background image


, JUNE 2017, 68, 3, 193 – 206

doi: 10.1515/geoca-2017-0015

Discovery of the Badenian evaporites inside the  

Carpathian Arc: implications for global  

climate change and Paratethys salinity














Dept. of Physical and Historical Geology, Eötvös Loránd University,1117 Pázmány Péter st 1/c, Budapest, Hungary;


Miskolc University, Mineralogical-Geological Institute, Egyetemváros 3515 Miskolc, Hungary;


 Geological Survey of Austria, Neulinggasse 38, A1030 Vienna, Austria;

RAG Hungary Ltd., Bocskai út 134-146, 1113 Budapest, Hungary;,

NIS a.d. Narodnog fronta 12, Novi Sad, Serbia;

(Manuscript received July 26, 2016; accepted in revised form March 15, 2017)

Abstract: Massive evaporites were discovered in the Soltvadkert Trough (Great Plain, Hungary) correlating to the 

 Badenian Salinity Crisis (13.8 Ma, Middle Miocene) on the basis of nannoplankton and foraminifera biostratigraphy. 

This new occurrence from Hungary previously thought to be devoid of evaporites is part of a growing body of evidence 

of evaporitic basins inside the Carpathian Arc. We suggest the presence of evaporites perhaps in the entire Central 

 Paratethys during the salinity crisis. Different scenarios are suggested for what subsequently happened to these evaporites 

to explain their presence or absence in the geological record. Where they are present, scenario A suggests that they were 

preserved in subsiding, deep basins overlain by younger sediments that protected the evaporites from reworking, like in 

the studied area. Where they are absent, scenario B suggests recycling. Scenario B explains how the supposedly brackish 

Sarmatian could have been hyper/normal saline locally by providing a source of the excess salt from the reworking and 

dissolving of BSC halite into seawater. These scenarios suggest a much larger amount of evaporites locked up in the 

Central  Paratethys during the salinity crisis then previously thought, probably contributing to the step-like nature of 

cooling of the Mid Miocene Climate Transition, the coeval Mi3b.

Keywords: Miocene climate, evaporites, Paratethys, stratigraphy, Badenian, Sarmatian, palaeosalinity. 


The evidence presented here is the first account of Badenian 

evaporites from inside the Carpathian Arc from Hungary with 

a detailed stratigraphy, that correlates these layers to the 

 Badenian Salinity Crisis (BSC) of the Wielician. Evaporites 

from Hungary have previously been explained by emphasis on 

local salt tectonics (Palotai & Csontos 2012), or occurrences 

only  listed  in  data  repositories  (Jámbor  et  al.  1976; 

Cserepes-Meszéna et al. 2000, 2004). It has generally been 

believed that the Pannonian Basin was disconnected from the 

evaporitic basins and thus devoid of evaporite formation, 

(Balintoni & Petrescu 2002; Báldi 2006; Kováč et al. 2007; 

Piller et al. 2007) although the existence of widespread thick 

evaporitic successions deposited during the BSC in the Car-

pathian Foredeep (CFD) and the Transylvanian Basin (Fig. 1) 

is  well   documented  (Bąbel  &  Becker  2006;  Peryt  2006; 

 Bukowski et al. 2007;  Śliwiński et al. 2012; de Leeuw et al. 

2013). Most of the  historical salt mines in the region generally 

belong to the arc of the Fore-Carpathian (Carpathian Fore-

deep, CFD) evapo ritic belt ranging across many countries 

starting in the foreland, in upper Silesia in Poland and in the 

Opava region of the Czech Republic in the NW Carpathians, 

followed by the well-known Wieliczka-Bochnia area (Bicchi 

et al. 2003; Gonera & Bukowski 2012) of Poland to continue 

further into Ukraine and ending in the South Carpathians of 

Romania  (Peryt  &  Peryt  2009).  Exceptions  are  in  different 

geological settings, the historical mining towns of the Transyl-

vanian Basin of Romania (e. g., Turda, Praid, Ocna Mureș etc) 

and the simi larly famous Solotvyna in the Transcarpathian 

Trough in Ukraine. Besides these well-known localities, there 

is increa sing evidence of more evaporites in the Pannonian 

Basin  system of the Central Paratethys (CP). For example, it is 

not so long ago, that it turned out, that there are evaporites of 

the Transcarpathian Trough besides Solotvyna occurrence on 

the surface, continuing NW into the East Slovak Basin tran-

sected by drilling (Franců et al. 1989; Kováč et al. 1995; Túnyi 

et al. 2005; Bukowski et al. 2007) and correlated to the BSC 

by magneto- or biostratigraphy (do not mix with older Car-

pathian evaporites of the Transcarpathian Trough). Not long 

ago, a massive salt deposition, previously thought to be older, 

was identified as BSC on the southern margin of the CP in the 

Tuzla  Basin  in  North  Bosnia  and  Herzegovina  (Ćorić  et  al. 

2007). In the sediments overlaying the salt formation the spe-

cies Helico sphaera  waltrans Theodoridis, 1984 is absent, and 

therefore these layers can be placed into the uppermost NN5. 

background image




, 2017, 68, 3, 193 – 206

This  implies, that the salt deposits of Tuzla are indeed the 

 result of the BSC and this classic salt mine is adding to the 

number of BSC occurrences all over the CP.

Recent new contributions have helped to refine the time-

frame of the BSC period (de Leeuw et al. 2010, 2013; Ho-

henegger & Wagreich 2011; Hohenegger et al. 2014) and its 

relation to global climate and oceanographic changes (Bicchi et 

al.  2003;  Böhme  2003;  Báldi  2006;  de  Leeuw  et  al.  2010; 

Karami et al. 2011; Gebhardt & Roetzel 2012). In terms of 

chronostratigraphy, the Badenian has traditionally been divi-

ded into three parts by Papp et al. (1978), the Lower Badenian 

(Moravian), Middle Badenian (Wielician), and Upper Bade-

nian (Kosovian), but according to the latest contribution on 

evaporite stratigraphy (Hohenegger et al. 2014), this division 

does not coincide with traditional chronostratigraphic boun-

daries, where the Middle Badenian evaporites resulting from 

the BSC would belong not to the Middle Badenian, but to the 

Early Late Badenian.  To avoid misunderstanding, in the present 

work evaporites are referred to in the chronostratigraphic 

sense as Wielician BSC deposits, or simply by the time inter-

val of the BSC. The time interval before the BSC, but already 

in the Badenian is called the Moravian (pre-BSC period of the 

Badenian), whereas units deposited after the BSC and Bade-

nian are Kosovian (post-BSC period of the Badenian).

The aims of the present work are threefold: 

•  To document the discovery in a hydrocarbon exploration 

well in Hungary of the occurrence of massive layers of 

evaporites from the Soltvadkert Trough (pre-BSC period 

of Badenian) and describe its biostratigraphy and deposi-

tional environment. 

•  To draw attention to the increasing number of evaporite 

occurrences in the CP correlated to the BSC, and to 

 explain their late recognition in the geological record.

•  To attempt to understand better the spatial distribution of 

BSC evaporites in the CP, including the new discoveries, 

and discussing the hypothesis of recycling BSC evapo-

rites in a new and original perspective concerning salinity 

conditions and global cooling.

Revival of hydrocarbon exploration with modern techniques

Our data come from an oil and gas exploration well transec-

ting a 50 m thick evaporitic sequence in the Soltvadkert 

Trough on the Great Plain of Hungary. This area is located in 

Fig. 1. Evaporite occurrences in the Central Parathetys region with classical evaporite localities in the Carpathian Foredeep and Transylvania. 

The studied evaporite location of the Soltvadkert Trough is in legend A and the recently discovered evaporite locations mentioned in text  

are in legend B–F. The figure was prepared by Golden Software Surfer-9. The map is modified after Horváth et al. (2004) available at and after Rögl (1998), Bąbel & Becker (2006), Peryt (2006), Bukowski et al. (2007) among 

others. The thumbnail map of Europe with Hungary is modified

background image




, 2017, 68, 3, 193 – 206

the Danube-Tisza Interfluve (Fig. 1) and has been the focus of 

oil and gas exploration for a long time. In the last fifty years 

numerous wells were drilled mainly on the structurally con-

trolled basement highs and significant oil and gas deposits 

were found in Miocene and older reservoirs. Application of 

high resolution and/or 3D seismic measurements was not 

nece ssary as long as the focus of exploration was the robust, 

4-way dip closures, which were mappable on a basic quality 

2D grid.  

The revival of interest in exploration in the area dates from 

2010, with the introduction of 3D seismic surveys using the 

most modern processing methods to detect smaller scale struc-

tural, stratigraphical or combined hydrocarbon traps. Based on 

pilot studies and with the help of modern exploration tools, 

a 3D seismic acquisition of 400 km


 was carried out, revealing 

the geological phenomenon described here.

