background image

GEOLOGICA CARPATHICA

, FEBRUARY 2017, 68, 1, 80 – 93

doi: 10.1515/geoca-2017-0007

www.geologicacarpathica.com

Geomorphological evolution of western Sicily, Italy

CIPRIANO DI MAGGIO, GIULIANA MADONIA, MARCO VATTANO,  

VALERIO AGNESI and SALVATORE MONTELEONE

Università degli Studi di Palermo, Dipartimento di Scienze della Terra e del Mare, via Archirafi 22, 90123 Palermo, Italy;

cipriano.dimaggio@unipa.it, giuliana.madonia@unipa.it, marco.vattano@unipa.it, valerio.agnesi@unipa.it, salvatore.monteleone@unipa.it

(Manuscript received February 24, 2016; accepted in revised form November 30, 2016)

Abstract: This paper proposes a morphoevolutionary model for western Sicily. Sicily is a chain–foredeep–foreland 

 system still being built, with tectonic activity involving uplift which tends to create new relief. To reconstruct the 

 morphoevolutionary model, geological, and geomorphological studies were done on the basis of field survey and aerial 

photographic interpretation. The collected data show large areas characterized by specific geological, geomorphological, 

and topographical settings with rocks, landforms, and landscapes progressively older from south to north Sicily.  

The achieved results display: (1) gradual emersion of new areas due to uplift, its interaction with the Quaternary 

 glacio-eustatic oscillations of the sea level, and the following production of a flight of stair-steps of uplifted marine 

 terraces in southern Sicily, which migrates progressively upward and inwards; in response to the uplift (2) triggering of 

down-cutting processes that gradually dismantle the oldest terraces; (3) competition between uplift and down-cutting 

processes, which is responsible for the genesis of river valleys and isolated rounded hills in central Sicily; (4) continuous 

deepening over time that results in the exhumation of older and more resistant rocks in northern Sicily, where the higher 

heights of Sicily are realized and the older forms are retained; (5) extensional tectonic event in the northern end of Sicily, 

that produces the collapse of large blocks drowned in the Tyrrhenian Sea and sealed by coastal-marine deposits during 

the Calabrian stage; (6) trigger of uplift again in the previously subsiding blocks and its interaction with coastal processes 

and sea level fluctuations, which produce successions of marine terraces during the Middle–Upper Pleistocene stages.

Keywords: Sicily, geomorphological evolution, Quaternary, uplift, extensional tectonics, down-cutting processes, 

 differential  erosion.

Introduction

Sicily is located on the Pelagian promontory of the African 

plate and is formed by the Iblean foreland, the Gela foredeep, 

the thick Sicilian orogen, and the thick-skinned Calabrian–

Peloritani wedge (Fig. 1).

Previous geological studies have shown that the fold and 

thrust belt of Sicily was formed in the context of the complex 

roll-back of the African–Pelagian slab that was associated first 

with the counter-clockwise rotation of Corsica and Sardinia 

and the subsequent clockwise rotation of the Calabria– 

Peloritani–Kabylian units, during the late Neogene (e.g., 

Rosenbaum et al. 2002; Carminati et al. 2012; Catalano et al. 

2013; Vitale & Ciarcia 2013). Various Authors have described 

the ages of the orogenic construction of the Sicilian chain 

(e.g., Avellone et al. 2010; Catalano et al. 2013 and references 

therein) within the framework of the evolution of the Apennine 

orogen (e.g., Ciarcia et al. 2009; Ascione et al. 2012;  Ciarcia 

& Vitale 2013). From the upper Oligocene, the orogenic con-

struction started with the accretion of the Calabria-Peloritani 

wedge, and the deposition of flysch (e.g., Numidian flysch) in 

foreland basins. During the Early–Middle Miocene the defor-

mation of the internal zone occurred, with a first tectonic event 

characterized by shallow seated thrusting; at the same time, 

the first wedge-top basins developed. From the Late Miocene, 

a second tectonic event characterized by deep-seated 

transpressive deformation occurred, and extension took place 

in the Tyrrhenian Sea as the shortening and thrusting in the 

arcuate Apennines–Sicily, east- and southward-directed 

 orogens. The extensional deformation propagates towards  

the SE associated with the fast retreat and roll-back of the 

NW-dipping subduction of the Adria–Ionian plate underneath 

Calabria (Malinverno & Ryan 1986; Doglioni et al.  1999; 

Pepe et al. 2005; Carminati & Doglioni 2012 and references 

therein).

According to the plate tectonic setting, the topography and 

geomorphology of Sicily is the result of constructive (tec-

tonic) and destructive (erosional) forces following the colli-

sion between the African and European plates, that produced, 

among other things, the Sicilian Mountains.

Previous geomorphological studies have been performed 

since the first half of last century (e.g., Cipolla 1933) and have 

undergone a boost in recent decades. They deal with the recon-

struction of the geomorphology of small areas (e.g., Mauz et 

al. 1997; Di Maggio et al. 1999) or specific thematic studies 

(e.g., Ferrarese et al. 2003; Di Maggio et al. 2012, 2014; 

Madonia et al. 2013; Vattano et al. 2013; De Waele et al. 

2016).

Hugonie (1982) carried out studies on a regional scale and 

proposed a morphoevolutionary model for northern Sicily, 

emphasizing the role of both structure and climate. Hugonie 

(1982) imputed to the Plio–Quaternary tectonic phase, the 

background image

81

GEOMORPHOLOGICAL EVOLUTION OF WESTERN SICILY, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

genesis of the topographic highs and lows of northern Sicily; 

to the interaction between uplift and river incision led by dif-

ferential erosion, the enhancement of the differences in height 

between the topographic highs and lows, previously produced; 

to the Quaternary climatic fluctuations, the degradation of tec-

tonic and river slopes.

Based on successions of planation surfaces, erosion glacis 

on soft rocks and coastal terraces, developing between 

 

1900 m a.s.l. and the present-day sea level, Agnesi et al. (2000) 

and Di Maggio (2000) proposed polycyclic morphoevolutio-

nary models for north-western Sicily. These models provide 

for  the  development  of  processes  of  planation/abrasion  that 

migrate to lower altitudes, over time, due to the relative pro-

gressive lowering of the base level of erosion produced by 

a gradual trend to uplift.

This paper is an opportunity for synthesis and analysis of 

numeous data we collected over the last 25 years, many of 

which are here published for the first time, supplemented by 

a wealth of information contained in the geological and geo-

morphological literature, in order to reconstruct a morphoevo-

lutionary model for the whole of western Sicily. We present 

here the results of this reconstruction.

Geological background

Western Sicily (Fig. 1) is part of the SE-verging Alpine oro-

genic belt in the central Mediterranean region and connects 

north-eastern Sicily, formed by a “European” element (Pelori-

tani units), to the late Cenozoic Maghrebian chain. In this con-

tinental subduction collisional complex, several tectonic and 

stratigraphic elements are differentiated (Fig. 1; Catalano et al. 

1996, 2002, 2013 and references therein): 1) A complex con-

sisting of a SE-vergent fold and thrust belt, which is composed 

of a “Tethyan” element (Sicilidi units) and an African element 

(Sicilian units); 2) The Sicilidi units are represented by 

repeated imbricate slice stack deriving from the deformation 

of Upper Jurassic–Oligocene basin carbonates and sandy 

mudstones located in the Sicilide facies domain; 3) The Sici-

lian units are characterized by allochthonous tectonic units 

deriving from the deformation of Permian–Miocene deep- 

water carbonates and bedded cherts deposited in the Imerese 

and Sicanian basins (Basilone et al. 2014, 2016); and Meso-

zoic–Miocene shelf-to-pelagic carbonates located in the 

Panormide, Trapanese, Saccense, and Iblean-Pelagian carbo-

nate platform or seamount facies domain; 4) upper 

Fig. 1. Geological map of Sicily (data compiled from various Authors — e.g., Catalano et al. 2000, 2013 — modified and simplified).  

