S. 2009: The trace 

 element compositions of S-type granites: evidence for disequi-

librium melting and accessory phase entrainment in the source. 

Contrib. Mineral. Petrol. 158, 543–561.

Watson E.B. & Harrison T.M. 1983: Zircon saturation revisited: tem-

perature and composition effects in a variety of crustal magma 

types. Earth Planet. Sci. Lett. 64, 295–304.

White R.W. & Powell R. 2002: Melt loss and the preservation of 

 granulite facies mineral assemblages. J. Metamorph. Geol. 20, 

621–632.

Wu C., Zhang J. & Ren L. 2004: Empirical garnet–biotite– plagioclase–

quartz (GBPQ) geobarometry in medium- to high-grade meta-

pelites. J. Petrol. 45, 1907–1921.

Yakymchuk C. & Brown M. 2014: Consequences of open-system 

melting in tectonics. J. Geol Soc., London 171, 21–40.

Yousefirad M. 2011: Genetic relation of the Zagros thrust and 

Sanandaj–Sirjan zone. J. Am. Sci. 7, 835–841.

background image

i

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Supplementum 

Fig. S1. Chemical compositions of garnet grains of metapelitic 

 xenoliths and peraluminous granites. a — Migmatitic xenolith;  

b — Metapelitic xenolith without bands, pods and patches of 

 leucocratic quartzo-feldspathic melt (leucosome); c — peraluminous 

granite patch in the Chah-Bazargan batholith.

Fig. S2. Discriminating diagram of biotite. Plot of Ti (per 11 oxygens) 

as­a­function­of­Fe/(Fe+Mg)­for­biotite­grains­(Robinson­1991)­from­

different rock types. Number 187 is garnet-bearing peraluminous 

granite. Numbers 264 and 272 are cordierite-bearing peraluminous 

granite. Numbers 182-E2 and 189-E are migmatitic xenoliths.

background image

ii

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Fig. S3. Chemical composition of different rock types plagioclase. a — Quartz-diorite (Chah-Bazargan batholith); b — Contaminated quartz- 

diorite. This picture suggests that magma mixing has occurred between quartz dioritic and peraluminous granitic melts; c — Migmatitic 

 xenolith;  d — Peraluminous granite. Core of the grain is presumably a relic of the quartz-diorite and rim has been crystallized from the peralu-

minous granitic melt. Outer rim of the grain suggests that magma mixing has occurred between quartz dioritic and peraluminous granitic melts.

Fig. S4.­Zirconium­contents­against­M­index­defined­as­cation­ratio­(Na + K + 2Ca) /(Al * Si)­for­the­peraluminous­granite­of­the­Chah-Bazargan­

batholith. Lines indicate zirconium saturation isotherms calculated following Watson & Harrison (1983).

background image

iii

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Fig. S5. Continental crust normalized REE and multi-element plots for averages of samples of Chah-Bazargan batholith. a — Normalized REE 

diagram; b — Normalized multi-element diagram. Normalization values after Taylor & McLennan (1985).

Table S1: Mineralogy and detailed mineral assemblage of all rock types of Chah-Bazargan, Talle-Pahlevani gabbroic intrusions and Qori 
Barrovian-type metamorphic complex.

Minerals

Rock type

Metapelites

Metabasites

Qori Barrovian-type metamorphic 

complex (QMC)

Biotite+Garnet+Kyanite+Plagioclase+ 

K-felspare+Quartz+Opaque­minerals

Hornblande+Garnet+­Plasioclase+Quartz+ 

Biotite+Titanite

Rock type

Chah-Bazargan  intrusions

Talle-Pahlevani  intrusions

Chah-Bazargan quartz-dioritic and 

Talle-Pahlevani gabbroic intrusions

Plagioclase, Quartz, Clinopyroxene, Titanite, 

Opaque minerals

Plagioclase, Olivine, Clinopyroxene, 

Hornblande, Biotite, Titanite,  

Opaque minerals

Rock type

Peraluminous granites

Migmatitic xenoliths

Chah-Bazargan migmatitic xenoliths 

and peraluminous granitic patches

Biotite, Muscovite, Plagioclase, K-felspare, 

Quartz, Cordierite, Opaque minerals, 

Sillimanite, Tourmaline

Biotite+Plagioclase+K-felspare+Quartz+ 

Cordierite+Garnet+Opaque­minerals+ 

Sillimanite

Biotite, Muscovite, Plagioclase, K-felspare, 

Quartz, Opaque minerals, Garnet, Sillimanite, 

Tourmaline, ±Cordierite,

Biotite+Plagioclase+K-felspare+Quartz+ 

Cordierite+Opaque­minerals+ 

Sillimanite+Spinel±Garnet

background image

iv

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Table S2: Detailed petrographic observations of all rock types in the Chah-Bazargan intrusion.

