background image

GEOLOGICA CARPATHICA

, FEBRUARY 2017, 68, 1, 6 – 18

doi: 10.1515/geoca-2017-0001

www.geologicacarpathica.com

Pliocene –Pleistocene geomorphological evolution  

of the Adriatic side of Central Italy

BERNARDINO GENTILI

1

, GILBERTO PAMBIANCHI

2

, DOMENICO ARINGOLI

2

,  

MARCO MATERAZZI

 

and MARCO GIACOPETTI

2

1

School of Architecture and Design, University of Camerino, Italy

2

School of Science and Technology, University of Camerino, Italy; 

marco.materazzi@unicam.it

(Manuscript received December 10, 2015; accepted in revised form November 30, 2016)

Abstract: This work is a significant contribution to knowledge of the Quaternary and pre-Quaternary morphogenesis of 

a wide sector of central Italy, from the Apennine chain to the Adriatic Sea. The goal is achieved through a careful analysis 

and interpretation of stratigraphic and tectonic data relating to marine and continental sediments and, mostly, through the 

study of relict limbs of ancient landscapes (erosional surfaces shaped by prevailing planation processes). The most important 

scientific datum is the definition of the time span in which the modelling of the oldest morphological element (the “summit 

relict surface”) occurred: it started during Messinian in the westernmost portion and after a significant phase during  

middle-late Pliocene, ended in the early Pleistocene. During the middle and late Pleistocene, the rapid tectonic uplift of 

the area and the climate fluctuations favoured the deepening of the hydrographic network and the genesis of three orders 

of  fluvial  terraces,  thus  completing  the  fundamental  features  of  the  landscape.  The  subsequent  Holocene  evolution 

reshaped the minor elements, but not the basic ones.

Keywords:  planation  surfaces,  marine  sediments,  continental  deposits,  Pliocene –Pleistocene,  central  Apennines, 

Peri-Adriatic belt.

Introduction

This paper describes the landscape geomorphological evolu-

tion of the Apennine and the Peri-Adriatic belt of the Marche 

region, through the analysis and interpretation of past and new 

data from recent and detailed geological and geomorphologi-

cal analyses. This geomorphological “model” can be extended, 

despite local and at times marked differences, even to the 

neighbouring central-northern Abruzzi region sector (Fig. 1).

The study is focused to the Plio–Pleistocene geomorpho-

logical evolution, when the structuring of the fundamental fea-

tures of the present landscape took place. In fact, during the 

Holocene, the origin and evolution of a rural and urban land-

scape, which represent the most important human impact on 

the territory, did not change the fundamental features but only 

the minor landforms.

The Umbria-Marche sector of the central Apennine ridge 

represents, because of its unique and continuous lithostrati-

graphic sequences and the particular “exposures” of tectonic 

elements, a territorial unit of great scientific interest. Analysis 

and interpretation of the geological setting, mostly carried out 

in the last forty years, reached a high level of detail. Neverthe-

less, Quaternary and pre-Quaternary morphogenesis, espe-

cially for the Pliocene–Pleistocene period, is still poorly 

known, mostly concerning time and manner of the main 

 morpho-evolutive stages as well as the role played by the 

 various control factors.

The oldest geomorphological elements in the study area 

consist of several generations of low-relief erosion surfaces: 

the most ancient ones, generally pre-Quaternary in age, 

 characterize the mountain ridges, while the hilly reliefs are the 

youngest. These elements, whose genesis and evolution has 

been attributed to different planation processes, have been 

 recognized by several authors in all parts of the Italian penin-

sula (Demangeot 1965; Bernini et al. 1977; Bartolini 1980; 

Sestini 1981; Calamita et al. 1982; Ciccacci et al. 1985; 

 Brancaccio et al. 1991; Dramis et al. 1991; Veneri et al. 1991; 

Dramis 1992; Nesci et al. 1992; Calamita et al. 1994; Bosi et 

al. 1996; Chiarini et al. 1997; Amato & Cinque 1999; Calamita 

et al. 1999; Gentili & Pambianchi 1999; Coltorti & Pieruccini 

2000; Schiattarella et al. 2003; Della Seta et al. 2008).

During the Quaternary this “smooth” landscape underwent 

deep changes as a result of a strong tectonic uplift. The associa-

ted tectonic elements with prevalent extensional kinematics 

(mainly NW–SE and WSW–ENE oriented) created tectonic 

basins, slope deformations and hydrographic network setup. 

The coeval and marked climatic oscillations and the alterna-

tion  of  fluvial  and  marine  erosion /sedimentation  phases, 

induced several processes (Calamita et al. 1982; Gentili & 

Pambianchi 1987; Coltorti et al. 1991; Nesci & Savelli 1991; 

Calamita et al. 1994; Coltorti & Farabollini1995; Coltorti et al. 

1996; Fanucci et al. 1996; Cello et al. 1997; Calamita et al. 

1999; Nesci et al. 2002; Aringoli et al. 2007, 2008, 2010; 

 Materazzi et al. 2010; Nesci et al. 2012; Aringoli et al. 2014):

•  the partial filling of the tectonic basins due to the deposi-

tion of powerful lacustrine and fluvial-lacustrine sedi-

ments, including clays and gravels, sometimes alternating 

with thin layers of volcanic ash; 

background image

7

GEOMORPHOLOGICAL EVOLUTION OF THE ADRIATIC SIDE OF CENTRAL ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

•  opening and deepening of river valleys, characterized by 

the presence of four main orders of alluvial terraces; 

•  genesis of a shoreline characterized by alternating 

 

wide sandy-gravelly beaches and mostly inactive 

sea-cliffs.

Moreover, the main rivers which transversally cut the region 

from the Apennine chain to the Adriatic Sea, created (Calamita 

et al. 1994; Gentili & Pambianchi 1994; Gentili et al. 1995 and 

1998; Dramis et al. 1995; Aringoli et al. 1996; Fanucci et al. 

1996; Di Bucci et al. 2003; Aringoli et al. 2010):  

•  narrow and deep valleys within the Apennine ridge; 

•  gentle landforms with marked isolated reliefs (insel-

bergs), in the pedemountain belt;

•  cuesta morphologies in the hilly Peri-Adriatic belt.