Inset map shows the main elements of the collisional complex of Sicily (FFTB, Fold and Thrust Belt; BUPP, Boundary of Undeformed Iblean–

Pelagian carbonate Platform).

background image

82

DI MAGGIO, MADONIA, VATTANO, AGNESI and MONTELEONE

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

Oligocene–middle Miocene turbiditic deposits 

(Numidian flysch) cover the Sicilide, Imerese, and 

Panormide rock successions; lower–upper Miocene 

deformed foreland marls cover the Sicanian, Trapa-

nese, and Saccense rock successions; Oligocene–

Quaternary foreland open shelf carbonates cover the 

Iblean–Pelagian rock successions; 5) A thick pack 

consisting of middle Miocene–Pleistocene foreland, 

wedge-top and foredeep basin deposits (terrigenous, 

evaporitic, and clastic carbonate rocks), which 

largely form the Gela Thrust System; 6) A deep-

seated and buried foreland, slightly deformed, crops 

out only in the south-eastern end of Sicily and in the 

floor of the Sicily Channel.

Fig. 2 shows simplified stratigraphy and original 

facies domains of the rock bodies of western Sicily.

The tectonic evolution of the western Sicily belt 

was a progressive accretion of thrust sheets (Cata-

lano et al. 2000) and duplex formation (Catalano et 

al. 1996), combined with the clockwise rotation of 

the allochthonous blocks (Oldow et al. 1990; 

 Speranza et al. 2003).

In this context, a Miocene contractional deforma-

tion originally produced the progressive detachment 

of the Sicilidi units and Numidian flysch cover 

 (Puglisi 2014) and their stacking over deep water 

carbonates (Imerese units), in their turn overthrus-

ting both Sicanian units and shallow water carbo-

nates (Panormide, Trapanese, and Saccense units 

— Catalano et al. 2013). Deposition of coeval fore-

deep and wedge-top sediments (Butler et al. 2015; 

Gasparo Morticelli et al. 2015) accompanied the for-

mer event of shallow seated thrusting. Subsequently, 

during the Pliocene Epoch a deep-seated transpres-

sive event redeformed the innermost tectonic units 

stacked during the first Miocene event (Avellone et 

al. 2010); more externally, a contractional event pro-

duced the inception of the wedging of the Gela 

Thrust System overlying the earlier and shallower 

allochthonous units. These two events also involved 

the wedge-top basin marly carbonates of the Trubi 

unit (lower Pliocene; Fig. 2), which are widespread 

all over Sicily up to the higher altitudes (over 1400 m 

a.s.l.; Abate et al. 1991). Finally, a Plio–Pleistocene 

back-arc tectonics originates high-angle extensional 

faults affecting the northern coastal area of Sicily 

and southern Tyrrhenian Sea (Pepe et al. 2005; 

 Cuffaro et al. 2011).

Topography

The presence of a main fold-thrust belt influences 

the relief of Sicily (Figs. 1, 3). An E–W mountain 

range (Sicilian Apennines) is its topographical 

expression. The range forms a long and almost 

Fig. 2. Schematic stratigraphy and original facies domains of the rock bodies of 

western Sicily (data compiled from various Authors — e.g., Catalano et al. 2013 

— modified and simplified).

background image

83

GEOMORPHOLOGICAL EVOLUTION OF WESTERN SICILY, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

continuous ridge in the northern region of Sicily, from Pelori-

tani and Nebrodi to the Madonie and Palermo Mountains, 

locally interrupted by N–S narrow and deep transverse valleys 

of the main rivers draining into the Tyrrhenian Sea (Pollina, 

Imera Settentrionale, Torto, and San Leonardo rivers). In the 

north-western and central-western areas, coastal plains and  

a set of rounded hills and broad valleys, from which a series  

of isolated reliefs of the Trapani and Sicani Mountains rises 

up, break the physical continuity of the mountain range.  

The mountain range and isolated peaks coincide with succes-

sions of “hard” and “resistant” rocks hundreds of metres thick 

(Mesozoic carbonate units), on which the highest relief lies; 

the deep, narrow or broad valleys and the set of rounded hills 

are situated on “weak” and easily erodible rocks (calcilutites, 

marls, and clays of the Mesozoic basin units; Mio–Pliocene 

cover deposits).

On the northern side of Sicily, the proximity of the mountain 

range to the Tyrrhenian coast involves the existence of a num-

ber of rivers with short and very inclined channels, in which 

the water flows from S to N. The intense incision processes of 

these rivers produced deep V-shaped valleys with from 

medium to strongly inclined slopes, separated by usually sharp 

ridges. The valley bottoms become wide and flat only near the 

mouths along the discontinuous coastal plains.

Along the central and southern side of Sicily, the larger dis-

tance between the mountain range and the southern coast 

enables the development of longer and slightly inclined rivers 

flowing from NNE to SSW (e.g., Belice, Platani, and Salso 

rivers) on a substrate of weak rocks (Mio–Pliocene foredeep 

and wedge-top deposits). The lower erosional power of these 

rivers has produced shallow valleys with gently inclined 

slopes and flat or rounded bottoms, separated by low hills. 

V-shaped valleys are only found in the head of the great catch-

ment areas, located along the southern side of the mountain 

range, and in the lower-order rivers.

In the broad NW–SE coastal strip of the Sicilian Channel, the 

relief lowers gradually to a landscape of large plains, located in 

resistant Quaternary clastic rocks and cut by deep canyons with 

flat bottoms that become wider as they approach the mouth.

Methods

Geological and geomorphological analyses consisting of 

field mapping, aerial photography interpretation, and compa-

rison with bibliographic data were performed with the aim of 

defining a morphoevolutionary model of western Sicily.

Geological data were mainly obtained from previous studies 

(Catalano et al. 2013 and references therein) and field surveys 

in selected key areas (zones affected by Quaternary deposits 

and topographic expressions due to tectonics; as in the  northern 

coastal plains).

Geomorphological data regarding the presence of landforms 

directly or indirectly produced by tectonics, and the relation-

ships between landforms and their geological framework were 

collected. We searched and examined (Figs. 4, 5) fault scarps/

Fig. 3. Shaded relief and main geomorphological units of western Sicily (DTM from Sicilian Regional Environmental Department).

background image

84

DI MAGGIO, MADONIA, VATTANO, AGNESI and MONTELEONE

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

Fig. 4. Landscapes and main landforms of western Sicily. See Fig. 5 for the geological and geomorphological interpretation. a, b, c — Flat 

coastal areas of south western Sicily characterized by marine terraces. d, e — Hilly areas of central western Sicily with a rounded relief dis-

sected by river valleys; in (d) a mountain ridge (Kumeta) in “exhumed” carbonate rock produced by differential erosion. f, g — Mountain areas 

of northern western Sicily; in (f) an isolated relief in “exhumed” carbonate rock produced by differential erosion and bounded by inclined 

structural surfaces (left side) and fault slopes (right side); in (g) a mountain areas with top low-relief surfaces. h — Flat coastal areas of the 

northern end of western Sicily characterized by marine terraces and inward bounded by high abandoned coastal cliffs controlled by normal 

faults (old fault scarps).

background image

85

GEOMORPHOLOGICAL EVOLUTION OF WESTERN SICILY, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

slopes, and topographic highs and lows due to tectonic 

 movements; canyons, V-valleys, and other landforms due  

to down- cutting processes triggered by tectonic uplift, as  

well as stair- steps of marine terraces, river terraces, and pla-

nation  or  low-relief  surfaces;  fault-line  scarp/slopes, 

structu rally-  controlled complex slopes, and other landforms 

produced by differential erosion also influenced by high relief; 

landforms due to deep-seated gravitational slope deformations 

(DSGSDs), landslides, and generally denudation phenomena 

following the increased relief.