 

Mineral 

phase

Qtz

Pl

Chl

Bt

Ms

Grt

Ky

Sil

And Crd

Kf

Mc

Hbl Cpx Tou

Zr

Ap

Ilm Ore

Sample

Enclave

AF-180-E1

N 29 42 07    E 54 37 08

X

X

S

X

X

X

A I

A I

X

AF-180-E2

29 42 07

54 37 08

X

X

X

X

X

A I

A I

X

AF-180-E3

29 42 07

54 37 08

X

X

X

X

X

A I

A I

X

AF-180-E4

29 42 07

54 37 08

X

X

S

X

X

X

A I

A I

X

AF-181-E2

29 30 17

54 37 33

X

X

X

X

X

A I

A I

A

X S

AF-181-E4

29 30 17

54 37 33

X

X

S

X I

X I

X

X

A

A I

A I

X I

AF-182-E1

29 38 45   

54 38 51

X

X

X

X

X

A I

A I

X

AF-182-E2

29 38 45 

  

54 38 51

X

X

S

X

X I

X

A

A I

A I

X S I

AF-184-E1

29 38 15

54 40 53

X

X

X

A

A I

A I

A S I

AF-184-E2

29 38 15

54 40 53

X

X

X

A

A I

A I

A I

AF-185-E1

29 38 14

54 44 05

X

X

X

X

A

X

X

A

A I

A I

A

AF-185-E2

29 38 14

54 44 05

X

X

S

X

X

A

A

A

A

X

A

A I

A I

A

X I

AF-185-E3

29 38 14

54 44 05

X

X

S

X

X

A

A

X

A

A I

A I

X I

AF-188-E1

29 38 49

54 39 01

X

X

X

A I

A

A

X

A

A

A I

A I

A

AF-188-E2

29 38 49

54 39 01

X

X

S

X

X

X

A

X

A

A I

A I

A

A

AF-188-E3

29 38 49

54 39 01

X

X

S

X

A I

A I

A

AF-188-E3

Xenocryst in enclave

X

X

AF-188-E4

29 38 49

54 39 01

X

X

S

X

X

X

A I

A I

X

AF-189-E1

29 38 46

54 39 03

X

X

A

A

X

X

A

A I

AF-191-E

29 42 50

54 42 07

X

X

X

A

X

A I

A I

X

AF-B-7-a

29 42 29

54 44 16

X

X

X I

X I

A I

A I

X I

AF-B-7-b

29 42 29

54 44 16

X

A

S

A

A

X I

A

A

X

A

A

A I

A I

A

AF-B-7-c

29 42 29

54 44 16

X

X

X

X

X

A I

A I

X

AF-B-10

29 41 55

54 43 27

X

X

X

X

A I

A

A I

A I

A I

AF-B-7-e

29 42 29

54 44 16

X

X

X

X

A I

A I

X

AF-269-f

29 38 43

54 39 07

X

A

S

X

X

A

X

A I

A I

A S

AF-B-7

29 42 29

54 44 16

X

X

X

X

A I

A I

X

AF-B-4

Uneqilibrium enclave

X

X

X

A

A

A

A I

A I

A

29 42 08

54 45 23

AF-6

Dioritic enclave

X

S

X

A I

A

29 42 14

54 42 59

Chah-Bazargan intrusion

AF-B-8-a

29 42 27

54 44 14

X

X

S

X

X

X

A I

A I

AF-B-1-b

29 42 11

54 45 33

X

X

X

A

AF-269-a

29 40 14

54 38 48

X

A

S

X

X

X

A

AF-265

29 39 46

54 39 17

X

X

X

X

A I

A I

A S

AF-269-c

29 38 43

54 39 06

X

A

S

X I

X I

X

A I

A I

A S

AF-269-e

29 38 43

54 39 06

X

A

S

X

X

X

A I

A I

X S

AF-271

29 38 47

54 38 25

X I

A

S

X I

X I

X

A I

A I

X S

AF-194-d

29 39 38

54 42 26

X

S

A

X

A I

A I

A S

Peraluminous granite from Chah-Bazargan intrusion

AF-140-1

29 42 18

54 39 47

X

X

A

X

X

I

A I

A I

X

X

A I

A I

A I

A I

AF-187

29 41 08

54 41 04

X

X

X

X

X

A I

A I

X

X

A I

A I

A I

A I

AF-190-B

29 42 49

54 42 08

X

X

A

X

X

I

A I

A I

X

X

A I

A I

A I

A I

AF-189-E

29 38 46

54 39 03

X

X

X

X

X

I

A I

A I

X

X

A I

A I

A I

A I

AF-260

29 39 49

54 39 21

X

X

X

X

A I

X

X

X

A I

A I

A I

A I

AF-264

29 39 50

54 38 14

X

X

X

X

I

A I

X

X

X

A I

A I

A I

A I

AF-272

29 38 48

54 38 26

X

X

X

X

A I

X

X

X

A I

A I

A I

A I

Mineral Abbreviations: are from Kretz 1983.
Marked Abbreviations are: A — accessory and minor phase in matrix phase, I — inclusion in one mineral, R — relict phase, S — secondary phase, X — matrix phase.

                                                 

background image

v

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Table S3: Chemical compositions of plagioclase, biotite, muscovite, garnet, K-feldspar, cordierite and spinel. Notes: Granite: Per-aluminous 

granite; Xeno: xenolith; Inn R: Inner rim; Out R: Outer rim; Anor: anorthosite; Cont: contaminated leuco-quartz diorite-anorthosite; Mat: matrix

