background image

GEOLOGICA CARPATHICA

, AUGUST 2017, 68, 4, 366 – 381

doi: 10.1515/geoca-2017-0025

www.geologicacarpathica.com

Bi-sulphotellurides associated with Pb – Bi – (Sb ± Ag, Cu, Fe) 

sulphosalts: an example from the Stan Terg deposit in Kosovo

JOANNA KOŁODZIEJCZYK 

1  

, JAROSLAV PRŠEK 

1

, PANAGIOTIS CH. VOUDOURIS 

2  

and VASILIOS MELFOS 

3

 

1

AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Economic 

Geology, al. Mickiewicza 30, 30-059 Kraków, Poland; 

 

asia.office@wp.pl (J.K.), prsek@geol.agh.edu.pl (J.P.)

2 

Department of Mineralogy-Petrology, National and Kapodistrian University of Athens, Athens 15784, Greece; voudouris@geol.uoa.gr

3 

Department of Mineralogy, Petrology and Economic Geology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece;  

melfosv@geo.auth.gr

(Manuscript received December 26, 2016; accepted in revised form March 15, 2017)

Abstract: New mineralogical and mineral-chemical data from the Stan Terg deposit, Kosovo, revealed the presence of 

abundant Bi-sulphotellurides associated with Bi- and Sb-sulphosalts and galena in pyrite–pyrrhotite-rich skarn-free ore 

bodies (ores without skarn minerals). The Bi-bearing association comprises Bi-sulphotellurides (joséite-A, joséite-B, 

unnamed phase A with a chemical formula close to (Bi,Pb)

2

(TeS)

2

, unnamed phase B with a chemical composition close 

to (Bi,Pb)

2.5

Te

1.5

S

1.5

), ikunolite, cosalite, Sb-lillianite, members of the kobellite series and Bi-jamesonite. Compositional 

trends of the Bi-sulphotellurides suggest lattice-scale incorporation of Bi–(Pb)-rich module and/or admixture with 

 submicroscopic PbS layers in modulated structures, or complicated Bi–Te substitution. Cosalite is characterized by high 

Sb (max. 3.94 apfu), and low Cu and Ag (up to 0.72 apfu of Cu+Ag). Jamesonite from this mineralization has elevated 

Bi content, from 0.85 to 2.30 apfu. The negligible content of Au and Ag in the Bi-sulphotellurides, the low content of Ag 

in Bi-sulphosalts, together with the lack of Au–Ag bearing phases in the mineralization, indicate either ore deposition 

from fluid(s) depleted in precious metals, or physico-chemical conditions of ore formation preventing Au and Ag 

 precipitation at the deposit site. The temperature of initial mineralization may have exceeded 400 ºC as suggested by the 

lamellar exsolution textures observed in lillianite, which indicate breakdown textures from decomposition of high- 

temperature initial crystals. Non-stoichiometric phases among the Bi-sulphosalts and sulphotellurides studied at Stan 

Terg reflect modulated growth processes in a metasomatic environment.

Keywords: Kosovo, Stan Terg, Bi-tellurides, tetradymite group minerals, Sb-cosalite, Sb-lillianite, kobellite homologous 

series.

Introduction

Bismuth sulphotellurides are common mineral phases occur-

ring in high-temperature associations with Bi-sulphosalts and 

Au mineralization in Pb–Zn skarn deposits (Cook et al. 2007a), 

VHMS  deposits  (Vikentyev  2006),  orogenic  Au  deposits 

(Bowell et al. 1990; Ciobanu et al. 2010), Au-bearing quartz-

veins in intrusion-related systems (Cepedal et al. 2013), nickel 

mineralization  in  greenstone  belts  (Groves  &  Hall  1978),  

and  porphyry-epithermal  systems  (Cook  &  Ciobanu  2004; 

Melnikov et al. 2009; 

Pršek & Peterec 2008; 

Plotinskaya et al. 

2009).  Tellurium  mineralization,  together  with  Bi,  is  com-

monly linked to Au occurrences (Ciobanu et al. 2009a; Cook 

et al. 2009). 

Bismuth sulphotellurides are stable over a wide temperature 

interval and their composition reflects the geochemical 

 characteristics of the mineralization environment (Melnikov 

et al. 2009). 

The tetradymite group comprises 19 mineral species and 

 several unknown phases which can be ordered into the follo-

wing subspecies: Bi

2

Te

3

–Bi

2

Se

3

–Bi

2

S

3

, Bi

4

Te

3

–Bi

4

Se

3

–Bi

4

S

3

 

and BiTe–BiSe–BiS (Cook et al. 2007a). These minerals  

have usually rhombohedral- or trigonal-layered structures and 

limited variation in composition. Minor Pb ↔ Bi substitution 

is widespread throughout the group, especially in the 

 

Bi

4

Te

3

–Bi

4

Se

3

–Bi

4

S

3

 subgroup. 

The precise identification of sulphotelluride phases is not 

easy because they are commonly intergrown with each 

 

other  on  the  submicroscopic  scale.  Due  to  the  small  size  

of mineral aggregates, X-ray diffraction structural data 

 

cannot be obtained, hence many unknown sulphotelluride 

phases identified by EPMA, could not be thoroughly 

characterized. 

At the Stan Terg Pb–Zn(–Ag–Bi) deposit, within the Trepça 

Mineral Belt, in Kosovo, the Bi-bearing sulphosalts and 

 chalcogenides,  ikunolite,  babkinite,  joséite-A,  izoklakeite, 

cannizzarite,  lillianite-gustavite  and  heyrovskýite,  were 

 previously described in samples from galena-rich skarn mine-

ralization (e.g., orebodies No. 140 and 149), and from arseno-

pyrite-rich  skarn-free  mineralization  (corridor  walls  in  the 

southern part of the X

th

 horizon) (Kołodziejczyk et al. 2015). 

Kołodziejczyk et al. (2015) suggested that the bismuth- bearing 

phases at Stan Terg were formed during the retrograde evolu-

tion of the hydrothermal system under generally low-sulphi-

dation and reduced fluid states in the temperature range from 

350 to 250 °C.

background image

367

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

This study provides detailed mineralogical and geochemical 

data concerning new sulphotellurides found in association 

with Bi-sulphosalts in the Stan Terg deposit. Electron micro-

probe data are provided for all phases identified, and their 

physico-chemical conditions of formation are discussed in 

comparison with similar assemblages elsewhere.  

Geological setting

Stan Terg, the largest known Pb–Zn deposit in Kosovo, hosts 

polymetallic mineralization with abundant assemblages con-

taining Bi-, Sb-, Ag- and Sn-bearing minerals, and average ore 

grades at 3.65 % Pb, 3.55% Zn, and Bi, Ag and Sn as signifi-

cant by-products (average 87 g/t Ag, 100 g/t Bi, and 30 g/t Sn).  

The  mineralization  is  related  to  the  Tertiary  (Oligocene–

Miocene) magmatic activity that took place within the Trepça 

Mineral Belt, which is a part of the Vardar suture zone, stret-

ching from the north to the south through the Balkan Peninsula, 

in southeastern Europe (Hyseni et al. 2010; Strmić Palinkaš et 

al. 2013). The significance of the Trepça Mineral belt has been 

confirmed by many authors who have described different 

types  of  Pb–Zn  mineralization  such  as  skarn,  hydrothermal 

replacement,  and  vein  mineralization  considered  to  be  con-

trolled primarily by faults (e.g., Janković 1995). 

The area around the Stan Terg deposit is composed of 

Triassic sedimentary and volcanoclastic rocks, upper Triassic 

carbonates, ophiolite mélange with Jurassic ultrabasic rocks 

and serpentinites, and Cretaceous series of clastics, serpen-

tinites, volcanics and volcanoclastic rocks of basaltic compo-

sition and carbonates (Fig. 1A). The area is covered by Tertiary 

volcanics, like lavas, sub-volcanic intrusives and pyroclastic 

rocks, dominated by andesite, trachyte and latite composition 

(Hyseni  et  al.  2010).  The  mineralization  in  the  Stan  Terg 

deposit is related to post-collisional magmatism (Féraud  & 

Deschamps 2009; Strmić Palinkaš et al. 2013), and the nearest 

magmatic rocks of calc-alkaline composition that are exposed 

on the surface are in the Kopaonik Massif, in the northern part 

of Kosovo.

Ore mineralization 

The ore mineralization is hosted mostly within Triassic car-

bonates (marbles) in several elongated orebodies (eleven main 

orebodies) that plunge parallel and commonly join or split 

forming a type of large stockwork. The shape of orebodies is 

controlled by an anticline structure with carbonates in the core 

and shielded by sericite schists in the external part. The hydro-

thermal fluid transport was controlled by faults, fissures and 

palaeo-karst cavities. Until today, ore was excavated from 11 

mining horizons, but the final depth has not been documented 

(Féraud & Deschamps 2009). There is also a volcanic conduit 

with phreatomagmatic breccias in the central part of the 

deposit (Féraud  &  Deschamps 2009; Strmić  Palinkaš et al. 

