background image

GEOLOGICA CARPATHICA

, JUNE 2017, 68, 3, 229 – 247

doi: 10.1515/geoca-2017-0017

www.geologicacarpathica.com

Geochemical and isotopic evidence for Carboniferous 

rifting: mafic dykes in the central Sanandaj-Sirjan zone 

(Dorud-Azna, West Iran)

FARZANEH SHAKERARDAKANI

1

, FRANZ NEUBAUER

1

, MANFRED BERNROIDER

1

ALBRECHT VON QUADT

2

, IRENA PEYTCHEVA

2

, XIAOMING LIU

3

, JOHANN GENSER

1

,  

BEHZAD MONFAREDI

4

 and FARIBORZ MASOUDI

5

1 

Department of Geography and Geology, University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg, Austria;  

 

farzaneh.shakerardakani@sbg.ac.at

2

 Institute of Isotope Geology and Mineral Resources, ETH Zürich, CH-8092 Zürich, Switzerland

3

 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Northern Taibai Str. 229, Xi’an 710069, China

4

 Institute of Earth Sciences, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria

5

 Faculty of Earth Sciences, Shahid Beheshti University, 19839-63113, Tehran, Iran

(Manuscript received July 4, 2016; accepted in revised form March 15, 2017)

Abstract: In this paper, we present detailed field observations, chronological, geochemical and Sr–Nd isotopic data and 

discuss the petrogenetic aspects of two types of mafic dykes, of alkaline to subalkaline nature. The alkaline mafic dykes 

exhibit a cumulate to foliated texture and strike NW–SE, parallel to the main trend of the region. The 

40

Ar/

39

Ar amphibole 

age of 321.32 ± 0.55 Ma from an alkaline mafic dyke is interpreted as an indication of Carboniferous cooling through 

ca. 550 °C  after  intrusion  of  the  dyke  into  the  granitic  Galeh-Doz  orthogneiss  and  Amphibolite-Metagabbro  units, 

the  latter with Early Carboniferous amphibolite facies grade metamorphism and containing the Dare-Hedavand 

 metagabbro with a similar Carboniferous age. The alkaline and subalkaline mafic dykes can be geochemically  categorized 

into those with light REE-enriched patterns [(La/Yb)

N 

= 8.32– 9.28]  and  others  with  a  rather  flat  REE  pattern   

[(La/Yb)

N 

= 1.16]  and  with  a  negative  Nb  anomaly. Together,  the  mafic  dykes  show  oceanic  island  basalt  to  MORB 

 geochemical signature, respectively. This is consistent, as well, with the (Tb/Yb)

PM

 ratios. The alkaline mafic dykes were 

formed within an enriched mantle source at depths of ˃ 90 km, generating a suite of alkaline basalts. In comparison, 

the subalkaline mafic dykes were formed within more depleted mantle source at depths of ˂ 90 km. The subalkaline 

mafic dyke is characterized by 

87

Sr/

86

Sr ratio of 0.706 and positive ɛ

Nd

(t) value of + 0.77, whereas 

87

Sr/

86

Sr ratio of 0.708 

and ɛ

Nd

(t) value of + 1.65 of the alkaline mafic dyke, consistent with the derivation from an enriched mantle source. There 

is no evidence that the mafic dykes were affected by significant crustal contamination during emplacement. Because of 

the similar age, the generation of magmas of alkaline mafic dykes and of the Dare-Hedavand metagabbro are assumed to 

reflect the same process of lithospheric or asthenospheric melting. Carboniferous back-arc rifting is the likely geodynamic 

setting of mafic dyke generation and emplacement. In contrast, the subalkaline mafic sill is likely related to the 

 emplacement of the Jurassic Darijune gabbro.

Keywords: mafic dyke, Sanandaj-Sirjan Zone, 

40

Ar/

39

Ar dating, whole-rock Sr–Nd isotopes, Carboniferous rift, 

 Palaeotethys.

 Introduction

The emplacement of mafic dyke swarms exhibits short-lived 

magmatic events that convey key information on important 

temporal and chemical constrains for the evolution of the 

lithospheric mantle and the upper crust into which these 

 basaltic magmas intrude. Mafic dykes are commonly the result 

of extensional tectonic regimes in a variety of tectonic settings 

(e.g.,  Halls  &  Fahrig  1987;  Ernst  &  Buchan  2001,  2002; 

 Goldberg 2010; Peng et al. 2011; Srivastava 2011; Li et al. 

2013; Saccani et al. 2013) and provide valuable information 

on processes generating large volumes of mafic magmas. 

 

Furthermore, mafic dyke swarms can provide essential 

 insights into the nature of mantle sources (e.g., Maurice et al. 

2009; Pirajno & Hoatson 2012; Khanna et al. 2013). 

In the Sanandaj-Sirjan Zone (SSZ), however, only a few 

studies have focused on these rocks (e.g., Saccani et al. 2013; 

Sharifi & Sayari 2013; Deevsalar et al. 2014). For instance, 

the gabbroic dykes exposed across the Malayer-Boroujerd 

plutonic complex close to the study area, located 30 km to the 

north of the Dorud region, are investigated by Deevsalar et al. 

(2014). The geochemical signature of the dykes from the 

 Malayer-Boroujerd plutonic complex provides insights for the 

formation of syn-collisional arc related and intraplate late to 

post-orogenic mafic magmatism, which accords in two main 

stages including asthenosphere-derived melt, followed by low 

pressure fractionation and accumulation at high crustal levels. 

No detailed information on timing of these mafic dykes is 

available. Further, in the central SSZ, northeast of Golpaygan, 

alkaline and subalkaline mafic dykes of uncertain age indicate 

background image

230    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

two generations from the asthenospheric and lithospheric 

mantle (Sharifi & Sayari 2013). 

In West Iran, the Dorud-Azna region in the central part of 

the Sanandaj-Sirjan metamorphic Zone is characterized by 

mixed continental (e.g., the Panafrican granitic Galeh-Doz 

 orthogneiss) and oceanic units (e.g., various amphibolites,  

the Dare-Hedavand metagabbro with a Carboniferous U–Pb 

zircon age of 314.6 ± 3.7 Ma) and the Middle Jurassic Darijune 

gabbro (Figs. 1, 2) (Shakerardakani et al. 2015). The Galeh-Doz 

orthogneiss and similar nearby granitic gneisses derive from 

a calc-alkaline, metaluminous granite, and is, according to 

 recent U-Pb age dating, Panafrican in age (Nutman et al. 2014;  

Shakerardakani et al. 2015). The Panafrican basement hosts 

numerous mafic dykes, which mainly intruded into the grani-

tic Galeh-Doz orthogneiss of the study area (Fig. 2). Nonethe-

less, the composition, age and the potential metamorphic 

 overprint of these mafic dykes are still poorly known, and geo-

logical evidence suggest that these dykes could be potentially 

related to the Carboniferous Dare-Hedavand metagabbro or 

the Jurassic Darijune gabbro. 

The main objective of the paper is to constrain the petro-

graphic and geochemical signature as well as the age of the 

mafic dyke swarm, to compare these dykes with different 

types of mafic rocks in the region and to discuss the age, 

 nature and origin of these dykes as well as their probable 

 genetic relationships. The ultimate goal is to enhance the 

 understanding of the geodynamic setting and significance of 

these mafic dykes in this central sector of the Sanandaj-Sirjan 

metamorphic Zone.

Geological setting

The SSZ is one of the major metamorphic/plutonic zones of 

the Zagros orogenic belt, which is considered a part of the 

 Alpine –Himalayan mountain range. The Zagros orogenic belt 

resulted from the collision of the African –Arabian continent 

and the Iranian microcontinent (Berberian & King 1981; Alavi 

1994; Mohajjel & Fergusson 2000; Agard et al. 2005, 2011; 

Hafkenscheid et al. 2006). 

Fig. 1. Simplified geological map of Iran; the black rectangle shows the position of study area. For sources of age dating results, see text.

background image

231

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

The Dorud-Azna region is situated in the central part of the 

SSZ close to the Main Zagros thrust. The structural data com-

bined with the U–Pb zircon dating demonstrated three meta-

morphosed tectonic units, which include, from footwall to 

hanging wall: (1) The Triassic June complex is metamor-

phosed within greenschist facies conditions and is overlain by 

(2) the amphibolite-grade metamorphic Panafrican Galeh-Doz 

orthogneiss, which is intruded by mafic dykes, and (3) the 

Fig. 2. a — Simplified geological map of the Dorud-Azna region and sample locations of mafic dykes. Ages given in Ma: Data sources:  

(1) Shakerardakani et al. 2015; (2) Fergusson et al. 2016. Map is updated and modified after Mohajjel & Fergusson (2000). b — Orientation of 

mafic dykes in the Galeh-Doz orthogneiss: alkaline trend mostly WNW–ESE with a variable dip angle whereas subalkaline dykes seem to trend 

ENE–WSW or NNE–SSW (great circles, 21 data).

background image

232    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

Amphibolite-Metagabbro unit, which also includes the Dera- 

Hedavand metagabbro. To the southeast, these units are intru-

ded by the Darijune gabbro (Shakerardakani et al. 2015).  

The existence of a Panafrican basement in this part of SSZ has 

been proposed based on recent U–Pb dating of the granitic 

Galeh-Doz  orthogneiss  that  yielded  ages  of  608 ±18  Ma  

and  588 ± 41  Ma,  respectively  (Shakerardakani  et  al.  2015). 

The calc- alkaline granitoids of the Panafrican basement were 

formed during subduction of the Proto-Tethys and are similar 

to those exposed in Central Iran (Shakerardakani et al. 2015). 

In addition, the mafic rocks of the Amphibolite-Metagabbro 

unit exhibit sub-alkaline to alkaline basaltic compositions, and 

have an E-MORB geochemistry (Shakerardakani et al. 2015). 

A laser-ablation ICP-MS U–Pb zircon age of 314.6 ± 3.7 Ma 

has been reported for the Dare-Hedavand metagabbro from 

this complex (Shakerardakani et al. 2015) testifying a Late 

Carboniferous age of gabbro formation. Recently, Fergusson 

et al. (2016) reported an age of 336 ± 9 Ma for a metagabbro, 

which was previously undated and considered to be part of the 

isotropic Darijune gabbro (Shakerardakani et al. 2015). 

The metamorphic complex with the Panafrican basement of 

granitic Galeh-Doz orthogneiss has almost invariably under-

gone a complex history of repeated shearing, folding, transpo-

sition and associated polyphase greenschist- to amphibolite- 

facies metamorphism (Shakerardakani et al. 2015).

The southeastern part of the study area is intruded by the 

Darijune gabbro, which stretches over about 5 km in a NW–SE 

direction. The gabbro body is confined by the presumed Upper 

Triassic June complex in the north and by the Upper Jurassic 

to Lower Cretaceous andesitic lavas and pyroclastic rocks in 

the south. The geochemical and petrographic characteristics of 

the Upper Jurassic (U–Pb zircon age: 170.2 ± 3.1 Ma) Darijune 

gabbro indicate a cumulate signature. Shakerardakani et al. 

(2015) proposed that the cumulate Darijune gabbro was deri-

ved from a source highly depleted in incompatible elements, 

which is interpreted as generated in a continental arc setting. 