Sample

269-f 269-f B-7-b B-7-b

272

272

272

273

273 B-1-b B-1-b

Mineral

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Pl

Type of rock Xeno Xeno Xeno Xeno Granite Granite Granite Cont Cont Anor Anor

Rim  Core Rim  Core Out r Inn r

Core

Rim Core Rim Core

SiO

2

64.56 59.74 59.56 55.09 62.49

66.33

61.17 63.65 56.42 58.33 55.96

Al

2

O

3

22.66 25.90 25.63 28.37 23.42

20.43

24.09 23.25 28.47 25.92 27.32

Fe

2

O

3

0.09

0.09

0.17

0.04

0.04

0.00

0.00

0.18

0.00

0.11

0.06

CaO

3.11

6.75

6.37

9.83

4.50

1.36

5.76

3.99

9.83

7.78 10.01

Na

2

O

9.72

7.54

7.72

5.82

8.78

10.82

8.23

9.46

5.96

6.99

5.79

K

2

O

0.08

0.08

0.17

0.09

0.32

0.15

0.25

0.18

0.12

0.20

0.12

BaO

0.03

0.02

0.04

0.00

0.00

0.01

0.05

0.02

0.02

0.00

0.00

Total

100.25 100.13 99.66 99.24 99.55

99.10

99.55 100.73 100.82 99.33 99.25

Si

2.84

2.66

2.66

2.50

2.78

2.94

2.73

2.80

2.51

2.62

2.53

Al

IV

1.17

1.36

1.35

1.52

1.23

1.07

1.27

1.20

1.50

1.37

1.46

Total

4.01

4.01

4.01

4.01

4.01

4.00

4.00

4.00

4.01

4.00

3.99

Fe

3+

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

Ca

0.15

0.32

0.31

0.48

0.21

0.06

0.28

0.19

0.47

0.38

0.49

Na

0.83

0.65

0.67

0.51

0.76

0.93

0.71

0.81

0.52

0.61

0.51

K

0.00

0.00

0.01

0.01

0.02

0.01

0.01

0.01

0.01

0.01

0.01

Ba

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Total

0.98

0.98

0.99

0.99

0.99

1.00

1.00

1.01

0.99

1.00

1.00

An

0.15

0.33

0.31

0.48

0.22

0.06

0.28

0.19

0.47

0.38

0.48

Ab

0.85

0.67

0.68

0.51

0.77

0.93

0.71

0.80

0.52

0.61

0.51

Kfs

0.00

0.00

0.01

0.01

0.02

0.01

0.01

0.01

0.01

0.01

0.01

Sample

269-f

269-f

B-7-b

B-7-b

182-E2

Mineral

Grt

Grt

Grt

Grt

Grt

Type of rock

Xeno

Xeno

Xeno

Xeno

Xeno

Rim

Core

Rim

Core

Rim

SiO

2

37.21

37.12

36.41

36.49

37.55

TiO

2

0.03

0.03

0.01

0.03

0.04

Al

2

O

3

21.00

20.92

20.99

21.18

21.08

FeO

33.68

36.72

28.35

29.97

35.33

MgO

2.26

2.67

1.64

2.03

3.02

MnO

5.34

1.85

10.89

8.36

2.53

CaO

1.02

0.90

1.09

1.26

1.28

Total

100.54

100.22

99.38

99.33

100.83

Structural formulae on a basis of 12 oxygens

Si

3.00

3.00

2.98

2.98

3.00

Al

2.00

1.99

2.03

2.04

1.99

Ti

0.00

0.00

0.00

0.00

0.00

Fe

2+

2.27

2.48

1.94

2.05

2.36

Mg

0.27

0.32

0.20

0.25

0.36

Mn

0.37

0.13

0.76

0.58

0.17

Ca

0.09

0.08

0.10

0.11

0.11

Total

8.00

8.00

8.00

8.00

8.00

Alm

0.76

0.83

0.65

0.69

0.79

Prp

0.09

0.11

0.07

0.08

0.12

Sps

0.12

0.04

0.25

0.19

0.06

Grs

0.03

0.03

0.03

0.04

0.04

X

Fe

0.89

0.89

0.91

0.89

0.87

Sample

187

264

272

182-E2

Mineral

Kfs

Kfs

Kfs

Kfs

Type of rock

Granite

Granite

Granite

Xeno

SiO

2

64.94

65.18

64.98

64.57

Al

2

O

3

19.26

18.87

18.48

18.98

Fe

2

O

3

0.07

0.00

0.05

0.05

CaO

0.05

0.00

0.04

0.02

Na

2

O

1.78

1.67

1.50

1.37

K

2

O

14.48

15.09

14.91

15.11

BaO

0.22

0.04

0.04

0.37

Total

100.81

100.85

100.01

100.46

Structural formulae on a basis of 8 oxygens

Si

2.97

2.98

2.99

2.97

Al

IV

1.04

1.02

1.00

1.03

Total

4.00

4.00

4.00

4.00

Fe

3+

0.00

0.00

0.00

0.00

Ca

0.00

0.00

0.00

0.00