Fig. 5. Geological and geomorphological interpretation of the areas of Fig. 4.  Landforms (uppercase letters): MT marine terrace; RV river 

valley; ISS inclined structural surface; TZ-RV triangle zone-type river valley; RFLS resequent fault-line scarp; ANMT anticline mountain;  

RT river terrace; LRS low-relief surface; ACC abandoned coastal cliff; FS fault scarp; KD karst depression. Deposits and rocks (lowercase 

letters): cs coastal deposit; cl clastic deposit; mrcb marly carbonate rock; cly clayey rock; cb carbonate rock; ev evaporite rock; al alluvial 

deposit; sl slope deposit. Stratigraphic units (after dash): MrSy Marsala synthem; AgFm Agrigento formation; TrUn Trubi unit. Geochrono-

logic/chronostratighraphic units (in parenthesis): Qua Quaternary; MIS5.5 Tyrrhenian; Md Ple Middle Pleistocene; Lw-Md Ple Lower– 

Middle Pleistocene; Em-Sic Emilian– Sicilian; Sant Santernian; Cal Calabrian; Gel Gelasiano; Up Pli upper Pliocene; LwPli lower Pliocene; 

Ms Messinian; Tr-Ms Tortonian– Messinian; Cz Cenozoic; Mz Mesozoic.

background image

86

DI MAGGIO, MADONIA, VATTANO, AGNESI and MONTELEONE

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

The terms “fault slope” and “fault-line slope” are used to 

indicate a gentle hillslope with an origin related to the evolu-

tion of a fault scarp or a fault-line scarp, and as a result of 

processes of slope replacement or slope decline; structurally 

controlled complex slope indicates a hillslope made up of an 

alternation of hard and weak rocks, on which an alternation of 

steep and gentle slopes is respectively produced.

In addition, we worked out some geological cross-sections 

(Fig. 6) to better recognize landforms and generally the rela-

tionships between topography and geological features.

Data and results

We present here the data from the morphotectonic studies 

performed in western Sicily from its southernmost zones.

A stair-step flight of uplifted marine terraces develops from 

sea level up to about 450 m a.s.l. in the southern areas of 

 western Sicily (Figs. 3, 4a–c, 5a–c, 6a–c). The oldest and 

 highest marine terraces are carved in Calabrian clastic rocks 

(Agrigento fm.; Figs. 4c, 5c, 6b) of the Santernian regional 

stage (sensu Ruggieri et al. 1984), that postdate the genesis of 

the terraces to marine highstand phases of the late Calabrian–

Late Pleistocene. In these areas, the better-preserved terraces 

are  in  the  westernmost  southern  region  (Marsala – Castel-

vetrano – Sciacca  area;  Figs.  4a,c,  5a,c),  where  less  orders  

and very large polycyclic coastal platforms are recognized 

(Fig. 6b, c); and near the coasts, where only the most recent 

terraces occur. Towards the south-eastern coast and towards 

the interior (Realmonte – Palma di Montechiaro area; Figs. 4b, 

5b), marine terraces are dissected by river valleys and become 

fragmented (Fig. 6a); some cycles of river terraces or erosion 

glacis on soft rocks are present in the valley slopes (Figs. 4e, 

5e, 6a). Along the coast of the south-western end, fossils of 

Strombus bubonius and assemblages of “Senegalese fauna” of 

the Tyrrhenian regional stage (Antonioli et al. 2006 and refe-

rences therein), contained in coastal deposits lying on wave-

cut platforms, allow us to recognize the marine terrace of the 

Marine Isotope Stage (MIS) 5.5. On the south-eastern coast, 

the terrace deposits contain insignificant fossils (Strombus 

bubonius is missing), and the terrace of the last interglacial is 

inferred from altitude and “preservation” (we think that it is 

the better-preserved, broader, and quite continuous terrace 

occurring at the lower heights). The inner edge of the MIS 5.5 

terrace is from 10 m (SW coast) to 55 m a.s.l. (SE coast). On 

the south-eastern coast, at lower altitudes we also recognize 

occasional and smaller marine terraces post-MIS 5.5 with 

wave-cut platforms developed between 0 and 15 m a.s.l. (e.g., 

Eraclea area)

In the inland areas of central-western Sicily, the marine ter-

races disappear and are gradually replaced with a dense net-

work of river valleys (Figs. 3, 4e, 5e, 6a,c– e). River valleys 

isolate small rounded hills (e.g., Caltanissetta area; Figs. 4e, 

5e) in weak rocks (Mio–Pliocene clays and marls of foredeep 

and wedge-top deposits) or steep structural reliefs (e.g.,  

M. Capodarso; M. Gibil Gabel; Figs. 4e, 5e) in hard rocks 

(Mio–Pliocene gypsum, calcarenites, and conglomerates 

intercalated  in  the  foredeep  and  wedge-top  marly/clayey 

deposits). Along the areas closest to the coastal regions, the 

structural reliefs are anticline ridges, and syncline depressions 

(e.g., Siculiana area; Fig. 6a). In the inland areas, they are syn-

clinal ridges (e.g., Ciminna area), and anticline valleys (e.g., 

upper valley of San Leonardo river; Fig. 6a), both delimited by 

structurally-controlled complex slopes (Fig. 6e); or isolated 

mountains bounded by obsequent fault-line scarps and 

founded on blocks lowered by faults (e.g., Rocca Entella). 

Successions of river terraces and erosion glacis on soft rocks 

are also present along the hillslopes (e.g., middle-upper valley 

of Belice river).

Large structural mountains coincident with tectonic highs 

and set on Mesozoic carbonate rocks occur in the northern 

areas of western Sicily and in the Sicani Mountains (Figs. 3, 

4d,f–h, 5d,f–h, 6d–g); they are pop-up or anticline-type moun-

tains (e.g., Kumeta and Busambra ridges; Figs. 4d, 5d, 6d). 

River canyons and narrow V-valleys down-cut these moun-

tains. Broad and deep valleys coincident with tectonic lows 

and founded on Mio–Pliocene mainly clayey rocks separate 

the main mountain groups; they are synclinal or triangle zone-

type valleys (Figs. 4d, 5d). Along the valley slopes, flights of 

river terraces or erosion glacis on soft rocks are also present 

(e.g., valley of Imera Settentrionale river). Mountains and val-

leys are the result of strong processes of river down-cutting 

and generally intense denudation, which are selectively per-

formed; the boundaries between mountains and valleys are in 

fact marked by wide resequent fault-line scarps and slopes or 

large inclined structural surfaces (e.g., M. San Calogero;  

Figs. 4d,f, 5d,f, 6d,e). Relicts of hanging planation surfaces, 

located from a few hundred metres to over 1900 m a.s.l., are 

present along the slopes and at the top of the mountains. These 

planation surfaces are not entirely flat or very gently rolling 

but also include small ridges, hills, and abandoned valleys 

(low-relief surfaces) due to partial relief reduction (e.g., area 

of M. Ferro – Carbonara; Figs. 4g, 5g). In the head areas of the 

river basins that flow into the Tyrrhenian Sea, a number of 

streams show an inverted drainage produced by river capture 

processes at the expense of the southern catchments (e.g., 

upper area of the basins of the Iato and San Leonardo  

rivers; Fig. 3).

Large and discontinuous topographical depressions occur 

on the northern side of western Sicily (Tyrrhenian coast). 