The studied mafic dykes are located mainly in the centre of 

the Ediacaran granitic Galeh-Doz orthogneiss. These dykes 

are characterized by a thickness varying from 0.2 to 4 meters. 

The majority of dykes strike WNW–ESE and dip steeply to 

NNE (Fig. 3a). Individual mafic dykes (alkaline dyke; see 

 below) are mostly subvertical, and typically trend NW–SE 

subparallel to the main trend of the Galeh-Doz orthogneiss. 

They are mainly foliated with the sharp contact with the host 

rock (Fig. 3c, d, e). Some dykes and sill-like exposures occur 

around the Shur-Shur and Dare-Hedavand villages in the cen-

tral part of the study area (Fig. 2a). Close to Dare-Hedavand 

these dykes (subalkaline dyke; see below) trend ENE–WSW 

or NNE–SSW (Fig. 3b). Based on the presence of other mafic 

magmatic rocks, several potential relationships could be 

 envi saged: (1) The mafic dykes could represent a dyke swarm 

of the Upper Jurassic Darijune gabbro, (2) the dykes could 

relate to the Upper Carboniferous Dare-Hedavand metagabbro 

or, (3) they are derived from none of the mentioned major 

mafic bodies. Age and geochemical affinities could resolve the 

open potential relationships. 

Petrography

Based on the petrographic evidence as well as geochemical 

signatures, two groups of mafic dykes are identified in the 

Dorud-Azna region. The main petrographic features of the 

mafic dykes of each rock-type are summarized in Table 1.  

The type i (sample L J-111) is a subalkaline mafic dyke (see 

below; Table 1) and show a medium-grained cumulitic texture 

(Fig.  4a, b).  The  type  ii  samples  (J-112,  J-209,  L J-136)  are 

 alkaline mafic dykes and display cumulitic or porphyroclastic 

textures (Fig. 4c–f). All samples are affected by variable 

 degrees of alteration and/or low-grade metamorphism, what 

resulted in the partial replacement of primary igneous textures, 

which are generally well preserved (Fig. 4a–f). 

Plagioclase and alkali feldspar grains are mainly altered 

along the rim and among the cleavage planes, although their 

textures are preserved in the centre. Chlorite, epidote and 

sericite are the main secondary minerals after amphibole and 

plagioclase. The chlorite and epidote displaying various tex-

tures of mafic dykes have been metamorphosed at greenschist 

facies-grade metamorphic conditions with variable preserva-

tion of primary magmatic texture. 

In one sample (L J-111), minor amounts of clinopyroxene 

occur at the margins of amphibole (Fig. 4b). Euhedral to sub-

hedral amphibole is the predominant mineral, whereas euhed-

ral plagioclase and alkali feldspar are subordinate (Fig. 4a, c, d). 

Chlorite and epidote are the main secondary minerals,  although 

epidote in the one sample (J-112) can be observed as a mag-

matic mineral (Fig. 4c). Biotite is a fairly common mineral and 

occurs as a secondary mineral in some samples. Sphene, 

musco vite, Fe-Ti oxides and apatite represent accessories. 

Clinopyroxene and the majority of plagioclase grains have 

been partially replaced by metamorphic or hydrothermal 

mine rals such as epidote, chlorite and sericite. In addition, 

some fractures in a few samples are filled by secondary calcite 

and epidote (Fig. 4e).

The strongly foliated alkaline mafic dykes are generally 

fine- to medium-grained and bear a porphyroblastic texture 

(Fig. 4f). The major magmatic mineral phases in the mafic 

dykes are euhedral to subhedral pale- to dark green amphibole, 

subhedral plagioclase and alkali feldspar, although quartz, and 

greenish biotite are recognized in this mafic dyke group.  

The accessory minerals consist of Fe-Ti oxides and apatite. 

Analytical methods

Electron Microprobe Analytical Technique

Polished thin sections of samples were analysed using a fully 

automated JEOL 8600 electron microprobe at the Dept. Geo-

graphy and Geology, University of Salzburg, Austria. Point 

analyses were obtained using a 15 kV accelerating voltage and 

40 nA beam current. The beam size was set to 5 µm. Natural 

and synthetic oxides and silicates were used as standards for 

major elements. Structural formulas for all amphiboles were 

background image

233

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

calculated according to Holland & Blundy (1994). We used 

the Mathematica package based software (PET) (Dachs 2004) 

for mineral formula calculation (including the nomenclature 

for amphibole according to the IMA scheme), calculation and 

plotting of mineral compositions. 

40

Ar/

39

Ar dating

The 

40

Ar/

39

Ar techniques largely follow descriptions given 

in Handler et al. (2004) and Rieser et al. (2006). Preparation of 

the samples before and after irradiation, 

40

Ar/

39

Ar analyses, 

Fig. 3. Field photographs of the mafic dykes in the Dorud-Azna region. Alkaline (a), (b) mafic dykes trend in the WNW–ESE direction and 

intruded in the granitic Galeh-Doz orthogneiss and (c) metacarbonate. The subalkaline mafic dyke is a sill subparallel to the foliation of  

the host rock or trend ENE–WSW. d — Mafic dykes exhibiting a sharp contact with the host granitic orthogneiss. e — Steeply SW-dipping 

foliation in a mafic dyke.

background image

234    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

and age calculations were carried out at the ARGONAUT 

Laboratory of the Department of Geography and Geology at 

the University of Salzburg. The sample containing primary 

amphibole was crushed and sieved following standard proce-

dures. By comparison, the 200–350 µm fraction was separated 

under the microscope. The mineral concentrate was wrapped 

in Al foil. The sample packet was loaded in 5×5 mm wells on 

~ 

30 mm Al-disk for irradiation, which was done without 

Cd shielding in the LVR-15 reactor at Rez, Czech Republic, at 

a thermal neutron fluence of 

~ 

4.8×10

13 

n/cm

2

s and a thermal to 

fast neutron ratio of 

~ 

2.1. All ages were calculated using Fish 

Canyon sanidine as a flux monitor (28.305 ± 0.036 Ma; Renne 

et al. 2010). Errors on ages are 1σ. The decay constants used 

are those given in Renne et al. (2010). Corrections for inter-

fering Ar isotopes were done using 

36

Ar/

37

Ar

 (Ca) 

= 0.000245, 

39

Ar/

37

Ar

 (Ca) 

= 0.000932, 

38

Ar/

39

Ar

 (Ca) 

= 0.01211 and 

40

Ar/

39

Ar

 (K) 

0.0183 and by applying 5 % uncertainty. Isotopic ratios, ages 

and errors for individual steps were calculated following sug-

gestions by McDougall & Harrison (1999) and Scaillet (2000). 

Definition and calculation of plateau ages was carried out 

 using ISOPLOT/EX (Ludwig 2003).

Major and trace element geochemistry

Whole-rock major and trace elements for 4 fresh dyke sam-

ples from Dorud-Azna region were determined. Fresh chips of 

whole rock samples were powdered using an agate mill, and 

preserved in a desiccator for analysis after being dried in 

an oven at 105 °C for 2 hours. Major and trace element com-

positions were analysed by means of XRF (Rigaku RIX 2100) 

and ICP-MS (PE 6100 DRC), respectively, at the State Key 

Laboratory of Continental Dynamics, Northwest University, 

China. For major element analysis, 0.5 g sample powders were 

mixed with 3.6 g Li

2

B

4

O

7

, 0.4 g LiF, 0.3 g NH

4

NO

3

 and minor 

LiBr in a platinum pot, and melted to form a glass disc in 

a high frequency melting instrument prior to analysis. For 

trace element analysis, sample powders were digested using 

HF+HNO

3

 mixture in high-pressure Teflon bombs at 190 °C 

for 48 hours. Analyses of USGS and Chinese national rock 

standards (BCR-2, GSR-1 and GSR-3) indicate that both ana-

lytical precision and accuracy for major elements are generally 

better than 5 %, and for most of the trace elements except for 

transition metals are better than 2 % and 10 %, respectively. 

Additionally, one sample was randomly selected to be analy-

sed twice to test the accuracy. 

Sr–Nd isotope analysis

Details of the analytical techniques of Rb–Sr and Sm–Nd 

isotope geochemistry, taking into account their accuracy and 

precision can be found in von Quadt et al. (1999). For the iso-

topic analysis, 

~

50 mg of whole-rock powder was dissolved in 

HF and HNO

3

, followed by Pb, Nd and Sr separation by 

 exchange chromatography techniques on 100 μl TEP columns 

with Sr Tru and Ln spec Eichrom resin. Nd was purified on 

a Ln spec column (2 ml) using 0.22 n and 0.45 n HCL. Nd and 

Sr isotopes were analysed on a ThermoPlus mass spectrometer 

by static mode measurements at ETH Zürich. Sr was loaded 

with a Ta emitter on Re filaments. The measured

 87

Sr/

86

Sr 

 ratios were normalized to an 

88

Sr/

86

Sr value of 8.37521.  

The mean 

87

Sr/

86

Sr value of the NBS 987 standard obtained 

during  the  period  of  measurements  was  0.710252 ± 12  (2 σ, 

n=18). Pb was loaded with a silica gel on Re filaments. A mass 

fractionation correction of 1.1 ‰ per atomic mass unit was 

applied, based on replicate analyses of the NBS 982 reference 

material. Nd was loaded with 2 n HCL on Re filaments.  

The measured 

143

Nd/

144

Nd ratios were normalized to the 

146

Nd/

144

Nd value of 0.7219. The mean 

143

Nd/

144

Nd value of 

the Nd Merck standard obtained during the period of measure-

ments was 0.511730 ± 1 (2 σ, n=12). Age-corrected Nd and Sr 

isotope ratios were calculated using Rb, Sr, Sm and Nd con-

centrations determined by LA-ICP-MS.

Mineral chemistry

The mafic dykes are classified into two types based on their 

mineral paragenesis: (i) the mafic dyke comprising clino-

pyroxene + amphibole + plagioclase + K-feldspar + epidote + 

chlorite + sphene ± opaque minerals + apatite (subalkaline mafic 

dyke,  sample  L J-111)  and  (ii)  the  mafic  dykes  containing 

 amphibole + plagioclase + K-feldspar + quartz + epidote + sphene 

+ chlorite ± biotite ± muscovite + apatite + opaque minerals (alka-

line mafic dykes). In type (i), clinopyroxene is augite (accor-

ding to Morimoto 1988) with relatively high Mg# (Mg# =  64.5) 

and FeO (8.84 wt. %), whereas the Al

2

O

3

 content (0.37 wt. %) 

Sample 

no.

