background image

GEOLOGICA CARPATHICA

, FEBRUARY 2017, 68, 1, 57 – 67

doi: 10.1515/geoca-2017-0005

www.geologicacarpathica.com

Long-term geomorphological evolution of the axial zone  

of the Campania-Lucania Apennine, southern Italy:  

a review

MARCELLO SCHIATTARELLA

1

, SALVATORE IVO GIANO

2

 and DARIO GIOIA

3

1

Dipartimento delle Culture Europee e del Mediterraneo (DiCEM), Basilicata University, I-75100 Matera, Italy; marcello.schiattarella@unibas.it;

2

Dipartimento di Scienze, Basilicata University, Campus Macchia Romana, I-85100 Potenza, Italy; ivo.giano@unibas.it

3

CNR – Istituto per i Beni Archeologici e Monumentali, I-85050 Tito Scalo (PZ), Italy; d.gioia@ibam.cnr.it

(Manuscript received December 1, 2015; accepted in revised form November 30, 2016)

Abstract:  Uplift and erosion rates have been calculated for a large sector of the Campania-Lucania Apennine and 

 Calabrian arc, Italy, using both geomorphological observations (elevations, ages and arrangement of depositional and 

erosional land surfaces and other morphotectonic markers) and stratigraphical and structural data (sea-level related 

facies, base levels, fault kinematics, and fault offset estimations). The values of the Quaternary uplift rates of the southern 

Apennines vary from 0.2 mm/yr to about 1.2–1.3 mm/yr. The erosion rates from key-areas of the southern Apennines, 

obtained from both quantitative geomorphic analysis and missing volumes calculations, has been estimated at 0.2 mm/yr 

since the Middle Pleistocene. Since the Late Pleistocene erosion and uplift rates match well, the axial-zone landscape 

could have reached a flux steady state during that time, although it is more probable that the entire study area may be 

a transient landscape. Tectonic denudation phenomena — leading to the exhumation of the Mesozoic core of the chain 

— followed by an impressive regional planation started in the Late Pliocene have to be taken into account for a coherent 

explanation of the morphological evolution of southern Italy.

Keywords: Southern Apennines, uplift and erosion rates, regional morphotectonics, Quaternary landscape evolution.

Introduction

We review the results of fifteen years of scientific investi-

gation performed by our research group in the Campania- 

Lucania and northern Calabria segments of the southern 

Apennines (Fig. 1), particularly in the axial zone of the chain 

where several intermontane basins filled by Pliocene and 

 Quaternary clastic deposits are present.

Regional-scale morphostructural analysis, recognition and 

dating of features related to ancient base levels of erosion used 

as reference levels for the rates calculations, quantitative eva-

luation of the erosional — both fluvial and gravitative — pro-

cesses, estimation of tectonic loadings suffered by the 

sedimentary rocks that form the backbone of the southern 

Apennines and the consequent estimate of the exhumation rate 

of the non-metamorphic “core complex” of the chain, recogni-

tion and recording in a wide area of palaeoclimate proxies, 

such as palaeosols, weathering horizons, planation surfaces, 

and palaeolandslides, allowed us to obtain a detailed and 

 synoptic picture of the landscape evolution of the chain during 

the last 3 Ma.

Geological and geomorphological framework

The southern Apennines are a northeast-verging fold-and-

thrust belt mainly composed of shallow-water and deep-sea 

sedimentary covers (Fig. 1), deriving from Mesozoic–Cenozoic 

circum-Tethyan domains (Patacca & Scandone 2007), covered 

by Neogene–Pleistocene foredeep and satellite-basin deposits 

(Pescatore et al. 1999). The hinge of the subducting plate of 

the orogenic system coincides with the present-day eastern 

foreland area (carbonate Apulian platform, Fig. 1).

Starting from the Tortonian, the orogen underwent low- 

angle extension which led to the exhumation of its non-meta-

morphic core complex constituted of Mesozoic Lagonegro-type 

pelagic units (Schiattarella et al. 2003, 2006, and references 

therein).