Fig.

 1.

 a

 — Geological 

sketch of the 

study 

area; 

b 

— 

schematic 

geological 

cross-section 

from the 

Apennine 

chain 

to the 

Adriatic sea.

background image

8

GENTILI, PAMBIANCHI, ARINGOLI, MATERAZZI and GIACOPETTI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

The following are associated with the intense deepening of 

the hydrographic network:

•  wide and deep phenomena (even though without clear 

diagnostic elements) induced by gravitational tectonics; 

•  deep-seated gravitational slope deformations (DSGSD) 

and landslides..

The chronology of the initial phase of landscape modelling, 

as well as subsequent ones, is difficult  using only geomorpho-

logical data; integrating and comparing data from tectonic- 

sedimentary studies is therefore fundamental.

Geological and geomorphological setting

The Umbria-Marche Apennines consist of two different 

ridges that merge to the south, creating the Sibillini Mountains 

massif (Fig. 1); a short description of the stratigraphic type 

sequence, mainly based on the stratigraphic schemes worked 

out by M. Chiocchini, P. Didaskalou, A. Micarelli and M. 

Potetti as part of the projects aimed at compiling the Geo-

logical Map of the Marche Region (Centamore et al. 1986; 

Regione Marche 2001; Pierantoni et al. 2013) will be given 

next. 

The base is given by the “Calcare massiccio” formation 

(Early Jurassic), a thick calcareous complex, approximately 

700 m thick, disarticulated into a “horst and graben” system 

by the Jurassic extensional tectonics. The “Corniola”, “Bosso” 

and “Calcari diasprigni” formations (Early Jurassic–Late 

Jurassic) are visible above, corresponding to the deepest sec-

tors, with an overall thickness of more than 500 m. On the 

other hand, a condensed succession of variable thickness (less 

than 50 m) corresponds to the structural “highs”. It is mainly 

composed of nodular and marly limestones belonging to the 

“Bugarone” formation (Early Jurassic). The “Maiolica” for-

mation (Early Jurassic–Late Cretaceous), present on the top of 

both sequences and composed of prevalently micritic lime-

stones, filled the seabed, followed by the “Marne a fucoidi” 

(Late Cretaceous) and the “Scaglia group” (Palaeocene–

Eocene) calcareous and marly calcareous formations, with  

a total thickness often exceeding 300 metres. The “Scaglia 

cinerea”, “Bisciaro”, “Schlier”, “Marne con Cerrogna” and 

“Marne a Pteropodi

 marly formations with interbedded calc-

arenites (Eocene–Miocene), are present above, with a total 

thickness of about 200 metres.

Associations of turbiditic and pelitic-sandstones (Messi-

nian), outcrop between the two calcareous ridges and along 

the eastern flank of the Marchean ridge.

The Peri-Adriatic belt, more to the east, is instead characte-

rized by pelitic and sandy-conglomeratic turbidites, belonging 

to the marine “Pliocene–Pleistocene sedimentary cycle” 

(Fig. 1) (Cantalamessa et al. 1986).

On a regional scale the structural setting is constituted by:

•  anticline folds involving Mesozoic–Miocene units;

•  syncline folds in the turbiditic sediments; 

•  east-verging monoclinalic structures involving the 

Peri-Adriatic turbidites. 

This “schematic” structural setting is complicated by the 

presence of several east-verging thrusts which caused the 

overlapping of various levels of the sedimentary succession 

and the resulting genesis of the Umbria-Marche Apennine 

(Calamita & Deiana 1988; Mazzoli et al. 2005; Pierantoni et 

al. 2013). The genesis is associated with the intense Oligo-

cene–Miocene compressive tectonics (active until the Plio-

cene), in the outermost sector (Bally et al. 1986; Deiana & 

Pialli 1994; Calamita et al. 2012; Di Domenica et al. 2012) 

and to wide-ranging vertical movements, not related to the 

structural setting of bedrock (Dufaure et al. 1989; Dramis 

1992). Normal faults with NW–SE trend, connected to a gene-

ralized tectonic uplift and the associated extensional phase 

(with maximum during the early and mid-Pleistocene) 

(Demangeot 1965; Ambrosetti et al. 1982; Coltorti et al. 1991; 

Mazzoli et al. 2005) are mainly superimposed on the previous 

compressive structures: as a consequence, they generated, 

along the chain and its Tyrrhenian side, wide tectonic basins, 

tiered lowering of the relict surface, and tectonic-gravitational 

phenomena (Calamita et al. 1994; Gentili & Pambianchi 1994; 

Materazzi et al. 2014). Less frequent SSW–NNE faults, on the 

other hand, generated topographic “undulations” (Dramis et 

al. 1991) outlining three main transversal “ridges” (Fig. 2).

The physical landscape is therefore characterized by a strict 

conformity between the main geomorphological elements and 

the overall geological setting. In fact, structural “highs” corre-

spond to  morphological highs (i.e. reliefs with maximum ele-

vation around 2500 m a.s.l.), while structural “lows” (i.e. 

tectonic basins) correspond to elongated depressions; the 

Peri-Adriatic monocline, incised by the main river valleys, 

corresponds to typical triangular hilly reliefs with the top facing 

west. On a larger scale such conformity is complicated by the 

aforementioned transversal “ridges” (which give rise to cliffs 

along the coast) and by scarps and benches along the valley 

floors created by the emplacement of four main orders of flu-

vial terraces (Middle Pleistocene–Holocene) (Coltorti et al. 

1991; Gentili & Pambianchi 1987; Nesci et al. 2012).

Results and discussion

Geological and geomorphological data

Geological data related to the Miocene–Pliocene tectonic 

and sedimentary evolution are fundamental for the reconstruc-

tion of the evolutional stages of the continental landscape of 

central Italy (Centamore & Deiana 1986; Boccaletti et al. 

1986; Centamore & Micarelli 1991; Cantalamessa & Di 

Celma 2004). During the Messinian the westernmost areas, 

Tuscany and Umbria, emerge progressively, according to a 

thrust belt mechanism (Fig. 3). 