A flat bottom (coastal plain), opened to sea and surrounded by 

wide scarps hundreds of metres tall to the inland, characterizes 

these depressions (e.g., Castelluzzo and Conca d’Oro plains; 

Figs. 3, 4h, 5h, 6f,g). Wedges of Calabrian coastal and neritic 

clastic deposits from few to tens of metres thick crop out in the 

coastal plains. These deposits belong to the Marsala synthem 

(Di Maggio et al. 2008, 2009) and date to the Emilian–Sicilian 

regional stages (sensu Ruggieri et al. 1984); in addition, they 

show a very slight dip to the sea and lie on the Meso–Cenozoic 

rocks with strong angular unconformities. Along the coastal 

plains, successions of marine terraces develop from 0 m up to 

100 m (plain of Castelluzzo; Figs. 4h, 5h), 200 m (plain of 

background image

87

GEOMORPHOLOGICAL EVOLUTION OF WESTERN SICILY, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

Fig. 6. Geological cross sections: 5MT MIS 5.5 marine terrace; MT marine terrace; RT river terrace; AP present-day alluvial plain; LRS low- 

relief surface.

background image

88

DI MAGGIO, MADONIA, VATTANO, AGNESI and MONTELEONE

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

Palermo) or 300 m a.s.l. (plains of Partinico, Buonfornello and 

Sant’Agata di Militello). These terraces are carved on 

 Emilian–Sicilian deposits or pre-Quaternary rocks (Figs. 4h, 

5h, 6f,g). The first postdate the age of the terraces to marine 

highstand phases of the Middle–Upper Pleistocene stages, as 

supported by palaeontological records (Di Maggio et al. 1999 

and references therein; Antonioli et al. 2006 and references 

therein) and numerous isotopic datings performed on terrace 

deposits by previous Researchers (Hearty et al. 1986; Bada et 

al. 1991; Mauz et al. 1997; Antonioli et al. 1999; Scicchitano 

et al. 2011; Giunta et al. 2012). These terraces are also charac-

terized by few orders and large and well-preserved polycyclic 

wave-cut surfaces in north-western Sicily (e.g., plains of 

 Castelluzzo and Trapani), and by several orders and narrow 

and dissected coastal platforms as they proceed eastward 

(plains of Buonfornello and Sant’Agata di Militello). The inner 

edge of the MIS 5.5 terraces is from 10 m (Trapani and San 

Vito lo Capo areas), 15 m (plain of Castelluzzo and Partinico), 

20 m (Palermo area), 25 m (plain of Buonfornello) to about   

50 m a.s.l. (Sant’Agata di Militello area). Geological and geo-

morphological analysis further show that the wide and tall 

scarps surrounding the coastal plains are abandoned coastal 

cliffs derived from original fault scarps (Figs. 4f,h, 5f,h, 6f,g). 

Some large tectonically-controlled cliffs are still active, falling 

in a sheer drop into the sea; whereas broad fault scarps or 

slopes affect the innermost areas, along the mountain flanks 

facing the sea, where they cut off and displace the ancient 

low-relief surfaces (Figs. 4h, 5h, 6g). The presence of great 

fault scarps and “lowered blocks” at their foot allows the 

coastal depressions to be interpreted as half-grabens. Finally, 

a number of forms produced by DSGSD phenomena are present 

along the mountains of the Tyrrhenian coast and inland 

 characterized by high relief.

Discussion

The collected data from western Sicily show four distin-

guished regions (Figs. 1, 3), marked by peculiar geological, 

geomorphological, and topographical settings with rocks, 

landforms, and landscapes progressively older from south  

to north. We find flat coastal areas characterized by 

 

upper   Miocene–Quaternary  evaporite/clastic  rocks  in  

southern  Sicily, where successions of uplifted marine  terraces 

are  present; hilly areas characterized by Oligocene–Pliocene 

clayey, marly and evaporite deposits in central Sicily, where 

rounded valleys and isolated rolling hills occur; mountain 

areas characterized by mainly Mesozoic carbonate rocks  

in northern Sicily, where exhumed structural mountains  

and deep V-valleys develop; topographically-depressed 

coastal areas characterized by Quaternary clastic deposits 

lying with strong unconformity on Meso–Cenozoic rocks  

on the northern side of Sicily, where stair-step flights of 

uplifted marine terraces occur along tectonic lows (half- 

graben) bounded inwards by large tectonically-controlled 

coastal cliffs.

For the whole of western Sicily, geomorphological survey 

points out both numerous forms produced by river down- 

cutting, such as V-valleys and canyons; and a number of forms 

due to a downward migration of erosion, namely staircases of 

planation surfaces, erosion glacis on soft rocks, and river or 

marine terraces. River down-cutting and development of 

 “terraced surfaces” indicate a gradual lowering trend in the 

general base level of erosion. This trend is typical of areas 

affected by a widespread uplift trend (Ahnert 1970; Chappell 

1974; Iwata 1987; Merritts & Hesterberg 1994; Burbank et al. 

1996; Abbott et al. 1997; Whipple & Tucker 1999; Hovius 

2000; Jamieson et al. 2004; Ascione et al. 2008; Walker et al. 

2011; Gioia et al. 2014).

Along the northern side of western Sicily, geological, and 

geomorphological analyses underline the occurrence of 

 lowered faulted blocks (half-graben) sealed by the Calabrian 

deposits of the Marsala synthem; these latter lie on Mesozoic 

or Cenozoic rocks with strong angular unconformities. 

 

The acquired information indicates an extensional tectonic 

event producing subsidence, block drowning, and deposition 

of the Marsala synthem, which occurred in northern Sicily 

during the Calabrian stage. At the same time, a similar tectonic 

event producing horst-and-graben structures also involved the 

Tyrrhenian margin of the southern Apennines (Amato & 

Cinque 1999; Caiazzo et al. 2006).

The overall analysis of data allows the proposition of the 

morphoevolutionary model described below (Fig. 7).

During the Quaternary period, coastal morphogenesis and 

tectonic uplift have dominated the more recently surfaced 

southern areas. After the deposition of the clastic sediments 

belonging to the Agrigento fm. (after the Santernian regional 

stage) coastal processes over time produced wave-cut plat-

forms and slightly later deposition of coastal sediments. 

Owing to uplift movements, the coastal platforms developing 

during marine highstand phases, in warm climate events, 

 progressively emerged and migrated to higher altitudes, pro-

ducing the present-day stair-step flight of marine terraces. 

Given the altitude of the inner edge of the MIS 5.5 marine 

terrace, the average rate of post-Tyrrhenian uplift is between 

0.032 (SW coast) and 0.4 m/ky (SE coast). Unlike our inter-

pretations, Antonioli et al. (2006) suppose that the Tyrrhenian 

terrace is drowned beneath the Sicilian Channel, suggesting 

a post-Tyrrhenian tectonic subsidence in southern Sicily 

linked to the development of the Quaternary Gela foredeep. 

However, as previously discussed, all our data from south to 

north Sicily show a geomorphological evolution characterized 

by prevailing vertical erosion and downward migration of the 

general base level of erosion, indicating a tectonic uplift trend. 

As demonstrated by the facies and distribution of the Neogene 

to Santernian marine units present here, this area of “old” 

 foredeep/wedge-top  basins  was  submerged  during  the  con-

struction of the accretionary wedge. After the end of the accre-

tion, and the south-westward constant migration of the Gela 

Thrust System and its foredeep (the present-day Gela Fore-

deep is further south-west of the southern coasts of Sicily), it 

is fair to assume that the elastic rebound of the Iblean-Pelagian 

background image

89

GEOMORPHOLOGICAL EVOLUTION OF WESTERN SICILY, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

slab involves uplift (Doglioni 1991), and processes of gradual 

land emersion. On the other hand, if the low rates of uplift 

(0.032  m/ky)  have  ensured  that  the  sea  returns  to  the  same 

level several times, creating well developed polycyclic plat-

forms, and that the slow emersion of the latter produces the 

present-day existence of broad and well preserved flat sur-

faces in the south-western coastal areas, the higher uplift rates 

we achieve in the south-eastern coastal areas (0.4 m/ky) better 

explain the numerous orders of marine terraces present here, 

consisting of smaller wave-cut platforms strongly dissected by 

river valleys (Chappell 1983; Schumann et al. 2012 and refe-

rences therein).

The geomorphological setting of central-, and north-western 

Sicily is the result of the interaction between the tectonic uplift 

acting to elevate the relief and the following processes of river 

incision and denudation in general, which tend to lower it, 

removing great volumes of rock (e.g., Summerfield 1991; 

Kooi & Beaumont 1996; Burbank & Anderson 2012). These 

regions represent areas that became dry land long ago, and 

where erosion has already removed younger upper clastic 

deposits, destroyed ancient marine terraces, and progressively 

exhumed older underlying rock.