2013) that stretch parallel to the orebodies. Parts of the 

orebodies are related to skarn mineralization, parts are skarn-

free carbonate-replacements (e.g., mantos-type), and signifi-

cant ore precipitated as karst fillings. Karst fillings originated 

by the corrosive action of the metalliferous hydrothermal solu-

tions dissolving the limestones (Forgan 1950; Schumacher 

1950; Féraud et al. 2007). 

The ore mineralization is dominated by galena, sphalerite, 

pyrite, pyrrhotite, arsenopyrite, with minor chalcopyrite, tetra-

hedrite, Sn-minerals, Bi-minerals, Ag-minerals and native 

elements  (Kołodziejczyk  et  al.  2015,  2016 a,b).  The  skarn 

alteration (garnet, hedenbergite, ilvaite and actinolite, magne-

tite) is present near the central volcanic conduit, but also in the 

distal  parts  of  the  deposit  (Dangić  1993).  The  previously 

described Bi-sulphosalt mineralization is hosted in both skarn- 

and skarn-free orebodies and is considered to represent 

a  single stage of mineral precipitation (Kołodziejczyk et al. 

2015). The skarn orebodies usually contain a silicate para-

genesis with base metal sulphides and Bi-minerals, whereas 

skarn-free orebodies with Bi-mineralization occur in the form 

of  brecciated  veins.  Both  mineralization  types  occur  at  the 

same  depth  level,  close  to  the  central  breccia-pipe.  Strmić 

Palinkaš et al. (2013) recognized a prograde magmatic stage 

(with precipitation of pyroxene and garnet), and following 

 retrograde skarn and a hydrothermal stage dominated by 

ilvaite,  magnetite,  Pb-,  Zn-  and  Fe-sulphides,  quartz  and 

 carbonates. According to their work, the source of hydro-

thermal fluids is magmatic, and the fluid was partially  

mixed with meteoric waters during infiltration in the country 

rocks. 

Sampling and methodology 

The studied Bi–Pb–Sb–S–Te-bearing mineral assemblages 

were found in ten samples from recently developed orebodies; 

No. 141 and 140 in the X

th

  horizon  of  the  Stan  Terg  mine  

(Fig. 1B). 

The chemical composition of the sulphotellurides and 

sulpho 

salts were determined using a JEOL JXA-8230 

Superprobe electron probe microanalyser (EPMA) in the 

Critical Elements Laboratory at the Faculty of Geology, 

Geophysics, and Environmental Protection, AGH University 

of Science and Technology in Krakow. All measurements 

were done on carbon-coated polished sections using the follo-

wing operating conditions: accelerating voltage 20 kV, beam 

current  20  nA,  and  a  beam  diameter  ~1 μm.  The  following 

spectral lines, standards (metals and sulphides), count times 

(peak and background for unknowns) were used: S (SK

α

, FeS

2

20 s, 10 s), Fe (FeK

α

, FeS

2

, 20 s, 10 s), Cu (CuK

α

, Cu, 20 s, 10 s), 

Se (SeL

α

, Se, 20 s, 10 s), Ag (AgL

α

, Ag, 20 s, 10 s), Sb (SbL

α

Sb

2

S

3

, 20 s, 10 s), Te (TeL

α

, PbTe, 20 s, 10 s), Pb (PbM

α

, PbS, 

20 s, 10 s), Mn (MnK

α

,, MnS, 20 s, 10 s)  and Bi (BiM

a

, Bi, 20 s, 

10 s). The typical minimum detection limits for those analy-

tical conditions were: Te (120 ppm), S (30 ppm), Pb (160 ppm), 

Bi (140 ppm), Cu (50 ppm), Fe (40 ppm), Ag (40 ppm),  

Sb (40 ppm), Se (80 ppm), Mn (120 ppm). Back-scattered 

background image

368

KOŁODZIEJCZYK, PRŠEK, VOUDOURIS and MELFOS

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

KOSOVO

Prishtina

Stan Terg

N

1 km

Stan Terg

Mazhiq

Gjidoma

Melenica

Zijaca

Tertiary volcanics

Tertiary pyroclastics

Jurassic ophiolites

Pb-Zn deposits and occurrences

Triassic metamorphic complex

Probable faults

20 54’55’’ E

42 56’19’’ N

Faults

A

B

sample collection places

100 m.

140

141

144

144

148

148A

149

149-2

149A

149 B

149 C

149 C

149 C1

149 C2

149 C3

149F

148

142

146

147

147A

147B

marble

schist

electron (BSE) images provided information about internal 

structures (e.g., growth zoning, intergrowths, and replacement 

of analysed phases). X-ray maps were collected for selected 

intergrowths of telluride with Bi-sulphosalts and galena and 

the following elements were recorded: Ag, Bi, Sb

Cu, Fe, Pb, S, TeLα.

Results

Textures and petrography of the Te–Bi-mineral association

The newly discovered Bi–Sb–Pb–Te–S composite aggregates 

consist of sulphotellurides intergrown with Bi- and Sb-enriched 

Fig. 1. A — Simplified geological map of the Trepça Mineral Belt with marked mines and occurrences of Pb–Zn mineralization (modified after 

Hyseni et al. 2010 and Kołodziejczyk et al. 2015). B — Simplified sketch of X

th

 mining horizon in the Stan Terg mine with orebodies and 

sample collection places.

background image

369

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

sulphosalts and with minor galena. This mineral association is 

dispersed between pyrite, marcasite, and pyrrhotite crystals 

hosted in a carbonate matrix (Fig. 2). Aggregates occur up to 

500 μm in size, and single phases of sulphosalts recognized in 

BSE images are usually around 10–20 μm, whereas sulpho-

tellurides are mostly up to 5 μm. The Bi-bearing association 

studied comprises Bi-sulphotellurides (joséite-A, joséite-B, 

unnamed phase A, unnamed phase B), ikunolite, cosalite, 

Sb-lillianite, kobellite series members and Bi-jamesonite.

Tellurides occur as elongated inclusions in cosalite or lillia-

nite aggregates, with sizes up to 20 μm (Fig. 3 A). In part of the 

inclusions, intergrowths composed of different chemical com-

positions are present, for example, phase A and phase B  

(Fig. 3B), or joséite-A and joséite-B (Fig. 3 C,D). Phase A and 

phase B often form intergrowths with different Te concentra-

tions in various parts of the cosalite crystals. Joséite-A and 

joséite-B occur primarily as intergrowths with native bismuth 

(Fig. 3 D),  or  with  ikunolite  (Fig. 3 E,F).  Lillianite  occurs  in 

aggregates with cosalite, native bismuth and tetradymite group 

minerals. An important feature of lillianite from the sulphotel-

luride association is exsolution lamellae, visible as darker and 

lighter phases observed with BSE imaging (Fig. 3 E). Cosalite 

was found in this study in association with Bi-sulphotellurides 

and other Bi-sulphosalts. It occurs as intergrowths with galena 

(Fig. 3 C, E, F),  or  the  Sb-rich  lillianites  and  the  kobellite 

homologues series (Fig. 3 G, H). Jamesonite occurs as needles 

or larger irregular aggregates replacing other minerals, like 

galena or izoklakeite-giesenite and cosalite (Fig. 3 H).

Sulphotelluride association

Four different chemical compositions of sulphotellurides 

were identified; primarily joséite-A (ideally Bi

4

TeS

2

), joséite-B 

(ideally Bi

4

Te

2

S), and two phases (of composition close to 

(Bi,Pb)

2

(TeS)

and (Bi,Pb)

2.5

Te

1.5

S

1.5

) that could not be unam-

biguously assigned to any known minerals, and are described 

below as phase A, and phase B. Chemical compositions from 

representative EPMA analyses are presented in Tables 1 and 2. 

The range of chemical compositions of the phases recognized 

are plotted in Figure 4. The EPMA data do not fall exactly on 

theoretical end-member values, and are rather dispersed on the 

plot.

The joséite-A EPMA data plot on a line, starting with 

an ideal stoichiometric joséite-A chemical composition and 

continuing in the direction of increased S, Pb, and Bi contents 

(Fig. 4). The Pb content in phases assigned to the joséite-A 

group are from 2.69 to 9.52 wt. %, Bi varies from 75.93 to 

79.31 wt. %, Te from 7.63 to 11.83 wt. % and S from 6.39 to 

7.32 wt. % (Table 1). The Ag content is up to 0.05 wt. %, Se 

up to 0.15 wt. % and Sb up to 0.34 wt. %.

Joséite-B has a similar trend to joséite-A through increased 

S, Pb, and Bi contents, towards the ideal Bi

3

TeS composition. 