In the foredeep area, placed immediately to the east (Marche 

sector), the turbiditic sedimentation, occurred in narrow 

basins, elongated in a NW–SE direction.

During the Middle and Late Messinian, simultaneously with 

the “salinity crisis” of the Mediterranean (Cita 1976; 

background image

9

GEOMORPHOLOGICAL EVOLUTION OF THE ADRIATIC SIDE OF CENTRAL ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

Centamore & Deiana 1986; Wezel 1994; Butler et al. 1995), 

continental areas have grown at the edges of the primordial 

Tuscany-Umbria Apennines. The intense compressional tec-

tonics, as well as producing a general seabed uplifting, locally 

created narrow and shallow basins and structural highs, bor-

dered by NW–SE and SSW–NNE faults: the latter, affecting 

the morphology of the seabed (with the formation of subma-

rine valleys), generated preferential pathways for turbiditic 

flows coming from the west. These flows filled the above 

mentioned basins, where coarse materials (arenaceous peb-

bles) produced after the initial dismantling of the calcareous 

ridge were deposited. Contributions to such deposition also 

came from local fluvial sediments produced by the erosion of 

the Bisciaro and Schlier marly formations, which were out-

cropping on the first emerged areas of the Umbria-Marche 

ridge (Fig. 3). During this period continental erosion became 

particularly intense in relation to the intense compressional 

tectonics and to the humid climate conditions connected with 

the volcanic activity of the period (Centamore & Micarelli 

1991; Wezel 1994).

The subsequent Plio–Pleistocene marine sedimentation is 

very complex and variable in time and space in relation to tec-

tonic events that influenced morphology and sedimentation. 

At the beginning of the Pliocene the Apennine chain continued 

its progressively eastward structuring, forming the Umbria-

Marche and Marche ridges and the depression in between 

(Fig. 1).

In the northern sector, the depositional sequence within 

basins articulated by the synsedimentary tectonics, is given  

by clays, passing upwards to sandy turbidites. The “Val 

Fig. 2. DEM of the study area with indication of the main transversal ridges, and corresponding sea-cliffs and drainages.

background image

10

GENTILI, PAMBIANCHI, ARINGOLI, MATERAZZI and GIACOPETTI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

Marecchia gravitational flow” (varicoloured clays, Ligurides) 

fills one of these basins; on the top fan-delta pebbles, coming 

from the flow itself and referring to end of the lower Pliocene/

beginning of the middle Pliocene time span and to a 500m-deep 

environment, are deposited. In other cases, the sequence top is 

characterized by conglomerates conveyed in the basin depres-

sions and resulting from fan-delta deposit remobilization of 

the Po river domain (Veneri 1986). The sediments of the mid-

dle-late Pliocene are mainly clayey and generally of limited 

extension.

Likewise, in the central sector, the Pliocene deposits have 

limited overall extension and exhibit clayey facies of a bathyal 

environment.

In the southern area (between the Tenna and Tesino rivers), 

arenaceous-conglomeratic beach deposits, related to the mid-

dle Pliocene transgression, overlap the pelitic-arenaceous 

facies of the Laga formation (Messinian). This contact is 

marked by a sharp erosion surface that truncates the Messinian 

sediments and, more in detail, it is tilted eastward by 15–20° 

as a result of the aforementioned upper Pliocene compressive 

tectonics and the subsequent uplifting. This surface is still 

present and observable 10–12 km eastward of the Apennine 

ridge, where it is “protected” by the transgressive sediments. 

Originally it extended to the ridge, where it probably cut the 

Miocene sediments of the Umbria-Marche Succession (cur-

rently absent at the top of the relief), and had a sub-horizontal 

trend: in fact, the strata of the overlying transgressive sedi-

ments are approximately parallel to the surface itself; even the 

original extension to the west of these sediments would be 

much greater than today (Fig. 4) (Gentili et al. 1995).

The genesis of such stratigraphic discontinuities is to be 

associated with the intense Pliocene compressive tectonics 

(which completed the emergence of the Apennine chain and of 

the Messinian turbidites), and the concomitant arid-warm or 

subtropical-humid climatic conditions, both favourable to 

peneplanation processes (Denny 1967; Butzer 1976; Centamore 

& Deiana 1986). Marine erosion, significantly contributed to 

the genesis of this surface: this period, in fact, corresponds to 

the highest level reached by the sea between the Messinian 

and the Holocene, as a consequence of ice caps thawing (Cen-

tamore & Deiana 1986; Haq et al. 1987; Bigi et al. 1995). 

Because no traces of mid-Pliocene sediments and surface ero-

sion have been observed along the Apennine ridge it can be 

assumed that they have been “erased” during the subsequent 

phase of erosion.

The middle and upper Pliocene sedimentation continues 

with shelf-to-bathial clays, thicker eastward, with interspersed 

conglomeratic levels (submarine fans), mainly consisting of 

calcarenitic clasts; marly calcareous and arenaceous pebbles 

are in fact very rare (Cantalamessa et al. 1986; Centamore & 

Deiana 1986; Coltorti et al. 1991). Pebbly deposits of clearly 

fluvial origin, originated from the Apennines or, subordinately, 

from neighbouring ridges (“Montagna dei Fiori” and Gran 

Sasso massifs) and were transported within the basin through 

transversal channels already active in earlier times (Cantala-

messa et al. 1986; Bigi et al. 1995; Gentili et al. 1998). 

Areal differences also occur in marine Pleistocene sedi-

ments. In the northern and central sectors the base of the early 

Pleistocene, is given by clays and sands deposited in a 500m- 

deep environment, on which Sicilian conglomeratic lenses are 

Fig. 3. Palaeogeographic reconstruction of central Italy during Messinian, with first emerged areas of the Umbria-Marche ridge.

background image

11

GEOMORPHOLOGICAL EVOLUTION OF THE ADRIATIC SIDE OF CENTRAL ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

deposited in discordance. In the southern sector, on the con-

trary, the Pleistocene succession is more powerful and conti-

nuous and it starts with a pelitic complex containing numerous 

conglomeratic and sandy-conglomeratic bodies deposited in  

a shelf environment characterized by storm deposits (end of 

early Pleistocene). A marked erosional surface is present 

between these deposits and the mainly gravelly sediments  

of Sicilian age: moreover numerous evidences of synsedi-

mentary extensional tectonics are found. Sicilian deposits, 

currently present up to about 10 km from the Adriatic Sea, 

show eastern dip: this is due partly to depositional conditions 

(clinostratigraphy) and partly to the tilting connected with 

 vertical uplifting and the compressive tectonics which are still 

active along the Adriatic coast (Riguzzi et al. 1989; Di Bucci 

et al. 2003). 

