background image


, FEBRUARY 2017, 68, 1, 68 – 79

doi: 10.1515/geoca-2017-0006

The Crati River Basin: geomorphological and 

stratigraphical data for the Plio–Quaternary evolution of 

northern Calabria, South Apennines, Italy



Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Cosenza, Italy;

(Manuscript received December 2, 2015; accepted in revised form November 30, 2016)

Abstract: In this paper, we present the results of an integrated geomorphological and stratigraphical study carried out in 

the eastern side of the Crati River valley (northern Calabria, South Italy). This area is characterized by the occurrence of 

three order palaeosurfaces that, along with low-sloping palaeovalleys and structural landforms, are striking features of the 

landscape. The relationships between morpho-tectonic and sedimentary evolution of the Crati Basin has been assessed 

through sandstone detrital modes, morphostratigraphy and geomorphological correlation with adjacent areas. The two 

main unconformity surfaces that typify the Quaternary fill were correlated to different steps of landscape evolution.  

The presence of both erosional and depositional palaeosurfaces has been a useful marker for reconstructing sedimentary 

and morphogenetic events, and hence to detect drainage network evolution and changes in source sediment area.  

In particular, we recognized that the study area experienced, during the late Pliocene–Early Pleistocene a period of sub-

aerial landscape modelling as suggested by low-sloping palaeovalleys and related fluvial deposits (1


 Order Palaeo-

surface). At that time, the source of the detrital constituents of the PPS Unit sandstones was mainly from the Sila Massif. 

The onset of Coastal Range identification and uplift (Early Pleistocene) marks a change in the geomorphic scenario with 

tectonic driven stream incision and valley development along the eastern side of Coastal Range, along with the occur-

rence of depositional and erosional landsurfaces (2


 Order Palaeosurface) at footslopes. During this period, the Coastal 

Range and Sila Massif were the sources for the detrital constituents of the PlS Unit sandstones. The progressive uplift of 

Coastal Range during late Early Pleistocene and the marked backstepping of the depositional systems along the Sila 

footslope was accompanied by alternating phases of down-cutting and base-level stability resulting in the development 

of a step-like distributed 3


 Order Palaeosurface. The presence of dolostone in detrital modes is clear evidence of stream 

piracy phenomena of ancient palaeovalleys by the Crati valley-facing drainage network.

Keywords: geomorphology, Plio–Quaternary, Calabria, southern Apennines, Italy.


Calabria hosts a series of marine Plio–Quaternary basins, 

which developed during the late stage of continental collision 

(Patacca & Scandone 2001). Their evolution has been con-

trolled by a series of roughly NW- and WNW- trending strike-

slip fault zones formed during the Neogene. They controlled 

the migration of the Calabrian Arc and experienced episodes 

of extension (Van Dijk et al. 2000), responsible for the dis-

section of the Calabrian Arc (Lanzafame & Zuffa 1976; 

 Lanzafame & Tortorici 1981; Tortorici 1981; Knott & Turco 

1988; Turco et al. 1990; Tortorici et al. 1995; Schiattarella 

1998; Cifelli et al. 2006; Tansi et al. 2007). This resulted in an 

alternation of morphostructural ridges and Plio–Quaternary 

tectonic depressions bounded by high-angle fault scarps 

 (Fabbri et al. 1981; Barone et al. 1982; Argani & Trincardi 

1993; De Rosa et al. 2002; Milia et al. 2008; Filocamo et al. 

2009; Robustelli et al. 2005, 2009; Pepe et al. 2010; Spina et 

al. 2011; Tripodi et al. 2013; Longhitano et al. 2014; Robustelli 

et al. 2014; Zecchin et al. 2015). In particular, the Crati Basin 

(Fig. 1) developed in the subsiding hangingwall of the Crati 

fault system (sensu Spina et al. 2011), one of the active and 

segmented normal fault systems of Calabria (Tortorici et al. 

1995; Galli & Bosi 2003; Tansi et al. 2005; Spina et al. 2009). 

The Crati Basin is bounded by N-trending fault systems, and 

the relative tectonic landforms are morphologically well 

apparent. Its boundary faults related to regional strike-slip 

 tectonics, but the structural evolution of the depression has 

long been debated (Turco et al. 1990; Tortorici et al. 1995; 

Tansi et al. 2007; Spina et al. 2011). 

Anyway, the aforementioned studies focused their efforts on 

clarifying the stratigraphical, structural and seismotectonic 

framework of the Crati Basin, unfortunately their relationships 

to geomorphological settings were not considered. We lack 

studies of the geomorphological evolution of the Crati Basin 

through the analysis of the landscape characterized by hanging 

remnants of gentle erosional landsurfaces. Furthermore, very 

little is known about correlations between the landscape and 

marine morphostratigraphic records (Muto 2006), which could 

be very helpful for the reconstruction and interpretation of 

morphoevolutionary history.

These issues are addressed in our study of the left side of the 

Crati River valley, where much evidence of ancient landscapes 

can be found.

background image




, 2017, 68, 1, 68 – 79

This paper aims to contribute to these issues, focusing on  

(i) description and correlation of gently erosional/deposition 

landsurfaces; (ii) characterization of the different stages of 

landscape evolution and their relationships to sedimentation. 

Furthermore, this paper also represents the first attempt to 

evaluate the relationships between landscape evolution and 

sandstone detrital modes, through the correlation of landscape 

and the composition and provenance of the sandstone strata of 

the Plio–Pleistocene sedimentary record.

Geological setting

The Crati Basin is an intra-arc tectonic depression located in 

the north-western part of the Calabrian Arc (Fig. 1), which is 

an arc-shaped continental fragment interposed between Sici-

lian Maghrebide belts, to the south, and the Apennine edifice, 

to the north (Amodio Morelli et al. 1976; Bonardi et al. 2001, 

and references therein). It is mostly made up of a series of 

thrust crystalline and metamorphic nappes overthrusted, 

Fig. 1. Geological sketch map of southern Italy and its location in the central Mediterranean framework (top inset). The tectonic sketch map 

reporting the main tectonic features is shown in the inset on the bottom left. The study area (Crati Basin) is indicated by the inset on the bottom 

centre (modified after Robustelli et al. 2014).

background image




, 2017, 68, 1, 68 – 79

starting in the Early Miocene, onto the carbonate 

platform rocks of the Apulian continental margin 

(Van Dijk et al. 2000; Bonardi et al. 2001; Butler et 

al. 2004; Iannace et al. 2007).