Geology and basin history

The pre-Miocene basement with its Palaeozoic–Mesozoic 

NE–SW nappes of alpine origin are not the concern of this 

study. The sedimentary cycle of our interest started in the Kar-

patian (Early Miocene) according to Hámor (1998, 2001). 

This area and its larger region belongs to a NE–SW strike slip 

displacement zone, where small half grabens and/or pull-apart 

basins were formed at different times and locations. 

In the Paratethys at the end of the Karpatian a regression 

took place due to compression and the studied area was elevat-

ed above sea level (Hámor 2001). The succeeding Badenian 

stage is characterized by transgression enclosing a sedimentary 

half-cycle. At the base of this half-cycle a conglomeratic lag is 

found, as a result of the initial part of the marine transgression. 

The transgression affected the sediment budget of the basin  

by reducing terrigenous input from the land surrounding the 

basin, making sediments gradually more and more enriched in 

carbonates and clays. Thus, the sedimentary sequence generally 

observable in this area started with a 10–30 m conglomerate 

lag or breccia at the base of the sequence followed by 

Lithothamnium-containing limestones of different facies. 

These shallow-water sediments shifted rather quickly into 

deep-water carbonate-rich marlstones and limey marls, as 

a result of the subsidence and sea level rise (Császár et al. 

1997; Hámor 1998, 2001). The southern peri phery of the 

 studied basin had rather steep and high banks, very well 

 observable on the base Badenian surface of Figure 2. Thus, 

even the deep water deposits contained resedimented shallow 

water fauna, biogene limestone fragments and fine sand and 

silt layers, most likely mass transported from a higher, shal-

lower part of the basin (Fig. 2).

After the evaporitic event, deepening of the basin slowed 

down and sedimentation continued in a shallower marine 

 environment without much change concerning lithology, in 

which the only conspicuous change is the appearance of thin 

volcanic tuff layers testifying to the onset of acidic to neutral 

magmatic activity in the area. The entire Badenian sequence 

can reach a thickness of 450–500 m.

Succeeding the Badenian half-cycle, an approximately  

55–60 m thick Sarmatian layer was deposited above a non- 

depositional surface or erosional unconformity. According  

to the literature (Randazzo et al. 1999; Wiedl et al. 2012) in 

the Sarmatian, a half-cycle of a transgressive sequence  similar 

to the Badenian should have been deposited in an environ-

ment of continuously decreasing salinity. However, in the 

studied area such layers cannot be identified beyond doubt. 

The probable reason for not finding typical Sarmatian  depo sits 

in the area is the intensifying volcanism producing large 

amounts of tuffs and tuffites, which overwrote the original 

sedimentation. Apart from the presence of volcanoclastic 

 sediments, also altered and reworked, the lithology is similar 

to the Badenian dominated by marls and limey marls,  

but formed in a shal lower environment, than in the previous 


Following the Late Middle Miocene Sarmatian in the Late 

Miocene the Pannon Lake reigned leaving behind its very 

thick (1.5–2.5 km) prograding shelf-margin sediments over 

an erosional surface covering the Early to Late Miocene sedi-

ments (Magyar et al. 2013; Sztanó et al. 2013)


An unpredictable pitfall of seismic interpretation

The freshly acquired 3D seismic data mentioned earlier re-

vealed at first glance a strong amplitude phenomenon at the 

base  of  the  Miocene  sediments  (Fig. 3 a, c).  This  seismic 

pheno menon was a soft kick indicating a geophysical anomaly 

caused by lower density rocks, or a media slowing down the 

acoustic waves compared to its surroundings. This pheno-

menon was interpreted as an AVO (Amplitude Versus Offset) 

class III anomaly, which is a favourite target for exploration in 

the Neogene sediments of the Pannonian Basin. Based on the 

geological model of the area, it was thought that the compact, 

high-density, high acoustic velocity, limey marl would contain 

a softer, high porosity, hopefully hydrocarbon-saturated sand-

stone layer, forming a stratigraphic trap, which would fully 

explain the strong anomaly observed. The experts working in 

the area knew of the sporadic occurrence of gypsum and 

anhyd rite stringers in the offset wells, at a location shown on 

Fig. 3 c,  while  photo  of  gypsum  occurrence  in  Fig. 4.  They 

were well-aware of such evaporites having a similar effect on 

the seismic data, but given the sporadicity of these thin occur-

rences had no reason to doubt the prospect. 

However this anomaly, the potential prospect, turned out to 

consist of evaporitic sediments of considerable thickness un-

known to this region, and conformable with the base and the 

top with no sign of strong tectonic effect revealed by the seis-

mic data (Fig. 3 a, b). The studied anomaly on the 3D map can 

be identified as a monocline structure (Fig. 2), and based on 

the seismic section it is clear that the evaporite was indeed 

deposited undisturbed in this small depression and neither 

 tectonized nor transported (Figs. 2, 3).

background image




, 2017, 68, 3, 193 – 206

The studied well transected an evaporite horizon between 

2495 and 2445 m (Figs. 3, 5). The sequence starts with a mas-

sive  halite  accumulation  (2460 –2495  m),  interrupted  by 

an approximately 4 metres thick, acidic tuffite layer (2462–

2466 m). Overlying the halite are approximately 15 metres of 

anhydrite-rich sediment, described mainly from cuttings.  

The anhydrite occurrence is recognized from cuttings in the 

clean halite sequence too, but the process of halite dissolution 

in the water-based drilling mud makes it harder to reconstruct 

original evaporite composition. Gypsum occurrences are known 

not only from cuttings, but from cores taken in offset wells 

(Fig. 4). The lithology of the evaporite-rich layers with the log 

display is presented in Figure 5.

Previously known evaporite occurrences of uncertain age in 


The discovery in an oil exploration well of massive 

 eva porites at an unexpected location led us to look for  

other such occurrences and we discovered information 


from  oil  exploration  wells  Budajenő-2,  Ráckeve-1  and  

Valkó-1 in the Hungarian Geological and Geophysical 


and Mining Data Repository. Find locations are shown in 

 Figure  1.

The Budajenő-2 well transected 40 m of fine clastics and 

dacite tuff succession with anhydrite and gypsum from the 

Kosovian/Wielician (post-BSC or BSC, 334.2–374.2 m).  

It is believed that this was the first report of possible BSC 

evaporites from the Pannonian basin. The overlying beds 

(249.9–334.2 m) consist of alginitic siltstone with gypsum  

and sulphur intercalations and was determined as Sarmatian 

(Jámbor et al. 1976).

The Ráckeve-1 well is discussed from the tectonic point of 

view in a publication, where the age of evaporites is given  

as  Badenian  and/or  Sarmatian?  (Palotai  &  Csontos  2012). 

 According to the public database 196 m of halite and anhydrite 

were reported (1827–2023 m) with intercalating clay in the 

upper part. The underlying clay (2023–2086 m) also contained 

nodules of anhydrites of Badenian age based on foraminifera 

and pollen (Cserepes-Meszéna et al. 2004). In the Valkó-1 

well a 10 m thick anhydrite layer (1196–1206 m) is followed 

by 33 m of anhydrite with clay marl and marl intercalations. 

Based on the poor foraminifera, its age is most probably 

 Kosovian/Wielician (Cserepes-Meszéna et al. 2000).

Fig. 2. Perspective 3D view of the evaporite accumulation on top of the reconstructed base Badenian palaeo-morphology. The discovered 

evaporite deposit is positioned in the depocenter of the basin, close to the toe of the slope. The questionmark shows another possible location 

for a yet undiscovered evaporite layer. TWT: Two ways travel time in seconds (s). The Golden Software Surfer-9 was used to prepare figure.

background image




, 2017, 68, 3, 193 – 206

Micropalaeontology of the Soltvadkert Trough oil  exploration 

well (Fig. 6)

A sample set of 25 nannoplankton sediment samples were 

used to prepare smear slides, using standard methods of trea-

ting small amounts of sediments in distilled water with ultra-

sound for few seconds. These were analysed with a light 

micro scope (Leica DMLP) under 1000 magnification (cross 

and parallel nicols).  The sample set of 18 foraminifera sam-

ples were processed by the standard technique, first disinte-

grating the samples with H-peroxide solution and then 

wet-sieving them. All fractions were examined for forami-

nifera to avoid ignoring small- or large-sized species, although 

the quantitative  investigation of foraminifera under the light 

microscope  was  conducted  upon  the  125μm – 2mm  fraction. 

The nannoplankton assemblages from the investigated bore-

hole were preserved well enough for determination, but many 

of the samples analysed for foraminifera were barren. Very 

few foraminifera were found in an extremely large amount of 

sediment, though they had acceptable preservation. In spite of 

these difficulties, micropalaeontological analyses were essen-

tial to our interpretation of this sequence concerning age and 

palaeoenvironment which is summarized in Figure 6.   