Na

0.16

0.15

0.13

0.12

K

0.84

0.88

0.88

0.89

Ba

0.00

0.00

0.00

0.01

Total

1.01

1.03

1.01

5.02

An

0.00

0.00

0.00

0.00

Ab

0.16

0.14

0.13

0.12

Kfs

0.84

0.86

0.87

0.88

Sample

269-f

B-7-b 182-E2

269-f

B-7-b

Mineral

Bt

Bt

Bt

Ms

Ms

Type of rock Xeno

Xeno

Xeno

Xeno

Xeno

Mat

Mat

Mat

Mat

Mat

SiO

2

34.61

35.03

34.18

46.22

45.23

TiO

2

1.96

2.93

3.03

0.43

0.41

Al

2

O

3

19.62

19.41

19.80

36.21

35.83

FeO

22.05

20.43

23.57

0.76

0.92

MgO

7.35

7.14

6.49

0.42

0.55

MnO

0.12

0.34

0.19

0.03

0.00

Na

2

O

0.11

0.18

0.10

1.22

0.71

K

2

O

9.36

9.74

9.65

9.86

11.09

Total

95.18

95.19

97.00

95.15

94.74

Si

5.35

5.38

5.23

6.13

6.08

Al

IV

2.66

2.62

2.77

1.87

1.92

Al

VI

0.92

0.90

0.81

3.79

3.75

Ti

0.23

0.34

0.35

0.04

0.04

Fe

2+

2.85

2.63

3.02

0.08

0.10

Mg

1.69

1.64

1.48

0.08

0.11

Mn

0.02

0.04

0.02

0.00

0.00

Na

0.03

0.05

0.03

0.31

0.18

K

1.85

1.91

1.88

1.67

1.90

Total

15.58

15.50

15.59

13.99

14.09

X

Fe

0.63

0.62

0.67

0.50

0.49

background image

vi

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Table S3 continuation: Chemical compositions of plagioclase, biotite, muscovite, garnet, K-feldspar, cordierite and spinel. Notes: Granite: 

Per-aluminous granite; Xeno: xenolith; Inn R: Inner rim; Out R: Outer rim; Anor: anorthosite; Cont: contaminated leuco-quartz diorite- 

anorthosite; Mat: matrix

Sample

181-E

182-E2

264

Mineral

Crd

Crd

Crd

Type of rock

Xeno

Xeno

Granite

SiO

2

48.31

48.18

48.21

TiO

2

0.00

0.00

0.00

Al

2

O

3

33.05

33.12

33.16

FeO

10.39

11.92

11.89

MgO

6.36

6.08

5.97

MnO

0.31

0.36

0.36

CaO

0.02

0.03

0.00

Na

2

O

0.34

0.13

0.15

K

2

O

0.00

0.00

0.01

Total

98.77

99.82

99.75

basis of 18 oxygens

Si

5.00

4.97

4.98

Al

IV

1.00

1.03

1.02

Al

VI

3.04

3.00

3.01

Ti

0.00

0.00

0.00

Total

3.04

3.00

3.01

Fe

2+

0.90

1.03

1.03

Mg

0.98

0.94

0.92

Mn

0.03

0.03

0.03

Total

1.91

2.00

1.98

Ca

0.00

0.00

0.00

Na

0.07

0.03

0.03

K

0.00

0.00

0.00

Total

0.07

0.03

0.03

X

Fe

0.48

0.52

0.53

Sample

182-E2

182-E2

187

Mineral

Spl

Spl

Spl

Type of rock

Xeno

Xeno

Granite

SiO

2

0.05

0.05

0.01

TiO

2

0.02

0.02

0.01

Al

2

O

3

58.34

58.77

59.34

Cr

2

O

3

0.40

0.35

0.12

Fe

2

O

3

1.34

0.58

0.02

FeO

35.81

35.49

35.73

MgO

1.64

1.93

2.12

MnO

0.44

0.39

0.25

ZnO

3.28

3.02

2.45

Total

101.30

100.60

100.06

basis of 32 oxygens

Si

0.01

0.01

0.00

Ti

0.00

0.00

0.00

Al

IV

15.67

15.81

15.97

Cr

0.07

0.06

0.02

Fe

3+

0.23

0.10

0.00

Total

15.99

15.99

16.00

Fe

2+

6.82

6.77

6.82

Mg

0.56

0.66

0.72

Mn

0.08

0.08

0.05

Zn

0.55

0.51

0.41

Total

8.01

8.01

8.00

X

Fe

0.93

0.91

0.90

X

Cr

0.00

0.00

0.00

Table S4: Temperatures estimated from different thermometers. Abbreviations are: B92-HW and B92-GS: Bhattacharya et al. (1992);  

Dasg91: Dasgupta et al. (1991); FS78: Ferry & Spear (1978); HS82: Hodges & Spear (1982); PL83: Perchuk & Lavrent’eva (1983); T76: 

Thompson (1976); HL77: Holdway & Lee (1977); GS97: Gessmann et al. (1997); KM04-Bt-Grt and KM04-Crd-Grt: Kaneko & Miyano 

(2004).