Neogene thrusting and the progressive southeast-

ward migration of Calabrian Arc are closely related 

to the opening of the Tyrrhenian back-arc Basin 

(Kastens et al. 1988; Patacca & Scandone 1989), 

and was associated with NW- and WNW trending 

strike-slip fault zones. These controlled the migra-

tion of the Calabrian Arc along its borders, and were 

responsible for extrusion of the deep-seated units of 

the Calabrian Arc and of the underlying Mesozoic 

carbonate units (Tansi et al. 2007).

Strike slip faults were also important features as 

they were characterized by episodes of transtension 

(Van Dijk et al. 2000), responsible for the Crati 

Basin development (Knott & Turco 1988; Turco et 

al. 1990; Tortorici et al. 1995; Tansi et al. 2007).

Since the Middle Pleistocene, the Calabrian Arc 

has experienced a strong regional uplift, still active, 

resulting from the detachment of the Ionian sub-

ducted slab (Westaway 1993; Wortel & Spackman 

1993; Tortorici et al. 1995; Van Dijk et al. 2000). 

This regional tectonic event led to the formation of 

a series of grabens along the entire western sector of 

the Calabrian Arc (the so-called Siculo-Calabrian 

Rift Zone, sensu Monaco & Tortorici 2000)

The Crati Basin, forming part of this zone, is 

bounded by the Coastal Range to the west, by the 

Sila Massif to the east, by the Pollino Ridge to the 

north and by a NW-trending ridge to the south 

(Fig. 1). The basin is L-shaped and can be divided 

into two sub-basins: the N–S oriented Crati and the 

E–W oriented Sibari sub-basins (Colella et al. 1987).

The N–S elongated Crati sub-basin (hereinafter 

called Crati Basin), which includes the study area 

(Figs. 1, 2), is morphologically asymmetric with a 

steeper and shorter fluvial drainage along its eastern 

side. Its shape is strongly controlled by an array of 

normal faults (“Crati Fault System” in Spina et al. 

2009). The sedimentary infill derives from footwall 

uplifted areas exposed to extensive erosion (Molin 

et al. 2004; Olivetti et al. 2012), and overlies the 

Palaeozoic crystalline-metamorphic bedrock of the 

Calabrian Block and its Miocene sedimentary cover 

(Fig. 2).

Stratigraphy of the Crati Basin

The Crati Basin is filled by Plio–Pleistocene deposits that 

can be divided into two (Lanzafame & Tortorici 1981; Fabbri-

catore et al. 2014) or three main depositional sequences (Spina 

et al. 2011; Zecchin et al. 2015) bounded by a regional angular 


Regardless of the number of sequences, the key question 

manly concerns the age of the base of the Crati Basin infilling 

and, hence, the presence/absence of the “mid-Pliocene uncon-

formity” of Zecchin et al. (2015). In this regard, geological 

data (Lanzafame & Tortorici 1981; Barone et al. 2008; Robus-

telli et al. 2009) and palaeontological analysis (Lanzafame & 

Tortorici 1981; Corbi et al. 2009; Fabbricatore 2011; Spina et 

Fig. 2. Lithological map of the left side of the Crati Basin: (1) Fluvial deposits 

(Middle Pleistocene–Holocene); (2) Clay, sandstone and conglomerate (PlS Unit 

in Fig. 3A) (Early–Middle? Pleistocene); (3) Complex clastic wedge (PPS Unit in 

Fig. 3A) (Pliocene–Early Pleistocene). (4) Clay, sandstone and conglomerate 

(Miocene); (5) Dolostone and limestone(Mesozoic);  (6) Calabride Complex 

(Paleozoic); (7) Liguride Complex (Mesozoic); (8) Sampled section for petro-

graphic analyses.

background image




, 2017, 68, 1, 68 – 79

al. 2011) provided conflicting age constraints on this issue. 

Anyway, subsurface data available for the Crati Basin, also 

reported in Spina et al. (2011), along with high resolution seis-

mic reflection profiles (Milia et al. 2009) suggest that the 

Sibari Plain (i.e. the northernmost part of the L-shaped Crati 

Trough) appears to be developed and widened during the 

Upper-Pliocene–Lower Pleistocene time span.

Based on the foregoing survey, along with geological and 

lithostratigraphic survey, the Crati Basin infill was sub- divided 

into two major sedimentary units bounded by an angular 

unconformity, corresponding locally to an erosional surface 

(Fig. 3A). Moreover, the base of the lower unit is likely to 

correlate with the “mid-Pliocene unconformity” of Zecchin et 

al. (2015).

Fig. 3.  A — Stratigraphic scheme of the Plio–Pleistocene deposits cropping out in the southern part of the Crati River valley. B — PlS Unit; 

detail view of Gilbert-type deltas showing aggradation/progradation style. The clinoform wedge is composed of a stack of two unconformity -

bounded shingles.

background image




, 2017, 68, 1, 68 – 79

Pliocene–Early Pleistocene sedimentary unit (PPS)

This unit rests erosively and unconformably on Miocene 

deposits as well as pre-Neogene crystalline and metamorphic 

bedrock. Its thickness increases towards the Sibari Plain, as 

shown also by deep wells for hydrocarbon exploration.