Latitude 

(°N)

Longitude 

(°E)

Rock Type

Mineralogy

Texture

L J-111 33°34ʼ52” 49°11ʼ42” subalkaline mafic dyke

cpx + amp + pl + kfs + ep + chl + ser + spn + opq + ap

cumulitic texture

J-112

33°35ʼ06” 49°11ʼ04” alkaline  mafic dyke

amp + pl + kfs + ep + chl + bt + qz + ser + spn + opq + ap

cumulitic texture

J-209

33°35ʼ49” 49°08ʼ39” alkaline  mafic dyke

amp + pl + kfs + ep + chl  + spn + qz + ms + ser + opq + ap

cumulitic texture

L J-136 33°34ʼ48” 49°12ʼ02ˮ alkaline  mafic dyke

amp + pl + kfs + ep + chl + ser + spn + opq + ap

highly foliated and 

porphyroblastic texture 

Table 1: Location, mineralogy and texture of the investigated mafic dyke samples. Abbreviations: pl — plagioclase, kfs — k-feldspar,  

cpx — clinopyroxene, amp — amphibole, bt — biotite, chl — chlorite, ms — muscovite, spn — sphene, ep — epidote, ser — sericite,  

qz — quartz, ap — apatite, opq — opaque mineral.

background image

235

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

is low (Table 2). Amphiboles show uniform compositions and 

are mainly magnesio-hornblende with a smaller amount of 

edenite (Leake et al. 1997) with Mg# = 66.11–72.14, Na

2

O = 

1.1–1.74 wt. % and low K

2

O (0.05–0.70 wt. %). In contrast, 

amphiboles in type (ii) of mafic dykes represent a relatively 

wide compositional range from hastingsite, magnesio- 

hastingsite and ferro-edenite to ferro-hornblende, ferro- and 

tschermakite (Fig. 5). Their Mg# value varies from 39.77 to 

Fig. 4. Representative photomicrographs (a and c–f) and Back-scattered electron (BSE) image (b) of the mafic dykes from the Dorud-Azna 

region: a — The plagioclase is altered to sericite and epidote; b — clinopyroxene replaced by amphibole and chlorite; c, d — epidote associated 

with amphibole and sphene; e — subparallel fractures filled by epidote and calcite aggregates; f — foliated mafic dyke with rounded amphibole 

porphyroclast and smaller plagioclase porphyroclast in a fine-grained matrix. Amp – amphibole, Pl – plagioclase, Spn – sphene, Cpx – clino-

pyroxene, Chl – chlorite, Ep – epidote, Qz – quartz.

background image

236    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

52.81, and they have large K

2

O contents (0.65–1.41 wt. %).  

Ps contents of the epidote grains in the type (i) are within 

a narrow range from Ps

22

 to Ps

23

. The pistacite content in  

type (i) is higher (Ps

26

). Plagioclase in type (ii) is mainly albite 

with the albite content ranging from 88 to 96%. In compari-

son, the main composition of plagioclase in type (i) is oligo-

clase (Ab

69–88

) while a minor amount of albite exists (Ab

92

). 

Alkali feldspar in these rocks is mainly orthoclase (Or

96–97

with smaller amounts of anorthoclase and sanidine (Or

15–23

). 

40

Ar/

39

Ar dating

Sample J-112, which belongs to type (ii), alkaline dykes 

(see below), yields a well preserved magmatic amphibole, 

which is nearly not overprinted by subsequent low-grade 

metamorphism. The medium-sized amphibole grains together 

with biotite and feldspar define the stretching lineation and 

foliation in this peculiar sample. Amphibole grains are com-

monly replaced by biotite along the micro-fractures and clea-

vage planes (Fig. 4c). The amphibole grains bear no or only 

a few inclusions of other mineral phases (Fig. 4c). 

The analytical results are given in Table 3 and are graphically 

shown  in  Fig.  6.  The  sample  shows  some  small  portion  of 

 excess argon in the first step. Steps 4 to 8 (comprising 98.8 % 

of 

39

Ar  released)  yield  a  plateau  age  of  321.32 ± 0.55  Ma. 

 Isotopic inversion yields an age of 319.3 ± 1.1 Ma and initial 

40

Ar/

36

Ar  ratio  of  262 ± 21  implying  the  presence  of  some 

 minor argon loss. We suggest, therefore, that the slightly older 

Sample 

type

Subalkaline dyke

  Alkaline dyke

Sample 

No.

L J-111

  L J-136

  J-209

  L J-136

J-209

Mineral Cpx

Amp

Ep

Pl

Kfs

Amp

Ep

Pl

SiO2

57.11 45.46 46.07 44.96 46.20

37.76 37.72

59.64 60.54 65.36

64.23 63.65 41.07 40.83 42.32 43.84 43.02

38.61

65.72 30.00

Al2O3

0.37

9.89 9.93 10.52 9.54

23.77 23.86

24.40 23.69 20.93 18.26 18.43 10.81 11.25 9.44 10.63 10.00

22.15 21.16 2.58

MgO

18.61 13.00 12.98 12.43 12.19

0.00 0.02

0.00 0.06 0.01

0.00 0.00

6.42 6.51 7.47

6.97 9.08

0.00

0.00 0.01

Na2O

0.04

1.37 1.46 1.70 1.36

0.01 0.00

7.98 8.49 10.27

0.31 0.29

1.61 1.44 1.56

2.00 1.42

0.00

9.96 0.02

CaO

12.99 11.89 11.83 11.85 11.66

23.47 23.31

6.36 4.70 2.14

0.00 0.09 10.94 10.85 10.79 11.48 11.48 22.52

2.41 27.59

TiO2

0.00

0.78 0.87 0.92 0.82

0.04 0.05

0.00 0.00 0.00

0.00 0.03

0.70 0.58 1.01

2.76 0.87

0.06

0.00 34.28

FeO

8.84 13.39 12.88 13.88 13.61

11.01 11.45

0.06 0.28 0.13

0.10 0.06 24.18 23.92 22.50 17.71 20.26 12.59

0.15 1.98

MnO

0.21

0.25 0.26 0.21 0.25

0.05 0.09

0.00 0.01 0.01

0.00 0.01

0.51 0.54 0.56

0.23 0.30

0.19

0.00 0.04

Cr2O3

0.00

0.11 0.08 0.13 0.06

0.02 0.00

0.00 0.00 0.01

0.00 0.00

0.00 0.04 0.01

0.03 0.00

0.01

0.02 0.02

K2O

0.00

0.59 0.59 0.67 0.70

0.00 0.00

0.11 0.77 0.17 16.55 16.38

1.33 1.41 1.03

0.65 1.06

0.00

0.04 0.00

Total

98.26 96.73 96.95 97.30 96.37

96.13 96.53

98.56 98.54 99.04 99.45 98.94 97.59 97.39 96.68 96.34 97.48 96.13

99.46 96.52

Si 

2.08

6.75 6.80 6.66 6.87

6.02 6.00

10.78 10.94 11.60

11.97 11.92

6.44 6.41 6.62

6.69 6.59

3.11

11.60 1.02

Al

0.02

1.73 1.73 1.84 1.67

4.48 4.48

5.20 5.05 4.38

4.01 4.07

2.00 2.08 1.74

1.91 1.81

2.10

4.40 0.10

Mg

1.01

2.88 2.85 2.75 2.70

0.00 0.00

0.00 0.02 0.00

0.00 0.00

1.50 1.52 1.74

1.59 2.08

0.00

0.00 0.00

Na

0.00

0.39 0.42 0.49 0.39

0.00 0.00

2.79 2.97 3.54

0.11 0.11

0.49 0.44 0.47

0.59 0.42

0.01

3.41 0.00

Ca

0.50

1.89 1.87 1.88 1.86

4.01 3.97

1.23 0.91 0.41

0.00 0.02

1.84 1.82 1.81

1.88 1.88

0.00

0.46 1.00

Ti

0.00

0.09 0.10 0.10 0.09

0.00 0.01

0.00 0.00 0.00

0.00 0.00

0.08 0.07 0.12

0.32 0.10

0.00

0.00 0.87

Fe

0.27

1.66 1.59 1.72 1.69

1.47 1.52

0.01 0.04 0.02

0.02 0.01

3.17 3.14 2.94

2.26 2.60

0.76

0.02 0.06

Mn

0.00

0.03 0.03 0.03 0.03

0.01 0.01

0.00 0.00 0.00

0.00 0.00

0.07 0.07 0.07

0.03 0.04

0.00

0.00 0.00

Cr

0.00

0.01 0.01 0.01 0.01

0.00 0.00

0.00 0.00 0.00

0.00 0.00

0.00 0.00 0.00

0.00 0.00

0.00

0.00 0.00

K

0.00

0.11

0.11 0.13 0.13

0.00 0.00

0.03 0.18 0.04

3.94 3.91

0.27 0.28 0.21

0.13 0.21

0.00

0.01 0.00

Total

98.17 38.55 38.50 38.62 38.46

41.00 41.00

52.04 52.11 51.99 52.05 52.05 38.86 38.84 38.73 38.39 38.72

8.05

51.91 8.06

Mg#

64.5

72.1 70.1 67.8 66.1

39.77 44.78 41.56 52.81 41.23

Ps

22.81 23.45

26.62

X

Ab

0.69 0.89 0.92

0.030 0.028

0.880 0.97

X

An

0.30 0.10 0.07

0.001 0.000

0.117 0.01

X

or

   

 

 

 

   

 

    0.01 0.01 0.01   0.969 0.972  

 

 

   

 

   

    0.002 0.03

Table 2: Representative microprobe analyses of Cpx – clinopyroxene, Amp – amphibole, Ep – epidote, Pl – plagioclase, Kfs – K-feldspar, 

Mg# = Mg / (Mg+Fe)*100; Ps = Fe

+3

 /(Fe

+3

+Al)*100.

Fig. 5. Composition of amphiboles in the subalkaline and alkaline 

mafic dykes plotted in the classification diagrams by Leake et al. 

(1997).

background image

237

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

plateau age is geologically significant and represents the 

 approximate age of cooling through ca. 550 °C after intrusion 

of the dyke. As no thermal effects are known, cooling was 

likely  rapid,  and  the  age  of  321.32 ± 0.55  Ma  is,  therefore, 

close to the real age and represents the approximate age of  

the intrusion.

Geochemistry 

The geochemical results of the four samples of the studied 

mafic dykes are listed in Table 4. For comparison, these data 

have been merged in some diagrams with the geochemical 

data of the Amphibolite-Metagabbro unit and Darijune gabbro 

from a previous study (Shakerardakani et al. 2015). Note that 

because of the similar Carboniferous age the isotropic 

 (Darijune) gabbro of the previous study is now merged with 

the Dera-Hedavand metagabbro. The immobile elements 

during low-temperature alteration and metamorphism are used 

for the geochemical features of the mafic rocks. Although,  

the relative variation of SiO

2

, CaO, Al

2

O

3

 and Fe

2

O

against 

immobile elements (e.g., Zr, Y) in a few samples, and also the 

light and heavy REE (LREE, HREE) elements show good 

step

36

Ar

±σ

36

37

Ar

±σ

37

38

Ar

±σ

38

39

Ar

±σ

39

40

Ar

±σ

40

40

Ar*/

39

Ar

K

± σ

%

40

Ar*

%

39

Ar

age 

 

(Ma)

± 1 σ  (Ma)

age 

 

(Ma)

± 1 σ  (Ma)

37

Ar

Ca

/

39

Ar

K

38

Ar

Cl

/

39

Ar

K

meas.

decay corr

.

meas.

decay corr

.

meas.