Calcareous nannoplankton

The attribution to nannoplankton zone NN5 (Martini 1971) 

is based on the occurrence of Sphenolithus heteromorphus and 

the absence of Helicosphaera ampliaperta.  The  NN5/NN6 

boundary is defined by the last occurrence of Sphenolithus 

heteromorphus. Due to changed palaeo-ecological conditions 

on the top of NN5, the appearance of S. heteromorphus 

 discontinues and this boundary cannot always be precisely de-

termined. Therefore this boundary is positioned on the basis of 

the nannoplankton assemblage changes, as already observed 

at other localities in the CP. Nannoplankton Zone NN5 is 

gene rally dominated by small reticulofenestrids (Reticulo-

fenestra minuta and R. haqii), whereas high percentages of 

Reticulofenestra pseudoumbilicus and Coccolithus pelagicus 

characterize nannoplankton zone NN6. 


The lowermost samples containing foraminifera yielded 

a rich planktonic assemblage, where in spite of bad preser-

vation  Orbulina suturalis can be identified with very high 

 certainty  and  Globigerinopsis grilli with some doubt. This 

makes the age determination from the upper-half of the Late 

Moravian (Moravian: pre-BSC period of Badenian) to the end 

of the Wielician (Wielician: BSC), where the species 


O.suturalis has its last occurrence (LO) at 15.1 Ma (Cicha et 

al. 1998; Hohenegger et al. 2014). Just below the evaporites 

(2540 m) in addition to O. suturalis the species Globorotalia 

bykovae appears with a last common occurrence (LCO) at the 

end of the Wielician making the onset of evaporite formation 

later than 15.1 Ma. The highest sample with some limited bio-

stratigraphic significance concerning foraminifera is from 

above the evaporites (2382 m) lacking planktonic forms, but 

a benthic Paratethyan species Quinqueloculina bogdanowitzi 

was determined with some ambiguity. If the Central Para-

tethys age distribution of this benthic species (Cicha et al. 

1998) is accepted for the here presented material, then a Koso-

vian age is indicated with high uncertainty.

Based on the calcareous nannoplankton and foraminifera 

evidence combined, the evaporitic layers from the Soltvadkert 

Fig. 3. Seismic sections and extension of halite. a — interpreted seis-

mic section across explored amplitude anomaly; b — the identified 

salt accumulation which caused the phenomena (TVDSS: 


senting TVD minus the elevation above mean sea level of the depth 

reference point of the well); 

c — extension of halite layer based  

on amplitude mapping. The investigated well is well-1, while the 

 offset wells are well-2, 3, 4 previously known to transect gypsum and 

anhydrite laminae. The 

Golden Software Surfer-9 was used to prepare 


background image




, 2017, 68, 3, 193 – 206

Trough discussed here can be correlated with the rather iso-

chronous evaporites of the classical sites of the Wielician de-

posited  during  the  BSC,  top  of  NN5  or  lowermost  NN6  

(de Leeuw et al. 2010; Hohenegger et al. 2014).


The panel on the right is the environmental interpretation in 

Figure  6.  Generally  foraminifera  tests  were  present  in  low 

numbers per unit of sediment. There are two possible reasons 

for the scarcity of foraminifera.  The foraminifera living at the 

time of deposition could be rare due to stress (low standing 

stock), or the foraminiferal tests may be diluted in sediments 

with  high  sedimentation  rates  (160–230  m  compacted  sedi-

ment / MY).  Fortunately  samples  with  low  numbers  of  fora-

minifera due to salinity stress can be used to reconstruct envi-

ronments, as in the case of a Messinian evaporite sequence 

(Kouwenhoven et al. 2006).    

Pre-evaporitic environment

Before the onset of evaporite formation the lowermost sam-

ples contain a rich planktonic foraminifera assemblage, with 

O. suturalis and Globigerina praebulloides well-known indi-

cators of eutrophy in the surface water (Rossignol et al. 2011; 

Sousa et al. 2014). Many authors emphasized other aspect  of 

the same assemblage in the same level interpreting it together 

with stable isotope results as an indicator of global cooling 

(Bicchi et al. 2003; de Leeuw et al. 2010; Gonera & Bukowski 

2012; Bukowski et al. 2013). Cooling has possible implica-

tions in changes of nutrient budget, as the appearance of ag-

glutinated forms (e.g., Haplophragmoides sp.) in samples be-

low the evaporite horizon might be indicative of high nutrient 

supply. The benthic assemblage has a few undoubtedly deep, 

open marine bathyal elements like Siphonina reticulata or 

Cibicides kullenbergi, previously called C. mundulus (Van 

Morkhoven et al. 1986). The palaeo-water depth must have 

reached 200–600m, or even deeper. Similar assemblages with 

similar reconstructed depth range have been found in Hungary 

(Báldi 2006; Báldi et al. 2002) and in the Mediterranean (Van 

Hinsbergen  et  al.  2005;  Kouwenhoven  &  Van  der  Zwaan 

2006). Episodic dysoxy and/or anoxy resulting in high organic 

matter content and microlaminated sediments can be assumed 

Fig. 5. Lithological and log display of studied well. GR is natural 

Gamma ray, RD is deep resistivity, BIT is size of drilling bit and CAL 

is caliper logs. The large scale wash-out (cyan shading on BIT vs. 

CAL track) clearly highlights the position of dissolved halite.  

The Golden Software Surfer-9 was used to prepare figure.

Fig. 4. Gypsum/anhydrite stringer in black laminated marl, calca-

reous marl layer from Well-3 offset well (find location in Fig. 3 c).

background image




, 2017, 68, 3, 193 – 206

based on the presence of some dysoxy tolerant taxa (Bulimina 

 elongata, Pullenia bulloides).

Hypersalinity stress — the  evaporitic event of the BSC 

(Badenian Salinity Crises)

Below and above the evaporite horizon (foraminifera 

 samples from 2541 m and 2377 m) salinity stress tolerant  

taxa occur. Based on the observed abnormal growth 


of  A. beccarii tepida, salinity stress is more likely to  

be hypersaline than hyposaline (Stouff et al. 1999). 


The  Elphidiids  and  Miliolids  are also present in low num-

bers: these are salinity stress-resistant taxa. As the stressful 

environment prevents the occurrence of depth-indicating 

normal marine deep taxa, reconstructing water depth is not 


Fig. 6. Lithology, biostratigraphy and palaeo-environmental reconstruction of the Soltvadkert Trough evaporite occurrence. The evaporite 

horizon is highlighted in yellow. Palaeo-environment reconstructions are based on the percentage of the following salinity stress tolerant 

benthic foraminifera species in the total assemblage: Ammonia beccarii tepida, Elphidium crispum, Elphidium granosum, Elphidium spp, 

Triloculina sp, Spiroloculina sp, Quinqeloculina cf bogdanowicz, Miliolid spp, Adelosina schreibersi (max. 80 %); deep speciesSiphonina 

reticulata  and  Cibicides kullenbergi (max.  25 %);  oxyphilic:  Cibicides lobatulus, Heterolepa dutemplei, Lenticulina sp (max.  25 %);  

dysoxic or inbenthic: Bulimina elongata, Pullenia bulloides (max. 25 %).

background image




, 2017, 68, 3, 193 – 206

Post-evaporitic environment

Common occurrences of Braarudosphaera bigelowii were 

observed on the top of the investigated boreholes, within NN6. 

High percentages of this species point to decreasing salinity, 

usually caused by fresh water inflow.

Above the evaporite horizon there are not many samples 

available with foraminifera content. However, based on the 

absence of planktonic forms and the few benthic specimens 

found, it was likely to be shallower. On the other hand, the 

presence of Cassidulina oblonga might suggest greater water 

depth (Singh & Gupta 2004), while shallow forms are easily 


Similarities of CFD evaporites and the newly discovered 

Soltvadkert Trough occurrence 

Correlation of Badenian evaporites 

Dating the Badenian evaporites from classical sites are in 

the forefront of Paratethys research, due to developments in 

determining absolute age, astronomical tuning or magneto-

stratigraphy (Peryt 2006; Bukowski et al. 2010; de Leeuw et 

al.  2010;  Śliwiński  et  al.  2012;  Hohenegger  et  al.  2014). 

Thinking of BSC evaporites as one isochronous evaporitic 

event seems a plausible explanation for many of the observed 

phenomena. Hohenegger et al. (2014) suggest that the BSC is 

restricted to the uppermost NN5 and lowermost NN6. In North 

Bosnia salt deposits were dated as uppermost NN5 (Ćorić et 

al. 2007) making them BSC evaporites. Based on calcareous 

nannoplankton and foraminifera the age of the thick evapo-

rites  discussed  here  is  also  top  of  NN5  or  lowermost  NN6, 

making this occurrence the first well-documented BSC evapo-

rites discovered in Hungary.