The Pb content in phases assigned to the joséite-B group are 

up to 2.58 wt. %, Bi varies from 68.12 to 79.35 wt. %, Te from 

14.92 to 24.18 wt. % and S from 2.81 to 3.94 wt. %. The Ag 

content is up to 0.05 wt. %, of Se up to 0.20 wt. % and Sb up 

to 0.68 wt. %. Phase A has a chemical composition between 

telluronevskite and ingodite (Fig. 4). Its general structural for-

mula is (Bi,Pb)

2

(TeS)

2

. The (Bi+Pb) to (S+Te+Se) ratio is 1:1. 

The scatter plot with data for Phase A and Phase B falls away 

from aleksite sub-group line as was proposed by Cook et al. 

(2007 b) on their figure 6 therein so we are not considering our 

phases as aleksite sub-group minerals.

Compositions assigned to phase A have 5.50 –20.37 wt. % Pb, 

51.71–74.55 wt. % Bi, 16.65 –22.82 wt. % Te, and 5.32–9.95 

wt. % S (Table 2). Phase A contains up to 0.16 wt. % of Ag.

Fig. 2. Host rock samples for bismuth-telluride association occurring between elongated pyrite (py) crystals in the carbonate matrix (crb).  

A — Sample from orebody No. 140 overgrown by coarse-grained galena (gn); B — Sample from orebody No. 141.

Fig. 3. BSE images of the sulphotelluride Bi–Sb–Pb–Te–S association. A — Cosalite (cos) aggregate with telluride minerals (white inclusions). 

B — Detail of image A. Telluride inclusions composed of phases A and B. C — Aggregate of cosalite (cos) replacing galena (gn) with 

 tetradymite minerals: ikunolite (ikn), joséite-B (josB) and native bismuth (Bi). D — Detail of image C. Joséite-A (josA) intergrown with 

joséite-B (josB) and native bismuth (Bi). E — Lillianite exsolutions. White needles with high Ag content, and darker needles with low  

Ag content. Gn – galena, cos – cosalite, ikn – ikunolite, josB – joséite-B. F — Cosalite (cos) and native bismuth (Bi) replacing galena (gn). 

josA – joséite-A, ikn – ikunolite, L – lillianite. G  —  Aggregate  composed  of  kobellite-tintinaite  (kob),  izoklakeite-giessenite  (izo),  

cosalite (cos), and galena (gn). H — jamesonite (jm) replacing cosalite (cos) and izoklakeite-giessenite (izo). Kob – kobellite-tintinaite.

background image

370

KOŁODZIEJCZYK, PRŠEK, VOUDOURIS and MELFOS

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

background image

371

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

Phase B has a chemical composition close to 

(Bi,Pb)

2.5

Te

1.5

S

1.5

. The (Bi+Pb) to (S+Te+Se) ratio is 2.5:3, and 

this telluride has the highest Te content, that is in the range 

between 25.87 and 29.33 wt. % (Table 2). Lead varies between 

8.80 –10.19  wt.  %,  Bi  between 55.95  and  61.44  wt. %,  and 

S between 5.85 and 6.28 wt. %. 

Ikunolite

Ikunolite (ideally Bi

4

(S,Se)

3

) is a tetradymite-group mineral 

previously described in Stan Terg in association with other 

Bi-minerals  and  joséite-A  (Kołodziejczyk  et  al.  2015). 

Previous analyses indicated 

a good correlation between Pb and 

Bi in ikunolite, babkinite 

 

and the intermediate phases, sug-

gesting a possible ikunolite- 

babkinite solid solution, with very 

limited Se for S substitution 

(Kołodziejczyk  et  al.  2015). 

Ikunolite-babkinite solid solutions 

revealed up to 0.25 wt. % Te and 

up to 0.3 wt. % Ag (Kołodziejczyk 

et al. 2015).

Ikunolite within the sulphotel-

luride association (this study), 

occurs mostly as intergrowths 

with the above described sulpho-

tellurides and with lillianite, cosa-

lite, native bismuth, and galena. 

Representative EPMA analyses of 

ikunolite are presented in Table 1. 

Its Pb content varies between 0.99 

and 23.40 wt. %, and there is 

a positive correlation trend towards 

the babkinite composition, how-

ever only up to 0.9 apfu of Pb.  

The ikunolite contains Ag up to 

0.13 wt. %, Sb up to 0.11 wt. %, 

and up to 1.22 wt. % Te. Selenium 

up to 0.15 wt. % was detected in 

some analyses. Ikunolite has 

a composition similar to ikunolite 

from the skarn-hosted and skarn-

free mineral association (e.g. 

Kołodziejczyk  et  al.  2015),  with 

Pb concentrations up to 23 wt. % 

(for intermediate ikunolite-babki-

nite phases).

Cosalite

Cosalite was previously des cri-

bed from Stan Terg by Terzić  et al. 

(1974, 1975), with a single EPMA 

analysis  indicating  chemi  cal 

 compo sition close to ideal, with 0.27 apfu of Sb, and up to 

0.01 apfu of Ag. 

Representative EPMA analyses of cosalite, together with 

analyses for coexisting galena, are presented in the Table 3. 

Cosalite has up to 0.72 apfu of Cu+Ag (1.50 wt. %), and up  

to 3.94 apfu of Sb (13.57 wt. %), thus resulting in a shift of 

chemical composition of the Stan Terg cosalite towards 

increased Sb content (Fig. 5). Binary plots with compositional 

data for Stan Terg cosalite for Cu+Ag, and Pb, Bi, Bi+Sb  

are  presented  in  Figure  6.  There  is  a  good  correlation  

between Sb and Bi over a wide range of Sb/(Sb+Bi) ratios 

(Fig. 6D).

1

2

3

4

5

6

7

8

9

10

11

Pb

0.77

1.08

4.28

10.22

7.34

3.79

0.61

1.55

0.19

0.71

0.29

Fe

0.32 <MDL

0.05

0.04

0.17

0.02

0.07

0.12

0.03

0.47

0.03

Cu

0.03 <MDL <MDL <MDL <MDL <MDL <MDL <MDL

0.03

0.01 <MDL

Ag

0.04

0.13

0.08

0.01 <MDL

0.02

0.01 <MDL

0.03 <MDL

0.05

Sb

0.03 <MDL

0.04

0.09

0.22

0.25

0.37

0.36

0.46

0.42

0.46

Bi

89.37

89.54

86.42

79.8

78.21

79.49

75.93

75.89

76.87

76.21

76.78

Te

0.83

1.16

0.16

0.74

7.76

10.47

21.87

20.69

21.12

21.12

21.32

Se

0.11

0.10

0.04 <MDL <MDL

0.07 <MDL <MDL

0.09 <MDL

0.01

S

10.04

10.21

10.19

10.34

6.91

6.74

2.89

3.07

3.04

3.03

3.03

TOTAL

101.54 102.22 101.26 101.24 100.61 100.85 101.75 101.68 101.86 101.97 101.97

Chemical formula based on sum of 7 atoms

Pb

0.03

0.05

0.19

0.45

0.36

0.18

0.03

0.08

0.01

0.04

0.02

Fe

0.05

0.01

0.01

0.03

0.00

0.01

0.02

0.01

0.09

0.01

Cu

0.00

0.00

0.00

Ag

0.00

0.01

0.01

0.00

0.00

0.00

0.00

0.01

Sb

0.00

0.00

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.04

Bi

3.94

3.93

3.83

3.51

3.79

3.83

4.02

4.01

4.05

3.99

4.05

Te

0.06

0.08

0.01

0.05

0.62

0.83

1.90

1.79

1.82

1.81

1.84

Se

0.01

0.01

0.00

0.01

0.01

0.00

S

2.89

2.92

2.94

2.97

2.19

2.12

1.00

1.06

1.05

1.03

1.04

Notes: <MDL = below the minimum detection limit

1

2

3

4

5

6

7

8

Pb

10.31

12.01

10.41

17.11

9.02

8.80

8.32

8.80

Fe

0.02

0.06

0.04

0.36

0.02

0.02

0.02

0.12

Cu

<MDL

0.01

0.01

<MDL

<MDL

0.01

<MDL

0.01

Ag

0.01

0.05

0.02

0.09

0.04

<MDL

0.01

<MDL

Sb

0.14

0.20

0.20

0.40

0.23

0.21

0.19

0.23

Bi

69.27

62.34

63.91

56.41

55.95

59.32

59.54

56.32

Te

13.88

18.60

18.67

17.86

28.75

26.48

25.68

29.33

Se

0.03

<MDL

0.09

0.04

<MDL

0.05

<MDL

0.11

S

6.73

7.06

6.73

8.11

5.86

5.96

5.93

5.79

TOTAL

100.18

100.33

100.08

100.38

99.87

100.85

99.69

100.71

Chemical formula based on sum of 2 cations

Chemical formula based on sum of 2.5 cations

Pb

0.26

0.33

0.28

0.47

0.35

0.33

0.31

0.34

Fe

0.00

0.01

0.00

0.04

0.00

0.00

0.00

0.00

Cu

0.00

0.00

0.00

0.00

Ag

0.00

0.01

0.01

0.00

0.00

0.00

Sb

0.01

0.01

0.01

0.02

0.02

0.01

0.01

0.02

Bi

1.74

1.67

1.72

1.53

2.15

2.17

2.19

2.16

Te

0.57

0.82

0.82

0.79

1.81

1.59

1.55

1.84

Se

0.00

0.01

0.00

0.01

0.01

S

1.10

1.24

1.18

1.44

1.47

1.42

1.42

1.45

Notes: <MDL = below the minimum detection limit

Table 1: Representative EPMA analyses and atomic proportions for tetradymite group minerals from 

the sulphotelluride association: ikunolite (1–4), joséite-A (5–6), joséite-B (7–11) in the Stan Terg 

deposit.