Sample: J-1

12, amphibole, 200–355 μm, 7 grains,  J-V

alue: 0.010764  +/

  0.000007

1

2.2859E+02

5.24E+00

1.2708E+03

3.1

1E+01

7.5528E+01

4.19E+00

1.9145E+02

2.26E+01

9.1890E+04

8.65E+01

128.4204

17.2714

26.5

0.1

1566.1

140.8

1577.1

141.5

6.67882

0.1

1367

2

2.2787E+02

5.63E+00

1.6620E+03

2.1

1E+01

1.1707E+02

5.08E+00

6.2651E+02

3.03E+01

1.2901E+05

1.51E+02

98.86935

5.49173

47.8

0.3

1307.5

51.7

1317.1

52.0

2.659380

0.08869

3

3.9861E+02

7.59E+00

5.2256E+03

6.74E+01

2.6108E+02

6.75E+00

1.6806E+03

5.24E+01

2.1388E+05

1.83E+02

57.56723

2.24774

44.9

0.8

870.0

27.0

876.8

27.1

3.1

18483

0.07798

4

1.4318E+02

3.47E+00

7.2780E+04

1.58E+02

4.3167E+03

2.03E+01

1.7337E+04

2.20E+01

3.4337E+05

3.21E+02

17.73671

0.06622

87.7

8.3

315.2

1.1

318.0

1.1

4.214360

0.20806

5

2.8744E+02

3.87E+00

4.1946E+05

8.39E+02

2.7719E+04

6.91E+01

1.1488E+05

1.44E+02

2.1081E+06

1.54E+03

17.93423

0.02815

96.0

55.2

318.4

0.5

321.2

0.5

3.66374

0.20504

6

7.2439E+01

4.01E+00

1.5166E+05

3.96E+02

9.0512E+03

3.72E+01

3.8044E+04

8.91E+01

6.9010E+05

8.56E+02

17.93045

0.05712

96.9

18.3

318.4

1.0

321.2

1.0

4.00145

0.19955

7

2.8930E+01

2.70E+00

3.9272E+04

1.62E+02

2.0750E+03

1.63E+01

8.6876E+03

3.43E+01

1.6099E+05

1.57E+02

17.94778

0.1

1785

94.7

4.2

318.7

1.9

321.5

1.9

4.53962

0.19684

8

5.4103E+01

3.47E+00

1.0714E+05

2.07E+02

6.5810E+03

3.33E+01

2.6579E+04

5.99E+01

4.8363E+05

3.42E+02

17.95190

0.05758

96.7

12.8

318.7

1.0

321.5

1.0

4.04607

0.20905

9

4.5643E-01

3.49E+00

1.6985E+03

3.06E+01

1.2142E+02

8.09E+00

2.7010E+02

4.33E+01

1.2930E+04

1.45E+02

48.10751

8.67566

99.0

0.1

752.8

111

.0

758.9

111

.8

6.32561

0.39742

Table 3:

 Analytical results of 

40

Ar/

39

Ar amphibole dating of an

 alkaline mafic dyke in Dorud-Azna region.

Fig. 6. 

40

Ar/

39

Ar release pattern of an amphibole concentrate of 

 sample J-112, an alkaline mafic dyke.

background image

238    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

 correlations with immobile elements that indicate they have 

not been mobilized during alteration processes. Two different 

types of mafic dykes can be distinguished based on geoche-

mical features. The two dyke groups are plotted in the basaltic 

field of the total alkalis-silica diagram (figure not shown).  

All the mafic dykes are characterized by a narrow range of 

SiO

2

 (45.81–51.02 wt. %), K

2

O (0.91–1.07 wt. %) and Na

2

(3.10 –3.90  wt. %).  Based  on  Winchester  &  Floyd’s  (1977) 

 diagram, the type (i) mafic dykes plot into the subalkaline 

(sample L J-111), whereas the type (ii) dykes plot into the alka-

line field (Fig. 7). The subalkaline sample of type (i) is charac-

terized by moderate MgO (9.27 wt. %), low contents of TiO

2

 

(1.24 wt. %), P

2

O

5

 (0.09 wt. %) and total Fe

2

O

3

 (10.89 wt. %) 

and Mg# (42.33). Compared with this type (i), the alkaline 

mafic type (ii) dykes consist of an average lower concentra-

tion of MgO (3.31–5.66) and higher TiO

2

 (2.80 –3.57 wt. %), 

P

2

O

5

 (0.41–1.25 wt. %) and total Fe

2

O

3

 (12.66–15.29 wt. %) 

contents and Mg# (18.40 –24.64) (Table 4). The geochemical 

characteristics of mafic dykes are further explored in chon-

drite-normalized rare earth- and incompatible trace multi- 

element variation diagrams (Fig. 8a, b). Although all samples 

display regularly decreasing normalized patterns from Ba to 

Yb in the primitive mantle-normalized diagram, they show 

significant differences between the two types of dykes (Fig. 8a). 

Unlike alkaline mafic dykes, the subalkaline mafic dyke is 

characterized by enrichment in LILE (e.g., Cs, Rb, Ba, Pb and 

K) and Nb and Zr negative anomalies, suggesting that the sub-

alkaline dyke has some arc features (Sun & McDonough 1989; 

Bezard et al. 2011). Further, no significant Ti anomaly indi-

cates that fractionation of Fe-Ti oxides is not involved in 

 magma genesis (Briqueu et al. 1984). The alkaline mafic 

dykes have higher REE abundances and are enriched in LREE 

with (La/Sm)

N

 and (La/Yb)

N

 ratios ranging from 2.21 to 2.46 

and 8.32 to 9.28, respectively (Fig. 8b), that are similar to 

those of enriched basalts, such as E-MORBs and OIBs. 

 Although rather low (La/Yb)

and (La/Sm)

N

 ratios (1.16 and 

1.00 respectively) in the subalkaline mafic dyke imply a source 

more depleted in LREE than E-MORB. No obvious Eu ano-

maly  (Eu/Eu* = 0.94–1.06)  in  both  alkaline  and  subalkaline 

mafic dykes indicates that plagioclase was not a major accu-

mulating mineral phase. 

Sr-Nd isotopes

Sr and Nd isotopic compositions are presented in Table 5. 

Mafic dyke samples accompanied by samples of granitic 

Galeh-Doz orthogneiss, Dare-Hedavand metagabbro from the 

Amphibolite-Metagabbro unit and Darijune gabbro were 

 subject to Rb–Sr and Sm–Nd isotope analyses too, for com-

Sample no.

L J-111        

J-112

L J-136

J-209

Mafic dyke  
Subalkaline

Alkaline

SiO

2

 wt.%

48.91

46.02

51.02

45.81

Al

2

O

3

13.70

12.91

13.45

13.32

Fe

2

O

3

10.89

15.29

12.66

14.93

MgO

9.27

5.49

3.31

5.66

CaO

9.53

10.12

7.58

9.52

Na

2

O

3.10

3.13

3.90

3.15

K

2

O

1.02

1.01

0.91

1.07

TiO

2

1.24

3.48

2.80

3.57

P

2

O

5

0.09

0.47

1.25

0.41

MnO

0.17

0.21

0.19

0.19

LOI

2.17

2.10

3.13

2.08

TOTAL

100.09

100.23

100.2

99.71

Mg#

42.33

23.64

18.40

24.64

Li (ppm)

6.63

8.05

13.83

10.09

Be

0.71

2.31

2.85

2.32

Sc

36.41

30.76

21.35

31.35

V

238.8

423.1

220.1

417.1

Cr

386.99

61.91

13.55

51.56

Co

40.17

44.15

17.71

49.57

Ni

167.46

58.72

7.11

55.50

Cu

14.20

84.68

13.01

62.34

Zn

113.32

145.70

122.47

119.28

Ga

16.66

24.24

25.54

23.58

Ge

1.76

1.85

2.28

2.08

Rb

29.17

24.46

34.61

30.15

Sr

209.2

274.6

364.1

435.9

Y

27.79

28.24

47.78

27.71

Zr

34.5

211.9

196.5

202.4

Nb

1.47

40.59

40.79

37.37

Cs

0.39

0.25

2.69

0.30

Ba

198.0

134.8

179.0

228.4

La

4.72

28.43

42.65

25.20

Ce

12.59

64.26

93.13

59.55

Pr

1.73

8.31

12.47

7.83

Nd

8.89

34.43

53.10

33.05

Sm

2.96

7.28

11.34

7.16

Eu

1.06

2.40

3.79

2.41

Gd

4.00

6.76

10.89

6.71

Tb

0.69

0.99

1.57

0.98

Dy

4.59

5.52

8.77

5.46

Ho

1.00

0.99

1.65

0.99

Er

2.88

2.58

4.33

2.57

Tm

0.41

0.35

0.59

0.35

Yb

2.74

2.07

3.48

2.04

Lu

0.40

0.29

0.50

0.29

Hf

1.21

4.85

4.67

4.69

Ta

0.10

2.31

2.43

2.19

Pb

5.64

7.22

3.73

5.97

Th

0.58

2.49

5.09

2.10

U

0.60

1.42

1.75

0.69

Table 4: Representative major and trace element analyses of mafic 

dykes from the Dorud-Azna region.

Fig. 7. Nb/Y vs. Zr/TiO

2

 diagram for classification of the Dorud-Azna 

mafic dykes (Winchester & Floyd 1977). Mafic dykes plot in the sub-

alkaline and alkaline fields.

background image

239

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

parison and further discussion of the origin of mafic dykes. 

Isotopic data of all samples are plotted in the 

87

Sr/

86

Sr

(i)

 versus 

143

Nd/

144

Nd

(i)

 and 

87

Sr/

86

Sr

(i)

 versus ɛ

Nd(t)

 diagrams (Fig. 9a, b).

The subalkaline mafic dyke has an initial 

87

Sr/

86

Sr ratio of 

0.706 and ɛ

Nd315

 value of + 0.77. The alkaline mafic dyke has 

an initial 

87

Sr/

86

Sr  ratio  of  0.708  and  ɛ

Nd315

  value  of  +1.65, 

higher than the subalkaline dyke. The higher 

87

Sr/

86

Sr value 

observed in alkaline mafic dyke is probably the result of melts 

with an enriched mantle signature (Fig. 9a, b). 

In the Dare-Hedavand metagabbro, initial 

87

Sr/

86

Sr ratios 

calculated at 314 Ma (U–Pb zircon age) vary from 0.704 to 

0.706 in the isotropic and cumulate metagabbro, respectively. 

However,  the  isotropic  metagabbros  (S-105,  L J-146)  have 

higher values of ɛ

Nd314

 (+ 1.66 to + 2.58) than cumulate meta-

gabbro  (+ 0.88),  which  is  significantly  affected  by  partial 

 melting/fractionation crystallization processes during genera-

tion of the mafic melt (Fig. 9c). 

The low initial 

87

Sr/

86

Sr ratios and the positive ɛ

Nd170

 value 

clearly indicate a mantle origin of the Darijune gabbro.  

The cumulate Darijune gabbro (T-108) also has a low 

87

Sr/

86

Sr 

initial ratio (0.7041) and the highest ɛ

Nd170

 (+ 5.43) within all the 

investigated mafic samples, indicating a depleted mantle source. 

The Galeh-Doz orthogneiss exhibits a wide range of 

age-corrected (588 Ma; U–Pb zircon age) 

87

Sr/

86

Sr initial ratio 

from  0.704  to  0.707  (Fig.  9a, b),  whereas  the  age-corrected 

ɛ

Nd(t)

 values for these samples define a restricted range from  

− 2.36 to − 3.27. In this orthogneiss, Sr

(i)

 ratios increase with 

increasing SiO

2

 (Fig. 9c), indicating that addition of crustal 

materials (i.e., crustal contamination) likely occurred during 

magma emplacement (e.g., De Paolo 1981). The presence of 

inherited zircons in the granitic orthogneiss (Shakerardakani 

et al. 2015) is also indicative of crustal assimilation or magma 

hybridization (e.g., Bonin 2004). 