Depositional environments of evaporites

There are many similarities between the classical evaporites 

of the Carpathian Foredeep and the Hungarian occurrence 

 presented here. At both localities the evaporitic succession 

starts generally with halite and is succeeded by sulphates ex-

tending the basin centre to the margins of the evaporitic basin. 

In this occurrence halite formation also predates  sulphate 

 formation (Fig. 5), where sulphates in the form of anhydrites 

occur  in  nearby  wells  on  the  basin  margin  (Peryt  2006; 

 Bukowski et al. 2007).  

There is a general agreement that, according to the deep wa-

ter model, the prerequisite of evaporite formation is an over-

saturated and highly-dense brine. Such brines have much 

higher density than normal saline water, and thus are always 

found in the deepest part of the basin, with water of lower 

 salinity layered above. In spite of the low number of forami-

nifera found due to stress and dilution in sediment, it provides 

crucial evidence on the environmental constraints before and 

after the evaporite formation in the Soltvadkert Trough (Fig. 6). 

Based on the foraminiferal assemblage the evaporitic event 

was preceded by a rather deep normal marine environment 

thought to be shelf break or upperslope giving a depth estimate 

of about 400 m or deeper based on Late  Miocene Mediterra-

nean analogues (Van Hinsbergen et al. 2005; Kouwenhoven & 

Van der Zwaan 2006). The pre- evaporitic sediments also con-

tain high numbers of planktonic foraminifera, indicating  

a pelagic, open marine environment. The dominance of 

 Globigerina bulloides in layers below the evaporites in 

 Wieliczka (CFD, Poland) (Gonera 2014) and in the lowermost 

samples preceding the evaporite deposition in the presented 

sequence from Hungary is remarkable. The species G. bulloides 

is a typical upwelling species  pointing to high surface water 

productivity in our case (Sousa et al. 2014). The benthic 

 species  Siphonina reticulata and deep- living Cibicides species 

like  Cibicides kullenbergi, a member of the C. kullenbergi- 

mundulus complex with a depth range deeper then 500–600 m 

(Van  Morkhoven  et  al.  1986;  Van  Hinsbergen  et  al.  2005; 

 Kouwenhoven  &  Van  der  Zwaan  2006)  all  indicate  upper 

bathyal depth. Based on the same two species of 


S. reticulata and C. kullenbergi and on a high plankton/ benthos 

ratio similar water depths were suggested in Hungary in Báldi 

et al. (2002) and Báldi (2006). Concerning reconstruction of 

the dissolved oxygen levels of bottom water during deposi-

tion, the dysoxy indicators among the benthic foraminifera 

species such as Bulimina elongata described here and also in 

the CFD (Peryt 2013) strongly suggest enhanced vertical 

strati fication coupled with high-productivity surface water 

and increased organic flux to the bottom. This is supported by 

the seismic section and palaeogeographical reconstruction 

showing the evaporites in the deepest depression (Figs. 2, 3). 

Occasional bottom water anoxy is further corroborated by the 

formation of microlaminites common around the evaporitic 

horizon in the investigated well. These similarities of classical 

CFD and Pannonian Basin evaporites possibly point to the 

 existence of continuous connections between these evaporitic 

basins during deposition in the entire CP. 

Explanation of the late recognition of evaporites in the 

 Pannonian  Basin

The rather late recognition of BSC evaporites in Hungary is 

due to many factors:

•  all our information on the local Miocene geology of the 

Great Plain is based on seismic data and mostly just  cuttings, 

as in the present work. 

•  the evaporitic sequence presented here is covered by thou-

sands of metres of younger sediments like all the Middle 

Miocene of the Great Plain. 

•  there is the possibility that 10–15 metres of halite beds 

would be overlooked on old, low resolution 2D seismic sec-

tions, as it is below the resolution of what is now an out-

dated method. 

•  most oil exploration wells in the area were drilled into tec-

tonic highs, and not into structures like the Soltvadkert 

Trough discussed here.

•  as halite is perfectly soluble in the water-based drilling 

 fluids generally used, there is a high possibility of a few 

background image




, 2017, 68, 3, 193 – 206

 metres of evaporites being missed in the old, mainly hydro-

carbon exploration wells, in the absence of modern mud and 

wireline logging control. 

•  problems arising with biostratigraphic methods are two-


 ◦ poor preservation of the highly consolidated samples 

from great depths makes the identification of biostrati-

graphic markers difficult, thus delaying the recognition of 

these evaporites. 

 ◦ the high sedimentation rates in the investigated area 

during the Middle and Late Miocene diluted the strati-

graphic marker fossils making the recognition of evapo-

rites difficult.  In the absence of good stratigraphic control 

the evaporitic layers found in Hungary were thought to be 

younger or older then fully-marine Badenian.


A novel approach to understanding evaporites in the 

 geological record of the CP (Fig.7)

The discovery of this new, massive evaporite occurrence 

and the growing evidence of more occurrences in proximity 

(Jámbor  et  al.  1976;  Cserepes-Meszéna  et  al.  2000,  2004; 

Palotai  &  Csontos  2012)  and  in  the  CP  (Túnyi  et  al.  2005; 

Bukowski et al. 2007; Ćorić et al. 2007) has inspired a new 

way of thinking of evaporites in the geological 

record. Though the geogra phical extent (<10 km


of the evaporites discussed here is small (Fig. 3 c), 

we can assume that these occurrences are rem-

nants of a widespread evaporitic layer formed 

during the short period of the BSC (0.2– 0.6 Ma, 

de Leeuw et al. 2010). Based on our observations 

the Soltvadkert salt basin was formed in a deep, 

rapidly sinking basin with high sedimentation 

rates, where anoxia deve loped due to the oversa-

turated heavy hypersaline brine accu mulating at 

the bottom of the basin. This sort of depositional 

environment is believed not to be unique and 

 restricted only to the Soltvadkert Trough, but 

possibly in all deep salt basins in the CP reaching 

a certain water depth evaporites were formed 

during the BSC.

In the Pannonian Basin and generally in the CP 

there are different fates awaiting any evaporites 

formed during the BSC that determine their 

 future presence or absence in the geological 

 record later. These are the two scenarios presen ted 

here (Fig. 7).

In scenario A the evaporites are preserved in 

the geological record, as in the historical eva-

porite sites of the CFD, and the more recent  

East Slovakian Basin occurrence, or the here 

 presented Pannonian Basin or the Transylvanian 

Basin. These are just remnants of a once wide-

spread evapo ritic layer formed during the BSC in all deep 

 basins of the entire CP. In this scenario evaporites were pre-

served in actively subsiding basins overlain by younger sedi-

ments that protected the evaporites from being recycled. Some 

scenario A evaporite occurrences, though present in the geo-

logical record, appear to have been overlooked, as discussed 


In scenario B evaporites are absent from the geological 

 record, because salt deposited during the BSC is presumed to 

be reworked and dissolved in most of the CP area later during 

the Badenian and Sarmatian. It is easy to imagine the rewor-

king of evaporites so that they do not leave much evidence 

behind in the geological record, as halite dissolves in water, 

while sulphates are soft and grind to nothing in a shallow 

 water high energy environment. Recycling of evaporites is 

probably a more important process then thought before as it 

has been recorded from the East Slovakian Basin (Bukowski 

et  al.  2007),  and  from  the  Carpathian  Foredeep  (Kolasa  & 

Slaczka  1985;  Cendón  et  al.  2004;  Głuszyński  & Aleksan-

drowski 2016) repeatedly. However, recognizing any original 

sedimentary structures of resedimentation might be difficult as 

evaporites  are  often  tectonized  also  in  Hungary  (Palotai  & 

Csontos 2012) or in the Transylvanian Basin where salt dia-

pirism  is  typical  of  the  region  (Krézsek  &  Filipescu  2005; 

Krézsek & Bally 2006). 

The traditionally accepted view of Sarmatian salinity 

 emphasizes its transitional in-between nature as brackish, 

Fig. 7. The fate of the BSC evaporites inside the Carpathian Arcs. According to 

scenario A evaporites were preserved in deep basins with high sedimentation rates, 

while in scenario B evaporites were recycled making the Late Badenian or 

 Sarmatian Sea hyper- or normal saline.

background image




, 2017, 68, 3, 193 – 206

 following the fully-marine Badenian and preceding the very 

low-salinity Pannonian. This has been challenged by some 

 authors, who call Sarmatian brackishness a mere “myth” (Piller 

& Harzhauser 2005). Their doubt was based on isotope evi-

dence and the presence of hypersaline species along with the 

commonly observed phenomena of heavy calcification that 

cannot happen in a brackish environment, all of which point to 

a normal marine or even hypersaline environment in the Sar-

matian. The carbonate-factory nature of the Sarmatian was 

established based on oolites and heavily calcified molluscs 

(Harzhauser  &  Kowalke  2002;  Piller  &  Harzhauser  2005). 