This regional framework has been strongly complicated by 

Quaternary tectonics, responsible for the formation of longitu-

dinal and transversal fault-bounded basins (Aucelli et al. 

2014), for the displacement of several generations of planation 

surfaces (Amato & Cinque 1999; Schiattarella et al. 2003, 

2013), and for the re-organization and control of many hydro-

graphic networks (Beneduce et al. 2004; Capolongo et al. 

2005). Southern Italy underwent significant uplift during the 

Quaternary, with average rates 0.6 –1 mm/yr (Westaway 1993; 

Schiattarella et al. 2003).

The southern Apennines are characterized by an asymmetri-

cal topographic profile (Fig. 2a). The summit line of the moun-

tain belt is markedly shifted westward and does not correspond 

to the regional water divide (Fig. 2b). Consequently, the eastern 

flank of the chain has a greater length and a lower mean gradient 

than  the  western  flank.  Swath  profile  (Fig.  2c)  highlights 

background image

58

SCHIATTARELLA, GIANO and GIOIA

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

a regional and asymmetrical topographic bulge, with its cul-

mination roughly coinciding with the axial zone of the chain. 

In this sector, we can also discriminate a shorter wavelength 

topographic signal, which is related to the basin-border fault 

activity. Higher uplift rates of the axial sector of the southern 

Apennines can reasonably be attributed to the coupled forces 

of regional raising and local fault activity.

The tops of the mountain belt of the axial zone of the chain 

can exceed the altitude of 2000 m a.s.l. and are frequently 

characterized by a low angle topography representing rem-

nants of an ancient flat landscape, uplifted and dismembered 

by Quaternary fault activity. Consequently, these palaeo-

surfaces are arranged in several superimposed levels 

(Schiattarella et al. 2003, 2006, 2013; Boenzi et al. 2004; 

Putignano & Schiattarella 2008; Di Leo et al. 2009; Martino et 

al. 2009; Amato et al. 2011; Gioia et al. 2011b; Robustelli et al. 

2014; Giano 2016).

The landscape of the Campania-Lucania Apennine was 

strongly controlled by tectonics. The fault slopes of many 

ranges and adjacent intermontane basins are often the surface 

expression of the Pliocene to Quaternary block faulting (fault 

scarps and fault line scarps bound in fact many mountain 

fronts, cf. Brancaccio et al. 1978, and Giano & Schiattarella 

2014), and the drainage networks are frequently controlled by 

fracture systems (Capolongo et al. 2005). The more destruc-

tive and strong earthquakes of the region are located along 

Fig. 1. Geological sketch map of the Campania-Lucania Apennine and northern Calabria. In the frame, main tectonic structures are reported. 

Toponyms of the intermontane basins (indicated with numbers): 1. Ofanto basin; 2. Tito-Picerno basin; 3. Auletta basin; 

 

4. Pergola-Melandro basin; 5. Vallo di Diano basin; 6. Sanza basin; 7. Agri basin; 8. Sant’Arcangelo basin; 9. Mercure basin.

background image

59

GEOMORPHOLOGICAL EVOLUTION OF THE CAMPANIA-LUCANIA APENNINE, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

the NW–SE and NE–SW-trending high-angle faults, some-

times with clear geomorphic expression. Some palaeosols 

were involved in Late Quaternary faulting, furnishing C

14

 ages 

included between 40,000 and 8000 years B.P. (Giano et al. 

2000; Moro et al. 2007; Giano & Schiattarella 2014).

Northern Calabria, which from a geographical point of view 

represents the southern continuation of the Apennines, is made 

up of crystalline metamorphic units thrust on the Mesozoic 

African-Apulian carbonate domains, locally outcropping in 

tectonic windows. It is part of the larger Calabrian arc and is 

also characterized by flat-topped mountains, especially in the 

Sila Massif, where the top palaeolandscapes are deeply 

affected by tropical-type weathering and show tens-of-metres-

thick  regolith  and/or  altered  rock  horizons  (Guzzetta  1974; 

Scarciglia 2015).