Table 2: EPMA analyses of phase A (1–4) and phase B (5–8) from the sulphotelluride association in 

the Stan Terg deposit.

background image

372

KOŁODZIEJCZYK, PRŠEK, VOUDOURIS and MELFOS

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

Sb-rich lillianite

Lillianite  (N = 4)  and  heyrovskite 

(N = 7), two members of the lillianite 

homologous series, were recently 

reported at the Stan Terg deposit in 

association with other Bi-sulphosalts, 

galena  and  arsenopyrite  (Koło-

dziejczyk et al. 2015). They contain 

up to 0.2 wt. % of Sb. 

In contrast, lillianite accompany-

ing the Bi-sulphotellurides has a dif-

ferent chemical composition with 

significantly higher Sb content (up to 

11.50 wt. %), and also a higher Ag 

content (up to 5.10 wt. %). This 

Sb-rich lillianite has been found in 

the samples from the orebody 141, as 

aggregates intergrown with galena, 

native bismuth, cosalite, and tet-

radymite group minerals.

1

2

3

4

5

6

7

8

9

Pb

40.00

40.58

40.65

40.21

41.67

43.49

84.77

85.47

84.89

Fe

0.59

0.21

0.25

0.27

0.26

0.64

0.03

0.03

0.05

Cu

0.32

0.16

0.17

0.14

0.16

0.98

<MDL

<MDL

0.02

Ag

0.89

0.48

0.44

0.65

0.67

0.52

0.58

0.18

0.32

Sb

0.41

3.47

3.89

6.14

7.61

13.57

0.03

<MDL

<MDL

Bi

41.42

37.47

37.21

34.40

31.79

22.34

2.52

1.31

1.51

Mn

<MDL

0.14

0.06

0.16

0.21

0.00

0.01

<MDL

0.01

Te

0.04

0.07

0.03

<MDL

0.13

0.04

0.03

0.14

<MDL

S

16.03

16.70

16.65

16.99

17.21

18.13

13.50

13.05

13.42

TOTAL

99.70

99.28

99.35

98.96

99.71

99.71

101.47

100.18

100.22

Chemical formula based on anions = 20

Chemical formula based on 2 atoms

Pb

7.52

7.51

7.55

7.33

7.48

7.42

0.96

0.98

0.97

Fe

0.42

0.15

0.17

0.19

0.18

0.40

0.00

0.00

0.00

Cu

0.21

0.10

0.11

0.09

0.10

0.55

0.00

Ag

0.33

0.17

0.16

0.23

0.23

0.17

0.01

0.00

0.01

Sb

0.13

1.09

1.07

1.90

2.32

3.94

0.00

Bi

7.92

6.88

6.85

6.21

5.66

3.78

0.03

0.01

0.02

Mn

0.01

0.04

0.11

0.14

0.00

0.12

0.00

Te

0.01

0.02

0.01

0.04

0.01

0.00

0.00

S

19.99

19.98

19.99

20.00

19.96

19.99

0.98

0.97

0.99

Notes: <MDL = below the minimum detection limit, Se was below the minimum detection limit in all analyses

Table 3: Representative EPMA analyses and atomic proportions for cosalite (1–6) and coexisting 

galena (7–9) from Stan Terg.

Fig. 4. Ternary plot Bi+Pb+Sb vs S+Se vs Te of Bi-sulphotelluride minerals from the Stan Terg mine. Open circles: minerals ideal end member 

chemical compositions; solid black symbols: chemical  compositions of minerals from the Stan Terg deposit.

Pb+Bi+Sb

S+Se

Te

bismuthinite

telluronevskite

Bi S

7

3

Bi S

5

3

Bi S

3

2

Bi TeS

3

Bi Te

3

2

(Pb,Bi) Te S

2.5

1.5

1.5

(Pb,Bi) Te S

3

2

2

saddlebackite

tetradymite

tsumoite

pilsenite

rucklidgeite

tellurobismutite

sulphotsumoite

joseite-B

joseite-A

baksanite

ingodite

JOSEITE-A

JOSEITE-B

PHASE-A

PHASE-B

ikunolite

background image

373

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

Representative EPMA data are presented in Table 4. For all 

ana lysed grains the N number was calculated with values 

around  4  (e.g.,  3.70 – 4.14),  which  means  the  only  member  

of the lillianite homologous series present in the association  

is lillianite, 4L. The molar percentage of the gustavite 

 

member  ranges  between  8.08  and  55.60  mol.  %,  whereas  

the silver content in apfu (x) ranges between 0.08 and 0.51 

(Fig. 5). 

By comparing the chemical composition of exsolution 

lamellae in lillianite we conclude that the lighter phases are 

described as 

3.76 

L 

18.75

, with x value = 0.17, whereas the darker 

zones  are  enriched  in  Ag,  and  their  composition  is  around 

3.76

L

59.93

, with x = 0.47 (both measured with an e lectron beam 

diameter  below  1 μm).  One  analysis  with  a  4 μm  electron 

beam, could be assigned to an unexsolved phase that was 

around 

3.83

L

26.28

, with x = 0.24. 

X-ray maps (Fig. 7) show a lillia nite aggregate from the 

 

sulphotelluride association, partly replaced by galena, 

 

ikunolite, native bismuth, and Bi-sulpho 

tellurides 

 

(joséite-A, joséite-B). Copper and Pb distribution are 

 

uniform throughout the lillianite aggregates, whereas Ag and 

Sb are slightly increased at the edges. Sulphotellurides are 

intergrown with ikunolite, or occur as inclusions in galena or 

lillianite. 

Kobellite homologous series

Recently, the presence of izoklakeite-giessenite members of 

the kobellite homologous series in the Stan Terg deposit was 

reported by Kolodziejczyk et al. (2015). In the sulphotelluride 

asso ciation (samples from 140 and 141 orebodies), phases that 

represent both members, for example, izoklakeite   - gies se nite 

(N=4), as well as kobellite-tintinaite series (N=2) were identi-

fied.  However,  in  this  association  izoklakeite- giessenite 

phases are dominant. 

Kobellite homologous series phases occur in the sulpho-

telluride association together with Bi-rich jamesonite, Sb- 

cosalite (up to Sb 3.94 apfu), and minor galena 

 

(Fig. 3G,H). The chemical composition of these minerals is 

presented in Table 5 and in Figure 8.

An almost ideal Bi ↔ Sb substitution trend is visible in both 

series  (Fig.  8A).  The  Sb/(Sb+Bi)  ratio  is  0.47– 0.51  in  the 

kobellite- tintinaite  series  and  0.31– 0.51  in  the  izo klakeite-

giessenite series. The Ag content is insignificant, and 

Bi+Sb

Cu+Ag

Pb

Gustavite

Galenobismutite

Cannizzarite

Cosalite

Lillianite N=4

Heyrovskyite N=7

Matildite

Bismuthinite

Treasurite

Vikingite

Eskimoite

Ourayite

Bi-minerals - this study

Bi-minerals (Kołodziejczyk et al..2015)

Theoretical  formulae

N=5

N=5

N=5.5

N=6

N=8

N=9

N=10

N=11

Fig. 5. Ternary plot Cu+Ag vs Bi+Sb vs Pb of bismuth sulphosalts — new data and previously described phases in the Stan Terg mine.

background image

374

KOŁODZIEJCZYK, PRŠEK, VOUDOURIS and MELFOS

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

A

A

B

C

D

2

1.6

1.2

0.8

0.4

19.5

20

20.5

21 21.5

Pb (at %)

.

Cu+Ag (at %)

.

2

1.6

1.2

0.8

0.4

Cu+Ag (at %)

.

2

1.6

1.2

0.8

0.4

Cu+Ag (at %)

.

21

20

22

23

24

Bi+Sb (at %)

.

20

22

24

12

8

16

20

Bi (at %)

.

24

Bi (at %)

.

18

16

14

0

2

2

4

6

8

Sb (at %)

.

corresponds to 0.1 apfu and 0.5 

apfu on average in both series, 

respectively.

Bi-rich jamesonite

Jamesonite from the Stan Terg 

deposit was found in samples 

from the 140 orebody. Repre-

sentative EPMA data are presen-

ted  in  Table  6.  Chemical 

com po sition data indicates that 

the Bi content in all phases mea-

sured reaches up to 21 wt. %, 

which corresponds to 0.85 to 2.30 

apfu in the chemical formula. 