Based on lateral and vertical sedimentary wedge arrange-

ment, this unit forms a complex assemblage of clastic wedges 

up to 250 m-thick in the North of the study area. Its basal part 

consists of superimposed and juxtaposed deltaic depositional 

systems grading laterally and vertically into marine sandstone 

and silty clay. This portion of the succession pinches out to the 

South, where this unit is only characterized by its uppermost 

part consisting in clayey sediments passing upward to mixed 

silici/bioarenites strata and, again, to clay (Fig. 3A). Based on 

the occurrence of Hyalinea balthica, the uppermost part of the 

succession is considered not older than Calabrian (older 


Early–Middle? Pleistocene sedimentary unit (PlS)

The  second  unit  rests  erosively  and/or  unconformably  on 

the PPS unit, and locally directly onto the bedrock and the 

Miocene sediments along the southern portion of the basin. It 

consists of continental to marine stacking depositional sys-

tems deposited in response to tectonic-induced basin subsi-

dence; it started in the west and proceeded eastwards, causing 

a diachronous transgression (Lanzafame & Zuffa 1976; 

 Lanzafame & Tortorici 1981; Tortorici 1981; Spina et al. 2009; 

Fabbricatore et al. 2014). According to data provided by Lan-

zafame & Tortorici (1981) and by Young & Colella (1988), 

this unit can be considered younger than 1.2 M.y. (late Early 


In particular, moving to the East the related deposits consist 

of massive to crudely stratified, locally amalgamated, 

 pebble-to-cobble alluvial-fan conglomerates grading basin-

ward into fine to coarse-grained deltaic and beach deposits. 

The succession is more than 100 m thick and consists mainly 

of shoreface and offshore sands and clays, and shoal-water 

deltaic clinostratified gravels. To the South, they form alter-

nating clastic wedges, locally telescopically arranged. To the 

North, the deltas are organized into vertically-stacked 

sequences that display internal depositional architectures con-

sisting of alternating progradational and aggradational geome-

tries, developing a basinward offset delta sequences of 

Gilbert-type deltas (Fig. 3B) very rich in dolomitic gravel. 

This arrangement can be interpreted as a result of tectonic con-

trol of the basin margin (e.g. Longhitano 2008).

Morphotectonic data

The oldest geomorphological elements in the area are han-

ging relics of a low-relief landscape (hereinafter named the  



  Order Palaeosurface) occurring on the uplifted mountain 

ridge (Figs. 4, 5A) ranging in elevation between 1000m and 

1200 m a.s.l., and cutting crystalline and Miocene sedimentary 


Its formation can be related to relief smoothing processes 

— fluvio-denudational — acting during periods of relative 

stability of erosional base-levels. In particular, this landscape 

includes highly eroded fault scarps, with cross profiles locally 

declined at 20°, and low-sloping palaeovalleys, hanging and 

beheaded valleys, none of them linked to the present-day 

drainage network. Scattered patches of fluvial conglomerates 

characterize this gently rolling landscape, but no chrono-

logical constraint is available. Therefore, the development of 

the 1


 Order Palaeosurface can be ascribed to the Pliocene on 

the basis of cross-cutting relationships with bedrock, and geo-

logical and geomorphological data provided (Tortorici et al. 

1995; Robustelli et al. 2005; Milia et al. 2009, Olivetti et al. 


Moving downslope towards the Crati Trough, the apparent 

N-trending fault scarps correlated with a new generation of 

low relief landscape (2


 Order Palaeosurface). Remnants of 

the 2


 Order Palaeosurface, occurring between 400 and 600 m 

a.s.l. (Fig. 4), are widespread throughout the study area; at the 

footslope of Mt. Luta and Cozzo Sprovieri (Figs. 4, 5A), they 

are locally associated with slope and alluvial sediments  

(Fig. 5B). Elsewhere, they form gentle footslopes carved into 

hard rock, showing similar degree of maturity and concave 

slope breaks at comparable elevation. Because this landscape 

seals PPS unit, its development occurred during the late Early 


Downslope of the previous landscape (Figs. 4, 5C), it is 

important to note much steeper elements of hanging relics of 

the 2


 Order Palaeosurface, outlining the latest phases of 

basin infilling. These fault scarps are related to a block faul-

ting episode that caused the uplifting of the 2


 Order Palaeo-

surface and the development of the recent Crati Basin; its 

depositional top surface, representing the 3


 Order Palaeosur-

face, occur as stepped sequences in which vertical spacing 

varies from metres to tens of metres. The surfaces show an 

uneven spatial and altimetric distribution across stepped, 

inclined planes that are separated by scarps not related to tec-

tonic structures, as they largely match with top depositional 

surfaces of basinward offset Gilbert-type deltas.

According to stratigraphic data, these step-like distributed 

surfaces indicate that the final stages of basin infilling were 

accompanied by progressive and continuous dissection of 

ancient landscapes where alternating phases of down-cutting 

and of base-level stability occurred fairly quickly.

Petrographic signature of Plio–Pleistocene deposits

Eighty arenite samples representing the Crati Basin infilling 

were collected along the south-western part of the Crati 

Trough between Rende and Lattarico. They were analysed 

according to the Gazzi-Dickinson method (Gazzi 1966; 

 Dickinson 1970; Ingersoll et al. 1984; Zuffa 1985; Critelli & 

Le Pera 1994). 

background image




, 2017, 68, 1, 68 – 79

Petrographic analyses of the Plio–Pleistocene sandstones of 

the Crati Basin determines petrofacies characterizing each 

lithostratigraphic unit (Fig. 6A), hence petrofacies get the 

same names as sedimentary units.

The PPS unit sandstones show different composition moving 

upward in the succession, and to the South.  

In the area of Montalto Uffugo, the lower porzion is quartzo-

feldspathic  (NCE 






– Qt




 L + CE


) (Fig. 6). Low-  

grade to medium-grade metamorphic lithic grains (Lm) are the 

dominant lithic population and include phyllites and fine-

grained schist fragments (mean value of lithics Lm







Minor carbonate sedimentary lithic fragments consist of 

micritic and sparitic limestones while siliciclastic sedimentary 

lithic fragments do not occur. 

The upper portion (NCE






– Qt




 L + CE


) tends 

toward a feldspatholithic composition (Fig. 6) rich in sedi-

mentary lithic grains (Lm






), mainly carbonate grains 

(micritic and sparitic limestones). The intrabasinal carbonate 

(CI) component, made up of bioclasts, increases upward.