Morphotectonics

A relevant number of morphostratigraphic profiles across 

the intermontane basins and contiguous mountain ranges  

of the axial zone of the southern Apennines (examples in  

Fig. 3) have been realized analysing both the arrangement of 

relicts of planation surfaces scattered at different elevations 

a.s.l. and other key morphostructural markers, such as trun-

cated karst landforms, fault-related slopes, and hanging val-

leys (Schiattarella et al. 2003, 2006; Boenzi et al. 2004; Gioia 

& Schiattarella 2010; Di Leo et al. 2009, 2011; Martino & 

Schiattarella 2010; Gioia et al. 2011b; Giano 2011; Giano & 

Giannandrea 2014; Giano & Schiattarella 2014; Giano et al. 

2014b).

The signatures of the continental base-level changes during 

the last 2–3 Ma have been adequately preserved in both the 

geological and geomorphological features of the intermontane 

basins, such as flat land surfaces and tops of alluvial deposits. 

The exhumation of the core of the chain occurred since the 

late Miocene by low-angle extension, followed by erosional 

processes on a regional scale that led to the formation of the 

summit palaeosurface. An earlier event at 9.2 Ma and two 

 different clusters included in the 5.5–5.0 and 3.9–1.5 Ma 

ranges in the distribution of the apatite fission-track data  

(Fig. 4) can be attributed to two previous stages of tectonic 

denudation followed by a relatively fast planation (Schiat-

tarella et al. 2013). It means that the erosion processes leading 

to the formation of such a morphological feature was pro-

moted by the incipient rising of the chain, but their rates were 

faster than the uplift ones. It is possible that the regional 

palaeo surface was formed at the sea level by marine erosion, 

and subsequently moulded by fluvial and karst processes, so 

assuming the character of a polygenetic landform (Amato & 

Cinque 1999; Martino & Schiattarella 2006).

In the different catchment basins and surrounding ranges, 

three or four generations of erosional land surfaces, carved in 

both Mesozoic–Cenozoic bedrock and Pliocene–Quaternary 

clastic sediments of the basin infill, are normally recognized 

(Schiattarella et al. 2003; Boenzi et al. 2004; Gioia et al. 

2011b; Giano 2016). The highest land surface (summit palaeo-

surface, or S1 after Schiattarella et al. 2003) represents  

Fig. 2. a — Topographic profile of southern Italy, from Tyrrhenian to Adriatic coastlines; b — shaded relief of part of the Campania, Basilicata, 

and Calabria Apennines with regional watershed (white dashed line) and maximum elevation line (black dotted line); c — swath profiles (swath 

width of 2 km, profile trace in the sketch map) from the southern Apennines. Arrows indicate the sector of the chain featured by higher uplift 

rates and by main basin-border high-angle faults, whereas the dashed grey-line marks the asymmetrical topographic bulge of the mean 

topography.

background image

60

SCHIATTARELLA, GIANO and GIOIA

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

Fig. 3.

 Morphostratigraphic profile 

(A–A

’) from the axial 

zone of the Lucani

an 

Apennines and detailed 

morphostratigraphic 

sections (vertical 

exaggeration 

) from Melandro (B–B’) and 

Agri (C–C’) 

valleys, adopted for slip rate calculation. 

Note that the slip rates refer to dif

ferent time 

spans (from 1.8 to 1.2 Ma and from 1.2 to 0.8–0.7 Ma for B–B’

 and C–C’

 profiles, respectively). 

In the frame, 

location 

of 

the 

profiles 

is 

reported 

on 

simplified 

geological 

scheme 

(1. 

Pliocene 

to 

Quaternary 

clastics; 

2. 

Miocene 

siliciclastic 

deposits; 

3. 

Mesozoic–Cenozoic 

shallow-water 

carbonates; 

 

4. Mesozoic–Cenozoic deep-sea Lagonegro units; 5. 

Trace of section). Modified after Schiattarella et al. (2003).

background image

61

GEOMORPHOLOGICAL EVOLUTION OF THE CAMPANIA-LUCANIA APENNINE, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

the morphological remnants of a regional planated landscape. 