Other authors confirmed this idea by reconstructing hyper- or 

normal saline conditions in the Sarmatian based on palaeo- 

ecologic evidence of fossil assemblages (Cornée et al. 2009; 

Tóth et al. 2010; Bitner et al. 2014; Harzhauser et al. 2014). 

Our suggested scenario B sheds new light on this “myth” of 

the brackish Sarmatian Sea by explaining the origin of salt in 

a hyper- or normal saline Sarmatian (Harzhauser & Kowalke 

2002; Piller & Harzhauser 2005; Cornée et al. 2009; Tóth et al. 

2010; Bitner et al. 2014; Harzhauser et al. 2014) as being recy-

cled BSC halite dissolved into the sea water. This scenario 

makes feasible the idea of a Sarmatian Sea of variable salinity 

in both space and time from brackish to hypersaline. Wide-

spread Sarmatian oolites are well known in Hungary (e.g., 

Tinnye Formation), and particularly NW from the Soltvadkert 

location in the Zsámbék Basin, where a hypersaline lagoon 

was described as part of the brackish Sarmatian Sea in  

a highly-unlikely oceanographic setting. Hypersalinity was 

explained by renewed connections to the Mediterranean 

(Cornée et al. 2009; Tóth et al. 2010). Ever since, more and 

more evidence has accumulated for normal salinity or hyper-

salinity of the Sarmatian (Bitner et al. 2014; Harzhauser et al. 

2014) but without a plausible climate-related driving force of 

evaporation such as aridity or lowered fresh water influx. Not-

withstanding the role of changing seaways in the Paratethys, 

and a conceivable Kosovian Mediterranean connection  (Bartol 

et al. 2014) after the BSC but still in the Badenian, it is sug-

gested that these oolites and hypersaline shallow-water 

 Sarmatian facies in the entire CP developed locally due to 

 recycling of BSC evaporites.

There is a recent analogue for the recycling of the BSC 

evaporites and for deep-basin evaporite formation during the 

BSC — the deep, hypersaline evaporitic basins in the Eastern 

Mediterranean (the Bannock and Tyro basins) where Messinian 

(Late Miocene) salt layers are currently dissolving into the 

present-day sea (Camerlenghi 1990; De Lange et al. 1990). 

The analogy is far from perfect as recycling in the Sarmatian 

probably happened more generally in shallow environments as 

the widespread oolite shoals indicate. On the other hand these 

deep Mediterranean basins with strong density stratification, 

where bottom-water brines can become supersaturated and 

evaporites can precipitate are good analogues for the BSC 

 eva porite occurrence presented here. In these Mediterranean 

 basins microlaminites are formed under anoxic conditions, 

similar to the studied BSC sequence from the Soltvadkert 


Furthermore, there is evidence supporting resedimentation 

of BSC evaporites from the field of micropalaeontology. 

 Sarmatian sediments regularly contain high percentages of 

 reworked calcareous nannofossils from the Badenian (with 

Helicosphaera waltrans and Sphenolithus heteromorphus

 indicating strong erosion and redeposition of the lower and 

middle Badenian sediments. Changes in the percentages of the 

reworked calcareous nannoplankton were successfully used 

for the reconstruction of the palaeoenvironment during the 

Karpathian and Badenian in the Central Paratethys (Ćorić & 

Rögl 2004). In many cases this reworking hinders the use of 

nannoplankton for the stratigraphical subdivision of the 

 Sarmatian, but can serve as additional evidence for dissolution 

of Badenian evaporites.

The BSC evaporite formation took place not only in deep 

water settings, like the Soltvadkert Trough presented here, but 

there is a considerable amount of literature claiming that BSC 

depositional environments were shallow (Ghergari et al. 1991; 

Bąbel  2004,  2012;  Bąbel  &  Becker  2006).  Perhaps,  some 

 shallow water evaporites can avoid resedimentation depen-

ding on the particular geohistory of the salt basin. Models also 

exist of combining deep and shallow water formation of 

evapo rites for the same basin, like in the Transylvanian Basin 

(Krézsek et al. 2010). Solving this puzzle is out of scope for 

the work presented here.

The reworking evaporite scenario B might have implica-

tions concerning the global cooling that takes place in the 

Middle Miocene. This climate transition (14.2 to 13.9 Ma) 

with its stepwise cooling and enhanced glaciation is not fully 

understood in many aspects (Holbourn et al. 2005, 2013; 

 DeConto et al. 2008; Knorr & Lohmann 2014). According to 

scenario B, the BSC evaporite formation was not limited to the 

well known classical localities, but was much more wide-

spread, perhaps in the entire deep water CP to be recycled later 

in the Badenian or Sarmatian. Taking into account possible 

coeval evaporites from the Middle East (Al-Husseini et al. 

2010; Abu Seif 2014), the amount of locked-up salts during 

the BSC might have been underestimated. The correlation of 

the global cooling event Mi3b corresponding to the base of the 

Serrava lian (Hilgen et al. 2012) with the BSC is rather well 

established  (Karami  et  al.  2011;  Gebhardt  &  Roetzel  2012; 

Peryt 2013; Hohenegger et al. 2014 among others) although 

accor ding to many authors there was a cooling period prece-

ding the evaporite deposition (Bicchi et al. 2003; Bukowski et 

al. 2010; de Leeuw et al. 2010; Peryt & Gedl 2010; Gonera 

2013).  This cooling, following an extreme climate optimum, 

did not change the hydrological budget keeping evaporation 

excee ding precipitation leading to anti-estuarine circulation 

(Báldi 2006; de Leeuw et al. 2010), thus making possible the 

formation of evaporites. The exact nature of the trigger to start 

BSC formation is not fully reconstructed, neither is the amount 

of evaporite formed during the BSC known. Thus, mass 

 balance calculations concerning the extraction of NaCl from 

the World Ocean during BSC could be sensitive to the amount 

of evaporite precipitated and locked up in the Paratethys by 

reducing global salinity. A negative shift in salinity, even if it 

background image




, 2017, 68, 3, 193 – 206

is just a slight change, might increase ice formation and global 

cooling by its positive albedo feedback. Hence, it seems 

worthwile to reconsider the role of the Paratethys during the 

BSC as a  factor influencing global climate, as the amount  

of locked up evaporites may have been underestimated.  

The occasional modelling study taking into account the 

 Paratethys (Karami et al. 2011), has a different focus, but 

 perhaps future research can be justified to take into account 

the larger quantity of evaporites based on the presented work.


The newly-discovered massive evaporites from the Soltvad-

kert Trough in Hungary, 50 metres thick, are described and 

documented in the present work. They can be correlated with 

the classical evaporite occurrences of Wielician age formed 

during the salinity crises in the Badenian of the CFD based on 

calcareous nannoplankton and foraminifera biostratigraphy. 

The evaporites belong to the top of NN5 lowermost NN6, and 

the species O. suturalis has LO 15.1 Ma below the evaporitic 

horizon (Cicha et al. 1998; Hohenegger et al. 2014). Based on 

this evidence the studied evaporitic layers can be correlated to 

the classical CFD or Transylvanian deposits making its age 

undeniably Wielician.

Palaeoenvironmental reconstructions of the Soltvadkert 

Trough prior to evaporite formation, based on foraminifera, 

suggest deep water setting with highly stratified water column, 

oversaturated brine at the bottom, while surface water turned 

eutrophic. This high organic matter flux to the sea floor led to 

dysoxy at the bottom progressing into total anoxy during 

evaporite formation, and resulting in the formation of micro-

laminites in clay. This salt basin can be characterized by high 

sedimentation rates, also a prerequisite of preserving these 


The Soltvadkert Trough evaporites appearantly just one of 

many occurrences recently found in the CP, for example, NE 

from our locality in the East Slovakian Basin (Túnyi et al. 

2005; Bukowski et al. 2007) or to the south, the Tuzla Basin 

(Ćorić et al. 2007), are all parts of the Pannonian Basin System. 

Also from Hungary there are some additional boreholes 

 transecting evaporites NW of the study area in the Zsámbék 

Basin and nearby according to the data repository (Jámbor et 

al.  1976;  Cserepes-Meszéna  et  al.  2000,  2004)  and  publi-

cations (Cornée et al. 2009; Tóth et al. 2010; Palotai &  Csontos 


Inspired by these new evaporite occurrences, different sce-

narios were developed to explain the presence or absence of 

evaporites in the geological record. It is presumed that during 

the salinity crises evaporites were forming in a much larger 

area than thought before, in the entire Central Paratethys. 