Discussion

Pressure and temperature constraints

In order to evaluate the depth of origin of material and the 

depth of intrusion of the mafic dykes, temperature and  pressure 

were calculated using the PET software (Dachs 2004) based 

on  the  hornblende-plagioclase  thermometer  of  Holland  & 

Blundy (1994) and the aluminum-in-hornblende barometer 

(Hammarstrom  &  Zen  1986;  Hollister  et  al.  1987)  respec-

tively.

The estimated equilibration temperature and pressure for the 

subalkaline dyke are in the range of 700 ± 25 °C at 5 ± 0.8 kbar. 

P–T estimate for the alkaline dyke assemblage range from  

720 ± 30 °C at 5 ± 1.5 kbar. The temperature estimates for the 

retrograde stage were obtained using the amount of Al

iv

 base 

in chlorite of Cathelineau (1988). Estimates range from 332 °C 

to 187 °C in both subalkaline and alkaline dykes, indicating 

greenschist facies and sub-greenschist facies conditions during 

metamorphism and alteration. 

Sample Age (Ma)

Rb

Sr

87

Rb/

86

Sr

87

Sr/

86

Sr

2 σ 

I

sr

Sm

Nd

147

Sm/

144

Sm

143

Nd/

144

Nd

2 σ 

e

Nd

(0) e

Nd

(t)

G-112

588 ± 41

5.59 

75.9 

0.2078

0.70714 0.000022 0.70888

11.0 

51.4 

0.1349

0.512289

0.000009

−6.81 −2.369

L J-112

588 ± 41?

107 

161 

1.8775

0.70401 0.000055 0.71975

7.84  37.4 

0.1319

0.512231

0.000006

−7.94 −3.274

J-112

321 ± 0.55

24.5 

275 

0.2513

0.70803 0.000054 0.70915

7.28  34.4 

0.1331

0.512592

0.000003

−0.90

1.653

L J-111

321? or 170? 29.2 

209 

0.3935

0.70653 0.000045 0.70829

2.96 

8.89 

0.2101

0.512705

0.000012

1.31

0.771

T-108

170 ± 3.1

4.16 

90.3 

0.1301

0.70411

0.000019 0.70442

1.03 

2.97 

0.2189

0.512941

0.000018

5.91

5.431

L J-146

170 ± 3.1

25.2 

452 

0.1576

0.70474 0.000032 0.70512

6.66  30.4 

0.1379

0.512602

0.000017

−0.70

0.574

S-100

314 ± 3.7

0.55  114 

0.0137

0.70500 0.000016 0.70507

2.94  13.0 

0.1425

0.512572

0.000032

−1.29

0.886

S-105

314 ± 3.7

6.28  452 

0.0392

0.70626 0.000029 0.70644

3.77  13.2 

0.1790

0.512734

0.000005

1.87

2.583

Table 5: Sr–Nd isotopic compositions from Galeh-Doz orthogneiss, mafic dyke, Darijune gabbro and Amphibolite-Metagabbro unit.

Fig. 8. Chondrite-normalized REE patterns (Boynton 1984) and 

primitive  mantle-normalized  incompatible  element  pattern  (Sun  & 

McDonough 1989) for mafic dykes.

background image

240    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

Magma generation

The normalized multi-element and REE patterns of the sub-

alkaline and alkaline mafic dykes suggest that the magmas 

were derived from a mantle source between MORB and OIB-

like composition, respectively (Fig. 8). However, low Cr and 

Ni  concentrations  in  alkaline  mafic  dykes  (13–61  and  

7–58 ppm) indicate that these are not primary magmas and 

underwent some crystal fractionation most likely of spinel, 

 olivine and clinopyroxene. The Al

2

O

3

/TiO

2

 against Ti diagram, 

which is used as an indicator of differentiation, shows that the 

mafic dyke as well other investigated mafic groups are mainly 

characterized  by  the  crystallization  of  plagioclase + clinopy-

roxene in the relatively less evolved rocks followed by the 

crystallization of Fe-Ti-oxides in the more evolved rocks  

(Fig.  10 a).  However,  it  must  be  noted  that  it  is  sometimes 

 difficult to differentiate between the effects of fractional crys-

tallization on the compositions of primary magmas and those 

of partial melting. A steep trend in the La/Yb vs. La diagram 

(Fig. 10 b)  suggests  that  the  effects  of  partial  melting  and 

source composition were more important than fractional crys-

tallization in controlling the compositional variation between 

the two groups of mafic dyke (e.g., Jiang et al. 2005). In addi-

tion, the budget of the moderately incompatible elements (for 

example, La/Yb, Fig. 10b) in the Dare-Hedavand metagabbro 

Fig. 9. a, b — Sr–Nd isotopic composition of the mafic dykes with 

representatives of country rocks including the Panafrican granitic 

Galeh-Doz orthogneiss, Carboniferous metagabbro and Jurassic Dar-

ijune gabbro (data from Shakerardakani et al., 2015). MORB: Mid-

Ocean Ridge Basalts; OIB: Ocean Island Basalts; EM1: enriched 

mantle 1; EM2: enriched mantle 2. c — Plot of Sr

(i)

 vs. SiO

2

. Note that 

magmatic rocks of different crystallization ages are plotted together.

Fig. 10. a — Al

2

O

3

/TiO

2

 vs. Ti diagram for mafic dykes from the 

Dorud-Azna region. Fractional crystallization (F. C.) vectors of 

 magnetite (mt), orthopyroxene (opx), olivine (ol), clinopyroxene 

(cpx), and plagioclase (pl) are shown. Modified after Saccani et al. 

(2013). Arrow shows the estimated fractionation trend. b — La/Sm 

vs. La diagram for the mafic dykes. Vector arrows show the effect of 

increasing degrees of partial melting (P. M.) and fractionation (F. C.).

background image

241

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

is largely controlled by partial melting processes rather than 

crystal fractionation. Compared with subalkaline magmas, the 

magma that produced the alkaline mafic dykes probably 

 experienced subsequent fractionation after partial melting 

(Fig. 10b). These samples reveal a remarkable negative cor-

relation of MgO, Al

2

O

3

 and Ni with increasing Zr contents and 

positive correlation of LREE, HREE and Nb (Fig. 11). These 

patterns are consistent with the fractionation of olivine, pyro-

xene and plagioclase (Ordóñez-Calderón et al. 2011). Further-

more, the positive correlation between TiO

2

 and Zr contents 

(Fig. 11) could suggest that Fe-Ti oxides minerals were not 

significant mineral phase during fractionation (Ordóñez- 

Calderón et al. 2011; Deng et al. 2013).

In order to constrain the geochemical characteristics of the 

possible mantle sources for the two different types of mafic 

dykes together with previously investigated mafic rocks, some 

hygromagmatophile element ratios (e.g., Tb/Yb, La/Sm) have 

been used. In the (Tb/Yb)

PM

 vs. (La/Sm)

PM

 diagram (Fig. 12a), 

there are two distinct groups indicating that partial melting 

played an important role in the chemical compositions of 

 investigated mafic rocks. 

High Tb/Yb ratios (2.06–2.20) of the alkaline mafic dykes 

reflect a deep melting level in the stability field of the garnet- 

peridotite mantle likely at a depth of more than 90 km, whereas 

the subalkaline mafic dyke has a lower Tb/Yb ratio (1.15) 

 indicative for melting of shallower spinel-peridotite mantle at 

a depth of less than 90 km (Wang et al. 2002; Khudoley et al. 

2013). In comparison, Tb/Yb and La/Sm ratios of the source 

region of Dare-Hedavand metagabbros range from 1.30 to 

2.08 and 1.40 to 2.65, suggesting they were produced through 

various degrees of partial melting and/or point to a stronger 

enrichment of their mantle source. Moreover, lower La/Sm 

 ratios in the subalkaline mafic dyke as well as the cumulate 

Darijune gabbro than in other mafic groups can be also caused 

by melting of a depleted source. In contrast, increased partial 

melting or crustal contamination can enhance the La/Sm 

 ratios. In fact, the magma ascending through continental crust 

raises the possibility that crustal contamination may have 

Fig. 11. Variation diagrams of Zr versus the major and trace elements for mafic dykes of the Dorud-Azna region. The data compared with the 

geochemical data of mafic samples from Amphibolite-Metagabbro unit and Darijune gabbro. Symbols are the same as in Fig. 10.

background image

242    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

caused some of the compositional characteristics of the mafic 

rocks. In respect of the (Th/Yb)

PM

 vs. (Nb/Yb)

PM

 diagram,  

all distinct groups are in the field of mantle-derived melts  

(Fig. 12b), suggesting that chemical influence of the conti-

nental lithosphere component was very limited or absent, as 

also supported by the plot in the Nb/La versus Nb/Th diagram 

(Fig. 12c). For the subalkaline mafic dyke, the initial 

87

Sr/

86

Sr 

ratios is negatively correlated to SiO

2

, suggesting that crustal 

contamination plays a minor role in its genesis (Fig. 9c) (e.g., 

Lin et al. 1990). Therefore, the differences in La/Sm ratios can 

refer to a diffe ring degree of partial melting and/or magma 

source. It is  assumed that alkaline mafic dyke magmas were 

produced from a garnet-bearing enriched mantle source (high 

Tb/Yb  ratio) from the deeper source, while the magmas of 

subalkaline mafic dykes were generated in the shallow and 

depleted mantle source (low Tb/Yb ratio). 

Tectonic implications 

The E-MORB and OIB-type affinities of the mafic dykes 

are typically found in tectonic settings including oceanic- 

island/seamounts, continental-rifts and some flood-basalt 

provinces (e.g., Hochstedter et al. 1990; van Staal et al. 1991; 

Goodfellow et al. 1995; Shinjo et al. 1999; Leitch & Davies 

2001). Their genesis has mostly been attributed to mantle 

plumes, however, there are also occurrences where no plume 

has been involved (e.g., Haase & Devey 1994).

The geochemical signatures of mafic dykes, accompanied 

by the various mafic rock types in the Dorud-Azna region 

 indicate that magmas of at least two different compositions 

originated from mantle sources in various time intervals.  

The tectonic discrimination diagrams and Sr- and Nd isotopes 

provide the broadest insight into the setting of this magmatism. 

In the ternary Nb –Hf–Th diagram of Wood (1980), alkaline 

mafic dykes plot in the field of within-plate alkaline basalts, 

whereas the subalkaline dyke plots within the volcanic-arc 

 basalt field (Fig. 13a). The Dare-Hedavand metagabbro sam-

ples demonstrate the alkaline field, similar to alkaline mafic 

dykes, along with enriched mid-ocean ridge basalt (E-MORB) 

field. Because of the geochemical similarities and similar pro-

tolith ages, we assume a common origin of the alkaline mafic 

dykes and the Dare-Hedavand metagabbro.

The cumulate Darijune gabbro plots in the field of volcanic- 

arc basalt. Furthermore, the variation of Ti/V ratio is clearly 

shown on the Ti/1000 vs. V diagram (after Shervais 1982) that 

all the samples show transitional signatures, where the sub-

alkaline mafic dyke with a lower Ti/V ratio than the alkaline 

dykes indicates MORB-affinity magmatism, the mafic dykes 

as within-plate basalts (not shown), as well as mafic rocks 

from the Amphibolite-Metagabbro unit plot in the MORB-

BAB (back-arc basin) fields overlapping with ocean island 

alkaline basalts (Fig. 13b). 