They unconformably cut across tilted Mesozoic–Cenozoic 

shallow-water limestones, coeval basinal formations and 

Lower–Middle Pliocene marine sediments outcropping along 

the Campania-Lucania segment of the southern Apennines.

Relative and absolute dating of the summit palaeosurface 

indicated that it developed in the Late Pliocene, but the plana-

tion process was still active during the Early Pleistocene 

(Gioia et al. 2011a; Schiattarella et al. 2013). The morpho-

logical de-activation of a land surface is achieved when it 

undergoes to a significant tectonic hanging and acquires the 

condition of relict landform. In this way, fault-controlled 

basins are often surrounded by flat-topped ridges.

Because of the Late Pliocene age of the oldest palaeosurface 

(S1 after Schiattarella et al. 2003) generally found above 1100 

m a.s.l., the lower S2 erosional land surfaces (often at about 

900–1000 m a.s.l.) has to be attributed to the Early Pleistocene 

(Schiattarella et al. 2003). This is also proved by the presence 

of Early Pleistocene fluvial deposits in many basins of the 

axial zone (Aucelli et al. 2014), morphologically inserted in 

such flat surfaces. The S2 surfaces frequently represent dislo-

cated remnants of the oldest one (S1), subsequently re-moulded 

by processes acting in a continental environment.

The S3 erosional surfaces have been used to morpho-strati-

graphically correlate the clastic infill of the different basins 

(Schiattarella et al. 2003; Boenzi et al. 2004); as a matter of 

fact, the S3 land surfaces often cut both bedrock and Pleisto-

cene fluvio-lacustrine deposits along the axis of the entire 

Campania-Lucania orogenic segment. Several key-data about 

the 

40

Ar–

39

Ar ages of tephra layers interbedded in the fluvial- 

lacustrine deposits of Vallo di Diano and Sanza basins (Karner 

et al. 1999; Di Leo et al. 2009; Giano et al. 2014a, b) allowed 

us to closely constrain the genesis and de-activation of the S3 

surfaces that can be reasonably referred to the Early Pleisto-

cene–Middle Pleistocene time span.

The tectonic loadings suffered by the rocks of the non- 

metamorphic “core complex” cropping out in the southern 

Apennines have been estimated to be not less than 4–5 km 

Fig. 4. AFT ages from the southern Apennines (after Aldega et al. 2005, Schiattarella et al. 2006; Mazzoli et al. 2008; Schiattarella et al. 2013). 

The younger cluster groups cooling ages included in the 2.4–2.7 Ma range (in turn comprised in the wider 3.9–1.5 Ma set) and represents  

the exhumation episode linked to the relatively fast planation of the chain during the Pliocene-Pleistocene transition, whereas the older clusters 

(at about 5 and 9 Ma) have to be attributed to tectonic denudation phenomena (i.e. low-angle extension) leading to the genesis of the non- 

metamorphic “core complex” of the southern Apennines (Schiattarella et al. 2003, 2006; Invernizzi et al. 2008; Mazzoli et al. 2008). Note that, 

according to such an interpretation, the final stage of unroofing was not accompanied by a relevant footwall uplift of the core complex, 

 favouring the formation of the regional palaeosurface.

background image

62

SCHIATTARELLA, GIANO and GIOIA

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

(Schiattarella et al. 2003, 2006; Aldega et al. 2005). Mecha-

nisms of tectonic denudation have therefore been invoked by 

several authors to reach the present-day configuration of the 

chain (Schiattarella et al. 2003, 2006; Corrado et al. 2005; 

Mazzoli et al. 2008).