To the south, in the area of Rende, the detrital-mode of the 

PPS Unit sandstones shows a similar trend (from quartzofeld-

spathic — NCE






 – Qt




 L + CE


 — to feldspatho-

lithic — NCE






– Qt




 L + CE


 — composition), 

even though compositional data reveals a higher increase in 

sedimentary detritus. Carbonate sedimentary lithic fragments 

consist of micritic and sparitic limestones, whereas the intra-

basinal carbonate component increases upward, where bio-

clasts are very abundant.

The lower part of the PlS Unit sandstones (Fig. 6) are 

quartzo feldspathic  (NCE






 – Qt




L + CE


), with 


a composition comparable to the lower portion of the PPS 

Unit, but richer in sedimentary lithic grains. The upper portion 

of the PlS sandstones tends to have a more feldspatholithic 







 – Qt




L + CE


) composition. These sedi-

ments contain carbonate sedimentary lithic grains (mean value 

of lithics Lm






), but it is worth noting the progressive 

increase, and then the decrease of dolostone moving to the 

younger portion (uppermost in Fig. 6), also characterized by  

a trend again toward a quartzofeldspathic composition.

The Early Pleistocene sandstones cropping out along the 

right side of the Crati (Fig. 4) River valley are quartzo-

feldspathic (NCE






 – Qt




 L + CE


), with abundant 

feldspar grains. Low-grade to medium-grade metamorphic 

lithic grains (Lm) are the dominant lithic population and 

include phyllites and fine-grained schist fragments (mean 

value of lithics Lm







Quaternary basin evolution

The Crati Basin is one of the main basins in the Calabrian 

Arc where landscapes and stratigraphic architecture are useful 

tools for the reconstruction of the main stages of landscape, 

tectonic and stratigraphic evolution during the Quaternary in 

the northern Calabria. 

The integrated analyses performed here highlight that tec-

tonics played a key role in the basin’s genesis and evolution 

(Turco et al. 1991; Cifelli et al. 2007; Tansi et al. 2007).  

The reconstructed geomorphological and sedimentary history 

shows that the study area experienced a number of morpho-

genetic cycles since the Pliocene (Piacenzian?) and during the 

Early–Middle? Pleistocene.

The main evolutionary steps of the Crati Basin are summa-

rized in the following morpho-evolutionary stages.

Fig. 4. Morphostructural sketch map of the left side of Crati Basin 

showing the main recognized landforms and the distribution of  

the three orders of Palaeosurfaces: (1) 1


 Order Palaeosurface;  

(2) 2


 Order Palaeosurface (erosional); (3) 2


 Order Palaeosurface 

(depositional); (4) 3


 Order Palaeosurface; (4) Eroded fault scarp;  

(5) Fault scarp; (6) Direction of the main low-gradient paleovalleys; 

(7) Direction of the secondary low-gradient paleovalleys; (9) Wind 

gap; (10) River capture; (11) Main tops (thick cross) rising above the 



 Order Paleosurface, along with hypothesized ones (thin cross) 

should form part of the ancient watershed of N- NE-directed 

paleodrainage; (12) Homoclinal ridge.

background image




, 2017, 68, 1, 68 – 79

Stage 1 (Pliocene)

The oldest stages of landscape evolution are represented by 

hanging remnants of the 1


 Order Palaeosurface (Figs. 4, 5A), 

carved into crystalline and sedimentary bedrock of the Coastal 


Although some surfaces presumably developed locally as 

a border polje through karst processes at the contact between 

limestones and crystalline rocks, this landscape is considered 

to result from fluvio-denudational relief smoothing processes 

acting during periods of relative stability of erosional base- 

levels, as much geomorphological evidence strongly indicates 

(e.g., concave-up, low gradient footslopes, low-sloping 

palaeo valleys, alluvial conglomerate). 

The absence of clear step-like distributed surfaces indicates 

that the relief dismantling was quite continuous and characte-

rized by a long-term phase of base-level stability or slow base 

level lowering. By considering geological and geomorpho-

logical data provided in northern Calabria (Robustelli et al. 

2005; Barone et al. 2008; Robustelli et al. 2009; Spina et al. 

2009; Pepe et al. 2010; Muto et al. 2015), the present upland 

developed mainly during the Lower Pliocene and partly 

 correlates to the low-relief landscape characterizing the Sila 

Massif (Olivetti et al. 2012). 

Fig. 5. Overview of landscapes noticeable in the study area and morphostratigraphic section of the Crati Basin showing the distribution of the 

three orders of Palaeosurfaces. A — View from the East of Cozzo Spriovieri-Mt. Luta ridge; white arrow indicates stream piracy evidence 

responsible for feeding dolomitic clasts into delta wedges during the Early–Middle? Pleistocene; 1


  Order  Palaeosurface = solid  line;  



 Order Palaeosurface = dashed line; 3


 Order Palaeosurface = dotted line. B — View from the North of Castrolibero rigde accompanied by 

a morphostratigraphic section; C — View from the South of Montalto Uffugo area characterized by a stepped sequence of 3


 Order Palaeo-

surface related to stratigraphic architecture (see text for detail).

background image




, 2017, 68, 1, 68 – 79

In particular, these gently rolling landscape relics (1000 to 

1200 m elevated and Late Miocene to Pliocene in age) do not 

show clear evidence of being originally connected with the 

Tyrrhenian coast (Fig. 7A). On the contrary, the occurrence of 

some beheaded, low-sloping and dry river valleys that witness 

a north-northeastward direction of palaeo-drainage, along 

with the presence of fluvial conglomerates, made up of dolo-

mitic clast fed by the Triassic dolostone cropping out to the 

South, strongly support the above hypothesis. Furthermore, 

the size of the main palaeo-valleys and the degree of rounding 

of fluvial gravel clasts strongly suggest that they were cut by 

high-order streams with catchment areas that had to cover 

much of the distance that nowadays separate them from the 

south-southwestern source area (Tyrrhenian area; Fig. 7A). 