In central-western Sicily, river incision and denudation pro-

cesses over time dismantled more resistant Quaternary cover 

rocks and unearthed easily erodible Neogene rocks below. 

 Isolated, rounded hills originated on the latter. Anticlinal 

ridges and synclinal valleys developed where the progressive 

down-cutting has resulted in the exhumation of deeper folded 

layers of hard rock (middle–upper Miocene evaporite lime-

stones and gypsum, and conglomeratic and sandstone 

benches). In the innermost areas, where a major incision par-

tially brought to light masses of weak rock again (Oligocene–

middle Miocene clayey component deposits) relief inversion 

processes (Summerfield 1991; Pain & Ollier 1995) produced 

synclinal ridges and anticlinal valleys, or topographic highs 

and lows located on previously lowered and uplifted, faulted 

blocks, respectively. Rounded hills were formed again, where 

erosion totally removed the Miocene layers of hard rocks. 

Therefore, data analysis shows that the strong denudation 

involves novel and continuously changing landforms, although 

relief modelling affects these areas for a long time.

In north-western Sicily and the Sicani Mountains, the ever 

deeper progress of the erosion led to the exhumation of the 

oldest rock successions in Sicily (Mesozoic–lower Oligocene 

carbonates). The result is a geomorphological setting charac-

terized by large landforms due to differential erosion. Gene-

rally, the down-cutting processes considerably slowed down 

along the resistant carbonate rocks, located on structural highs, 

producing an elevated and large mountain relief (pop-up or 

anticline-type mountains); whereas they acted with greater 

strength and depth along the easily erodible rocks (upper 

 Oligocene–Miocene clays and marls) still preserved in struc-

tural lows, creating deep and wide river valleys (synclinal or 

triangle zone-type valleys). The cause which led to a general 

matching between topography and tectonic structure is the 

geological setting marked by weak rocks above hard rocks 

(Agnesi et al. 2000; Di Maggio 2000); unlike central-western 

Sicily, where the occurrence of weak rocks beneath hard rocks 

permitted the development of relief inversion processes. How-

ever, the large distribution of resistant carbonate rocks in 

north-western Sicily is responsible for the preservation of the 

oldest landforms of Sicily, such as the not fully developed pla-

nation surfaces with their hanging, small ridges and hills, and 

abandoned valleys. Within the geomorphological literature, 

similar landform set is known as palaeolandscape 

 (Widdowson 1997 and references therein), gentle erosional 

landscape (Amato & Cinque 1999) or relict landscape (Clark 

et al. 2006). Though the best potential for their preservation 

exists in the cratonic cores and in the tectonically stable inte-

riors of continents, planation surfaces and low-relief surfaces 

Fig. 7. Morphoevolutionary model of western Sicily. See text for discussion.

background image

90

DI MAGGIO, MADONIA, VATTANO, AGNESI and MONTELEONE

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

may also be identified within several orogenic belts (e.g., 

 Winkler-Hermaden 1957; Adams 1985; Iwata 1987; Kennan 

et al. 1997; Amato & Cinque 1999; Frisch et al. 2000; Clark et 

al. 2006; Legrain et al. 2014). In agreement with the interpre-

tation of Amato & Cinque (1999) for the Campano–Lucano 

Apennines, the relicts of the planation surfaces and their con-

nected landforms of western Sicily belong to uncompleted 

erosion cycles that had a duration of some hundred thousand 

years and that occurred during the construction of the chain, 

when the relief was located at a lower elevation, but higher 

and far from the base-level (S coast), though the topographical 

surface was gently graded. The subsequent erosion then cut 

down the surrounding areas on weak rock, leaving low-relief 

surfaces on resistant rock. In addition, these relicts remained 

until the present-day because the Sicilian Apennines are a very 

recent belt, lately surfaced, and the erosion has not had enough 

time to lead to intersection of river valleys and to reach the 

innermost areas.

In the northern end of western Sicily and after the construc-

tion of an elevated relief, the important extensional tectonic 

event that occurred during the Calabrian stage (about 1.5 Ma 

— Hugonie 1982) produced normal faults representing the 

peripheral effect of the back-arc extension of the Tyrrhenian 

Sea (Amato & Cinque 1999; Nigro & Renda 2005; Pepe et al. 

2005; Caiazzo et al. 2006; Di Stefano et al. 2007; Cuffaro et al. 

2011; Carminati & Doglioni 2012). These faults resulted in the 

displacement of the previous low-relief surfaces and the dis-

mantling, collapse, and lowering of the northernmost margin 

of the Sicilian mountain belt under the Tyrrhenian Sea. 

 Furthermore, the extensional event produced the large fault 

scarps hundreds of metres tall, some of which were changed 

into sea cliffs, and allowed the deposition of the Marsala 

 synthem along the drowned faulted-blocks that were affected 

by subsidence during the Emilian-Sicilian regional stages. As 

a result of a subsequent uplift event (during or shortly after the 

Sicilian stage) these blocks gradually emerged starting during 

the Middle Pleistocene stage, as indicated by the present-day 

stair-step flights of uplifted marine terraces of the Middle- 

Upper Pleistocene stages, which are located in the northern 

coastal plains up to about 100-300 m a.s.l. Based on the alti-

tude of the inner edge of the MIS 5.5 and in agreement with 

the researchers who studied these coastal areas (Mauz et al. 

1997; Antonioli et al. 1999, 2006; Di Maggio et al. 1999; 

 Scicchitano et al. 2011; Giunta et al. 2012; ; Sulli et al. 2013; 

Basilone & Di Maggio 2016) the average rate of the post- 

Tyrrhenian uplift is between about 0.032 – 0.1 (NW coast) and 

0.36  m/ky  (NE  coast).  Generally,  a  few,  large  polycyclic 

coastal platforms overlooking the MIS 5.5 marine terrace 

developed  where  the  uplift  rate  is  less  than  0.1  m/ky  (e.g., 

 Trapani and San Vito lo Capo areas); while successions of several 

orders of marine terraces consisting of smaller coastal plat-

forms occurred where the uplift rate is higher than 0.1– 0.15 m/ky 

(e.g., plain of Buonfornello; Sant’Agata di Militello area).

On the northern side of Sicily, the post-Sicilian uplift causes 

of the previously subsiding blocks might be found in the con-

tinuous rise of the footwall of the extensional faults, which 

would “passively” involve and drag up the lowered hanging 

wall laid on it.

More generally, the crustal shortening, thickening and con-

sequent isostatic compensation affecting all zones of collision 

can explain the low rates of widespread uplift (maximum 

value 0.4 m/ky) recorded in western Sicily from south to north 

(Babault & Van Den Driessche 2013; Schoenbohm 2013 and 

references therein).

The effects of the tectonic processes affecting the whole of 

western Sicily (gradual Quaternary uplift from south to north; 

sudden Emilian block-faulting to its northern side) consist of 

a strong asymmetry in its topographic profile, with a northern 

slope much shorter and steeper than the southern slope. 

Accordingly, the steeper northern rivers with a higher erosion 

power are characterized by regressive erosion and over time 

have enlarged their catchment areas at the expense of the 

southern river basins, through capture phenomena (see 

inverted drainage phenomena in the head areas on the northern 

river basins). Following these processes, the regional water-

shed is currently located further south than the line connecting 

the highest mountain peaks of Sicily.

Furthermore, the river down-cutting, uplift movements, and 

extensional tectonics result in a high relief that is a major 

cause of the development of the surface landslides and DSGSD 

phenomena affecting the mountain areas of northern Sicily   

(Di Maggio et al. 2014 and references therein; Agnesi et al. 2015).