The tectonic and sedimentary history above described is 

fundamental for the reconstruction of the continental land-

scape; clastic contributions from the formations of the 

Fig. 4. a — Transgressive sedimentary sequence and tectonic-sedimentary evolution of study area during the middle Pliocene; b — detail of 

the erosional surface at Monte San Martino.

background image

12

GENTILI, PAMBIANCHI, ARINGOLI, MATERAZZI and GIACOPETTI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

Umbria-Marche Apennines, are absent in the whole Peri- 

Adriatic belt, up to the base of the middle Pliocene. Later, 

during the middle Pliocene and mainly in the late Pliocene, the 

deposition of conglomeratic bodies mainly constituted by cal-

careous pebbles occurred only in the southern Marche region.

In this area, which is the most tectonically uplifted, and for 

the time span considered it can be assumed that erosion pro-

cesses mainly involved the marly-calcarenitic units (Scaglia 

cinerea, Bisciaro, Schlier, Marne con Cerrogna and Marne a 

Pteropodi formations), that were still covering most of the 

Apennine ridges. The Pliocene sedimentation, in fact, in 

agreement with the lithological composition of the above 

mentioned units, is mostly constituted by a prevailing pelitic 

component, while the clastic deposits represent not more than 

10 %. The volumes are also certainly comparable. The marly- 

calcarenitic units could provide about 4/5 of the middle-upper 

Pliocene sediments. The remaining fraction is attributable to 

contributions from erosion of the oldest units (“Scaglia” for-

mations), by river valleys probably set on ancient turbiditic 

flowlines which can be associated with the reduced presence 

of marly-calcareous clasts within conglomeratic levels. 

 

The erosion of the Laga Formation, outcropping between the 

basin and the chain, is linked to the deposition of the arena-

ceous bodies of the early middle Pliocene, of the sandy levels 

and of the rare arenaceous pebbles within the conglomeratic 

pebbles.

The early Pleistocene is marked by a strong marine regres-

sion, similar to that of the middle Messinian and probably 

associa ted with the same arid-cold clima tic conditions (Denny 

1967; Butzer 1976; Haq et al. 1987; Bull 1992). The associa-

ted intense areal erosion processes produced: i) the removal of 

the westernmost transgressive sediments, the further dismant-

ling of the Laga Formation below, down to the pre-eva poritic 

levels in the innermost areas; ii) the final dismantling of the 

marly-calcarenitic units and part of the “Scaglia” formations: 

in the Sibillini Mountains, but also in the most elevated areas 

of the ridge, the erosion reached the base of the Scaglia rosata 

or, sometimes, the top of the Maiolica; iii) planation surfaces 

close to the tops of the highest hilly relief in the Peri-Adriatic 

belt, while further east, along the coast, marine sedimentation 

was ending (Gentili et al. 1998), (Fig. 5).

Continental landforms

When the tectonic-sedimentary evolution described above 

ended (Messinian–early Pleistocene), the fundamental mor-

phostructural fea tures of the landscape were already realized. 

Subsequently, the sub-aerial model 

ling processes, in 

associa tion with the increasing tectonic activity, produced the 

re-shaping of the landscape. The oldest traces are placed at or 

near the top of the calcareous ridges and of the arena ceous 

reliefs of the Apennines and consist of residual limbs of an 

extensive wavy (locally flat) surface: the “summit relict sur-

face”. Younger limbs of smaller extent and belonging to other 

two generations of surfaces are embedded in it: they also occur 

in the hilly area, where they are also placed at the top of the 

relief while in the coastal sector only the newer generation can 

be detected (Fig. 6). 

All these surfaces constituted a low-relief landscape charac-

terized by wide valleys, which later became home to important 

subaerial depositional processes. Looking at the pedemoun-

tain areas in more detail, the deposition of wide alluvial fans 

took place, giving rise to a process of relief inversion with 

interfluves often very different from the current ones. The topo-

graphical location of the different planation surfaces, placed at 

elevations higher than the alluvial deposits, allows us to date 

back to prior of the Middle Pleistocene the last phase of 

 modelling of this landscape.

This “palaeotopography” was deformed by the tectonic 

uplift of the area and by the transversal tectonic elements 

(SSW–NNE faults) which have acted before, during and after 

the construction of the Apennine chain (Boccaletti et al. 1986; 

Fig. 5. Tectonic-sedimentary evolution during the Sicilian (early Pleistocene).

background image

13

GEOMORPHOLOGICAL EVOLUTION OF THE ADRIATIC SIDE OF CENTRAL ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

Calamita & Deiana 1988; Dramis et al. 1991; Calamita et al. 

1999). During the Quaternary the tectonic elements, by means 

of differentiated vertical movements, created several trans-

versal morphostructures, indicated by clear N–S undulations 

of the planation surfaces that are more accentuated in the older 

ones. Same undulations can also be recognized in the oldest 

alluvial deposits (early middle Pliocene) and in the Sicilian- 

Crotonian sediments which closed the Pliocene–Pleistocene 

cycle of deposition.

Three main SSW–NNE “ridges”, from the Apennine chain to 

the Adriatic Sea, can be recognized: Mount Nerone–Pesaro, to 

the north; Mount Penna–Cingoli–Mount Conero, in the  centre; 

Sibillini Mountains–Mount Ascensione–Porto San Giorgio, to 

the south. The corresponding coastal sectors are characterized 

by substantial cliffs, two of them active (Pesaro and Mount 

Conero). The above “ridges” are separated by two “depres-

sions” incised by the centripetal hydrographic networks of Misa 

and Nevola rivers in the central-northern sector and of Potenza 

and Chienti rivers in the central-southern  sector (Fig. 2).