Therefore, we might assume that the 1


 Order Palaeosurface, 

nowadays found near the Coastal Range summit line, formed 

on the north-northeastern flank of the northern Calabrian 


Stage 2 (late Pliocene – Early Pleistocene)

The upper Pliocene –lower Pleistocene marks the first split-

ting of the previous Palaeolandscape and its lowering west-

ward. This led to the development of a narrow trough bordered 

Fig. 6. Ternary diagrams showing sandstone composition of PPS and PlS l Units. Mean (symbols at the centre of polygons) and standard 

 deviation (polygon); Qm (monocrystalline quartz), F (feldspars, K + P), and Lt (aphanitic lithic fragments and fine-grained polycrystalline 

quartz + CE). NCE (extrabasinal noncarbonate grains), CE (extrabasinal carbonate grains), CI (intrabasinal carbonate grains).

background image




, 2017, 68, 1, 68 – 79

by N-trending faults, which records the onset of marine sedi-

mentation (PPS Unit), and represents the early structural 

depression where the modern Crati Basin will develop later on 

(Fig. 7B). This period clearly marks the initial stretching of 

this portion of the southern Apennines,

Geological data suggests that tectonic subsidence provided 

the accommodation space for the deposition of the PPS Unit, 

for the progressive backstepping of the system, and for the 

progressive drowning of bedrock moving to the south

Furthermore,  comparison  between  the  quartzolithic/feld-

spatholithic detrital modes of Coastal 

Range littoral province (Le Pera & 

Critelli 1999) and quartzofeldspathic 

detrital modes of late Miocene wedge 

top basins (Barone et al. 2008), indi-

cates a possible provenance of the 

lower portion of the PPS Unit from 

the Sila massif. Moreover, it is note-

worthy the similar detrital modes 

between sandstones of the Rende 

lower section and Pleistocenic sand-

stones cropping out along the eastern 

side of the Crati Valley. Conversely, 

feldspathic lithic arenite strata of the 

upper part of the Late Pliocene–Early 

Pleistocene sediments indicate de 


creasing siliciclastic influx (NCE) 

into the basin (favouring intrabasinal 

carbonate productivitye.g., Barone 

et al. 2008) as well as a possible new 

low-relief source area located to the 

South as the northward decrease in 

calcareous sedimentary detritus in 

the PPS Unit suggests. 

From the foregoing considera-

tions, we consider that the western 

part of the 1


 Order Palaeosurface 

was poorly fragmented and lowered 

next to base level. As result, the land-

scape underwent slow dissection, 

which allowed reshaping of the 




 Order Palaeolandscape. Westward 

of the study area, Milia et al. (2009) 

also argued for the presence of 

 southern sediment source areas. 

Stage 3 (late Early Pleistocene)

The early Pleistocene marks a sig-

nificant change in the geological and 

Fig. 7. Simplified sketches of geological and geomorphological evolution of the Crati Basin 

from upper Pliocene to Present (not in scale); faults shown in the following frames claim to 

indicate the merely vertical component of tectonics: A — Development of the 1



Palaeosurface characterized by NNE-trending palaeodrainage. B — During the late Plio-

cene–Early Pleistocene the study area experienced a first fragmentation of the previous land-

scape leading to a further reshaping of the 1


 Order Palaeosurface. C — During the Early 

Pleistocene the 1


 Order Palaeosurface was uplifted and the Coastal Range started to be 

identified; backstepping of the Sila fault system (black arrow); development of the 2



Palaeosurface.  D — Progressive uplift of the Coastal Range during the Early–Middle? 

 Pleistocene led to the development of the 3


 Order Palaeosurface, and to stream piracy 

 phenomena.  E — The drainage network facing the Tyrrhenian Sea was responsible for 

 disabling part of the sediment source toward the Crati valley.

background image




, 2017, 68, 1, 68 – 79

geomorphological scenario of the study area. A blockfaulting 

episode caused the fragmentation of the 1


 Order Palaeosurface, 

the development of a depression bordered by high angle, 

NNE-trending faults, and an eastward migration of the fault sys-

tem resulting in uplift and erosion of the Sila slope (Fig. 7C).

At the end of the Emilian the Coastal Range was likely 

wider than today toward the West, but afterwards it has pro-

gressively assumed its modern shape. 

As a consequence, a new base-level became established and 

led to the development of the 2


 Order Palaeosurface. Rem-

nants of this landscape occur at elevations between 400 and 

600 m a.s.l. (Figs. 4, 5). They appear entrenched within rem-

nants of the 1


 Order Palaeosurface to the South, and they are 

very noticeable on the footslopes of the Coastal Range ridge 

(Fig. 4). Here the 2


 Order Palaeosurface relics are characte-

rized by depositional and erosional landforms (Figs. 4, 5), the 

last ones carved into hard rocks and showing a similar degree 

of maturity at comparable elevation. The drainage network 

formed as a response to the uplift of the Coastal Range, pro-

ducing steep catchments from which alluvial deposition pro-

graded onto the piedmont zone (Fig. 5B). 

A late Early Pleistocene age can be ascribed to the develop-

ment of the 2


 Order Palaeosurface, as it rests erosively or 

seals Hyalinea Balthica bearing deposits.

Over the same time-span, the coastal area experienced sub-

sidence, resulting in clastic sedimentary successions having 

first a quartzofeldspathic composition. Although detrital modes 

indicate a Sila Massif provenance, detrital components (richer 

in carbonate sedimentary lithic grains) and palaeocurrents also 

reflect provenance from the Coastal Range. 

Stage 4 (late Early – Middle? Pleistocene)

After the development of the 2


 Order Palaeosurface, tec-

tonics caused the formation of a depression bordered by high 

angle, NNE-trending faults that draw progressively the recent 

Crati valley profile (Fig. 7D, E). 

Pulses of eastward migration of fault systems affected the 

Sila Massif (Lanzafame & Tortorici 1981; Fabbricatore et al. 