 Concerning the further fate of the evaporite layer, two scena-

rios were developed:

•  Scenario A: the presence of evaporites in the geological 

 record is due to deposition in deep, rapidly sinking basins 

with high sedimentation rates, where the resedimenta-

tion-prone evaporites could remain under the protecting 

 layer of covering sediments as in the Soltvadkert Trough 

(Figs. 2, 3). These are the salt basins where evaporites were 

preserved as the remnants of a widespread evapo ritic layer 

formed during the sali nity crisis.  

•  Scenario B: the evaporites deposited during the BSC were 

exposed later in the Badenian or Sarmatian to be recycled 

into the Sarmatian Sea, similarily to present day analogues 

(Camerlenghi 1990; De Lange et al. 1990). Salts and sul-

phates are both known to be easily recycled as  observed at 

several  places  in  the  Paratethys  (Kolasa  &  Slaczka  1985; 

Cendón  et  al.  2004;  Bukowski  et  al.  2007;  Głuszyński  & 

Aleksandrowski 2016).

The new approach explaining the presence or absence of 

evaporites in the geological record inside the Carpathians 

sheds light on two scientific problems:

•  Scenario B gives a hypothetical explanation for the  recorded 

occurrence of Sarmatian hyper- or normal sali nity by 

 providing the source of salts from recycling the BSC evapo-

rite. There has never been convincing evidence shown for 

excess evaporation due to aridity or  reduced freshwater 

 influx locally to support Sarmatian non-brackish salinity, 

while the confirming palaeonto 



gical and geological 

 evidence  is  abundant  (Harzhauser  &  Kowalke  2002;  

Piller & Harzhauser 2005; Cornée et al. 2009; Tóth et al. 

2010; Bitner et al. 2014). Introducing the idea of reworking 

BSC salts, a Sarmatian Sea of variable salinity in both space 

and time from brackish to hyper saline becomes more 


conceivable. This way scenario B raises further 


doubts about the unified brackish nature of the Sarmatian 

(Piller & Harzhauser 2005; Tóth et al. 2010; Bitner et al. 


•  The scenarios presented here imply a much larger amount of 

evaporites being locked up in the Paratethys during the 

half-million years of the BSC, than was previously  supposed. 

This draws attention to the relationship of the base Serra-

valian Mi3b global cooling event to the evaporite formation 

in the Badenian Paratethys. If we suppose, that basins  

were isolated by eustatic sealevel drop and ignore for  

the moment the possible tectonic causes, then the causality 

in the correlation of the two events might be reconsidered. 

According to the here presented scenarios BSC evaporites 

formed in a much larger area and quantity then previously 

supposed, and perhaps could have been of a magnitude  

to shift global salinity and enhance ice formation in  

the polar regions reversing the causality. Hopefully future 

research on modelling the mass balance of salts in the  

World Ocean will help us to understand better the relation-

ship between the BSC event and the Miocene climate 


Acknowledgements: We are grateful for RAG Kiha Ltd. for 

supporting this publication reporting the evaporite occurrence 

in the Soltvadkert Trough of the Hungarian Plain. We are 

grateful to William Andrew Parker for language correction of 

the manuscript.

background image




, 2017, 68, 3, 193 – 206


Abu Seif E.-S. 2014: Geotechnical Characteristics of Anhydrite/ 

Gypsum Transformation in the Middle Miocene Evaporites, Red 

Sea Coast, Egypt. Arabian Journal for Science and Engineering 

39, 1, 247–260.

Al-Husseini M.I., Dia Mahmoud M. & Matthews R.K. 2010: Middle 

EAST geologic time scale 2010: MIocene kareem sequence, gulf 

of suez, Egypt. GeoArabia 15, 2, 175–204.

Bąbel M. 2004: Badenian evaporite basin of the northern Carpathian 

Foredeep as a drawdown salina basin. Acta Geol. Polon. 54, 3, 


Bąbel  M.  2012:  Facies  and  depositional  environments  of  the  Nida 

Gypsum deposits (middle Miocene, Carpathian Foredeep, 

 southern  Poland).  Geol. Quarterly 43, 4, 405–428.

Bąbel M. & Becker A. 2006: Cyclonic brine-flow pattern recorded by 

oriented gypsum crystals in the Badenian evaporite basin of  

the northern Carpathian Foredeep. J. Sediment. Res.  76,  7,  


Báldi  K.  2006:  Paleoceanography  and  climate  of  the  Badenian 

 (Middle Miocene, 16.4–13.0 Ma) in the Central Paratethys based 

on  foraminifera  and  stable  isotope  (δ


O  and  δ


C) evidence.  

Int. J. Earth Sci. 95, 1, 119–142.

Báldi  K.,  Benkovics  L.  &  Sztanó  O.  2002:  Badenian  (Middle  

Miocene) basin development in SW Hungary: subsidence history 

based on quantitative paleobathymetry of foraminifera. Int. J. 

Earth Sci. 91, 3, 490–504.

Balintoni I. & Petrescu I. 2002: A hypothesis on the Transylvanian 

halite genesis. Studia Universitatis Babes-Bolyai Geologia, 

Spec. iss. 1, 51–61.

Bartol M., Mikuž V. & Horvat A. 2014: Palaeontological evidence of 

communication between the Central Paratethys and the Mediter-

ranean in the late Badenian/early Serravalian. Palaeogeogr. 

 Palaeoclimatol.  Palaeoecol. 394, 0, 144–157.

Bicchi E., Ferrero E. & Gonera M. 2003: Palaeoclimatic interpreta-

tion based on Middle Miocene planktonic Foraminifera: 


the Silesia Basin (Paratethys) and Monferrato (Tethys) records. 

 Palaeogeogr. Palaeoclimatol. Palaeoecol. 196, 3–4, 265–303.

Bitner M.A., Zágoršek K., Halásová E., Hudáčková N. & Jamrich M. 

2014: Brachiopods and bryozoans from the Sandberg section 

(Vienna Basin, Central Paratethys) and their significance for 

 environmental  interpretation  of  the  Early  Sarmatian  (=Middle 

Miocene) Sea. Neues Jahrb. Geol. Palaontol. Abh. 273, 2, 


Böhme M. 2003: The Miocene Climatic Optimum: evidence from 


ectothermic vertebrates of Central Europe. Palaeogeogr. 

 Palaeoclimatol.  Palaeoecol. 195, 3–4, 389–401.

Bukowski K., Czapowski G., Karoli S. & Bąbel M. 2007: Sedimen-

tology and geochemistry of the Middle Miocene (Badenian) 

salt-bearing succession from East Slovakian Basin (Zbudza 

 Formation).  Geol. Soc., London, Spec. Publ. 285, 1, 247–264.

Bukowski K., de Leeuw A., Gonera M., Kuiper K. F., Krzywiec P. & 

Peryt D. 2010: Badenian tuffite levels within the Carpathian 

 orogenic front (Gdów–Bochnia area, Southern Poland): radio- 

isotopic dating and stratigraphic position. Geol. Quarterly 54. 4, 


Bukowski  K.,  de  Leeuw  A.  &  Gonera  M.  2013:  Isotopic  Events 

Preceding the Badenian Salinity Crisis in the Central Paratethys, 

Middle Miocene, Poland. In: Rocha Rogério Pais, João Kull-

berg, José Carlos, Finney Stanley (Eds): STRATI 2013: First 

International Congress on Stratigraphy At the Cutting Edge of 

Stratigraphy. 837–839.

Camerlenghi A. 1990: Anoxic basins of the eastern Mediterranean: 

geological framework. Mar. Chem. 31, 1–3, 1–19.

Cendón D.I., Peryt T.M., Ayora C., Pueyo J.J. & Taberner C. 2004: 

The importance of recycling processes in the Middle Miocene 

Badenian evaporite basin (Carpathian foredeep): palaeoenviron-

mental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 

212, 1–2, 141–158.

Cicha I., Rögl F., Rupp C. & Ctyroka J. 1998: Oligocene–Miocene 

foraminifera of the Central Paratethys. Abhandlungen der 

 Senckenbergischen Naturforschenden Gesellschaft, 1–153.

Ćorić  S.  ,  Rögl  F.  2004:  Roggendorf-1  borehole,  a  key-section  for 

Lower Badenian transgressions and the stratigraphic position of 

the Grund Formation (Molasse Basin, Lower Austria). Geol. 

Carpath. 55, 2, 165–178. 

Ćorić S., Vrabac S., Ferhatbegović Z. & Ðulović I. 2007: Biostrati-

graphy of Middle Miocene Sediments from the Tuzla Basin 

(North-eastern Bosnia) Based on Foraminifera and Calcareous 

Nannoplankton. Neogene of Central and South-Eastern Europe

2, 21–23.