In the Nb/Yb versus Th/Yb tectonic discrimination diagram 

of Pearce (2008), all the alkaline mafic dykes and various mafic 

rocks of the Amphibolite-Metagabbro unit plot along the 

 enriched part of the MORB-OIB array (Fig. 13c). The subalka-

Fig. 12. Variation diagrams for incompatible trace elements and 

 element ratios for different magma compositions after Khudoley et al. 

(2013). a — (Tb/Yb)

PM

 vs. (La/Sm)

PM

 diagram display two distinct 

groups of mafic dykes; the discrimination line between magmas 

sourced from melting of spinel peridotite mantle and garnet peridotite 

mantle is based on Wang et al. (2002). b — (Nb/Yb)

PM

 vs. (Th/Yb)

PM

 

diagram displaying all samples plot within the field of mantle-derived 

melts marked with two different ranges; Upper Continental Crust 

(UCC) and Lower Continental Crust (LCC) compositions are from 

Taylor and McLennan (1985), and enriched mantle (EMI, EMII) and 

HIMU (high µ where µ= 

238

U/

204

Pb) mantle values are from Condie 

(2001). PM denotes normalization to Primitive Mantle values of 

 McDonough & Sun (1995). c — Nb/La vs. Nb/Th diagram showing 

the trend of crustal contamination (after Zhang et al. 2014).

background image

243

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

Fig. 13. Tectonic discrimination diagrams. a — V vs. Ti/1000 diagram after Shervais (1982); b — Hf–Nb–Th plot, with fields defined by Wood 

(1980); c — Nb/Yb versus Th/Yb after Pearce (2008). The dashed field boundaries for TH: tholeiitic, CA: calc-alkaline, and Sh: shoshonitic 

rocks are from convergent margins. The bold arrows in the bottom right are S: subduction component, C: crustal contaminant component,  

W: within plate, and f: fractional crystallization vectors; d — Zr/Y–Nb/Y diagram (Fitton et al. 1997); DEP: deep depleted mantle; PM: primi-

tive mantle; DM: shallow depleted mantle; EN: enriched component; REC: recycled component; OPB: oceanic plateau basalt; OIB: ocean 

 island basalt; ARC: arc related basalt; NMORB: normal ocean ridge basalt (Symbols are as in Fig. 12).

line mafic dyke plots on a trend toward the area above the 

mantle array in the arc-back-arc field. On the Zr/Y–Nb/Y 

 diagram (Fitton et al. 1997), the mafic dykes as well as all 

other investigated mafic rocks groups plot above the ΔNb line 

[ΔNb =1.74 + log (Nb / Y) −1.92 log (Zr/Y)], inside of the plume 

field (Condie 2005) at relatively high Zr/Y values within the 

OPB (oceanic plateau basalt) and OIB fields. However, the 

subalkaline mafic dyke plots within depleted mantle with 

 lower Zr/Y values (Fig. 13d). Consequently, the subalkaline 

mafic dyke is potentially related to the Darijune gabbro.

Concluding remarks

The REE patterns and some incompatible element ratios 

 reflect the geochemical diversity of the mantle sources prior to 

the effects of subduction and display that the Dorud-Azna 

mafic dykes, like metagabbros and Darijune gabbro contain 

variable mixtures of depleted lithosphere mantle and enriched 

(OIB-like) asthenospheric mantle sources. These geochemical 

signatures for mafic dykes support the probably arc-related or 

plume-related setting. In addition, the 

40

Ar/

39

Ar amphibole 

plateau age of ca. 321.32 ± 0.55 Ma of an alkaline mafic dyke 

demonstrates the potentially similar origin as for the Carboni-

ferous Dare-Hedavand metagabbro and a close genetic rela-

tionship between these two types of rock types is, therefore, 

assumed, probably reflecting the same process of lithospheric 

or asthenospheric melts for their magma generation. A rela-

tionship of the alkaline mafic dykes to the Jurassic Darijune 

gabbro can be excluded because of difference in age and geo-

chemical composition, although the geochemical signatures 

(e.g., uprising from a depleted MORB-type asthenosphere) of 

the subalkaline mafic dyke illustrate a possible relationship 

with the cumulate Jurassic Darijune gabbro. In this case, the 

alkaline dyke magma formed together with the Dare- Hedavand 

metagabbro. 

background image

244    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

Carboniferous back-arc rifting seems to be, therefore, the 

most likely geodynamic setting for alkaline mafic dyke gene-

ration and emplacement. It has to be noted that more and more 

evidence for Carboniferous and earliest Permian magma gene-

ration appear both in the Sanandaj-Sirjan Zone and Central 

Iran, as well as the Alborz range and NE Iran (Fig. 1). In par-

ticular,  Berberian  &  King  (1981)  suggested  that  Devonian- 

Carboniferous basalts along the Sanandaj-Sirjan Zone are 

clearly subjected to a rift setting during the Early Devonian 

and Carboniferous extensional phase. Recently, Ayati (2015) 

reported an alkaline to tholeiitic affinity of latest Devonian 

 basalts, for example, from the western Yazd block (Fig. 1), 

which derived from a deep-seated source potentially indica-

ting initial stages of rifting. 

However, in the last decade, more and more evidence has 

appeared for the existence of Carboniferous to earliest Per-

mian  orogenic  events  in  Central  Iran  (Bagheri  &  Stampfli 

2008; Zanchi et al. 2009a and b; Buchs et al. 2013; Karga-

ranbafghi et al. 2015), in the Sanandaj-Sirjan Zone (Advay & 

Ghalamghash 2011; Bea et al. 2011; Moghadam et al. 2015) 

but also in the Eastern Pontides in Turkey (Topuz et al. 2010; 

Kaygusuz et al. 2012) and in the northern part of the Arabian 

plate (Tavakoli-Shirazi et al. 2013; Frizon de Lamotte et al. 

2013; Stern et al. 2014). Within the Palaeotethys, Bagheri & 

Stampfli (2008) postulated “Variscan” terrane accretion in 

Central Iran, also supported by abundant “Variscan” detritus 

in Mesozoic sediments of Central Iran (Kargaranbafghi et al. 

2015). In addition, evidence from northern (Talesh Moun-

tains) and northeastern Iran (Mashhad-Fariman area) indicate 

the presence of a Late Palaeozoic, mainly Carboniferous 

 active margin of the Palaeotethys, which is the same as in 

 Central Iran (Nakhlak-Anarak units) developed during the 

Eo-Cimmerian orogenic cycle (Ghazi et al. 2001; Zanchi et al. 

2009a; Zanchetta et al. 2009, 2013). Within the SSZ, U–Pb 

zircon ages of Gushchi A-granites and gabbronorites in NW 

Iran indicate that the gabbronorites and granites were  emplaced 

synchronously at 

~ 

320 Ma (Moghadam et al. 2015). Saccani 

et al. (2013) report a U–Pb zircon age of 

356.7 ± 3.4  Ma  (Early  Carboniferous)  from 

a  leucogabbro dyke within the Misho Mafic 

Complex (Fig. 1), which shows N- and P-MORB 

affinities. Bea et al. (2011) found that the  Khalifan 

pluton of northwestern SSZ includes an A-type 

peraluminous leuco granite with an intrusion age 

of  315 ± 2  Ma.  Honarmand  et  al.  (2017)  found 

an  Early  Permian  age  (294.6 ± 2.7  Ma)  for  the 

Hasan-Robat A-type granite. In the southeastern 

part of the Sanandaj- Sirjan Zone, in the west of 

Hajiabad, Ghasemi et al. (2002) show Late 

Carbo niferous 

40

Ar/

39

Ar mineral ages ran ging 

from 330 to 300 Ma. Further, K/Ar ages of 310 ± 9 

and 331 ± 5 Ma are  reported by Sheikholeslami et 

al. (2003) in the Neyriz area. All this evidence 

 argues that Carboniferous mafic magmatic com-

plexes are widespread in NW Iran (Fig. 1) and are 

 locally asso ciated with Carboniferous to earliest 

Permian A-type anorogenic granites. We suggest, therefore, 

that a  major, potentially plume-related rift event is common in 

NW Iran and it is potentially related to mafic flood basalt mag-

matism in the northernmost Arabian plate (Stern et al. 2014).  

The alkaline mafic dykes and the Dare-Hedavand metagabbro 

from the Dorud–Azna region in the central SSZ are the 

 southernmost occurrences of the mafic anorogenic magma-

tism within the SSZ and predate the suggested main stage 

Permian rifting of the SSZ (Hassanzadeh & Wernicke 2016). 

Our preferred interpretation is that the alkaline dykes of  

the Dorud-Azna region formed during an initial stage of 

 potentially plume-related rif ting and are associated with the 

intrusion of the Dare-Hedavand metagabbros (Fig. 14). 

 

The plume might have induced heating and partial melting of 

the lithospheric base. Heating also  resulted in surface uplift. 

Overheated mafic magma chambers at the base of the crust 

might have caused melting of conti nental crust resulting in 

A-type granites.  

Furthermore, Kohn et al (1992) found a Late Devonian– 

Early Carboniferous thermo-mechanical event that they related 

to the “Variscan” orogeny, which is also known in the study 

area (Shakerardakani et al., submitted). A so-called “Hercy-

nian unconformity” exists everywhere in the Arabian plate 

(Frizon de Lamotte et al. 2013 and references therein). This 

deformation and the associated “thermal event” are probably 

independent from the “Variscan” orogeny in Europe and are 

rather related to anorogenic magmatic events within the Arabian 

plate and NW Iran (Frizon de Lamotte et al. 2013; Tavakoli- 

Shirazi et al. 2013; Stern et al. 2014; Moghadam et al. 2015). 

Consequently, we suggest that mafic magmatism postdates the 

rising evidence for “Variscan” orogenic processes in the SSZ 

and Arabian plate.   

Acknowledgements: This paper is part of the PhD thesis of 

Farzaneh Shakerardakani. FS acknowledges support through 

a scholarship from the Afro-Asiatisches Institute Salzburg for 

her PhD thesis at Salzburg University. 

Fig. 14. Simplified tectonic model with the interpretation of formation of Carboni-

ferous alkaline mafic dykes and associated Dera- Hedavand metagabbro due plume 

tectonics predating rifting.

background image

245

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

References

Advay M. & Ghalamghash J. 2011: Petrogenesis and U–Pb dating 

zircon of granites of Heris (NW of Shabestar), eastern Azer-

baigan province. Iran. J. Crystallogr. Mineral. 4, 633–648.

Agard P., Omrani J., Jolivet L. & Mouthereau F. 2005: Convergence 

history across Zagros (Iran): constraints from collisional and 

earlier deformation. Int. J. Earth Sci. 94, 401–419.

Agard P., Omrani J., Jolivet L., Whitchurch H., Vrielynck B.,  Spakman 

W.,  Monie  P.,  Meyer B.  & Wortel R.  2011: Zagros orogency:  

a subduction-dominated process. Cambridge University Press. 

Geol. Mag. 148, 692–725. 

Alavi M. 1994: Tectonics of the Zagros orogenic belt of Iran: New 

data and interpretations. Tectonophysics 229, 211–238.