Sample 

kbar

B92-HW B92-GS

Dasg91

FS78

HS82

PL83

T76

HL77

GS97 KM04-Bt-

Grt

KM04-

Crd-Grt

269-f

6

624

623

540

659

670

626

662

633

640

645

625

B-7-b

6

560

522

521

613

628

602

627

603

605

590

182-E2

6

706

701

658

827

842

705

782

734

785

780

745

269-f

5

623

622

535

655

666

624

654

629

636

643

620

B-7-b

5

559

521

516

609

624

600

619

599

601

588

182-E2

5

706

700

652

822

837

702

774

730

778

778

740

269-f

4

622

621

530

651

661

621

647

626

632

641

615

B-7-b

4

558

520

511

605

620

597

612

596

595

586

182-E2

4

705

699

646

817

833

698

765

726

773

786

735

269-f

3

622

620

525

647

657

618

639

622

628

639

610

B-7-b

3

558

519

507

601

616

594

605

592

590

584

182-E2

3

704

698

640

812

828

695

756

722

770

784

730

269-f

2

621

620

520

642

653

615

631

619

624

637

605

B-7-b

2

557

518

502

597

612

591

597

589

585

582

182-E2

2

703

697

634

807

823

692

748

718

767

782

725

background image

vii

FAZLNIA

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Table S5: Pressures estimated from different baro-

meters. Abbreviations are, HS82: Hodges & Spear 

(1982); WU04: Wu et al. (2004); Ave: average of 

pressure.

Sample 

ºC

HS82

WU04

Ave

269-f

~640

1.6

2.5

2.1

B-7-b

~590

1.4

1.9

1.7

182-E2

~760

4.5

5.0

4.8

Average of 

metapelites and 

xenoliths

Average of 

migmatitic 

xenoliths

n=10

n=3

Table 2

Table 2

Ba

210.27

214.13

Rb

65.21

96.25

Sr

67.10

75.24

U

2.42

1.94

Th

12.71

16.19

Nb

26.70

23.77

Zr

190.30

256.33

Y

53.82

38.45

La

30.02

40.65

Ce

56.65

80.54

Pr

7.37

9.98

Nd 

27.67

36.35

Sm

6.62

6.74

Eu

1.10

0.76

Gd

7.53

6.49

Tb

1.56

1.13

Dy

10.20

7.54

Ho

2.22

1.60

Er

6.42

4.36

Tm

0.96

0.66

Yb

6.38

4.35

Lu

0.94

0.66

Cr

69.61

109.16

Ni

31.37

67.53

P

1007

611

Ti

8773

17647

V

101.97

196.88

Co

13.47

21.34

Hf

7.55

7.06

Ta

2.20

2.18

Pb

21.57

16.06

Table S6: Geochemical averages for selected 

metapelites and xenoliths without migmatitic texture 

and migmatitic xenoliths from the Chah-Bazargan 

batholith listed in Table 2.

Table S7: Calculated bulk partition coefficients (Kd) with 1 %, 5 %, 10 %, 

20 %, 30 %, 40 %, and 50 % partial melting for selected Chah-Bazargan 

migmatitic xenoliths.

Source Tables 1 and 2.