Finally, as regards the timing of the geomorphological evo-

lution of Sicily it is necessary to specify the following con-

straints: (1) the deep-water marly carbonates of the Trubi unit 

testify that the studied fold and thrust belt was still largely 

submerged by the sea up to the lower Pliocene (3.6 Ma);  

(2) the marine clastic deposits of the Agrigento fm. indicate 

that the emersion of the southern areas of western Sicily began 

after the post-Santernian (1.5 Ma ago); (3) the shallow-water 

clastic deposits of the Marsala synthem and their relationships 

with the substratum show that the areas of the northern side 

were above the surface in the pre-Emilian (before 1.5 Ma), 

submerged during the Emilian–Sicilian interval (1.5 – 0.8 Ma 

ago), and again emerged from the Sicilian regional stage (after 

0.8 Ma ago). Consequently, the emersion of the older areas of 

central and northern Sicily and the beginning of the first relief 

modelling processes occurred between 3.6 –1.5 Ma ago.

Conclusion

The reconstruction of the geomorphological evolution of 

western Sicily highlights the following:

•  The occurrence of a very recent mountain belt, which 

started its geomorphological evolution less than 3.6 Ma ago 

and only recently rose above sea level.

•  The creation of new relief in the southern areas affected 

by uplift, the causes of which are to be found in the elastic 

rebound of the Iblean-Pelagian slab following the 

south-westward constant migration of the accretionary 

wedge and its foredeep.

background image

91

GEOMORPHOLOGICAL EVOLUTION OF WESTERN SICILY, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

•  The interaction between uplift, coastal processes, and sea 

level changes in southern areas, responsible for the produc-

tion of a staircase of marine terraces.

•  The upward and inwards gradual migration of the created 

relief, with the south-westward progressive shift of the 

shoreline, owing to uplift produced by isostatic compensa-

tion following the crustal shortening and thickening.

•  The interaction between uplift and river down-cutting in 

central and northern areas, responsible for the dismantling 

of the easily erodible younger rocks (Quaternary clastic 

deposits and Neogene clays) and older landforms (e.g., 

marine terraces), exhumation of the underlying resistant 

older rocks (Messinian gypsum and Mesozoic carbonates), 

and genesis of river valleys and isolated hills/mountains.

•  The gradual increase of relief from south to north, respon-

sible for the development of differential erosion, DSGSDs, 

surface landslides, and a strong denudation generally.

•  The occurrence of a constantly changing relief on easily 

erodible rocks in central areas, in which novel, and conti-

nually reworked landforms develop.

•  The production of an elevated relief, built on resistant 

rocks to the north, on which the oldest landforms (low-relief 

surfaces) are better preserved.

•  The disruption of relief on the northern side of Sicily 

occurring about 1.5 Ma ago, the causes of which are to be 

found in the extensional tectonics linked to the opening of 

the back-arc basin of the Tyrrhenian Sea.

•  The formation of shallow-water basins, affected by sub-

sidence  between  1.5 – 0.8  Ma  ago,  and  developed  on  the 

lowering faulted blocks flooded from the sea along the areas 

of the northern side.

•  The triggering of uplift again in the previously subsiding 

blocks occurring from about 0.8 Ma, the interaction of 

which with coastal processes and sea level fluctuations pro-

duces the succession of marine terraces along the areas of 

the northern side.

Finally, it should be noted that the morphoevolutionary 

model presented here fits well with the geological and geo-

morphological settings, and the topography of western Sicily, 

characterized by outcroppings of progressively older rocks 

and landforms from south to north, and their sudden “rejuve-

nation” in the areas of the northern side, and by a gradually 

increasing relief from south to north, and its sudden falling in 

the areas of the northern side.

Acknowledgements: We are grateful to the two anonymous 

referees for their helpful and constructive comments that 

improved the paper. We wish to thank the Managing Editor, 

Milan Kohút, for his valuable assistance.

References

Abate B., Di Stefano E., Incandela A. & Renda P. 1991: Evidence of 

a Pliocene tectonic phase in western Madonie (north-central 

 Sicily).  Mem. Soc. Geol. Ital. 47, 225–234 (in Italian with 

English summary)

Abbott L.D., Silver E.A., Anderson R.S., Smith R., Ingle J.C., Kling 

S.A., Haig D., Small E., Galewsky J. & Sliter W. 1997: Measure-

ment of tectonic surface uplift rate in a young collisional moun-

tain belt. Nature 385, 501–507.

Adams J. 1985: Large-scale tectonic geomorphology of the Southern 

Alps New Zealand. In: Morisawa M. & Hack J.T. (Eds.): Tec-

tonic Geomorphology. Allen and Unwin, Boston, 105–128.

Agnesi V., De Cristofaro D., Di Maggio C., Macaluso T., Madonia G. 

& Messana V. 2000: Morphotectonic setting of the Madonie area 

(central northern Sicily). Mem. Soc. Geol. Ital. 55, 373–379.

Agnesi V., Rotigliano E., Tammaro U., Cappadonia C., Conoscenti 

C., Obrizzo F., Di Maggio C., Luzio D. & Pingue F. 2015: GPS 

monitoring of the Scopello (Sicily, Italy) DGSD phenomenon: 

Relationships between surficial and deep-seated morphodyna-

mics. In: Lollino G., Giordan D., Crosta G.B., Corominas J., 

Azzam R., Wasoeski J. & Sciarra N. (Eds.): Engineering  Geology 

for Society and Territory - Volume 2: Landslide Processes. 

Springer International Publishing, Cham, Switzerland, 

 

1321–1325.

Ahnert F. 1970: Functional relationships between denudation, relief, 

and uplift in large mid-latitude drainage basins. Am. J. Sci. 268, 

243–263.

Amato A. & Cinque A. 1999: Erosional landsurfaces of the Cam-

pano–Lucano Apennines (S. Italy): genesis, evolution, and 

 tectonic  implications.  Tectonophysics 315, 251–267.

Antonioli F., Cremona G., Puglisi C., Silenzi S., Valpreda E. & 

 Verubbi V. 1999: Quantitative assessment of post Tyrrhenian 

 differential crustal movements in a Mediterranean coastal area (S. 

Vito-Sicily-Italy). Phys. Chem. Earth. (Part A) 24, 4, 243–247.

Antonioli F., Kershaw S., Renda P., Rust D., Belluomini G. Cerasoli 

M., Radtke U. & Silenzi S. 2006: Elevation of the last intergla-

cial highstand in Sicily (Italy): A benchmark of coastal tectonics. 

Quat. Int. 145–146, 3–18.

Ascione A., Ciarcia S., Di Donato V., Mazzoli S. & Vitale S. 2012: 

The Pliocene–Quaternary wedge-top basins of southern Italy: an 

expression of propagating lateral slab tear beneath the Apen-

nines. Basin Research 24, 456–474.

Ascione A., Cinque A., Miccadei E., Villani F. & Berti C. 2008: The 

Plio-Quaternary uplift of the Apennine chain: new data from the 

analysis of topography and river valleys in Central Italy. 

 Geomorphology 102, 105–118.

Avellone G., Barchi M.R., Catalano R., Gasparo Morticelli M. & 

Sulli A. 2010: Interference between shallow and deep-seated 

structures in the Sicilian fold and thrust belt, Italy. J. Geol. Soc., 

London 167, 109–126.

Babault J. & Van Den Driessche J. 2013: Plateau uplift, regional 

warping, and subsidence. In: Shroder J. (Ed. In Chief), Owen 

L.A. (Ed.): Treatise on Geomorphology. Academic Press, San 

Diego, CA, vol. 5, Tectonic Geomorphology, 93–128.

Bada J.L., Belluomini G., Bonfiglio L., Branca M., Burgio E. & 

 Delitala L. 1991: Isoleucine epimerization ages of Quaternary 

mammals from Sicily. Il Quaternario  (Alpine and Mediterra-

nean Quaternary) 4, 1a, 49–54.

Basilone L. & Di Maggio C. 2016: Geology of Monte Gallo (Palermo 

Mts, NW Sicily). Journal of Maps 12, 5, 1072–1083.

Basilone L., Frixa A., Trincianti E. & Valenti V. 2016: Permian- 

Cenozoic deep-water carbonate rocks of the Southern Tethyan 

Domain. The case of Central Sicily. Ital. J. Geosci. 135, 

171–198.