The effects produced by the SSW–NNE faults on the “sum-

mit  relict surface” located west of the culmination of the 

ridge, are more evident. Stepwise benches with considerable 

displacements (up to 1000 m) have been created: the same 

areas are characterized by the presence of wide tectonic basins 

(Colfiorito, Castelluccio, Norcia, Cascia), where the oldest 

deposits date back to the beginning of the early Pleistocene 

(Ficcarelli & Mazza 1990) (Fig. 7).

At the end of the Early Pliocene the “summit relict surface” 

was probably articulated in two levels: It is therefore reaso-

nable to assume, for the end of the early Pleistocene, a “sum-

mit relict surface “ on two levels: the higher one, nearly the top 

of the calcareous and marly-calcareous ridges of the Apen-

nines, with N–S altitudinal variations (Dramis et al. 1991 and 

Dramis 1992); the lower one, carved in the marly-calcareous 

lithotypes where wide primordial valleys formed and corre-

spond to the pre-evaporitic arenaceous facies of the Laga for-

mation and of the Pliocene–Pleistocene deposits. According to 

Dramis (1992), despite the general prevalence of planation 

processes, the landscape could have been modelled, under 

favourable climate conditions, also by fluvial erosion.

The end of morphogenesis of the “summit relict surface” 

due to areal erosion processes, was associated with the intense 

tectonic uplift, which started at the end of the early Pleistocene 

and continued during the Middle Pleistocene. The consequent 

rapid deepening of the hydrographic network reached the 

 oldest calcareous formations. The combined action of tectonic 

uplift and climate conditions favourable to areal erosion (Haq 

et al. 1987; Bull 1992), produced wide valleys, which have left 

evidence in the form of residual limbs of two generations of 

“surfaces” encasing each other.

Moreover, starting from the middle of the Middle Pleisto-

cene, the interference between tectonic uplift and glacial and 

interglacial phases has also produced three main orders of flu-

vial terraces attributed to the middle of the Middle Pleistocene, 

Fig. 6. Block diagram showing the relationship among the different 

continental landforms described in the text.

background image

14

GENTILI, PAMBIANCHI, ARINGOLI, MATERAZZI and GIACOPETTI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

end of Middle Pleistocene and Late Pleisto-

cene respectively (Coltorti et al. 1991; Nesci 

& Savelli 1991; Cilla et al. 1996). The depo-

sition of these fluvial terraces marks the final 

structuring of the landscape on a regional 

scale (Fig. 8).

A further generation of fluvial deposits 

(fourth order), mainly related to the intense 

slope dynamics, can be recognized along the 

valley floors: it is connected to intense agri-

cultural practices on the slopes themselves 

carried out with alternate phases since 

Roman times. These processes have also had 

an impact on the river mouths (systemati-

cally transformed from modest estuaries to 

limited deltas) and on the genesis of sandy- 

pebbly beaches (Gentili & Pambianchi 1987; 

Aringoli et al. 2007; Materazzi et al. 2010).

Conclusions

The data presented, allow us to draw syn-

thetic conclusions, also shown in Figs 3, 9 

and 10.

Fig. 7. Sketch of the development of tectonic 

basins described in the text (modified after 

Calamita et al. 1982); a — relict surface; b — ini-

tial phase of extensional tectonics (early Pleisto-

cene);  c — horst-graben morphology (middle 

Pleistocene);  d — sketch of the tectonic basins 

and traces of cross-sections (see Fig. 2 for the 

location).

Fig. 8. Type cross-sections along some Marchean rivers with the relationship between different orders of alluvial terraces.

background image

15

GEOMORPHOLOGICAL EVOLUTION OF THE ADRIATIC SIDE OF CENTRAL ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

•  The Middle and Late Messinian (Fig. 3) is 

characterized by the uplifting of the conti-

nental areas of Tuscany and Umbria and the 

initial outcrop chain Umbria-Marche.

•  The end of the Early Pliocene (Fig. 9a) is 

characterized by intense areal erosion pro-

cesses which produced planation surfaces 

both in the Messinian and in the calcareous 

marls of the Apennine chain. It is recogni-

zable only in the southern area, because it is 

buried by the middle Pliocene sediments 

(Fig. 4).

•  During the Middle Pliocene (Fig. 9b) the 

marine transgression favoured the reduc-

tion of continental areas while the planation 

processes still affected the same lithotypes 

of the previous phase; in the northern sector 

the link between the Adriatic and Tuscan- 

Umbria areas persists.

•  In the Late Pliocene (Fig. 9c) areal erosion 

reached calcareous and marly-calcareous 

formations even though their outcrops are 

limi ted. The beginning of the “summit 

 relict surface” modelling can be ascribed to 

this period.

•  In the Early Pleistocene (Fig.  9d), climate 

conditions favourable to areal erosion led to 

the final structuring of the “summit relict 

surface”. The tectonic uplift caused the 

deepe ning of the hydrographic network, 

isolating the relict surface itself and gene-

rating secon dary “surfaces”. During this 

phase, waves and dislocations of the “sum-

mit relict surface” and in particular the 

opening of intramountain tectonic basins 

occurred (Fig. 7).

•  In the Middle-Late Pleistocene (Fig. 10)  

the persistent tectonic uplift and intense 

 

climate variations caused the definitive 

deepening of the hydrographic network and 

the genesis of several orders of fluvial 

terraces.

References

Amato A. & Cinque A. 1999: Erosional land sur-

faces of the Campano-Lucano Apennines (S. 

Italy): genesis, evolution, and tectonic implica-

tion. Tectonophysics 315, 251–267.

Ambrosetti P., Carraro F., Deiana G. & Dramis F. 

1982: The uplift of central Italy between early 

Pleistocene and middle Pleistocene. Contributi 

conclusivi per la realizzazione della Carta Neotet-

tonica d’Italia. Pubbl.n°513 del P.F. Geodinami-

ca-CNR (in Italian).