f

f

f

f

f

f

f

0.5

/f

0.05

Value

0.05

0.1

0.2

0.3

0.4

0.5

Kd

Kd

Kd

Kd

Kd

Kd

Ba

1.56

1.22

1.10

1.06

1.05

1.04

0.66

Rb

−0.18

−0.45

−1.63

−13.33

5.16

2.82

−15.35

Sr

−0.86

−12.33

2.18

1.56

1.37

1.28

−1.48

U

0.17

0.29

0.45

0.55

0.62

0.67

3.95

Th

−0.30

−0.87

−13.22

3.53

2.16

1.76

−5.80

Nb

0.29

0.45

0.62

0.71

0.76

0.80

2.78

Zr

−0.24

−0.63

−3.47

7.07

2.81

2.06

−8.56

Y

0.11

0.20

0.33

0.43

0.50

0.56

5.00

La

−0.24

−0.62

−3.26

7.76

2.88

2.10

−8.86

Ce

−0.20

−0.51

−2.07

71.09

3.87

2.46

−12.13

Pr

−0.24

−0.62

−3.22

7.91

2.90

2.10

−8.91

Nd 

−0.26

−0.72

−5.16

4.90

2.48

1.91

−7.22

Sm

1.57

1.22

1.10

1.06

1.05

1.04

0.66

Eu

0.10

0.18

0.31

0.40

0.47

0.52

5.28

Gd

0.24

0.38

0.55

0.65

0.71

0.76

3.19

Tb

0.12

0.21

0.35

0.45

0.52

0.57

4.84

Dy

0.12

0.22

0.36

0.46

0.53

0.59

4.73

Ho

0.11

0.20

0.34

0.43

0.51

0.56

4.94

Er

0.10

0.17

0.30

0.39

0.46

0.51

5.38

Tm

0.10

0.18

0.30

0.40

0.47

0.52

5.30

Yb

0.10

0.18

0.30

0.39

0.46

0.52

5.34

Lu

0.10

0.19

0.32

0.41

0.48

0.54

5.15

Cr

−0.16

−0.38

−1.23

−4.81

10.63

3.63

−22.69

Ni

−0.10

−0.23

−0.60

−1.27

−2.95

−14.09

136.81

P

0.07

0.13

0.24

0.32

0.38

0.43

6.09

Ti

−0.11

−0.25

−0.66

−1.48

−3.89

−176.25

1596.25

V

−0.12

−0.26

−0.71

−1.65

−4.87

27.92

−241.25

Co

−0.16

−0.37

−1.18

−4.34

12.94

3.82

−24.37

Hf

0.42

0.59

0.74

0.81

0.85

0.88

2.09

Ta

0.84

0.91

0.95

0.97

0.98

0.98

1.17

Pb

0.13

0.23

0.37

0.47

0.54

0.59

4.66

background image

viii

THE CHAH-BAZARGAN PERALUMINOUS GRANITES — PETROLOGICAL CONDITIONS

GEOLOGICA CARPATHICA

, 2017, 68, 5, 445–463