Basilone L., Lena G. & Gasparo Morticelli M. 2014: Synsedi mentary-

tectonic, soft-sediment deformation and volcanism in the rifted 

Tethyan margin from the Upper Triassic–Middle Jurassic 

deep-water carbonates in Central Sicily. Sed. Geol. 308, 63–79.

Burbank D.W. & Anderson R.S. 2012: Tectonic Geomorphology – 

Second Edition. Wiley-Blackwell, Chichester, West Sussex, 

1–454.

background image

92

DI MAGGIO, MADONIA, VATTANO, AGNESI and MONTELEONE

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

Burbank D.W., Leland J., Fielding E., Anderson R.S., Brozovic N., 

Reid M.R. & Duncan C. 1996: Bedrock incision, rock uplift, and 

threshold hillslopes in the northwestern Himalaya. Nature 379, 

505–510.

Butler R.W.H., Maniscalco R., Sturiale G. & Grasso M. 2015: Strati-

graphic variations control deformation patterns in evaporite 

basins: Messinian examples, onshore and offshore Sicily (Italy). 

J. Geol. Soc., London 172, 1, 113–124.

Caiazzo C., Ascione A. & Cinque A. 2006: Late Tertiary-Quaternary 

tectonics of the Southern Apennines (Italy): New evidences from 

the Tyrrhenian slope. Tectonophysics 421, 23–51.

Carminati E. & Doglioni C. 2012: Alps vs. Apennines: The paradigm 

of a tectonically asymmetric Earth. Earth-Sci. Rev. 112, 67–96.

Carminati E., Doglioni C., Gelabert B., Panza G.F., Raykova R.B., 

Roca E., Sabat F. & Scrocca D. 2012: Evolution of the Western 

Mediterranean. In: Roberts D.G. & Bally A.W. (Eds): Regional 

Geology and Tectonics: Phanerozoic Rift Systems and Sedimen-

tary Basins, 1C. Elsevier, Amsterdam, 437–472.

Catalano R., Di Stefano P., Sulli A. & Vitale F. P. 1996: Paleogeo-

graphy and structure of the central Mediterranean: Sicily and its 

offshore area. Tectonophysics 260, 291–323.

Catalano R., Franchino A., Merlini S. & Sulli A. 2000: Central Wes-

tern Sicily structural setting interpreted from seismic reflection 

profiles. Mem. Soc. Geol. Ital. 55, 5–16.

Catalano R., Merlini S., Sulli A., 2002: The structure of western 

 Sicily, Central Mediterranean. Pet. Geosci. 8, 7–18.

Catalano R., Valenti V., Albanese C., Accaino F., Sulli, A., Tinivella 

U., Gasparo Morticelli M., Zanolla C. & Giustiniani M. 2013: 

Sicily’s fold-thrust belt and slab roll-back: The SI.RI.PRO. seis-

mic crustal transect. J. Geol. Soc., London 170, 3, 451–464.

Chappell J. 1974: Geology of coral terraces, Huon Peninsula, New 

Guinea: A study of Quaternary tectonic movements and sea-

level changes. Geol. Soc. Am. Bull. 85, 553–570.

Chappell J. 1983: A revised sea level record for the last 300,000 years 

from Papua New Guinea. Search 14, 99–101.

Ciarcia S., Vitale S., Di Staso A., Iannace A., Mazzoli S. & Torre M. 

2009: Stratigraphy and tectonics of an Internal Unit of the 

 southern Apennines: implications for the geodynamic evolution 

of the peri-Tyrrhenian mountain belt. Terra Nova 21, 88–96.

Cipolla F. 1933: Quaternary sea levels in Sicily. Atti della Società 

Italiana per il Progresso delle Scienze XXI, 2, 1–3 (in Italian).

Clark M.K., Royden L.H., Whipple K.X., Burchfield B.C., Zhang X. 

& Tang W. 2006: Use of a regional, relict landscape to measure 

vertical deformation of the eastern Tibetan Plateau. J. Geophys. 

Res. 111, F03002.

Cuffaro M., Riguzzi F., Scrocca D. & Doglioni C. 2011: Coexisting 

tectonic settings: the example of the southern Tyrrhenian Sea. 

Geol. Rundsch., doi:10.1007/s00531-010-0625-z.

De Waele J., Audra P., Madonia G., Vattano M., Plan L, D’Angeli 

I.M., Bigot J-Y. &  Nobécourt J-C. 2016: Sulfuric acid speleo-

genesis (SAS) close to the water table: Examples from southern 

France, Austria, and Sicily. Geomorphology 253, 452-467.

Di Maggio C. 2000: Morphostructural aspects of the central northern 

sector of Palermo Mountains (Sicily). Mem. Soc. Geol. Ital. 55, 

353–361.

Di Maggio C., Madonia G. & Vattano M 2014: Deep-seated gravita-

tional slope deformations in western Sicily: Controlling factors, 

triggering mechanisms, and morphoevolutionary models. 

 Geomorphology 208, 173–189.

Di Maggio C., Madonia G. Parise M. & Vattano M 2012: Karst of 

Sicily and its conservation. J. Cave Karst Stud. 74, 2, 157–172.

Di Maggio C., Agate M., Contino A., Basilone L. & Catalano R. 

2008: Quaternary deposits within the National Geologic Maps of 

Northwestern Sicily: Climatic, environmental and tectonic 

implications. Rendiconti Online Società Geologica Italiana 3, 1, 

336–337.

Di Maggio C., Agate M., Contino A., Basilone L. & Catalano R. 

2009: Unconformity-bounded stratigraphic units of Quaternary 

deposits mapped for the CARG Project in northern and western 

Sicily. Il Quaternario (Alpine and Mediterranean Quaternary) 

22, 2, 345–364 (in Italian with English summary)

Di Maggio C., Incandela A., Masini F., Petruso D., Renda P.,  Simonelli 

C. & Boschian G. 1999: Eustatic fluctuations, biochronology of 

Quaternary continental deposits and neotectonics in north- 

western Sicily (peninsula of San Vito lo Capo - Trapani).  

Il Quaternario (Alpine and Mediterranean Quaternary) 12, 1, 

25–49 (in Italian with English summary) 

.

Di Stefano A., Longhitano S. & Smedile A 2007: Sedimentation and 

tectonics in a steep shallow-marine depositional system: 

 stratigraphic arrangement of the Pliocene-Pleistocene Rometta 

Succession (NE Sicily, Italy). Geol. Carpath. 58, 1, 71–87.

Doglioni C. 1991: A proposal for the kinematic modelling of  

W-dipping subductions, possible applications to the Tyrrhenian–

Apennines system. Terra Nova 3, 423–434.

Doglioni C., Harabaglia P., Merlini S., Mongelli F., Peccerillo A. & 

Piromallo C. 1999: Orogens and slabs vs. their direction of 

 subduction.  Earth-Sci. Rev. 45, 167–208.

Ferrarese F., Macaluso T., Madonia G., Palmeri A. & Sauro U. 2003: 

Solution and recrystallisation processes and associated land-

forms in gypsum outcrops of Sicily. Geomorphology 49, 1-2, 

25–43.

Frisch W., Dunkl I. & Kuhlemann J. 2000: Post-collisional largescale 

extension in the Eastern Alps. Tectonophysics 327, 239–265.

Gasparo Morticelli M., Valenti V., Catalano R., Sulli A., Agate M., 

Avellone G., Albanese C., Basilone L. & Gugliotta C. 2015: 

Deep controls on foreland basin system evolution along the 

Sicilian fold and thrust belt. Bull. Soc. Géol. France 186, 

273–290.

Gioia D., Gallicchio S., Moretti M. & Schiattarella M. 2014: Land-

scape response to tectonic and climatic forcing in the foredeep of 

the southern Apennines, Italy: insights from Quaternary strati-

graphy, quantitative geomorphic analysis, and denudation rate 

proxies. Earth Surface Processes and Landforms 39, 814-835.