Discussion

The Bi–Pb–Sb–S–Te associa-

tion discussed in the present study differs from that described 

 pre viously  by  Kołodziejczyk  et  al.  (2015)  (e.g.,  skarn-,  and 

skarn-free breccias filling types), in that it is enriched in tellu-

rides. This association was found in the external parts of the 

skarn ore bodies as aggregates between dispersed pyrite crys-

tals in the gangue carbonate host rock. The source of the  

Bi–Pb–Sb–S–Te mineralization is likely to be the same as for 

the two types described above, and the Bi-sulphotelluride 

Fig. 6. Binary plots showing chemical composition of cosalite from the Stan Terg deposit. A — Cu vs Ag at. %; B — Cu+Ag vs Pb at %;  

C — Cu+Ag vs Bi at. %; D — Cu+Ag vs Bi+Pb at. %.

1

2

3

4

5

6

7

8

9

10

Pb

37.86

34.66

40.52

38.75

40.53

48.67

46.04

48.48

41.35

35.02

Fe

<MDL

0.05

0.09

0.04

0.90

0.06

0.16

1.32

0.16

0.49

Cu

0.01

<MDL

<MDL

<MDL

0.01

<MDL

<MDL

<MDL

0.02

0.08

Ag

3.87

4.60

3.24

3.48

3.05

1.00

1.26

1.26

3.60

5.10

Sb

0.34

0.36

0.50

0.62

0.68

1.21

1.24

1.89

4.99

11.50

Bi

43.14

45.19

40.15

42.76

40.52

33.99

34.50

33.24

35.39

29.22

Te

<MDL

<MDL

<MDL

0.01

<MDL

0.08

0.04

<MDL

<MDL

<MDL

Se

<MDL

<MDL

<MDL

<MDL

<MDL

<MDL

<MDL

<MDL

0.07

<MDL

S

16.29

16.20

16.11

16.09

15.97

15.47

15.80

15.60

16.16

17.88

TOTAL

101.51

101.06

100.61

101.75

101.66

100.48

99.04

101.79

101.74

99.29

Chemical formula based on (Pb+Bi+Ag) = 5

Pb

2.15

1.96

2.34

2.21

2.34

2.89

2.78

2.89

2.48

2.37

Bi

2.43

2.54

2.30

2.41

2.32

2.00

2.07

1.97

2.11

1.96

Ag

0.42

0.50

0.36

0.38

0.34

0.11

0.15

0.14

0.41

0.66

S

5.98

5.93

6.01

5.92

5.96

5.93

6.18

6.01

6.26

7.82

N

3.93

3.86

4.08

3.83

3.94

4.11

4,00

4.16

4.01

3.82

mol%

42.75

51.90

34.83

39.62

33.92

10.83

14.26

13.24

37.52

55.60

x

0.41

0.48

0.36

0.36

0.33

0.11

0.14

0.14

0.38

0.51

Notes: <MDL = below the minimum detection limit

Table 4: Representative EPMA analyses and atomic proportions for Sb-rich lillianite from sulpho-

telluride association in the Stan Terg deposit.

background image

375

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

association was probably the result of precipitation from fluids 

that derived from the main skarn orebody and then migrated 

into the host rocks around the skarn mineralization, resulting 

in skarn-free local enrichment in tellurides.  

Identification of tetradymite group species

In the absence of structural data that were beyond the scope 

of this study (e.g., X-ray diffraction, Raman spectroscopy, 

nanoscale electron diffraction on a TEM platform), for the 

identification of telluride phases present we propose the 

 following approaches: 1) substitution; 2) the presence of 

 

sub 

microscopic PbS layers; 3) incorporation of Bi–(Pb) 

modules.

The “substitution” approach may be considered valid 

because of the absence of Pb in natural, ideal chemical compo-

sitions of joséite-B (Bi

4

TeS

2

), and protojoseite (Bi

3

TeS). 

Similar to the discussion by Cook et al (2007a), this trend 

 suggests Bi ↔ Te substitution (or “disorder”?) and described 

by those authors as compounds close to Bi

3

TeS composition 

Fig. 7. EPMA X-Ray maps (AgLα, BiMα, SbLα, CuKα, FeKα, PbMα, SKα, TeLα) of lillianite intergrowth (L) with galena (gn), native bismuth 

(Bi), ikunolite (ikn) and Bi-tellurides: joséite A (josA), and joséite B (josB).

background image

376

KOŁODZIEJCZYK, PRŠEK, VOUDOURIS and MELFOS

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

could be disordered members of 

the  tsumoite – ingodite –    nevskite 

series. They do not rule out, how-

ever, the possibility of stable min-

erals with this stoichiometry. 

Our compositional data for 

joséite-A and joséite-B, trend in 

the direction of the “protojoseite 

line”, marked according to its 

stoichiometric formula of 

Bi

3

(Te,S)

2

, indicating a wide com-

positional range of Te and S in 

this phase (Fig. 9A). Some of the 

data plot directly on this line. 

Protojoseite remains a question-

able mineral species (e.g., Jambor 

1984) and its stoichiometry was 

reported as 3:2 and 4:3, or the 

phase was suggested to be a non-

stoichiometric joséite-B or 

joséite-A (Cook et al. 2007a). 

Zav’yalov & Begizov (1983) sug-

gested a narrow  

compositional 

field for protojoseite with the 

 general formula Bi

3+ x

Te

1− x − y

S

1+ y

where 

−0.02  <  x  < 0.14 

and 

−0.05  <  y  < 0.17, which may explain the Bi: (Te + S) variations 

that were observed.

Results similar to those obtained in the present study, for 

coexisting joséite-B and “protojoseite”, were reported by 

Zav’yalov & Begizov (1983), and later by Cook et al. (2007a). 

However, in these studies, the compositional data differ 

noticeably for both species, and the results do not overlap with 

fields for ideal stoichiometric joséite-A and joséite-B.

Compositions which are apparently non-stoichiometric can 

be readily interpreted in terms of (disordered or ordered) 

 finest-scale intergrowths, as described by Cook et al. (2007a,b): 

The “PbS sublayers” approach is supported by the three  visible 

trends  on  the  Pb+Bi+Sb  vs  S+Se  vs Te  diagram  (Fig.  9 B):  

1

st

 from Bi

7

S

3

 – to  joséite-B;  2

nd

 from Bi

5

S

3

 – joséite-A –   

sulphotsumoite – to  tellurobismutite;    and  3

rd

  from  ikunolite  –    

phase A  with formula  (Bi,Pb)

2

(TeS)

2

  –  phase B with  for  mula 

(Bi,Pb)

2.5

Te

1.5

S

1.5   

– to tetra dymite. Those lines can support the 

admixture of tellurides with submicroscopic intergrown layers 

of PbS, so the analyses fall between the phases mentioned 

above on that diagram.

Although unnamed Phases A and B plot away from the 

aleksite sub-group line (e.g. Cook et al. 2007a) and thus can-

not be explained in terms of aleksite sub-group phases, the 

observed compositions could be alternatively, attributed to 

submicroscopic intergrowths of tetradymite units with Pb–Bi 

sulphotellurides. 

Finally, lattice-scale intergrowths between members of the 

tetradymite group (e.g. conside 

ration of Bi–Pb modules 

approach), similar to those described by Ciobanu et al. (2009b) 

could also explain the composition of unnamed phases A and B.  

Sb-rich cosalite

Cosalite is a common Bi- sulphosalt, ideally Pb

2

Bi

2

S

6

, with 

several possible substitutions, including Ag, Cu, or Sb. 

Recently Topa & Makovicky (2010) proposed the following 

substitution mechanisms in cosalite: 1) Ag +Bi ↔ 2Pb  at  the 

Me1  site; and 2)  2(Cu + Ag) ↔ Pb.  They  proposed  these  as 

a result of the  creation of vacancies in the Bi-containing octa-

hedral Me2 site accompanied by a progressive  occupancy of 

two  triangular  faces  of  this  octahedron  by  Cu + Ag  [i.e., 

Bi ↔ 2(Cu + Ag)]. This in turn is combined with the replace-

ment of Pb in the adjacent Me1 octa hedron by Bi. Their two 

substitution mechanism combinations explain the closely fol-

lowed chemical relationship above.

Antimony for Bi substitution in cosalite is easier to explain. 

Antimonian cosalite (up to Sb = 6.89 wt. %) was first described 

by Lee at al. (1993) from the Dunjeon Au mine (Japan). 

Cosalite with high Sb contents was also reported from Bacúch 

(Pršek & Chovan 2001; Pršek 2008) and from Brezno-Hviezda 

(Pršek et al. 2008) in the Low Tatras, Slovakia, with Sb 

 contents reaching values of up to 0.72 and 3.33 wt. %, respec-

tively. Sb-bearing cosalite with up to 4.33 wt. % of Sb was 

also described by Cook (1997) from the  Bi sulphosalt-  

bearing,  hydrothermal  Pb–Zn  mineralization  at  Baia  Borşa, 

Romania. 