Table S8: Calculated bulk partition coefficients (Kd) for each mineral based on partition coefficients (mineral/granitic peraluminous melt) after 

Nash & Crecraft (1985), Sisson & Bacon (1992), Bea et al. (1994), and Keskin' software (2002).

Element

Kd

Kd

Kd

Kd

Kd

Kd

Kd

Kd

D

1

D

2

Co

C

s

=D × C

o

/(ƒ+D(1-ƒ))

(Grt) (Bt-Ms) (Kfs)

(Pl)

(Crd)

(Ap)

(Zr)

(Ilm)

ƒ

2

ƒ

2

ƒ

2

ƒ

2

ƒ

2

ƒ

2

ƒ

2

0.01

0.05

0.10

0.20

0.30

0.40

0.50

La

0.001

0.06

1.01

4.61

0.06

456

1.30

7.1

11.4

5.9

30.02 −30.4 −31.9 −34.0 −39.2 −46.2 −56.4 −72.2

Ce

0.01

0.05

0.86

3.87

0.07

569

2.04

7.8

13.9

7.1

56.65 −57.3 −60.1 −63.9 −73.4 −86.1 −104.1 −131.8

Nd 

0.4

0.08

0.51

2.56

0.09

855

3.35

7.6

20.4

10.2

27.67 −28.0 −29.3 −31.1 −35.5 −41.3 −49.4 −61.4

Sm

6.4

0.06

0.42

1.45

0.10

1105

3.79

6.9

26.6

13.0

6.62

−6.69 −6.99 −7.41 −8.43 −9.77 −11.62 −14.34

Eu

9.3

0.05

2.32

2.99

0.01

23.8

0.45

2.5

2.4

1.1

1.10

−1.13 −1.22 −1.36 −1.78 −2.56 −4.55 −20.68

Gd

3.7

0.10

0.60

2.05

0.29

2133

9.21

0.00

50.0

24.0

7.53

−7.61 −7.94 −8.41 −9.51 −10.95 −12.91 −15.72

Yb

140

0.12

0.64

0.82

1.77

2216

278

4.1

68.2

30.3

6.38

−6.45 −6.73 −7.11 −8.04 −9.24 −10.87 −13.20

Lu

47

0.2

0.96

1.32

4.43

2981

923

3.6

76.4

37.4

0.94

−0.95 −0.99 −1.04 −1.18 −1.35 −1.59 −1.93

Y

130

0.1

0.5

0.78

0.72

162

71.4

0.20

19.3

6.6

53.82 −54.5 −57.1 −60.8 −69.9 −82.3 −99.8 −127.0

Cr

4

42.3

1.15

0.31

0.92

0.00

119.0

3

15.8

16.9

69.61 −70.4 −73.5 −77.9 −88.3 −102.0 −120.8 −148.0

Nb

0.05

24.50

0.27

0.04

0.01

0.00

0.00

11.6

8.8

9.9

26.70 −27.0 −28.2 −30.0 −34.2 −39.9 −47.7 −59.4

Note: D

1

­=­11.60­%­Grt­+­34.80­%­Bt-Ms­+­11.6­%­Kfs­+­13.9­%­Pl­+­23.2­%­Crd­+­2.3­%­Ap­+­0.1­%­Zr­+­2.3­%­Ilm;