2014) and caused the drowning of coastal slices and uplift of 

the Sila Massif. The presence of perched-fluvial terraces and 

hanging stream-dissected fans found at different elevations 

within the valleys of the Tyrrhenian slope of the Coastal Range 

(Robustelli et al. 2005; Muto 2006) further support the uplift 

affecting the ridge at issue. At the same time, the Crati Basin 

experienced an almost continuous and fragmentary uplift 

where gentle erosional landscapes did not form, but deposi-

tional landscapes still survive, though deeply dissected. 


The tectonic control of the eastern basin margin from which 

Gilbert-type deltas were sourced, forced an offset basinward 

arrangement. Similarly, the influence of tectonics is also 

strongly suggested by the marked backstepping of the deposi-

tional systems cropping out on the eastern side of the Crati 

Trough (Fabbricatore et al. 2014). 

In this framework, more than one depositional surface 

developedAccording to stratigraphical data and depositional 

system arrangement, these step-like distributed surfaces  



 Order Palaeosurface) indicate that the final stages of  

basin infilling were accompanied by progressive and 

 continuous dissection of ancient landscapes and characte-

rized by alternating phases of down-cutting and of base- 

level stability that occurred fairly quickly through time  

(Figs. 4, 5).

It is also worth noting the difference in sediment detrital 

modes and partitioning in composition during this phase of 

landscape evolution. Although detrital modes indicate variable 

composition from quartzofeldspathic to feldspatholithic, 


the increase and decrease of dolostone in fine-grained deltaic 

sediments are clear evidence of stream capture phenomena 

and recycling processesIn fact, as the rivers flowing toward 

the Crati Basin had their longitudinal gradients increased due 

to uplift, headward propagation of incision tended to capture 

the NNE-directed palaeodrainage drainage (Fig. 7D) the 

watershed of which still had to include Triassic dolostone  

(M. Cocuzzo area; Figs. 2, 4).

Afterwards, river capture phenomena resulting from head-

ward retreat of river valleys flowing toward the Tyrrhenian 

Sea were responsible for disabling the dolomitic sediment 

source area toward the Crati valley (Fig. 7E), outlining the 

current physiography of the study area.

Concluding remarks

The integrated geomorphological and stratigraphical 

approach adopted for the study of the Crati Basin represents 

another goal of improving our knowledge of the Plio–Quater-

nary landscape evolution of northern Calabria. The Crati Basin 

development and evolution was reconstructed through a model 

depicting the relationships between sedimentary units, boun-

ding surfaces and landsurfaces. In this regard, the timing of the 

Crati landscape evolution was constrained between late 

 Pliocene and Middle Pleistocene 

On the basis of sandstone detrital and geomorphological 

evidences, we have better constrained the timing of landscape 

evolution and its relationships with basin sedimentary 


The presence of Hyalinea balthica confirms the existing 

inferred age for the lower boundary of the PlS Unit, and 

reveals that the upper age limit of the 2


 Order Palaeosurface 

has to be younger than 1.2 M.y.

The depositional system arrangement of PlS Unit and the 

related step-like distributed 3


 Order Palaeosurface, result 

from alternating phases of down-cutting and base-level stability, 

and suggest the progressive and continuous dissection of 

ancient landscapes.

The roles of tectonics and river piracy are emphasized as 

control mechanisms for composition and provenance of the 

sandstone strata. Tectonics caused a change in fluvial connec-

tivity and the re-arrangement of the formerly NNE-ward-

draining river network during the late Early Pleistocene and 

then in more recent times.

background image




, 2017, 68, 1, 68 – 79


Amodio-Morelli L., Bonardi G., Colonna V., Dietrich D., Giunta G., 

Ippolito F., Liguori V., Lorenzoni S., Paglionico A., Perrone V., 

Piccarreta G., Russo M., Scandone P., Zanettin-Lorenzoni E. & 

Zuppetta A.  1976: The Calabria-Peloritani arc within the 

 Apennine-Maghrebide  chain.  Mem. Soc. Geol. Ital. 17, 1–60.

Argnani A.

 & Trincardi F. 1993: Growth of a slope ridge and its con-

trol on sedimentation: Paola slope basin (eastern Tyrrhenian 

margin). International Association of Sedimentologists, Special 

Publication 20, 467–480.

Barone A., Fabbri A., Rossi S. & Sartori R. 1982: Geological struc-

ture and evolution of the marine areas adjacent to the Calabrian 

Arc. Earth Evolution Science 3, 207–221.

Barone M., Dominici R., Muto F. & Critelli S. 2008: Detrital modes 

in a late Miocene wedge-top basin, northeastern Calabria, Italy: 

compositional record of wedge-top partitioning. J. Sed. Res. 78, 


Bonardi G., Cavazza W., Perrone V. & Rossi R. 2001: Calabria-Pelo-

ritani Terrane and Northern Ionian Sea. In: Vai G.B. & Martini 

I.P. (Eds.): Anatomy of an Orogen: The Apennines and Adjacent 

Mediterranean Basins. Kluwer Academic Publishers, Dordrecht/

Boston/London, 287–306.

Butler R.W.H., Mazzoli S., Corrado S., De Donatis M., Di Bucci D., 

Gambini R., Naso G., Nicolai C., Scrocca D., Shiner P. & 

 Zucconi V. 2004: Applying thick-skinned tectonic model to the 

Apennine thrust belt of Italy: limitations and implications. In: 

McClay K.R. (Ed.): Thrust tectonics and hydrocarbon system

A.A.P.G. Memoir 82, 647–667.

Cifelli F., Rossetti F. & Mattei M. 2006: The architecture of brittle 

postorogenic extension: Results from an integrated structural 

and paleomagnetic study in north Calabria (southern Italy). 

Geol. Soc. Am. Bull. 119, 1/2, 221–239.