The cosalite from Stan Terg was previously described by 

Terzić et al. (1974, 1975). He indicated, based on XRD and 

EPMA results, that cosalite has up to 0.27 apfu Sb and up to 

0.01 apfu Ag. The composition of cosalite measured by Terzić 

falls between the results of the present study (Fig. 7). We 

1

2

3

4

5

6

7

8

9

10

Pb

38.04

37.54

37.7

39.29

38.72

48.01

48.13

49.18

49.23

50.06

Fe

0.97

0.98

0.94

0.89

0.94

0.46

0.38

0.34

0.28

0.47

Cu

0.97

0.97

0.98

1.01

1.01

0.72

0.73

0.82

0.93

0.92

Ag

0.18

0.17

0.12

0.19

0.16

0.36

0.41

0.56

0.62

0.61

Sb

13.68

14.35

14.69

14.93

15.11

4.75

4.78

8.38

10.89

13.36

Bi

26.55

26.06

25.53

24.35

25.05

28.37

28.97

23.41

20.55

16.3

Mn

0.02

0.01

<MDL

<MDL

<MDL

0.02

<MDL

0.02

0.01

0.17

Te

<MDL

<MDL

<MDL

0.01

<MDL

<MDL

0.18

<MDL

0.05

<MDL

S

18.59

18.79

18.79

18.82

18.79

16.46

16.47

16.99

17.2

17.45

TOTAL

98.99

98.86

98.75

99.48

99.77

99.15

100.05

99.71

99.74

99.32

Chemical formula based on (Pb+Bi+Ag+Sb) = 26

Chemical formula based on (Pb+Bi+Ag+Sb) = 46

Pb

11.24

11.08

11.11

11.45

11.24

26.01

25.81

25.79

25.35

25.55

Fe

1.06

1.07

1.03

0.96

1.01

0.93

0.75

0.66

0.53

0.89

Cu

0.94

0.95

0.96

0.98

0.97

1.30

1.30

1.43

1.58

1.56

Ag

0.10

0.10

0.07

0.11

0.09

0.37

0.42

0.56

0.61

0.60

Sb

6.88

7.20

7.37

7.41

7.46

4.38

4.36

7.48

9.54

11.6

Bi

7.78

7.63

7.46

7.04

7.21

15.24

15.40

12.17

10.49

8.25

Mn

0.02

0.01

0.04

0.05

0.01

0.32

Te

0.00

0.16

0.05

S

35.49

35.84

35.79

35.44

35.25

57.64

57.07

57.55

57.23

57.56

N

2.11

2.06

2.05

2.19

2.11

3.97

3.97

4.14

4.04

4.07

x

0.47

0.47

0.48

0.50

0.49

0.58

0.63

0.68

0.75

0.63

Notes: <MDL = below the minimum detection limit, Se was below the minimum detection limit in all analyses

Table 5: Representative EPMA analyses and atomic proportions for kobellite homologous series 

minerals from sulphotelluride association: kobellite-tintinaite (1–5), izoklakeite-giessenite (6–10) in 

the Stan Terg deposit.

background image

377

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

suggest that the chemical composition of Stan Terg cosalite is 

more complex than previously thought and depends on the 

Ag + Cu and Bi + Sb contents. The cosalite composition from 

Stan Terg is compared in Figure 10 to other Sb-rich cosalites 

from diffe rent localities. The antimony content in the Stan 

Terg cosalites is relatively high, but Cu+Ag substitution is rel-

atively limited.

Bi-rich jamesonite

Bi-rich jamesonite with significant high Bi content was 

described from several hydrothermal vein occurrences in 

Eastern Europe: Pršek et al. (2008) described jamesonite with 

up to 2.41 apfu Bi, occurring with kobellite, eclarite and sul-

phosalts  of  the  bismuthinite-aikinite  group,  from  Brezno-

Hviezda, Slovakia. In the Úhorná locality (Slovakia) the Bi 

content in jamesonite reaches 1.25 apfu, and this mineral was 

found in association with tetradymite group minerals, tinti-

naite,  and  bournonite  (Pršek  &  Peterec  2008).  Pršek  (2004) 

reported from the Slovak Ore Mountains up to 1.20 apfu Bi in 

jamesonite, hosted in siderite veinlets and associated with 

kobellite  homologues,  jaskólskite,  and  Bi-bournonite. 

Substitution of Bi for Sb is common in jamesonite from all the 

above localities, which could  suggest possible solid solution 

A

A

B

C

D

Sb (at %)

.

Bi (at %)

.

Cu (at %)

.

D

E

F

Pb (at %)

.

Sb (at %)

.

Sb (at %)

.

Sb (at %)

.

Fe (at %)

.

Cu (at %)

.

Ag (at %)

.

Ag (at %)

.

Pb (at %)

.

izoklakeite-giessenite series

kobellite-tintinaite series
data from Kołodziejczyk et al.2015

16

14

12

10

8

6

8

6

4

10

12

12

1.2

1

0

2

4

6

8

1.4

1.6

1.8

1.2

1

1.4

1.6

1.8

18

16

20

22

26

24

0.2

0

0.4

0.6

0.8

0.2

0

0.4

0.6

0.8

26

24

22

20

18

16

12

8

6

4

10

12

8

6

4

10

12

8

6

4

10

Fig. 8. Binary plots showing chemical composition of kobellite homologous series from the sulphotelluride associa tion at the Stan Terg deposit.  

A — Bi vs Sb at. %, B — Fe vs Cu at. %, C — Pb vs Ag at. %, D — Sb vs Cu at. %, E — Sb vs Ag at. %, F — Sb vs Pb at. %.

background image

378

KOŁODZIEJCZYK, PRŠEK, VOUDOURIS and MELFOS

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

with sakharovaite. Sakharovaite (ideally 

FePb

4

(Sb, Bi)

6

S

14

) is considered to be 

either a Bi-rich variety of jamesonite, or 

a separate species, with Bi ↔ Sb substitu-

tion close to 50 at. % limit (Moëlo et al. 

2008). 

Similar sulphotellurides in hydro thermal 

systems elsewhere

The sulphotelluride assemblages des-

cribed from the Stan Terg deposit com-

prise various phases accompanying 

Bi-sulphosalts with low Ag contents. In 

addition, neither native gold nor other 

Au-bearing phases (e.g. Au-tellurides) 

were identified in the paragenesis, thus 

indicating that the sulphotellurides studied 

may have precipitated from a hydrother-

mal fluid that was depleted in precious 

metals. This is in contrast to the majority 

of Bi-sulphotelluride enriched mineral 

systems described in the literature, which usually host signifi-

cant Au and/or Ag contents. 

Numerous Au–Ag–Bi–Te–S-bearing mineral systems have 

been described elsewhere, and they are commonly interpreted 

to have precipitated under either high-temperature hydro-

thermal  (e.g.,  Czamanske  &  Hall  1975;  Ren  1986),  or  

under  epithermal  conditions  (e.g.,  Oberthür  &  Weiser  

2008). Various phases from the tetradymite group minerals 

(with unknown phases) together with sulphosalts were 

described from plenty of localities worldwide (Gu et al.  

2001;  Cook  &  Ciobanu  2004;  Pieczka  et  al.  2009;  

Ciobanu at al. 2010; Cockerton & Tomkins 2012; Voudouris  

et al. 2013).

Conditions of formation of the Bi–Pb–Sb–S–Te association

The Bi–Pb–Sb–S–Te mineral associations, found in the 

external host rocks adjacent to the skarn-related orebody, are 

closely related to previously described skarn-related and 

 breccia-filled types of mineral associations and reveal a simi-

lar high-temperature character of formation (Kołodziejczyk et 

al. 2016 a,b). The sulphotelluride mineralization predates Ag 

mineralization that formed in later stages of ore precipitation 

at the Stan Terg deposit (Kołodziejczyk et al. 2016 a,b).  

The sulphotelluride association in the Stan Terg deposit 

seems to be closely related to cosalite and lillianite, and occurs 

in most cases with ikunolite and native bismuth as inclusions 

or as intergrowths with cosalite. The sulphotellurides could 

have precipitated after galena as a result of introduction of Bi, 

Sb and Te into the system by hydrothermal fluids, which 

enabled the formation of Bi-sulphosalts and sulphotellurides.

The lamellar exsolution textures observed in lillianite at 

Stan Terg, are similar to those described for the Ocna de Fier 

Fe–Cu skarn deposit, Banat (southwest Romania) by Ciobanu 

and Cook (2000), and indicate breakdown from the decom-

position of high-temperature initially formed crystals. The 

temperature  of  initial  mineralization  may  exceed  400  ºC  as 

suggested  by  Ciobanu  &  Cook  (2000),  in  accordance  with 

experimental studies in the Cu–Pb–Bi–Ag-bearing systems 

(Chang et al. 1988). As suggested by Ciobanu & Cook (2000) 

for the Ocna de Fier, it is believed that intergrowths of 

Bi-sulphosalts and sulphotellurides at Stan Terg reflect modu-

lated growth processes in a metasomatic environment.