Aringoli D., Gentili B. & Pambianchi G. 1996: The 

role of recent tectonics in controlling the 

Fig. 9. Palaeogeographic reconstruction from the early Pliocene to early Pleistocene (not 

in scale): 1 — clays, sands and  conglomerates (Pliocene–Pleistocene); 2 — arenaceous, 

arenaceous-pelitic and pelitic-arenaceous turbidites (Messinian); 3 — calcarenitic marls 

(Middle Eocene–Messinian); 4 — limestones and marly limestones (Early Jurassic– 

Middle Eocene); 5 — areas with calcareous outcrops; 6 — alluvial fans. 

background image

16

GENTILI, PAMBIANCHI, ARINGOLI, MATERAZZI and GIACOPETTI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

deep-seated gravitational deformation of Mount Frascare (Cen-

tral Apennine). Geogr. Fis. Dinam. Quat. 19, 281–286.

Aringoli D., Gentili B., Pambianchi G. & Piscitelli A.M. 2007: The 

contribution of “Sibilla appenninica” legend to karst knowledge 

in the Sibillini mountains (Central apennines, Italy). In: Piccardi 

L. & Masse W.B. (Eds.): Myth and Geology. Geol. Soc. London, 

Spec. Publ. 273, 329–340. 

Aringoli D., Calista M., Gentili B., Pambianchi G. & Sciarra N. 2008: 

Geomorphological features and 3D modelling of Montelparo 

mass movement (Central Italy). Engineering Geology 99, 70–84.

Aringoli D., Gentili B., Materazzi M., & Pambianchi G. 2010: Mass 

movements in Adriatic central Italy: activation and evolutive 

control factors. In: Ernest D. Werner & Hugh P. Friedman (Eds.): 

Landslides: Causes, Types and Effects. Nova Science Publish-

ers, Inc., New York, 1–71.

Aringoli D., Cavitolo P., Farabollini P., Galindo-Zaldivar J., Gentili 

B., Giano S.I., Lopez-Garrido A.C., Materazzi M., Nibbi L., 

Pedrera A., Pambianchi G., Ruano P., Ruiz-Constan A., Sanz de 

Galdeano C., Savelli D., Tondi E. & Troiani F. 2014: Morphotec-

tonic characterization of the Quaternary intermontane basins in 

the Umbria-Marche Apennines (Italy). Rend. Fis. Acc. Lincei 25, 

Suppl. 2, 111–128.

Bally A.W., Burbi L., Cooper C. & Ghelardoni P. 1986: Balanced sec-

tions and seismic reflections profiles across the Central Apen-

nines. Mem. Soc. Geol. Ital. 35, 257–310.

Bartolini C. 1980: About some summital surfaces of the northern 

Apennine. Geogr. Fis. Dinam. Quat. 3, 42–60 (in Italian). 

Bernini M., Clerici A., Papani G., & Sgavetti M. 1977: Analysis of the 

plane-altimetric distribution of western Emilian Apennine paleo-

surfaces.  L’Ateneo Parmense, Acta Naturalia 13, 145–156 (in 

Italian). 

Bigi, S., Cantalamessa, G., Centamore, E., Didaskalou, P., Dramis, F., 

Farabollini, P., Gentili, B., Invernizzi, C., Micarelli, A., Nisio, S., 

Pambianchi, G. & Potetti, M. 1995: The Marchean-Abruzzi peri-

Adriatic belt from middle Pliocene to modern times: tectonic, 

sedimentary and geomorphological evolution. Studi Geol. 

Camerti. Vol. Spec. 1991/2, 21–26 (in Italian). 

Boccaletti M., Calamita F., Centamore E., Deiana G. & Dramis F. 

1983: The Umbria-Marche Apennine: an example of thrust and 

wrenching tectonics in a model of ensialic Neogenic-Quaternary 

deformation. Boll. Soc. Geol. Ital. 102, 581–592.

Boccaletti M., Calamita F., Centamore E., Chiocchini U., Deiana G., 

Moratti G., Micarelli A. & Potetti M. 1986: Evolution of the Tus-

can-Umbro Apennine during Neogene. Giorn. Geol. 48, 227–

233 (in Italian). 

Bosi c., Caiazzo C., Cinque A. & Messina P. 1996: Relict surfaces of 

the Fucens region, central Apennine and their significance in the 

reconstruction of the geological evolution. Il Quaternario 9, 

381–386 (in Italian).

Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F., Santan-

gelo N. & Santo A. 1991: Geomorphology and neotectonic evo-

lution of a sector of the Tyrrenian flank of the souther Apennines 

(Region of Naples, Italy). Z. Geomorphol. Suppl. 82, 47–58.

Bull, W.A. 1992: Geomorphic response to climatic change. John 

Wiley & Sons, New York.

Butler R.W.H., Lickorish W.H., Grasso M., Pedley H.M. & Ramberti 

L. 1995: Tectonic and sequence stratigraphy in Messinian basin, 

Sicily: constraints on the initiation and termination of the Medi-

terranean salinity crisis. GSA Bulletin 107, 425–439.

Butzer K.W. 1976: Geomorphology from the earth. Harper and Row

1–463.

Calamita F. & Deiana G. 1988: The arcuate shape of the Umbria-

Marche-Sabine Apennines (Central Italy). Tectonophysics 146, 

131–147.

Calamita F., Coltorti M., Deiana G., Dramis F. & Pambianchi G. 

1982: Neotectonic evolution and geomorphology of the Cascia 

and Norcia depressions (Umbria-Marche Apennine). Geogr. Fis. 

Dinam. Quat. 5, 263–276. 

Calamita F., Coltorti M., Farabollini P. & Pizzi A. 1994: Quaternary 

normal faults in the Umbria-Marche Apennine ridge: proposal of 

a model of inversion tectonics. Studi Geol. Camerti vol. spec. 

1994/1, 211–225 (in Italian).

Calamita F., Coltorti M., Pieruccini P. & Pizzi A. 1999: Structural evo-

lution and plio-quaternary morphogenesis of the Umbria-Marche 

Apennine. Boll. Soc. Geol. Ital. 118, 125–139 (in Italian).

Calamita F., Satolli S. & Turtù A. 2012: Analysis of thrusts shear 

zones in curved shaped belts: Ddeformation mode and timing of 

the Olevano-Antrodoco-Sibillini thrust (Central-Northern Apen-

nines of Italy). J. Struct. Geol. 44, 179–187.