Giunta G., Gueli A.M., Monaco C., Orioli S., Ristuccia G.M., Stella 

G. & Troja S.O. 2012: Middle-Late Pleistocene marine terraces 

and fault activity in the Sant’Agata di Militello coastal area 

(north-eastern Sicily). J. Geodyn. 55, 32–40.

Hearty P.J., Miller G.H., Stearns C.E. & Szabo B.J. 1986: Aminostra-

tigraphy of Quaternary shorelines in the Mediterranean basin. 

Geol. Soc. Am. Bull. 97, 850–858.

Hovius N. 2000: Macroscale process systems of mountain belt 

 erosion. In: Summerfield M.A. (Ed.): Geomorphology and 

global tectonics, Wiley, Chichester, 77–105.

Hugonie G. 1982: Mouvements tectoniques et variations de la 

 morphogenèse au Quaternaire en Sicile septentrionale. Revue de 

Géologie Dynamique et Géographie Physique 23, 3–14.

Iwata S. 1987: Mode and rate of uplift of the central Nepal Himalaya. 

Z. Geomorphol. 63, Suppl. Bd, 37–49.

Jamieson S.S.R., Sinclair H.D., Kirstein L.A. & Purves R.S. 2004: 

Tectonic forcing of longitudinal valleys in the Himalaya: 

 morphological analysis of the Ladakh Batolith. North India. 

Geomorphology 58, 49–65.

Kennan L., Lamb S.H. & Hoke L. 1997: High-altitude paleosurfaces 

in the Bolivian Andes: evidence for late Cenozoic surface uplift. 

In: Widdowson M. (Ed.): Paleosurfaces: recognition, reconstruc-

tion and paleoenvironmental interpretation. Geol. Soc. London, 

Spec. Publ. 120, 307–323.

Kooi H. & Beaumont C. 1996: Large-scale geomorphology: classic 

concepts reconciled and integrated with contemporary ideas via 

a surface process model. J. Geophys. Res. 101, 3361-3386.

Legrain N., Stüwe K & Wölfer A. 2014: Incised relict landscapes in 

the eastern Alps. Geomorphology 221, 124–138.

background image

93

GEOMORPHOLOGICAL EVOLUTION OF WESTERN SICILY, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 80 – 93

Madonia P., D’Aleo P., Di Maggio C., Favara R. & Hartwig A. 2013: 

The use of shallow dripwater as an isotopic marker of seepage 

in karst areas: A comparison between Western Sicily (Italy) 

and the Harz Mountains (Germany). Appl. Geochem. 34, 

231–239.

Malinverno A. & Ryan W.B.F. 1986: Extension in the Tyrrhenian Sea 

and shortening in the Apennines as result of arc migration driver 

by sinking of the lithosphere. Tectonics 5, 227–245.

Mauz B., Buccheri G., Zöller L. & Greco A. 1997: Middle to Upper 

Pleistocene morphostructural evolution of the NW coast of 

 Sicily: thermoluminescence dating and palaentological-strati-

graphical evaluations of littoral deposits. Palaeogeogr. Palaeo-

climatol. Palaeoecol. 128, 269–285.

Merritts D. & Hesterberg T. 1994: Stream networks and long-term 

surface uplift in the New Madrid seismic zone. Science 265, 

1081–1084.

Nigro F. & Renda P. 2005: Transtensional/extensional fault activity 

from the Mesozoic rifting to Tertiary chain building in Northern 

Sicily (Central Mediterranean). Geol. Carpath. 56, 3, 255–271.

Oldow J.S., Channel J.E.T., Catalano R. & D’Argenio B. 1990: 

 Contemporaneous thrusting and large-scale rotations in the 

western Sicilian fold and thrust belt. Tectonics 9, 661–681.

Pain C.F. & Ollier C.D. 1995: Inversion of relief — A component of 

landscape evolution. Geomorphology 12, 151–165.

Pepe F., Sulli A., Bertotti G. & Catalano R. 2005: Structural highs 

formation and their relationship to sedimentary basins in the 

north Sicily continental margin (southern Tyrrhenian Sea): 

Implication for the Drepano Thrust Front. Tectonophysics 409, 

1–18.

Puglisi D. 2014: Tectonic evolution of the Sicilian Maghrebian Chain 

inferred from stratigraphic and petrographic evidences of Lower 

Cretaceous and Oligocene flysch. Geol. Carpath. 65, 4, 

293–305.

Rosenbaum G., Lister G.S. & Duboz C. 2002: Reconstruction of the 

tectonic evolution of the western Mediterranean since the Oligo-

cene. J. Virtual Explorer 8, 107–130.

Ruggieri G., Rio D. & Sprovieri R. 1984: Remarks on the chronos-

tratigraphic classification of Lower Pleistocene. Boll. Soc. Geol. 

Ital. 103, 251–259.

Schoenbohm L.M. 2013: Continental–continental collision zone. In: 

Shroder J. & Owen L.A. (Eds.): Treatise on Geomorphology. 

Academic Press, San Diego, CA, vol. 5, Tectonic Geomorpho-

logy, 13–36.

Schumann R.R., Minor S.A., Muhs D.R., Groves L.T. & McGeehin 

J.P. 2012: Tectonic influences on the preservation of marine 

 terraces: Old and new evidence from Santa Catalina Island, 

 California.  Geomorphology 179, 208–224.

Scicchitano G., Lo Presti V., Spampinato C.R., Gasparo Morticelli 

M., Antonioli F., Auriemma R., Ferranti L. & Monaco C. 2011: 

Millstones as indicators of relative sea-level changes in northern 

Sicily and southern Calabria coastlines, Italy. Quat. Int. 232, 

92–104

Speranza F., Maniscalco R. & Grasso M. 2003: Pattern of orogenic 

rotations in central–eastern Sicily: implications for the timing of 

spreading in the Tyrrhenian Sea. J. Geol. Soc., London 160, 

183–195.

Sulli A., Lo Presti V., Gasparo Morticelli M. & Antonioli F. 2013: 

Vertical movements in NE Sicily and its offshore: Outcome of 

tectonic uplift during the last 125 ky. Quat. Int. 288, 168–182.

Summerfield M.A. 1991: Global Geomorphology. An Introduction to 

the Study of Landforms. Longman Scientific and Technical

 Harlow, Essex, 1–537

Vattano M., Di Maggio C., Madonia G., Parise M., Lollino P. & 

 Bonamini M. 2013: Examples of anthropogenic sinkholes in 

 Sicily and comparison with similar phenomena in southern Italy. 

In: Land L., Doctor D.H. & Stephenson J.B. (Eds.): Proceeding 

of the thirteenth Multidisciplinary Conference on Sinkholes and 

the Engineering and Environmental Impacts of Karst. National 

Cave and Karst Research Institute, Carlsbad, 263–271.

Vitale S. & Ciarcia S. 2013: Tectono-stratigraphic and kinematic evo-

lution  of  the  southern  Apennines/Calabria–Peloritani  Terrane 

system (Italy). Tectonophysics 583, 164-182.

Walker R.T., Ramsey L.A. & Jackson J. 2011: Geomorphic evidence 

for ancestral drainage patterns in the Zagros Simple Folded Zone 

and growth of the Iranian plateau. Geol. Mag. 148, 5-6, 

901–910.

Whipple K.X. & Tucker G.E. 1999: Dynamics of the stream-power 

river incision model: Implications for height limits of mountain 

ranges, landscape response timescales, and research needs.  

J. Geophys. Res. 104, 17,661–17,674.

Widdowson M. 1997: The geomorphological and geological impor-

tance of palaeosurfaces. In: Widdowson M. (Ed.): Palaeosur-

faces: recognition, reconstruction and palaeoenvironmental 

interpretation. Geol. Soc. London, Spec. Publ. 120, 1–12.

Winkler-Hermaden A. 1957: Geologisches Kräftespiel und Land-

formung. Springer Verlag, Vienna, 1–822.