Conclusions

A new occurrence of Bi-sulphotellurides at the Stan Terg 

hydrothermal system, is associated with galena and Bi- and 

Sb-sulphosalts.

The Bi-sulphotellurides include joséite-A, joséite-B, and 

two other phases (phase A and phase B), that could not be 

assigned to any known mineral due to the lack of structural 

data. Bi ↔ Te substitution and admixtrure with submicro scopic 

PbS and or Bi–Pb sulphotelluride layers, as well as lattice-scale 

incorporation of Bi–(Pb)-rich modules are considered to 

explain dispersion of our results along distinct geochemical 

trends.

Cosalite from the Stan Terg deposit displays high Sb (max. 

3.94 apfu), and low Cu and Ag (max. 0.72 Cu+Ag apfu) 

contents. 

Neither the sulphotellurides, nor the accompanying sulpho-

salts, incorporate abundant Ag in their structures. Gold and 

silver sulphotellurides have not been found in this association. 

The hydrothermal fluids could have been either depleted in 

precious metals, or the physico-chemical conditions of ore 

formation prevented Au and Ag precipitation at the site of ore 

deposition.

1

2

3

4

5

6

7

8

Pb

38.71

38.81

38.58

38.33

37.58

37.81

36.91

37.07

Fe

2.51

2.66

2.79

2.94

2.39

2.36

2.48

2.22

Cu

0.01

<MDL

<MDL

<MDL

0.05

0.03

0.02

0.04

Ag

<MDL

<MDL

<MDL

<MDL

<MDL

<MDL

<MDL

0.01

Sb

28.75

26.77

26.06

25.39

22.24

21.78

20.41

19.57

Bi

8.15

10.94

11.11

13.16

16.21

17.66

20.24

21.05

Mn

<MDL

0.24

0.41

0.22

0.05

0.13

0.11

0.07

S

20.28

20.25

19.98

20.48

20.45

19.72

19.97

19.41

TOTAL

98.41

99.67

98.93

100.52

98.97

99.49

100.14

99.44

Chemical formula based on heavy metals = 11

Pb

4.05

4.03

4.01

3.97

4.11

4.09

4.01

4.09

Fe

0.98

1.02

1.08

1.13

0.97

0.95

1.00

0.91

Cu

0.00

0.02

0.01

0.01

0.02

Ag

0.00

Sb

5.12

4.73

4.61

4.47

4.14

4.01

3.77

3.67

Bi

0.85

1.13

1.15

1.35

1.76

1.90

2.18

2.30

Mn

0.00

0.09

0.16

0.08

0.02

0.05

0.04

0.03

S

13.73

13.58

13.42

13.69

14.45

13.79

14.01

13.83

Notes: <MDL = below the minimum detection limit, Se and Te were below the minimum detection limit in all 

analyses

Table 6: Representative EPMA analyses and atomic proportions for representative Bi-rich 

jamesonite from the Stan Terg deposit (wt. %).

background image

379

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

Pb+Bi+Sb

S+Se

Te

bismuthinite

telluronevskite

Bi S

7

3

Bi S

5

3

Bi S

3

2

Bi TeS

3

Bi Te

3

2

(Pb,Bi) Te S

2.5

1.5

1.5

(Pb,Bi) Te S

3

2

2

saddlebackite

tetradymite

tsumoite

pilsenite

rucklidgeite

tellurobismutite

sulphotsumoite

joseite-B

joseite-A

baksanite

ingodite

A

Protojoseite line

ikunolite

Fig. 9. Ternary plot Bi+Pb+Sb vs S+Se vs Te of Bi-sulphotelluride minerals from the Stan Terg mine. Open circles: minerals ideal end member 

chemical compositions; solid black symbols: chemical compositions of minerals from the Stan Terg deposit. Protojoseite line is drawn accord-

ing to general formula Bi

3

(Te,S)

2

 given by Cook et al. (2007a).

Pb+Bi+Sb

S+Se

Te

bismuthinite

telluronevskite

Bi S

7

3

Bi S

5

3

Bi S

3

2

Bi TeS

3

Bi Te

3

2

(Pb,Bi) Te S

2.5

1.5

1.5

(Pb,Bi) Te S

3

2

2

saddlebackite

tetradymite

tsumoite

pilsenite

rucklidgeite

tellurobismutite

sulphotsumoite

joseite-B

joseite-A

baksanite

ingodite

B

1

trend line

st

ikunolite

2

trend line

nd

3

trend line

rd

background image

380

KOŁODZIEJCZYK, PRŠEK, VOUDOURIS and MELFOS

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

Fig. 10. Ternary plot Cu+Ag vs Bi+Sb vs Pb+Mn+Fe of cosalite — new EPMA data for Stan Terg, described as cosalite in the Stan Terg mine 

and other Sb-rich cosalite.

Acknowledgements: The research was financed by the AGH 

University of Science and Technology grants No. 11.11.140.320 

and 

15.11.140.636.  Two  anonymous  reviewers  are  greately 

 acknowledged for their constructive comments that highly 

 improved the earlier version of the manuscript. Associate 

 Editor is especially thanked for the editorial handling of the 

manuscript.

References

Bowell R.J., Foster R.P. & Stanley C.J. 1990: Telluride mineralization 

at Ashanti gold mine, Ghana.  Mineral. Mag. 54, 617–627.

Cepedal A., Martinez-Abad I., Fuertes-Fuente M. & Lima A. 2013: 

The presence of plumboan ingodite and a rare Bi-Pb telluro-

sulfide, Pb3Bi4Te4S5, in the  Limarinho Gold deposit, Northern 

Portugal. Can.   Mineral. 51, 643–651.

Chang L.L.Y., Wu D. & Knowles C.R. 1988: Phase relations in the 

system Ag

2

S–Cu

2

S–PbS–Bi

2

S

3

Econ. Geol. 83, 405–418. 

Ciobanu C.L. & Cook N.J. 2000: Intergrowths of  bismuth sulphosalts 

from the Ocna de Fier Fe-skarn  deposit, Banat, Southwest 

 Romania.  Eur. J. Mineral. 12, 899–917.

Ciobanu C.L., Cook N.J., Pring A., Brugger J., Danyushevsky L.V. & 

Shimizu M. 2009a: ‘Invisible gold’ in bismuth chalcogenides. 

Geochim.Cosmochim. Acta 73, 7, 1970–1999.

Ciobanu C.L., Pring A., Cook N.J., Self P., Jefferson D., Dima G. & 

Melnikov V. 2009b: Chemical-structural modularity in the 

 tetradymite group: a HRTEM study. Am. Mineral. 94, 517–534.

Ciobanu C.L., Birch W.D., Cook N.J., Pring A. &  Grundler P.V. 2010:  

Petrogenetic significance of Au–Bi–Te–S associations: The 

 example of  Maldon, Central Victorian gold province, Australia. 

Lithos 116, 1–17.

Cockerton A.B.D. & Tomkins A.G. 2012: Insights into the liquid bis-

muth collector model through  analysis of the Bi-Au Stormont 

skarn prospect, northwest Tasmania. Econ. Geol. 107, 

 

667–682.

Cook N.J. 1997: Bismuth and bismuth-antimony  sulphosalts from 

Neogene  vein  mineralisation,  Baia  Borşa  area,  Maramureş, 

 Romania.  Mineral. Mag. 61, 3, 387–409.

Cook N.J. & Ciobanu C.L. 2004: Bismuth tellurides and sulphosalts 

from the Larga hydrothermal system,  Metaliferi Mts, Romania: 

paragenesis and genetic  significance. Mineral. Mag.  68,  2,  

301–321.

Cook N.J., Ciobanu C.L., Wagner T. & Stanley C.J. 2007a: Minerals 

of the system Bi-Te-Se-S related to the tetradymite archetype: 

Review of classification and compositional variation. Can. 

 Mineral. 45, 665–708.

Cook N.J., Ciobanu C.L., Stanley C.J., Paar W. & Sundblad K. 2007b: 

Compositional data for Bi-Pb tellurosulfides. Can. Mineral. 45, 

417–435. 

Cook  N.J.,  Ciobanu  C.L.,  Spry  P.G.  &  Voudouris  P.  2009:  Under-

standing gold–(silver)–telluride–(selenide) mineral deposits. 

 

 Episodes 32, 249–263.

Czamanske  G.K.  &  Hall  W.E.  1975:  The  Ag–Bi–Pb–Sb–S–Se–Te 

 mineralogy  of  the  Darwin  lead-silver-zinc  deposit,  southern 

 California.  Econ. Geol. 70, 6, 1092–1110.

Dangić A.  1993:  Tetriary  lead-zinc  ore  deposits  and  calco-alcaline 

magmatism of the serbo-macedonian province: metallogenic and 

geochemical characteristics, hydrothermal systems and their 

evolution.  Annales Géologiques de la Péninsule Balkanique

Belgrade, 57, 1, 257–285.