The thermal history of the different tectonic units of the 

southern Apennines (Aldega et al. 2005) has been studied by 

Apatite fission-track analysis (Fig. 4). Such data, combined 

with geological and morphotectonic results, furnished a picture 

of the exhumation of the rocks from the uppermost part of the 

crust (i.e. above the 110°C isotherm). On this basis, we infer 

that the planation surface sculpture, occurred in a relatively 

short time span of low-rate tectonic activity (more or less  

1 Ma), is the geomorphic expression of the above episode of 

exhumation (i.e. the erosion/planation rate exceeds the rock 

uplift rate). This is also demonstrated by the presence of many 

marine to continental basins filled by thick successions of 

Pliocene clastic rocks (locally involved in the planation pro-

cesses) deriving from the dismantling of a previous, namely 

Upper Miocene–Lower Pliocene relief.

As above reported, apatite fission-track data from rocks 

belonging to different tectonic units of the axial zone of the 

southern Apennines (Aldega et al. 2005; Mazzoli et al. 2008) 

indicate a concordant final cooling age of ca 2.5–2.6 Ma  

(average value, Gioia et al. 2011a; Schiattarella et al. 2013), 

suggesting a widespread exhumation during the Late Pliocene. 

Since apatite passed the closure temperature isotherm at about 

2.5 Ma, a considerable (~2 km) exhumation/denudation was 

needed to reach the surface. Therefore, the planation process 

was probably still active during the Early Pleistocene.

This relatively young exhumation is likely related to ero-

sional denudation rather than tectonics (i.e. low-angle exten-

sion, as suggested by other authors for older stages, see 

Schiattarella et al. 2006), thus implying a Late Pliocene stage 

widely affected by intense erosional

 

processes. It can be 

argued that such a regional shaping could be related to the 

summit palaeosurface morphogenesis. The attribution of those 

features to the Late Pliocene is strengthened by the presence of 

Lower–Middle Pliocene clastic deposits outcropping at the top 

of the Maddalena Mts (Schiattarella et al. 2003) and in the  

Mt. Marzano area (Fig. 1), involved in the planation of the 

palaeosurface, which means that the Pliocene sediments are 

truncated by the erosional sub-horizontal surface.

The transition period between the Late Pliocene and the 

Early Pleistocene represents the time span in which the sum-

mit palaeosurface developed, when the decreasing rates 

related to tectonics were efficiently faced by the climate- 

induced erosional processes (i.e. triggered by the global 

 cooling that started about 3 Ma). In such a way, the exhuma-

tion of deep rocks was accompanied by the progressive plana-

tion of a slowly uplifting chain, meaning that the antiformal 

stack was constantly truncated during its emersion, so permit-

ting the creation of a regional-scale flat landscape. This 

 feature, formed at the sea level by marine erosion and then 

moulded by fluvial and karst processes (Amato & Cinque 

1999; Martino & Schiattarella 2006), was partly displaced by 

the 2.5 Ma tectonic stage in the Tyrrhenian flank of the Plio-

cene wedge (today submerged) and more largely fragmented 

by the 1.8 Ma tectonic stage in the spatial domain of the 

 present-day chain. Its displacement and fragmentation created 

a younger generation of polygenetic land surfaces, in turn 

faulted and hung with regard to the erosion base level at about 

1.2 Ma (“Emilian” tectonic stage).

Uplift and erosion rates

The tectonic stages between 2.5 and 0.125 Ma in the axial 

zone of the chain were responsible for both the displacement 

of the planation surfaces and the subsidence of the Upper 

 Pliocene to Quaternary basins (Brancaccio et al. 1991; Amato 

& Cinque 1999; Schiattarella et al. 2003; Gioia et al. 2011a; 

Giannandrea et al. 2014).

Morphotectonic data indicating gently dipping, horizontal, 

or slightly undulated land surfaces, fault slopes and fault 

scarps, plano-altimetric offset of minor divides, fault- 

controlled streams, hanging valleys, wine-glass shaped  valleys 

and so on, have been obtained all along the axial zone of the 

chain, from the northernmost mountains of the southern Apen-

nines to the Calabrian Arc (Schiattarella et al. 2006, 2013). 