Cornée J.J., Moissette P., Saint Martin J.P., Kázmér M., Tóth E., 

Görög A., Dulai A. & Müller P. 2009: Marine carbonate systems 

in the Sarmatian (Middle Miocene) of the Central Paratethys: 

The Zsámbék Basin of Hungary. Sedimentology  56,  6,  


Császár  G.,  Akáb  L.,  Jaskó  T.,  Simonyi  D.,  Tiefenbacher  I.  & 

 Brezsnyánszky K. 1997: Basic Litostratigraphic Units of Hun-

gary — Charts and short descriptions. Geological Institute of 

Hungary, Budapest, 35–43.

Cserepes-Meszéna B., Szuromi-Korecz A., Bérczi I., Nagymarossy 

A.,  Margitics-Sipőcz  É.,  Morgenstein  J.  &  Mets  G.  2000: 

 Summary of geological report on rocksamples of Valkó-1 

 borehole [Összefoglaló geológiai jelentés a Valkó-1 kutató-

fúrás  kőzetmintáinak  geológiai  vizsgálatáról].  Magyar Állami 

Földtani Geofizikai és Bányászati Adattár (Hungarian Geo-

logical, Geophysical and Mining data depository). MOL Rt., 


Cserepes-Meszéna  B.,  Szuromi-Korecz  A.,  Margitics-Sipőcz  É., 

Nagy-Bodor E., Siegl-Farkas Á., Nagymarossy A., Kocsis M. & 

Morgenstein J. 2004: Summary of geological report on cuttings 

and core material petrology and paleontology from Ráckeve-1 

borehole [Összefoglaló geológiai jelentés a Ráckeve-1 sz. fúrás 

furadékszemcséinek  és  maganyagának  kőzettani-,  őslénytani 

vizsgálatainak  eredményeiről].  Magyar Állami Földtani 

Geofizikai és Bányászati Adattár. (Hungarian Geological, Geo-

physical and Mining data depository), 1–45.

De Lange G.J., Middelburg J.J., Van der Weijden C.H., Catalano G., 

Luther Iii G.W., Hydes D.J., Woittiez J.R.W. & Klinkhammer 

G.P. 1990: Composition of anoxic hypersaline brines in the Tyro 

and Bannock Basins, eastern Mediterranean. Mar. Chem. 31, 

1–3, 63–88.

De Leeuw A., Bukowski K., Krijgsman W. & Kuiper K.F. 2010: Age 

of the Badenian salinity crisis; impact of Miocene climate varia-

bility on the circum-Mediterranean region. Geology 38, 8, 715–


De Leeuw A., Filipescu S., Maţenco L., Krijgsman W., Kuiper K. & 

Stoica M. 2013: Paleomagnetic and chronostratigraphic con-

straints on the Middle to Late Miocene evolution of the Transyl-

vanian Basin (Romania): Implications for Central Paratethys 

stratigraphy and emplacement of the Tisza–Dacia plate. Global 

Planet. Change 103, 82–98.

DeConto R.M., Pollard D., Wilson P. A., Pälike H., Lear C.H.,  

Pagani M. 2008: Thresholds for Cenozoic bipolar glaciation.  

Nature 455, 7213, 652–656.

Franců J., Rudinec R. & Šimánek V. 1989: Hydrocarbon generation 

zone in the East Slovakian Neogene basin: model and geoche-

mical evidence. Geologický Zborník 40, 3, 355–384. 

Gebhardt  H.  &  Roetzel  R.  2012:  The  Antarctic  viewpoint  of  the 

 Central Paratethys: cause, timing, and duration of a deep valley 

incision in the Middle Miocene Alpine–Carpathian Foredeep of 

Lower Austria. Int. J. Earth Sci. 102, 4, 977–987.

background image




, 2017, 68, 3, 193 – 206

Ghergari L., Mészáros N., Hosu A., Filipescu S. & Chira C. 1991:  

The gypsiferous formation at Cheia (Cluj County). Studia 

 universitatis Babes-Bolyai Geologia XXXVI, 1, 13–28.

Głuszyński A. & Aleksandrowski P. 2016: Deep palaeovalley in the 

floor of Polish Carpathian Foredeep basin near Pilzno and its 

control on facies of Badenian (Middle Miocene) evaporites. 

Geol. Quarterly 60, 2, 493–516.

Gonera M. 2013: Globorotaliid intervals of the sub-evaporite badenian 

(Middle Miocene) in the upper silesia basin (Central Paratethys, 

Poland). Geol. Quarterly 57, 4, 757–768.

Gonera M. 2014: Wielician (Mid dle Badenian) foraminifers from the 

stratotype area — Wieliczka Salt Mine, Poland (Paratethys, 

Middle Miocene). Geol. Quarterly., 58, 3, 427–438.

Gonera M. & Bukowski K. 2012_ Isotopic events in the Early/Middle 

Badenian (Miocene) of the Upper Silesia Basin (Central Para-

tethys). Geol. Quarterly 56, 3, 561–568.

Hámor G. 1998: Hungarian Miocene Stratigraphy [A magyarországi 

miocén rétegtana]. In: Bérczi I., Jámbor Á. (Eds.): The stratigra-

phy of Hungarian Formations [Magyarország geológiai képződ-

ményeinek  rétegtana].  MOL Rt., Magyar Állami Földtani In-

tézet, Budapest, 437–453 (in Hungarian).

Hámor G. 2001: Miocene palaeogeography of the Carpathian Basin. 

Explanatory notes to the Miocene palaeogeographic maps of the 

Carpathian Basin: Explanatory notes of the Geological Institute 

of Hungary, Budapest, 1–71.

Harzhauser M. & Kowalke T. 2002: Sarmatian (Late Middle  Miocene) 

gastropod assemblages of the Central Paratethys. Facies  46, 


Harzhauser M., Peckmann J., Birgel D., Draganits E., Mandic O., 

Theobalt D. & Huemer J. 2014: Stromatolites in the Paratethys 

Sea during the Middle Miocene climate transition as witness of 

the Badenian salinity crisis. Facies 60, 2, 429–444.

Hilgen F.J., Lourens L.J., Van Dam J.A., Beu A.G., Boyes A.F., 

 Cooper R.A., Krijgsman W., Ogg J.G., Piller W.E. & Wilson D.S. 

2012: Chapter 29 - The Neogene Period. In: Gradstein F.M., 

Schmitz J.G.O.D. & Ogg G.M. (Eds.): The Geologic Time Scale. 

Elsevier, Boston, 923–978.

Hohenegger J. & Wagreich M. 2011: Time calibration of sedimentary 

sections based on insolation cycles using combined cross-corre-

lation: dating the gone Badenian stratotype (Middle Miocene, 

Paratethys, Vienna Basin, Austria) as an example. Int. J. Earth 

Sci. 101, 1, 339–349.

Hohenegger J., Ćorić S. & Wagreich M. 2014: Timing of the middle 

miocene badenian stage of the central paratethys. Geol. Carpath. 

65, 1, 55–66.

Holbourn A., Kuhnt W., Schulz M., & Erlenkeuser H. 2005: Impacts 

of orbital forcing and atmospheric carbon dioxide on Miocene 

ice-sheet expansion. Nature 438, 7067, 483–487.

Holbourn A., Kuhnt W., Clemens S., Prell W. & Andersen N. 2013: 

Middle to late Miocene stepwise climate cooling: Evidence from 

a high-resolution deep water isotope curve spanning 8 million 

years. Paleoceanography 28, 4, 688–699.

Horváth F., Bada G., Csontos L., Dövényi L., Fodor L., Grenerczy G., 

Síkhegyi F., Szafián P., Székely B., Tímár G., Tóth L. & Tóth T. 

2004: Atlas of the present-day geodynamics of the Pannonian 

basin. Euroconform maps with explanatory text. Hungarian 

 National Science Foundation (OTKA) project No T034928,

Jámbor Á., Korpás L., Oravecz J. & Ravasz C. 1976: Results on the 

investigation of the   Bő-2 borehole from Budajenő [A budajenői 

Bő-2sz. fúrás rétegsorának vizsgálati eredményei]. Magyar Álla-

mi Földtani Geofizikai és Bányászati Adattár. (Hungarian Geo-

logical, Geophysical and Mining Data Repository), 1344/3.

Karami M.P., de Leeuw A., Krijgsman W., Meijer P.T. & Wortel M.

J.R. 2011: The role of gateways in the evolution of temperature 

and salinity of semi-enclosed basins: An oceanic box model for 

the Miocene Mediterranean Sea and Paratethys. Global Planet. 

Change, 79, 1–2, 73–88.

Knorr G. & Lohmann G. 2014: Climate warming during antarctic ice 

sheet expansion at the Middle Miocene transition. Nature 

 Geoscience, 7, 5, 376–381.