Féraud J. & Deschamps Y. 2009: French scientific cooperation 2007–

2008 on the Trepça lead-zinc-silver mine and the gold potential 

of Novo Brdo/Artana tailings (Kosovo). BRGM Report No RP-

57204-FR. 1–92, 13 figs., 4 tabl., 18 photos, 1 appendix.

Féraud  J.,  Maliqi  G.  &  Meha  V.  2007:  Famous  mineral  localities:  

The  Trepča  mine  Stari  Trg,  Kosovo.  Mineral. Rec. 38, 

 

267–298.

Forgan C.B. 1950: Ore deposits at the Stan Terg lead-zinc mine Inter-

national Geological Congress. Report of the eighteenth session 

Great Britain 1984. Part VII. In: Symposium and proceedings of 

section F. The Geology, paragenesis and reserves of the ores of 

lead and zinc, Yugoslavia, 290–307.

Groves D.I. & Hall S.R. 1978: Argentian pentlandite with parkerite, 

joséite A and the probable Bi-analogue of ullmannite from 

Mount Windarra, Western Austalia. Can. Mineral. 16, 1–7.

Gu  X.,  Watanabe  M.,  Hoshino  K.  &  Shibata  Y.  2001:  Mineral 

 chemistry and associations of Bi-Te(S,Se) minerals from China. 

Neues Jahrb. Mineral. Monatsh. 7, 289–309.

Hyseni S., Durmishaj B., Fetahaj B., Shala F., Berisha A. & Large D. 

2010: Trepça Ore Belt and Stan Terg mine – Geological over-

view and interpretation. Kosovo (SE Europe). Geologija 53, 1, 

87–92.

Jambor  J.L. 1984: New mineral names. Am. Mineral. 69, 1190–1196.

Janković S. 1995: The principal metallogenic features of the Kopaonik 

District. In: Geology and Metallogeny of the Kopaonik Mt. 

Symposium. Belgrade, 79–101.

background image

381

Bi-SULFOTELLURIDES AND SULFOSALTS FROM THE STAN TERG DEPOSIT, KOSOVO

GEOLOGICA CARPATHICA

, 2017, 68, 4, 366 – 381

Kołodziejczyk J., Pršek J., Melfos V., Voudouris P.Ch., Maliqi F. & 

Kozub-Budzyń G. 2015. Bismuth minerals from the Stan Terg 

deposit (Trepça, Kosovo). Neues Jahrb. Mineral. Abh. 192, 3, 

317–333. 

Kołodziejczyk J., Pršek J., Asllani B. & Maliqi F. 2016a: The para-

genesis of silver minerals in the Pb-Zn Stan Terg deposit, 

 Kosovo: an example of precious metal epithermal minerali-

zation. Geology, Geophysics and Environment 42, 1, 19–29.

Kołodziejczyk  J.,  Pršek  J.,  Voudouris  P.,  Melfos  V.  & Asllani  B.,  

2016b:  Sn-Bearing  Minerals  and  Associated  Sphalerite  from 

Lead-Zinc Deposits, Kosovo: An Electron Microprobe and 

 LA-ICPMS  Study.  Minerals 6, 2, 42.

Lee C.H., Park H.I. & Chang L.L. 1993: Sb-cosalite from Dunjeon 

gold mine, Taebaeg City, Korea. Mineral. Mag. 57, 3, 

 

527–530. 

Melnikov  V.,  Jeleň  S.,  Bondarenko  S.,  Balintová  T.,  Ozdín  D.  & 

Grinchenko A. 2009: Comparative Study of Bi-Te-Se-S Mine-

ralizations  in  Slovak  Republic  and Transcarpathian  Region  of 

Ukraine. Mineralogicheskiy Zhurnal 31, 4, 38–48.

Moëlo Y.,  Makovicky  E.,  Mozgova  N.N.,  Jambor  J.L.,  Cook  N.J., 

Pring A., Paar W., Nickel E.H., Graeser G., Karup-Møller S., 

Balić-Žunić  T.,  Mumme  W.G.,  Vurro  V.,  Topa  D.,  Bindi  L., 

Bente K. & Shimizu M. 2008: Sulfosalt systematics: a review. 

Report of the Sulfosalt Sub-committee of the IMA Commission 

on Ore Mineralogy. Eur. J. Mineral. 20, 7–46.

Oberthür  T.  &  Weiser  T.W.  2008:  Gold-bismuth-telluride-sulphide 

assemblages at the Viceroy Mine, Harare-Bindura-Shamva 

greenstone belt, Zimbabwe. Mineral. Mag. 72, 4, 953–970.

Pieczka  A.,  Gołębiowska  B.  &  Parafiniuk  J.  2009:  Conditions  of 

 formation of polymetallic mineralization in the eastern envelope 

of  the  Karkonosze  granite:  the  case  of  Rędziny,  southwestern 

Poland. Can. Mineral. 47, 4, 765–786.

Plotinskaya  O.Y.,  Damian  F.,  Prokofiev  V.Y.,  Kovalenker  V.A.  & 

 Damian G. 2009: Tellurides occurrences in the Baia Mare  region, 

Romania.  Carpathian Journal of Earth and Environmental 

 Sciences 4, 2, 89–100.

Pršek J. 2004: Chemical composition and crystalochemistry of 

sulpho salts  from  sulphide  mineralization  in  Western  Carpa-

thians.  Unpublished PhD thesis,  Comenius University

 Bratislava, Slovakia, 1–135 (in Slovak).

Pršek J. 2008: Chemical composition and crystalochemistry of Bi 

 sulphosalts  from  the  hydrothermal  mineralizations  of  Western 

Carpatians basement. State Geological Survey of Slovak 

 Republic  press, 1–108 (in Slovak).

Pršek J. & Chovan M. 2001: Hydrothermal Carbonate and Sulphide 

Mineralization  in  the  Late  Paleozoic  Phyllites  (Bacúch,  Low 

 Tatras  Mts.).  Geolines 13, 27–34.

Pršek  J.  &  Peterec  D.  2008:  Bi-Se-Te  mineralization  from  Úhorná 

(Spišsko  Gemerské  Rudohorie  Mts.,  Słovakia): A  preliminary 

report. Mineralogia 39, 3–4, 87–103.

Pršek J., Ozdín D. & Sejkora J. 2008: Eclarite and associated Bi sul-

fosalts from the Brezno-Hviezda occurrence (Nízke Tatry Mts, 

Slovak Republic). Neues Jahrb. Mineral. Abh. 185, 2, 117–130.

Ren  Y.C.  1986:  Tellurobismuthinides  from  Pangushan,  China. 

 Chinese Journal of Geochemistry 5, 3, 277–279.

Schumacher  F.  1950:  Trepča  deposit  and  its  vicinity.  Publishing 

House of Council for Energy and Extractive Industry of the 

FPRY, Belgrad, 1–65 (in German).

Strmić  Palinkaš  S.,  Palinkaš  L.A.,  Renac  C.,  Spangenberg  J.E., 

Lüders V., Molnar M. & Maliqi G. 2013: Metallogenic Model of 

the  Trepča  Pb-Zn-Ag  Skarn  Deposit,  Kosovo:  Evidence  from 

Fluid Inclusions, Rare Earth Elements, and Stable Isotope Data. 

Econ. Geol. 108, 135–162.

Terzić  S.B.,  Sommerauer  J.  &  Harnik  A.B.  1974:  Macroscopic 

 cosalite  crystals  from  the  Pb-Zn  Ore  Deposit  Trepča  (Yugo-

slavia). Schweiz. Mineral. Petrogr. Mitt. 54, 209–211.

Terzić S.B., Sommerauer J. & Harnik A.B. 1975: Needle galena and 

cosalite from the Stan Terg–Trepča.  Bulletin du Museum  d’histoire 

naturelle, Belgrade, Serie A, Livre 30, 5–12 (in Serbo- Croatian).

Topa  D.  &  Makovicky  E.  2010;  The  crystal  chemistry  of  cosalite 

based on new electron-microprobe data and single-crystal deter-

minations of the structure.  Can. Mineral. 48, 5, 1081–1107.

Vikentyev I.V. 2006: Precious metal and telluride mineralogy of large 

volcanic-hosted massive sulfide deposits in the Urals. Mineral. 

Petrol. 87, 3–4, 305–326.

Voudouris P., Spry P.G., Mavrogonatos C., Sakellaris G.A., Bristol 

S.K., Melfos V. & Fornadel A. 2013: Bismuthinite derivatives, 

lillianite homologues, and bismuth sulfotellurides as indicators 

of gold mineralization at the Stanos shear-zone related deposit, 

Chalkidiki, northern Greece. Can. Mineral. 51, 119–142.

Zav’yalov Y.N. & Begizov V.D. 1983: New data on the constitution 

and nomenclature of the sulfotellurides of bismuth of the  

joseite group. Zap. Vses. Mineral. Obshchest.  112,  589–601  

(in Russian).