Colella A., De Boer P.L. & Nio S.D. 1987: Sedimentology of a marine 

intermontane Pleistocene Gilbert-type fan-delta complex in the 

Crati Basin, Calabria, sothern Italy.  Sedimentology 34, 


Corbi F., Fubelli G., Lucà F., Muto F. , Pelle T., Robustelli G., Scar-

ciglia F. & Dramis F. 2009: Vertical movements in the Ionian 

margin of the Sila Massif (Calabria, Italy). Boll. Soc. Geol. Ital. 

128, 731–738.

Critelli S. & Le Pera E. 1994: Detrital modes and provenance of Mio-

cene sandstones and modern sands of the Southern Apennines 

thrust-top basins (Italy): J. Sed. Res. 64, 824–835.

De Rosa R., Dominici R.& Sonnino M. 2002: Evidences of sin-sedi-

mentary volcanism in the Plio-Pleistocene succession of the 

Mesima trough (west-central Calabria). Il Quaternario, Ital. J. 

Quat. Sci. 14, 25–36 (in Italian with English abstract).

Dickinson W.R. 1970: Interpreting detrital modes of greywacke and 

arkose. J. Sed. Petrol. 40, 695–707.

Fabbricatore D, Robustelli G. & Muto F 2014: Facies analysis and 

depositional architecture of shelf-type deltas in the Crati Basin 

(Calabrian Arc, south Italy). Ital. J. Geosci. 133, 131–148.

Fabbri A., Gallignani P. & Zitellini N. 1981: Geologic evolution of 

the peri-tyrrhenian sedimentary basins. In: Wezel F.C. (Ed.): 

Sedimentary Basins in Mediterranean Margins. Tecnoprint, 

Bologna, 101–126.

Fabbricatore D. 2011: Stratigraphy and facies analysis of Quaternary 

deposits of the Crati river valley. Tesi di Dottorato di Ricerca 

(PhD. Thesis)Unical, Rende, 1–206 (in Italian).

Filocamo F., Romano P., Di Donato V., Esposito P., Mattei M., Por-

reca M., Robustelli G.& Russo Ermolli E. 2009: Geomorphol-

ogy and tectonics of uplifted coasts: New chronostratigraphical 

constraints for the Quaternary evolution of Tyrrhenian North 

Calabria (southern Italy). Geomorphology 105, 334–354.

Galli P. & Bosi V. 2003. Catastrophic 1638 earthquakes in Calabria 

(southern Italy): new insights from palaeoseismological investi-

gation.  J. Geophys. Res.  108  (B1),  doi:10.1029/2001jb001713 


Gazzi P. 1966: Late Cretaceous sandstones of Modena Apennine: 

relationships with the Monghidoro Flysch. Mineralogica et 

Petrografica Acta 12, 69–97 (in Italian with English abstract).

Iannace A., Vitale S., D’Errico M., Mazzoli S., Di Staso A., Macaione 

E., Messina A., Reddy S.M., Somma R., Zamparelli V., Zattin 

M. & Bonardi G. 2007: The carbonate tectonic units of northern 

Calabria (Italy): a record of Apulian paleomargin evolution and 

Miocene convergence, continental crust subduction, and exuma-

tion of HP-LT rocks. J. Geol. Soc., London 64, 1165–1186.

Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D. & 

Sares S.W. 1984: The effect of grain size on detrital modes: a test 

of the Gazzi–Dickinson point-counting method. J. Sed. Petrol. 

54, 103–116.

Kastens K., Mascle J., Auroux C., Bonatti E., Broglia C., Channell J., 

Curzi P., Emeis K.C., Glacon G., Hasegawa S., Hieke W., Mas-

cle G., Mccoy F., Mckenzie J., Mendelson J., Muller C., Rehault  

J.P., Robertson A., Sartori R., Sprovieri R. & Tori M. 1988: ODP 

Leg 107 in the Tyrrhenian Sea: insights into passive margin and 

back-arc basin evolution. Geol. Soc. Am. Bull. 100, 1140–1156.

Knott S.D. & Turco E. 1991: Late Cenozoic kinematics of the Cal-

abrian Arc, southern Italy. Tectonics 10, 1164–1172.

Le Pera E. & Critelli S. 1999: Sourceland controls on the composition 

of beach and fluvial sand of the northern Tyrrhenian coast of 

Calabria, Italy: implications for actualistic petrofacies. Sed. 

Geol. 110, 81–97.

Longhitano S.G. 2008: Sedimentary facies and sequence stratigraphy 

of coarse-grained Gilbert-type deltas within the Pliocene thrust-

top Potenza Basin (Southern Apennines, Italy). Sed. Geol. 210, 


Longhitano S.G., Chiarella D. & Muto F. 2014: Three-dimensional to 

two dimensional cross-strata transition in the lower Pleistocene 

Catanzaro tidal strait transgressive succession (southern Italy). 

Sedimentology 61, 2136–2171.

Milia A., Turco E., Pierantoni P.P. & Schettino A. 2009: Four-dimen-

sional tectono-stratigraphic evolution of the Southeastern 

peri-Tyrrhenian Basins (Margin of Calabria, Italy). Tectono-

physics 476, 41–56.

Molin P., Pazzaglia F.J. & Dramis F. 2004: Geomorphic expression of 

active tectonics in a rapidly-deforming forearc, Sila Massif, 

 Calabria, southern Italy. Am. J. Sci. 304, 559–589.

Monaco C.& Tortorici L. 2000: Active faulting in the Calabrian Arc 

and eastern Sicily. J. Geodyn. 29, 407–424.

Muto F. 2006: Neogene Quaternary geological evolution of 

north-western Calabria. Tesi di Dottorato (PhD thesis), Univer-

sità della Calabria, 1–121 (in Italian).

Muto F., Critelli S., Robustelli G., Tripodi V., Zecchin M., Fabbrica-

tore D. & Perri F. 2015: A Neogene-Quaternary Geotraverse 

within the northern Calabrian Arc from the foreland peri- Ionian 

margin to the back-arc Tyrrhenian margin. Periodico semestrale 

del Servizio Geologico d'Italia - ISPRA e della Società Geolo-

gica Italiana, Geological Field Trips, 7, n.2.2.,  1–65.