Cantalamessa G. & Di Celma C. 2004: Sequence response to syndep-

ositional regional uplift: insights from high-resolution sequence 

stratigraphy of late Early Pleistocene strata, Periadriatic Basin, 

Fig. 10. Summary sketch of the relationships between different geomorphological elements: P  =  relict surface; PA  =  suspended palaeovalley; 

S  =  planation surfaces below the “summit relict surface”; I  =  first order alluvial terrace (initial phase of Middle Pleistocene); II  =  second order 

alluvial terrace (end of Middle Pleistocene); III = third order alluvial terrace (Late Pleistocene); IV = fourth order alluvial terraces (Holocene).

background image

17

GEOMORPHOLOGICAL EVOLUTION OF THE ADRIATIC SIDE OF CENTRAL ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

Central Italy. Sediment. Geol. 164, 283–309.

Cantalamessa G., Centamore E., Chiocchini U., Colalongo M.L., 

Micarelli A., Nanni T., Pasini G., Potetti M. & Ricci Lucchi F. 

con la collaborazione di Cristallini C. & Di Lorito L. 1986: The 

Pliocene–Pleistocene in the Marche region (Il Plio–Pleistocene 

delle Marche). Studi Geol. Camerti, vol. spec. “La Geologia 

delle Marche”, 61–81 (in Italian).

Cello G., Mazzoli S., Tondi E. & Turco E. 1997: Active tectonics in 

the Central Apennines and possible implications for seismic 

 hazard analysis in peninsular Italy. Tectonophysics 272, 43–68.

Centamore E., & Deiana G. 1986: The geology of the Marche region. 

Studi Geol. Camerti, vol. spec., 1–145 (in Italian).

Centamore E. & Micarelli A. 1991: Stratigraphy. In: L’ambiente 

fisico delle Marche. S.EL.CA. Firenze, 5–58 (in Italian).

Chiarini E., Messina P. & Papasodaro F. 1997: Plio–Quaternary geo-

logical and tectonic evolution of the high Salto valley – central 

Italy: first results deriving from the analysis of relict surfaces 

and continental deposits. Il Quaternario 10, 625–630 (in Italian 

with English abstract).

Ciccacci S., D’Alessandro L., Dramis F., Fredi P. & Pambianchi G. 

1985: Geomorphological and neotectonic evolution of the 

Umbria-Marche Ridge, northern sector. Studi Geol. Camerti 10, 

7–15.

Cilla G., Coltorti M., Farabollini P., Dramis F., Gentili B., & Pambi-

anchi 1996: Fluvial sedimentation during the early Holocene in 

the Marchean valleys (central Italy). Il Quaternario, Ital. J. 

Quat. Sci. 9, 2, 459–464.

Cita M.B. 1976: The geodynamic significance of the miocenic sali-

nity crisis in the Mediterranean. In: Show and Tell Messinian 

Seminar, 2, 91 (in Italian).

Coltorti M. & Farabollini P. 1995: Quaternary evolution of the Castel-

luccio di Norcia basin (Umbro-Marchean Apennine, Italy). Il 

Quaternario 8, 1, 149–166.

Coltorti M. & Pieruccini P. 2000: A Late Lower Pliocene planation 

surface across the Italian Peninsula: a key tool in neotectonics 

studies. J. Geodyn. 29, 323–328.

Coltorti M., Consoli M., Dramis F., Gentili B. & Pambianchi G. 1991: 

Geomorphological evolution of the central-southern Marche 

alluvial plains. Geogr. Fis. Dinam. Quat. 14, I, 87–100 (in Italian 

with English abstract).

Coltorti M., Farabollini P., Gentili B. & Pambianchi G. 1996: Geo-

morphological evidences for anti-Apennines faults in the 

Umbro-Marchean Apennines and in the peri-Adriatic basin, 

Italy. Geomorphology 15, 33–45. 

Deiana G. & Pialli G. 1994: The structural provinces of the 

Umbro-Marchean Apennines. Mem. Soc. Geol. It. 48, 473–484.

Della Seta M., Del Monte M., Fredi P., Miccadei E., Nesci O., Pambi-

anchi G., Piacentini T. & Troiani F. 2008: Morphotectonic evolu-

tion of the Adriatic piedmont of the Apennines: An advancement 

in the knowledge of the Marche-Abruzzo border area. Geomor-

phology 102, 119–129.

Demangeot J. 1965: Géomorphologie des Abruzzes adriatiques. Col-

lection Mémoires et Documents. Editions, Paris, 1–403.

Denny C.S. 1967: Fans and pediments. Am. J. Science 265, 81–105.

Di Bucci D., Mazzoli S., Nesci O., Savelli, D., Tramontana, M., De 

Donatis, M. & Borraccini F. 2003: Active deformation in the 

frontal part of the Northern Apennines:insights from the lower 

Metauro River basin area (northern Marche, Italy) and adjacent 

Adriatic off-shore. J. Geodyn. 36, 213–238.

Di Domenica A., Turtu’ A., Satolli S. & Calamita F. 2012: Relation-

ship between thrusts and normal faults in curved belts: New 

insight in the inversion tectonics of the Central-Northern Apen-

nine (Italy). J. Struct. Geol. 30, 1–14.

Dramis F. 1992: The role of wide-range tectonic uplift in the genesis 

of the Apennine ridge. Studi Geol. Camerti, Vol. Spec. 1992/1, 

9–15 (in Italian).

Dramis F., Pambianchi G., Nesci O. & Consoli M. 1991: The role of 

transversal structural elements in the tectonic, sedimentary and 

geomorphological  evolution of the Marche region. Studi Geol. 

Camerti Vol. Spec. 1991/2, CROP 11, 287–293 (in Italian).

Dramis F., Gentili B. & Pambianchi G. 1992: The morphostructural 

depresion of Macerata (La depressione morfostrutturale di 

Mace rata).  Studi Geol. Camerti Vol. Spec.1993, 123–126 (in 

Italian).