Ayati F. 2015: Geochemistry, petrogenesis and tectono-magmatic set-

ting of the basic magmatism in Ardekan and Isfahan, Central 

Iran. J. Afr. Earth Sci. 108, 64–73.

Bagheri S. & Stampfli G.M. 2008: The Anarak, Jandaq and Posht-e-

Badam metamorphic complexes in central Iran: New geological 

data, relationships and tectonic implications. Tectonophysics 

451, 123–155.

Bea F., Mazhari A., Montero P., Amini S. & Ghalamghash J. 2011: 

Zircon dating, Sr and Nd isotopes, and element geochemistry of 

the Khalifan pluton, NW Iran: Evidence for Variscan magmatism 

in a supposedly Cimmerian superterrane. J. Asian Earth Sci. 44, 

172–179.

Berberian M. & King, G.C.P. 1981: Towards a paleogeography and 

tectonic evolution of Iran. Can. J. Earth Sci. 18, 210–265.

Bezard R., Hébert R., Wang C., Dostal J., Dai J. & Zhong H. 2011: 

Petrology and geochemistry of the Xiugugabu ophiolitic massif, 

western Yarlung Zangbo suture zone, Tibet. Lithos 125, 347–

367. 

Bonin B. 2004: Do coeval mafic and felsic magmas in post-collisio nal 

to within-plate regimes necessarily imply two contrasting, 

 mantle and crustal, sources? A review. Lithos 78, 1–24.

Boynton W.V. 1984: Cosmochemistry of the rare earth elements: 

 meteorite studies. In: Henderson P (eds) Rare Earth Element 

Geochemistry. Elsevier, Amesterdam, pp. 63–114.

Briqueu L., Bougault H. & Joron J.L. 1984. Quantification of Nb, Ta, 

Ti and V anomalies in magmas associated with subduction 

zones: petrogenetic implications. Earth Planet. Sci. Lett.  68, 

297–308.

Buchs D.M., Bagheri S., Martin L., Hermann J. & Arculus R. 2013: 

Paleozoic to Triassic ocean opening and closure preserved in 

Central Iran: Constraints from the geochemistry of meta-igneous 

rocks of the Anarak area. Lithos 172–173, 267–287.

Cathelineau M. 1988: Cation site occupancy in chlorites and illites as 

a function of temperature. Clay Miner. 23, 471–485.

Condie K.C., 2001. Mantle Plumes and Their Record in earth  History. 

Cambridge University Press, Oxford, UK.

Condie K.C. 2005: High field strength element ratios in Archean 

 basalts: a window to evolving sources of mantle plumes? Lithos 

79, 491–504.

Dachs E. 2004: PET: Petrological Elementary Tools for Mathematica 

(R): an update. Computers & Geosciences 30, 173–182.

De Paolo D.J. 1981: Trace element and isotopic effects of combined 

wallrock assimilation and fractional crystallization. Earth and 

Planetary Science Letters 53, 189–202.

Deevsalar R., Ghorbani M.R., Ghaderi M., Ahmadian J., Murata M., 

Ozawa H. & Shinjo R. 2014: Geochemistry and petrogenesis of 

arc-related to intraplate mafic magmatism from the Malayaer- 

Boroujerd plutonic complex, northern Sanandaj-Sirjan magma-

tic zone, Iran. Neues  Jahrb. Geol. Paläontol. Abh. 274, 1,  

81–120.

Deng H., Kusky T., Polat A., Wang L., Wang J. & Wang S. 2013: 

Geochemistry of Neoarchean mafic volcanic rocks and late 

 mafic dikys in the Zanhung Complex, Central Orogenic Belt, 

North China Craton: Implications for geodynamic setting. Lithos 

175–176, 193–212.

Ernst  R.E.  &  Buchan  K.L.  2001:  Large  mafic  magmatic  events 

through time and links to mantle plume heads. In: Ernst R.E. & 

Buchan K.L. (Eds.): Mantle plumes: their identification through 

time. Geol. Soc. Amer., Spec. Pap. 352, 483–575.

Ernst R.E. & Buchan K.L. 2002: Maximum size and distributions in 

time and space of mantle plumes: evidence from large igneous 

provinces. J. Geodynamics 34, 309 – 342.

Fergusson C.L., Nutman A.P., Mohajjel M. & Bennett V. 2016: The 

Sanandaj–Sirjan Zone in the Neo-Tethyan suture, western Iran: 

Zircon U–Pb evidence of late Palaeozoic rifting of northern Gond-

wana and mid-Jurassic orogenesis. Gondwana Res. 40, 43–57.

Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S. & Taylor R.N. 

1997: Thermal and chemical structure of the Iceland plume. 

Earth Planet. Sci. Lett. 153, 197–208.

Frizon de Lamotte D., Tavakoli-Shirazi S., Leturmy P., Averbuch O., 

Mouchot N., Raulin C., Lepartmentier F., Blanpied C. & Ringen-

bach J.C. 2013: Evidence for Late Devonian vertical movements 

and extensional deformation in northern Africa and Arabia: inte-

gration in the geodynamics of the Devonian world. Tectonics 32, 

1–16.

Ghasemi H., Juteau T., Bellon H., Sabzehei M., Whitechurch H. & 

Ricou L.E. 2002: The mafic-ultramafic complex of Sikhoran 

(Central Iran): a polygenetic ophiolite complex. C. R.  Geosci. 

334, 431–438.

Ghazi A.M., Hassanipak A.A., Tucker P.J., Mobasher K. & Duncan 

R.A. 2001: Geochemistry and 

40

Ar–

39

Ar ages of the Mashhad 

ophiolite, NE Iran: a rare occurrence of a 300 Ma (Paleo-Tethys) 

oceanic crust. American Geophysical Union, Fall Meeting 2001

Abstract I/12C-0993.

Goldberg A.S. 2010: Dyke swarms as indicators of major extensional 

events in the 1.9–1.2 Ga Columbia supercontinent. J. Geody-

namics 50, 176–190.

Goodfellow W.D., Cecile M.P. & Leybourne M.I. 1995: Geochemis-

try, petrogenesis and tectonic setting of lower Paleozoic alkalic 

and potassic volcanic rocks, Northern Canadian Cordilleran 

Miogeocline. Can. J. Earth Sci. 32, 1236–1254.

Haase K.M. & Devey C.W. 1994: The petrology and geochemistry of 

Vesteris Seamount, Greenland Basin-an intraplate alkaline vol-

cano of non-plume origin. J. Petrology 35, 295–328.

Hafkenscheid  E.,  Wortel  M.J.R.  &  Spakman  W.  2006:  Subduction 

history of the Tethyan region derived from seismic tomography 

and tectonic reconstructions. J. Geophys. Res. 111, B08401.

Halls  H.C.  &  Fahrig W.F.  1987:  Mafic  dyke  swarms.  Geol. Assoc. 

Canada Spec. Pap. 34, 1-502. 

Hammarstrom J.M. & Zen E.A. 1986: Aluminium in hornblende: an 

empirical igneous geobarometer. Am. Mineral. 71, 1297–1313.

Handler R., Neubauer F., Velichkova S.H. & Ivanov Z. 2004: 

40

Ar/

39

Ar 

age constraints on the timing of magmatism and post-magmatic 

cooling in the Panagyurishte region, Bulgaria. Schweiz. Mineral. 

Petrogr. Mitt. 84, 119–132.

Hassanzadeh  J.  & Wernicke  B.P.  2016: The  Neotethyan  Sanandaj- 

Sirjan zone of Iran as an archetype for passive margin-arc transi-

tions. Tectonics 35, 586-621. 

Hochstedter A.G.,  Gill  J.B.  &  Morris  J.D.  1990: Volcanism  in  the 

Sumisu Rift, II. Subduction and non-subduction related compo-

nents. Earth Planet. Sci. Lett. 100, 195–209.

Holland T. & Blundy J. 1994: Nonideal interactions in calcic amphi-

boles and their bearing on amphibole-plagioclase thermometry. 

Contrib. Mineral. Petrol. 116, 433–447.

Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H. & Sisson V.B. 

1987: Confirmation of the empirical correlation of Al in horn-

blende with pressure of solidification of calc-alkaline plutons. 

Am. Mineral. 72, 231–239.

background image

246    SHAKERARDAKANI, NEUBAUER, BERNROIDER, VON QUADT, PEYTCHEVA, LIU, GENSER, MONFAREDI and MASOUDI

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

Honarmand M., Li X.H., Nabatian G. & Neubauer F. 2017: In-situ 

zircon U-Pb age and Hf-O isotopic constraints on the origin of 

the Hasan-Robat A-type granite from Sanandaj–Sirjan zone, 

Iran: implications for reworking of Cadomian arc igneous rocks.  

Mineral. Petrol., doi:10.1007/s00710-016-0490-y.

Jiang Y.H., Ling H.F., Jiang S.Y., Fan H.H., Shen W.Z. & Ni P. 2005: 

Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex 

and its High-Mg, Potassic, Quenched Enclaves at Xiangshan, 

Southeast China. J. Petrology 46, 1121–1154.

Kargaranbafghi F., Neubauer F. & Genser J. 2015: The tectonic evo-

lution of western Central Iran seen through detrital white mica. 

Tectonophysics 651–652, 138–151.

Kaygusuz A., Arslan  M.,  Siebel  W.,  Sipahi  F.  &  Ilbeyli  N.  2012: 

 Geochronological evidence and tectonic significance of Carboni-

ferous magmatism in the southwest Trabzon area, eastern 

 Pontides,  Turkey.  Int. Geol. Rev. 54, 15, 1776–1800.

Khanna T.C., Sai V.V.S., Zhao G.C., Rao D.V.S., Krishna A.K., 

Sawant S.S. & Charan S.N. 2013: Petrogenesis of mafic alkaline 

dikes from the 

~

2.18 Ga Mahbubnagar Large Igneous Province, 

Eastern Dharwar Craton, India: Geochemical evidence for 

 uncontaminated intracontinental mantle derived magmatism. 

Lithos 179, 84–98.

Kohn B.P., Eyal M. & Feinstein S. 1992: A major Late Devonian– 

Early Carboniferous (Hercynian) thermotectonic event at the 

NW margin of the Arabian-Nubian Shield: Evidence from zircon 

fission track dating. Tectonics 11, 1018–1027.

Khudoley A.K., Prokopiev A.V., Chamberlain K.R., Ernst R.E., 

 Jowitt  S.M.,  Malyshev  S.V.,  Zaitsev  A.I.,  Kropachev  A.P.  & 

Koroleva O.V. 2013: Early Paleozoic mafic magmatic events on 

the eastern margin of the Siberian craton. Lithos 174, 44–56.

Leake B. E., Woolley A.R., Arps C.E.S., Birch W.D., Gillbert M.C., 

Grice J.D., Hawthorne F.C., Kato A., Kirsh H.J., Krivovichev 

V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nichel 

E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson 

N.C.N.,  Ungaretti  L.,  Whittaker  E.J.W.  &  Youzhi  G.  1997: 

 Nomenclature of amphiboles: report of the subcommittee on 

 amphiboles of the International Mineralogical Association Com-

mission on New Minerals and Minerals Names. Mineral. Mag. 

61, 295–321. 