Olivetti V., Cyr A.J., Molin P., Faccenna C. & Granger D. 2012: Uplift 

history of the Sila Massif, southern Italy, deciphered from cos-



Be erosion rates and river longitudinal profile analy-

sis. Tectonics 31, doi:10.1029/2011TC003037.

Patacca E. & Scandone P. 1989: Post-Tortonian mountain building in 

the Apennines. The role of the passive sinking of a relic litho-

spheric slab. In: Boriani A, Bonafede M., Piccardo G.B., Vai G.B 

(Eds.): The lithosphere in Italy. Advances in Earth Science 

Research. t.Nat.Comm.Int.Lith.Progr., Mid-term Conf. (Rome, 

5-6 May 1987), Atti Conv. Lincei 80, 157–176.

Patacca E. & Scandone P. 2001: Late thrust propagation and sedimen-

tary response in the thrust belt-foredeep system of the Southern 

background image




, 2017, 68, 1, 68 – 79

Apennines (Pliocene-Pleistocene). In: Vai G.B., Martini I.P. 

(Eds): Anatomy of an Orogen: The Apennines and Adjacent 

Mediterranean Basins, Kluwer Academic Publication, 401–440.

Pepe, F., Sulli, A., Bertotti, G. & Cella F., 2010. Architecture and 

Neogene to Recent evolution of thewestern Calabrian continen-

talmargin: an upper plate perspective to the Ionian subduction 

system, central Mediterranean. Tectonics 29, TC3007.

Robustelli G., Muto F., Scarciglia F., Spina V.& Critelli S. 2005: 

Eustatic and tectonic control on Late Quaternary alluvial fans 

along the Tyrrhenian Sea coast of Calabria (South Italy). Quat. 

Sci. Rev. 24, 2101–2119.

Robustelli G., Lucà F., Corbi F., Pelle T., Dramis F., Fubelli G., Scar-

ciglia F., Muto F. & Cugliari G. 2009: Alluvial terraces on the 

Ionian coast of northern Calabria, southern Italy: implications 

for tectonic and sea level controls. Geomorphology 106, 


Robustelli G, Russo Ermolli E, Petrosino P, Jicha B, Sardella R. & 

Donato P. 2014: Tectonic and climatic control on geomorpholog-

ical and sedimentary evolution of the Mercure basin, southern 

Apennines, Italy. Geomorphology 214, 423–425

Schiattarella M. 1998: Quaternary tectonics of the Pollino Ridge, Cal-

abria-Lucania boundary, southern Italy.  In: Holdsworth R.E., 

Strachan R:A. & Dewey J.F. (Eds): Continental  Transpressional 

and Transtensional Tectonics. Geol. Soc., London, Spec. Publ. 

135, 341–354.

Spina V., Tondi E., Galli P. & Mazzoli S. 2009: Fault propagation in  

a seismic gap area 18 (northern Calabria, Italy): Implication for 

seismic hazard. Tectonophysics 476, 357–369.

Spina V., Tondi E. & Mazzoli S. 2011: Complex basin development in 

a wrench-dominated back-arc area:Tectonic evolution of the 

Crati Basin, Calabria, Italy. J. Geodyn. 51, 90–109.

Tansi C., Tallarico A., Iovine G., Folino Gallo M. & Falco

ne G. 2005: 

Interpretation of radon anomalies in seismotectonic and tec-

tonic–gravitational settings: the southeastern Crati graben 

(Northern Calabria, Italy). Tectonophysics 396, 3–4, 181–193.

Tansi C., Muto F., Critelli S. & Iovine G. 2007: Neogene–Quaternary 

strike–slip tectonics in the central Calabrian Arc (southern Italy). 

J. Geodyn. 43, 393–414.

Tortorici L. 1981: Analysis of brittle tectonics of post-orogenic sedi-

ments of northern Calabria. Boll. Soc. Geol. Ital. 100, 291-308 

(in Italian with English abstract).

Tortorici L., Monaco C., Tansi C. & Cocina O. 1995: Recent and 

active tectonics in the Calabrian Arc (southern Italy). Tectono-

physics 243, 37–55.

Tripodi V., Muto F. & Critelli S. 2013: Structural style and tecto-

no-stratigraphic evolution of the Neogene–Quaternary Siderno 

Basin, southern Calabrian Arc, Italy. International Geology 

Review, doi:10.1080/00206814.2012.723859.

Turco E., Maresca R. & Cappadona P. 1990: Plio–Pleistocene tecto-

nics of Calabria-Lucania boundary (cinematic model). Mem. 

Soc. Geol. Ital. 45, 519-529 (in Italian with English abstract).

Van Dijk J.P., Bello M. & Brancaleoni G.P. 2000: A regional  structural 

model for the northern sector of the Calabrian Arc (southern 

Italy). Tectonophysics 324, 267–320.

Westaway R. 1993: Quaternary uplift of southern Italy. J. Geophys. 

Res. 98, 21741–21772.

Wortel M.J.R. & Spackman W. 1993: The dynamic evolution of the 

Apenninic-Calabrian, Hellenic and Carpathian arcs: a unifying 

approach. Terra Nova Abstract 5, 97.

Young J. & Colella A. 1988: Calcarenous nannofossils from the Crati 

Basin.  In: Colella A. (Ed.): Fan Deltas-Excursion Guidebook. 

Università della Calabria, Cosenza, 79–96.

Zecchin M., Praeg D., Ceramicola S. & Muto F. 2015: Onshore to 

offshore correlation of regional unconformities in the Plio–Pleis-

tocene sedimentary successions of the Calabrian Arc (central 

Mediterranean). Earth-Sci. Rev. 142, 60–78.

Zuffa G.G. 1985: Optical analyses of arenites: influence of methodo-

logy on compositional results. In: Zuffa G.G. (Ed.): Provenance 

of Arenites. Dordrecht, The Netherlands, Nato Advanced Study 

Institute Series, Reidel 148, 165–189.