­­­­­­­­­­­ D

2

­=­3.3­%­Grt­+­38­%­Bt­+­4.4­%­Kfs­+­9.8­%­Pl­+­38­%­Crd­+­1.1­%­Ap­+­0.1­%­Zr­+­5.3­%­Ilm

Element

Kd

Kd

Kd

Kd

Kd

Kd

Kd

Kd

D

1

D

2

Co

C

s

=D × C

o

/(ƒ+D(1-ƒ))

(Grt) (Bt-Ms) (Kfs)

(Pl)

(Crd)

(Ap)

(Zr)

(Ilm)

ƒ

1

ƒ

1

ƒ

1

ƒ

1

ƒ

1

ƒ

1

ƒ

1

0.01

0.05

0.10

0.20

0.30

0.40

0.50

La

0.001

0.06

1.01

4.61

0.06

456

1.30

7.1

11.4

5.9

30.02 −30.4 −31.8 −33.7 −38.4 −44.6 −53.1 −65.8

Ce

0.01

0.05

0.86

3.87

0.07

569

2.04

7.8

13.9

7.1

56.65 −57.3 −59.9 −63.4 −72.1 −83.5 −99.2 −122.0

Nd 

0.4

0.08

0.51

2.56

0.09

855

3.35

7.6

20.4

10.2

27.67 −28.0 −29.2 −30.9 −35.0 −40.4 −47.7 −58.2

Sm

6.4

0.06

0.42

1.45

0.10

1105

3.79

6.9

26.6

13.0

6.62

−6.68 −6.98 −7.38 −8.35 −9.60 −11.31 −13.75

Eu

9.3

0.05

2.32

2.99

0.01

23.8

0.45

2.5

2.4

1.1

1.10

−1.12 −1.19 −1.29 −1.54 −1.92 −2.55 −3.80

Gd

3.7

0.10

0.60

2.05

0.29

2133

9.21

0.00

50.0

24.0

7.53

−7.61 −7.94 −8.39 −9.46 −10.85 −12.72 −15.37

Yb

140

0.12

0.64

0.82

1.77

2216

278

4.1

68.2

30.3

6.38

−6.45 −6.72 −7.10 −8.00 −9.17 −10.74 −12.95

Lu

47

0.2

0.96

1.32

4.43

2981

923

3.6

76.4

37.4

0.94

−0.95 −0.99 −1.04 −1.18 −1.35 −1.58 −1.90

Y

130

0.1

0.5

0.78

0.72

162

71.4

0.20

19.3

6.6

53.82 −54.4 −56.8 −60.2 −68.2 −78.6 −92.9 −113.5

Cr

4

42.3

1.15

0.31

0.92

0.00

119.0

3

15.8

16.9

69.61 −70.4 −73.5 −77.9 −88.4 −102.2 −121.1 −148.6

Nb

0.05

24.50

0.27

0.04

0.01

0.00

0.00

11.6

8.8

9.9

26.70 −27.0 −28.3 −30.0 −34.3 −40.1 −48.1 −60.2

Note: D

1

­=­11.60­%­Grt­+­34.80­%­Bt-Ms­+­11.6­%­Kfs­+­13.9­%­Pl­+­23.2­%­Crd­+­2.3­%­Ap­+­0.1­%­Zr­+­2.3­%­Ilm;

­­­­­­­­­­­ D

2

­=­3.3­%­Grt­+­38­%­Bt­+­4.4­%­Kfs­+­9.8­%­Pl­+­38­%­Crd­+­1.1­%­Ap­+­0.1­%­Zr­+­5.3­%­Ilm