Leitch A.M. & Davies G.F. 2001: Mantle plumes and flood basalts: 

Enhanced melting from plume ascent and an eclogite compo-

nent. J. Geophys. Res. 106, 2047–2059.

Li B., Bagas L., Gallardo L.A., Said N., Diwu C.H. & McCuaig T.C. 

2013: Back-arc and post-collisional volcanism in the Paleopro-

terozoic Granites-Tanami Orogen, Australia. Precambrian Res. 

224, 570–587.

Lin P.N.,  Stem R.J.,  Morris  J.  & Bloomer S.H.  1990: Nd-  and Sr- 

isotopic compositions of lavas from the northern Mariana and 

southern Volcano arcs: implications for the origin of island arc 

melts. Contrib. Mineral. Petrol. 105, 381–392.

Ludwig K.R. 2003: ISOPLOT 3: a geochronological toolkit for  Micro soft 

Excel. Berkeley Geochronology CentreSpec. Publ. 4, 1–72.

Maurice CH., David J., O’Neil J. & Francis D., 2009: Age and tecto-

nic implications of Paleoproterozoic mafic dyke swarms for the 

origin of 2.2 Ga enriched lithosphere beneath the Ungava Penin-

sula, Canada. Precambrian Res. 174, 163–180.

McDonough W.F. & Sun S.S. 1995: The composition of the Earth. 

Chem. Geol. 120, 223–254.

McDougall I. & Harrison M.T. 1999: Geochronology and Thermo-

chronology by the 

40

Ar/

39

Ar Method. University Press, Oxford, 

1–269.

Moghadam H.S., Li X. H., Ling X.X., Stern R.J., Santos J.F., 

 Meinhold G., Ghorbani G. & Shahabi S. 2015: Petrogenesis and 

tectonic implications of Late Carboniferous A-type granites and 

gabbronorites in NW Iran: Geochronological and geochemical 

constraints. Lithos 212–215, 266–279.

Mohajjel M. & Fergusson C. 2000: Dextral transpression in Late Cre-

taceous continental collision Sanandaj–Sirjan zone western Iran. 

J. Struct. Geol. 22, 1125–1139.

Morimoto N. 1988: Nomenclature of pyroxenes. Mineral. Petrol. 39, 

55–76.

Nutman A.P.,  Mohajjel  M.,  Bennett  V.C.  &  Fergusson  C.L.  2014. 

Gondwanan Eoarchean–Neoproterozoic ancient crustal material 

in Iran and Turkey: zircon U–Pb–Hf isotopic evidence. Can. J. 

Earth Sci. 51, 272–285. 

Ordóñez-Calderón  J.C.,  Polat A.,  Fryer  B.J.  &  Gagnon  J.E.  2011: 

Field and geochemical characteristics of Mesoarchean to neo-

archean volcanic rocks in the Storø greenstone belt, SW Green-

land: Evidence for accretion of intra-oceanic volcanic arcs. 

 Precambrian Res. 184, 24–42. 

Pearce J.A. 2008: Geochemical fingerprinting of oceanic basalts with 

applications to ophiolite classification and the search for  Archean 

oceanic crust. Lithos 100, 14–48.

Peng P., Bleeker W., Ernst E.R., Söderlund U. & McNicoll V. 2011: 

U–Pb baddeleyite ages, distribution and geochemistry of 925 Ma 

mafic  dykes  and  900  Ma  sills  in  the  North  China  craton:   

Evidence for a Neoproterozoic mantle plume. Lithos 127,  

210–221.

Pirajno  F.  &  Hoatson  D.M.  2012:  A  review  of  Australia’s  Large 

 Igneous Provinces and associated mineral systems: Implications 

for mantle dynamics through geological time. Ore Geol. Rev. 48, 

2–54.

Renne P.R., Mundil R., Balco G., Min K. & Ludwig K.R. 2010: Joint 

determination of 

40

K decay constants and 

40

Ar

*

/

40

K for the Fish 

Canyon sanidine standard, and improved accuracy for 

40

Ar/

39

Ar 

geochronology. Geochim. Cosmochim. Acta 74, 18, 5349–5367.

Rieser A.B., Liu Y., Genser J., Neubauer F., Handler R., Friedl G. & 

Ge X.H. 2006: 

40

Ar/

39

Ar ages of detrital white mica constrain the 

Cenozoic development of the intracontinental Qaidam Basin, 

China. Geol. Soc. Am. Bull. 118, 1522–1534.

Scaillet S. 2000: Numerical error analysis in 

40

Ar/

39

Ar dating. Earth 

Planet. Sci. Lett. 162, 269–298.

Saccani E., Azimzadeh Z., Dilek Y. & Jahangiri A. 2013: Geochrono-

logy and petrology of the Early Carboniferous Misho Mafic 

Complex (NW Iran), and implications for the melt evolution of 

Paleo-Tethyan rifting in Western Cimmeria. Lithos  162,  

264–278.

Shakerardakani F., Neubauer F., Masoudi F., Mehrabi B., Liu X., Dong 

Y.,  Mohajjel  M.,  Monfaredi  B.  &  Friedl  G.,  2015.  Pan african 

basement and Mesozoic gabbro in the Zagros orogenic belt in the 

Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon 

ages and geochemistry. Tectonophysics 647–648, 146–171.

Shakerardakani F., Neubauer F., Bernroider M., Finger F., Genser J., 

Waitzinger  M.  &  Monfaredi  B.  (submitted).  Conditions  and 

 timing of metamorphism in the central Sanandaj-Sirjan zone 

(Zagros Mountains, Iran): A case of polymetamorphism. 

 

J. Metamorph. Geol. 

Sharifi M. & Sayari M. 2013: Alkaline basic dykes in the central part 

of Sanandaj-Sirjan zone (Iran). J. Tethys 1, 41–58.

Sheikholeslami R., Bellon H., Emami H., Sabzehei M. & Pique A. 

2003: Nouvelles données structurales et datations 

40

K/

40

Ar surles 

roches métamorphiques de la région de Neyriz (zone de 

 Sanandaj-Sirjan, Iran méridional). Leur intérêt dans le carde du 

domaine néo-téthysien du Moyen-Orient. C.R. Geosci. 335, 

981–991.

Shervais J.W. 1982: Ti–V plots and the petrogenesis of modern and 

ophiolitic lavas. Earth .Planet. Sci. Lett. 59, 101–118.

Shinjo R., Chung S.L., Kato Y. & Kimura M. 1999: Geochemical and 

Sr-Nd isotopic characteristics of volcanic rocks from the 

 Okinawa Trough and Ryukyu Arc: Implications for the evolution 

of a young, intracontinental back arc basin. J. Geophys. Res. 

104, 591–608.

background image

247

CARBONIFEROUS RIFTING IN THE CENTRAL SANANDAJ-SIRJAN ZONE (IRAN)

GEOLOGICA CARPATHICA

, 2017, 68, 3, 229 – 247

Srivastava R.K. 2011: Dyke Swarms: Keys for Geodynamic Interpre-

tation. Springer, Heidelberg, 1–603.

Stern R.J., Ren M., Ali K., Förster H.J., Al Safarjalani A., Nasir S., 

Whitehouse  M.J.,  Leybourne  M.I.  &  Romer  R.L.  2014:  Early 

Carboniferous (

~ 

357 Ma) crust beneath northern Arabia: Tales 

from Tell Thannoun (southern Syria). Earth Planet. Sci. Lett. 

393, 83–93.

Sun S.S. & McDonough W.F. 1989: Chemical and isotopic systematic 

of ocean basalts: implication for mantle composition and pro-

cesses. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the 

ocean basins. Geol. Soc. London, Spec. Publ. 42, 313–345.

Tavakoli-Shirazi  S.,  Frizon  de  Lamotte  D., Wrobel-Daveau  J-C.  & 

Ringenbach J.C. 2013: Pre-Permian uplift and diffuse extensio-

nal deformation in the High Zagros Belt (Iran): integration in the 

geodynamic evolution of the Arabian plate. Arab. J. Geosci. 6, 

2329–2342.

Taylor S.R. & McLennan S.M. 1985: The Continental Crust: Its Com-

position and Evolution: an Examination of the geochemical 

 record preserved in Sedimentary Rocks. Blackwell Scientific

Oxford, i–xv , 1–312.

Topuz G., Altherr R., Siebel W., Schwarz W.H., Zack T., Hasözbek A., 

Barth M., Satır M. & Şen C. 2010: Carboniferous high- potassium 

I-type granitoid magmatism in the eastern Pontides: The 

Gümüşhane pluton (NE Turkey). Lithos 116, 92–110.

Van Staal C.R., Winchester J.A. & Bédard J.H. 1991: Geochemical 

variations in Middle Ordovician volcanic rocks of the northern 

Miramichi Highlands and their tectonic significance. Can. J. 

Earth Sci. 28, 1031–1049.

Von Quadt A., Gunther D., Frischknecht R. & Dietrich V. 1999:  Minor 

and trace element determinations in Li2B407 fused USGS stan-

dard materials calibrated without matrix-matched standards 

 using laser ablation ICP-MS. J. Conference Abstracts 4, 819.

Wang K., Plank T., Walker J.D. & Smith E.I. 2002: A mantle melting 

profile across the Basin and Range, SW USA. J. Geophys. Res. 

107, B1, 2017, http://dx.doi.org/10.1029/2001JB000209.

Winchester J.A. & Floyd P.A. 1977: Geochemical discrimination of 

different magma series and their differentiation products using 

immobile elements. Chem. Geol. 20, 325–343.

Wood D.A. 1980: The application of a Th-Hf-Ta diagram to problems 

of tectonomagmatic classification and to establishing the nature 

of crustal contamination of basaltic lavas of the British Tertiary 

Volcanic Province. Earth Planet. Sci. Lett. 50, 11–30.

Zanchetta S., Zanchi A., Villa I.M., Poli S. & Muttoni G. 2009: The 

Shanderman eclogites: a Late Carboniferous high-pressure event 

in the NW Talesh Mountains (NW Iran). Geol. Soc. London, 

Spec. Publ. 312, 57–78.

Zanchetta S., Berra F., Zanchi A., Bergomi M., Caridroit M.,  

Nicora  A.  &  Heidarzadeh  G.  2013:  The  record  of  the  Late 

Palaeo zoic active margin of the Palaeotethys in NE Iran: 

 constraints on the Cimmerian orogeny. Gondwana Res. 24, 

1237–1266.

Zanchi A., Zanchetta S., Berra F., Mattei M., Garzanti E., Molyneux 

S., Nawab A. & Sabouri J. 2009a: The Eo‐Cimmerian (Late? 

Triassic) orogeny in North Iran. Geol. Soc. London, Spec. Publ. 

312, 31–55.

Zanchi A., Zanchetta S., Garzanti E., Balini M., Berra F., Mattei M. & 

Muttoni G. 2009b: The Cimmerian evolution of the Nakhlak–

Anarak area, central Iran, and its bearing for the reconstruction 

of the history of the Eurasian margin. Geol. Soc. London, Spec. 

Publ. 312, 261–286.

Zhang,  C.L.,  Zou,  H.B., Yao,  C.Y.  &  Dong, Y.G.  2014:  Origin  of 

 Permain gabbroic intrusions in the southern margin of the Altai 

Orogenic belt: A possible link to the Permian Tarim mantle 

plume? Lithos 204, 112–124.