Kolasa K & Ślaczka A. 1985: Sedimentary salt megabreccias exposed 

in the Wieliczka mine, Fore-Carpathian depression. Acta Geol. 

Polon. 35, 222–235

Kouwenhoven T.J. & Van der Zwaan G.J. 2006: A reconstruction of 

late Miocene Mediterranean circulation patterns using benthic 

foraminifera.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 

1–4, 373–385.

Kouwenhoven T.J., Morigi C., Negri A., Giunta S., Krijgsman W. & 

Rouchy J.M. 2006: Paleoenvironmental evolution of the eastern 

Mediterranean during the Messinian: Constraints from integrated 

microfossil data of the Pissouri Basin (Cyprus). Mar. Micro-

paleontol. 60, 1, 17–44.

Kováč M., Kováč P., Marko F., Karoli S. &  Janočko J. 1995: The East 

Slovakian Basin — A complex back-arc basin. Tectonophysics 

252,  1, 453–466.

Kováč M., Andreyeva-Grigorovich A., Bajraktarević Z., Brzobohatý 

R., Filipescu S., Fodor L., Harzhauser M., Nagymarosy A., 

Oszczypko  N.,  Pavelić  D.,  Rögl  F.,  Saftić  B.,  Sliva  L.  & 

 Studencka B. 2007: Badenian evolution of the Central Para-

tethys Sea: Paleogeography, climate and eustatic sea-level 

changes. Geol. Carpath. 58, 6, 579–606.

Krézsek Cs. & Bally A.W. 2006: The Transylvanian Basin (Romania) 

and its relation to the Carpathian fold and thrust belt: Insights in 

gravitational salt tectonics. Mar. Petrol. Geol. 23, 4, 405–442.

Krézsek Cs. & Filipescu S. 2005: Middle to late Miocene sequence 

stratigraphy of the Transylvanian Basin (Romania). Tectono-

physics 410, 1, 437–463.

Krézsek Cs., Filipescu S., Silye L., Maţenco L. & Doust H. 2010: 

Miocene facies associations and sedimentary evolution of the 

Southern Transylvanian Basin (Romania): Implications for 

 hydrocarbon  exploration.  Mar. Petrol. Geol. 27, 1, 191–214.

Magyar  I.,  Radivojević  D.,  Sztanó  O.,  Synak  R.,  Ujszászi  K.  &   

Pócsik M. 2013: Progradation of the paleo-Danube shelf margin 

across the Pannonian Basin during the Late Miocene and Early 

Pliocene. Global Planet. Change 103, 1, 168–173.

Martini E. 1971: Standard Tertiary and Quaternary calcareous nanno-

plankton zonation. In: Proceedings of the Second Planktonic 

Conference, Roma 1970. Tecnoscienza, 739–785. 

Palotai  M.  &  Csontos  L.  2012:  Flexural  basin  reworked  by  salt- 

related pull-apart structures: The Adony Basin. Central   European 

Geology 55, 2, 147–180. 

Papp A., Cicha I., Seneš J. & Steininger F. 1978: M4 — Badenien 

(Moravien, Wielicien, Kosovien). Chronostratigraphie und 

 Neostratotypen,  Miozän  der  Zentralen  Paratethys.  6.  VEDA

Bratislava, 1–594.

Peryt D. 2013: Foraminiferal record of the middle miocene climate 

transition prior to the badenian salinity crisis in the polish 

 Carpathian foredeep basin (Central paratethys). Geol. Quarterly 

57, 1, 141–164.

Peryt D. & Gedl P. 2010: Palaeoenvironmental changes preceding the 

middle miocene Badenian salinity crisis in the northern Polish 

Carpathian Foredeep Basin (Borków quarry) inferred from 

 foraminifers and dinoflagellate cysts. Geol. Quarterly 54, 4, 


Peryt T. M. 2006: The beginning, development and termination of the 

Middle Miocene Badenian salinity crisis in Central Paratethys. 

Sediment. Geol. 188–189, 379–396.

Peryt T.M. & Peryt D. 2009: Environmental changes in the declining 

Middle Miocene Badenian evaporite basin of the Ukrainian 

 Carpathian Foredeep (Kudryntsi section). Geol. Carpath. 60, 6, 


background image




, 2017, 68, 3, 193 – 206

Piller W.E. & Harzhauser M. 2005: The myth of the brackish Sarma-

tian Sea. Terra Nova 17, 5, 450–455.

Piller  W.E.,  Harzhauser  M.  &  Mandic  O.  2007:  Miocene  Central 

 Paratethys stratigraphy — Current status and future directions. 

Stratigraphy 4, 2-3, 151–168.

Randazzo A.F., Müller P.A.L., Lelkes G., Juhász E. & Hámor T. 1999: 

Cool-water limestones of the pannonian basinal system, Middle 

Miocene, Hungary. J. Sediment. Res. 69, 1, 283–293.

Rossignol L., Frédérique E., Julien B., Sébastien Z., Christophe F., 

Ellouz-Zimmermann N. & Valentine L. 2011: High occurrence 

of Orbulina suturalis and “Praeorbulina-like specimens” in sedi-

ments of the northern Arabian Sea during the Last Glacial 

 Maximum.  Mar. Micropaleontol. 79, 3–4, 100-113.

Rögl F. 1998: Paleogeographic considerations for Mediterranean and 

Paratethys Seaways (Oligocene to Miocene). Ann. Naturhist. 

Mus. Wien 99A, 279–310.

Singh R.K. & Gupta A.K. 2004: Late Oligocene–Miocene paleoceano-

graphic evolution of the southeastern Indian Ocean: evidence 

from deep-sea benthic foraminifera (ODP Site 757). Mar. 

 Micropaleontol. 51, 1, 153–170.

Śliwiński M., Bąbel M., Nejbert K., Olszewska-Nejbert D.,  Gąsiewicz 

A., Schreiber B.C., Benowitz J.A. & Layer P. 2012: Badenian–

Sarmatian chronostratigraphy in the Polish Carpathian  Foredeep. 

Palaeogeogr. Palaeoclimatol. Palaeoecol. 326–328, 12–29.

Sousa S.H.M., de Godoi S.S., Amaral P.G.C., Vicente T.M., Martins 

M.V.A., Sorano M.R.G.S., Gaeta S.A., Passos R.F. & Mahiques 

M.M. 2014: Distribution of living planktonic foraminifera in 

 relation to oceanic processes on the southeastern continental 

Brazilian  margin  (23°S–25°S  and  40°W–44°W).  Conti. Shelf 

Res. 89, 0, 76–87.

Stouff  V.,  Geslin  E.,  Debenay  J.P.  &  Lesourd  M.  1999:  Origin  of 


morphological abnormalities in Ammonia (foraminifera): 

 Studies in laboratory and natural environments. J. Foraminiferal 

Res. 29, 2, 152–170.

Sztanó O., Szafián P., Magyar I., Horányi A., Bada G., Hughes D.W., 

Hoyer D.L. & Wallis R.J. 2013: Aggradation and progradation 

controlled clinothems and deep-water sand delivery model in the 

Neogene lake pannon, Makó Trough, Pannonian Basin, SE 

 Hungary.  Global Planet. Change 103, 1, 149–167.

Tóth  E.,  Görög  Á.,  Lécuyer  C.,  Moissette  P.,  Balter  V.  &  

Monostori M. 2010: Palaeoenvironmental reconstruction of  

the Sarmatian (Middle Miocene) Central Paratethys based on 

palaeontological and geochemical analyses of foraminifera, 


ostracods, gastropods and rodents. Geol. Mag. 147, 02, 



Túnyi  I.,  Vass  D.,  Karoli  S.,  Janočko  J.,  Halásová  E.,  Zlínská  A.  

&  Beláček  B.  2005:  Magnetostratigraphy  of  Badenian  

evaporite deposits (East Slovak Basin). Geol. Carpath.  56,  3, 


Van  Hinsbergen  D.J.J.,  Kouwenhoven  T.J.  &  Van  der  Zwaan  G.J. 

2005: Paleobathymetry in the backstripping procedure: Correc-

tion for oxygenation effects on depth estimates. Palaeogeogr. 

Palaeoclimatol. Palaeoecol. 221, 3–4, 245–265.

Van  Morkhoven  F.P.C.M.,  Berggren  W.A.  &  Edwards  A.S.  1986: 

 Cenozoic cosmopolitan deep-water benthic foraminifera. Bull. 

Cent. Rech. Explor. Prod. Elf-Aquitaine Mem. 11, 423.

Wiedl  T.,  Harzhauser  M.  &  Piller  W.E.  2012:  Facies  and  synsedi-

mentary tectonics on a Badenian carbonate platform in the 

southern Vienna Basin (Austria, Central Paratethys). Facies 58, 

4, 523–548.