Dramis F., Farabollini P., Gentili B. & Pambianchi G. 1995: Neotec-

tonic and large-scale gravitational phenomena in the Umbria-

Marche Apennines, Italy. In: Slaymaker O. (Ed.): Steepland 

Geomorfology. John Wiley & Sons Ltd., 199–217.

Dufaure J.J., Bossoyt D. & Rasse M. 1989: Critères géomor-

phologiques de néotectonique verticale dans l’Appennin central 

adriatique. Bull. Afeq. 3, 151–160.

Fanucci F., Moretti E., Nesci O., Savelli D. & Veneri F. 1996: Typo-

logy of alluvial terraces and relief evolution in the Adriatic side 

of central-northern Apennine Italy. Il Quaternario 9, 1, 255–258 

(in Italian).

Ficcarelli G. & Mazza P. 1990: New fossil findings from the Col-

fiorito basin (Umbria-Marchean Apennine). Boll. Soc. Geol. Ital

29, 2, 245–247.

Gentili B. & Pambianchi G. 1987: Fluvial morphogenesis and 

anthropic activity in the central-southern Marche. Geogr. Fis. 

Dinam. Quat. 10, 204–217 (in Italian with English abstract).

Gentili B. & Pambianchi G. 1994: Gravitational morphogenesis of the 

Apennine chain in Central Italy. Proc. 7th Int. IAEG Congr., 

Sept. 1994, Lisboa (Portugal), vol. II, 1177–1186.

Gentili B. & Pambianchi G. 1999: Contribution to the reconstruction 

of the geomorphological evolution of the Adriatic side of the 

Umbria-Marche Apennine – central Italy. In: Orombelli G. (Ed.) 

: Geographical and geological study in honor of Severino Bel-

loni. Glauco Brigati, Genova, 391–403 (in Italian).

Gentili B., Pambianchi G., Aringoli D., Cilla G., Farabollini P. & Mat-

erazzi M. 1995: Relationship between Plio-Quaternary brittle 

deformations and gravitational morphogenesis in the high-hilly 

belt of the central-southern Marche. Studi Geol. Camerti, Vol. 

Spec. 1, 421–435 (in Italian with English abstract).

Gentili B., Materazzi M., Pambianchi G. & Scalella G. (in collabora-

tion with Aringoli D., Cilla G. & Farabollini P.) 1998: Slope 

deposits at Mount Ascensione – southern Marche, Italy. Geogr. 

Fis. Dinam. Quat. 21, 1–10 (in Italian witht English abstract).

Haq B.U., Hardenbol J. & Vail P.R. 1987: Chronology of fluctuating 

sea levels since the Triassic. Science 235, 1156–1166.

Materazzi M., Gentili B., Aringoli D., Farabollini P. & Pambianchi G. 

2010: Elements of slope and fluvial dynamics as evidence of 

Late Holocene climatic fluctuations in the central Adriatic sec-

tor, Italy. Geogr. Fis. Dinam. Quat. 33, 193–204.

Materazzi M., Aringoli D., Pambianchi G., Gentili B. & Giacopetti 

M. 2014: Deep seated gravitational slope deformations and large 

landslides interferring with fluvial dynamics; examples from 

central Apennines (Italy). In: G. Lollino et al. (Eds.): Engineer-

ing Geology for Society and Territory – Vol. 2. Springer Interna-

tional Publishing Switzerland, 198–203.

Mazzoli S., Pierantoni P.P., Borraccini C., Paltrinieri W., & Deiana G. 

2005: Geometry, segmentation pattern and displacement varia-

tions along a major Apennine thrust zone, Central Italy. J. Struct.

Geol. 27, 1940–1953.

Nesci O. & Savelli D. 1991: Terraced alluvial successions in the 

northern Apennine. Geogr. Fis. Dinam. Quat. 14, 149–162 (in 

Italian with English abstract).

Nesci O., Savelli D. & Veneri F. 1992: Alluvial terraces and planation 

surfaces in the relief evolution of the northern Apennine . Studi 

Geol. Camerti. Vol. Spec. 1992/1, 175–180 (in Italian).

Nesci, O., Savelli, D., Tramontana, M., Veneri, F., De Donatis, M. & 

Mazzoli, S., 2002: The evolution of alluvial fans in the 

background image

18

GENTILI, PAMBIANCHI, ARINGOLI, MATERAZZI and GIACOPETTI

GEOLOGICA CARPATHICA

, 2017, 68, 1, 6 – 18

Umbria-Marche-Romagna Apennines (Italy). Boll. Soc. Geol. 

Ital. 1, 915–922.

Nesci O., Savelli D. & Troiani F. 2012: Types and development of 

stream terraces in the Marche Apennines (central Italy): a review 

and remarks on recent appraisals. Géomorphologie 2, 215–238.

Pierantoni P.P., Deiana G. & Galdenzi S. 2013: Stratigraphic and 

structural features of the Sibillini Mountains (Umbria-Marche 

Apennines, Italy). Ital. J. Geosci. 132, 3, 497–520.

Riguzzi F., Tertulliani A.Z. & Gasparini C. 1989: Study of seismic 

sequence of Porto San Giorgio (Marche) – 3 July 1987. Il Nuovo 

Cimento della Soc. Ital. di Fisica 12, 4.

Schiattarella M., Di Leo P., Beneduce P. & Giano SI 2003: Quaternary 

uplift vs tectonic loading: a case-study from the Lucanian Apen-

nine, southern Italy. Quat. Int. 101/102, 293–251. 

Sestini A. 1981: An ancient erosion surface on the Chianti Mountains. 

Rivista Geografica Italiana 88, 214–220 (in Italian).

Veneri F. 1986: The Valmarecchia gravitational flow. In: Centamore 

and Deiana, 1986: La geologia delle Marche, Studi  

Geol. Camerti vol. spec., 83–87 (in Italian with English 

 

abstract).

Veneri F., Nesci O. & Colantoni P. 1991: Reporting of continental 

deposits in correspondence of limbs of ancient surfaces in the 

northern Marche. Geogr. Fis. Dinam. Quat. 14, 247–250 (in Ita-

lian with English abstract).

Wezel F.C. 1994: From black to red: within the heartbeat of the earth. 

Sperling & Kupfer, Milano, 1–315 (in Italian).