The attribution of a relative age to each planation surface 

gene ration, based on well-defined deactivation stages of the 

same land surfaces by Quaternary tectonics, allowed us to 

reconstruct the morpho-evolutionary stages of the southern 

Apennines since the Late Pliocene and to calculate the values 

of the regional and local tectonic uplift of a large sector of  

the chain.

The estimated regional and local uplift rates have improved 

our comprehension of the possible dynamic state of the 

south-Apennine orogenic system (Schiattarella et al. 2006). 

The regional uplift rates have been calculated on the basis of 

the elevation of reference surfaces with regard to the absolute 

(or ultimate) base level (i.e. the present-day sea level), whereas 

the local uplift rates have been estimated using the same mor-

phological elements with regard to local base levels such as 

alluvial floodplains or lacustrine basins. In detail, a clear 

decrease of the local uplift rates took place between 1.2 and 

0.7 Ma whilst increasing rates characterize the Middle Pleisto-

cene (Fig. 5).

If we examine the whole south-Apennine chain, a quasi- 

linear trend of growth of the regional uplift since the end of the 

Pliocene can be deduced (Fig. 5). However, a differential 

behaviour of two adjacent sub-regional sectors has to be taken 

into account for the comprehension of the long-term uplift 

 history, since the Alburni Mts.–Mt. Marzano area is characte-

rized by a flat uplift rate curve. Therefore, we may hypothe-

size a further subdivision of the axial zone due to the existence 

of a significant kinematic release between the most internal 

(i.e. Cilento) belt and the most external one (axial zone s.s.).

Several morphometric profiles with geological information 

intercepting basin border faults (Fig. 3) of the Agri and the 

Pergola-Melandro valleys (Schiattarella et al. 2003, 2006; 

background image

63

GEOMORPHOLOGICAL EVOLUTION OF THE CAMPANIA-LUCANIA APENNINE, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

Boenzi et al. 2004; Giano & Schiattarella 2014), and the mor-

phostratigraphic correlations from the Vallo di Diano and 

Sanza basins based on recent 

40

Ar–

39

Ar dating of tephra layers 

(Di  Leo  et  al.  2009;  Giano  et  al.  2014a, b)  allowed  us  to 

 compute the slip rate values of the faults and to compare them 

to the local uplift values. The last kinematics of such faults is 

expressed by normal slip and was responsible for major 

 Quaternary offsets and basin widening during Middle to Late 

Pleistocene times (Giano et al. 2000). Former strike-slip 

 faulting which affected the whole south-Apennine chain 

 starting from the Late Pliocene (Schiattarella 1998), with hori-

zontal offsets of few kilometres as a maximum, did not favour 

the relief growth like that generated during Middle–Late 

 Pleistocene times. This is also documented by low rates of 

a normal component of faulting during the Late Pliocene–

Early Pleistocene. In fact, the fault-slip rates (referred to the 

vertical component of motion, cf. Boulton & Whittaker 2009) 

from the upper Agri Valley and Pergola-Melandro basin vary 

from 0.3 to 0.5 mm/yr in the time interval included between 

1.8 –1.2 Ma, and from 0.5 to 0.8 mm/yr in the 1.2– 0.7 Ma time 

span (Schiattarella et al. 2003; Boenzi et al. 2004). The   

0.3 – 0.5 mm/yr slip rate value has also been obtained for the 

Vallo di Diano basin fault system, but in relation to the activity 

started from the Early–Middle Pleistocene boundary (Giano et 

al. 2014a, b). Therefore, it can be argued that the Monti della 

Maddalena carbonate ridge, separating the Pergola-Melandro 

and Agri basins from the Vallo di Diano basin, is bounded on 

its western side by a master fault with a constant slip rate, 

whereas on its eastern slopes is bordered by a fault system 

whose displacement rate progressively increased (see loca-

tions of the cited sites in Fig. 1).

The comparison between the uplift and erosion rates of the 

whole south-Apennine chain allowed us to recognize the 

dynamic state of the orogen (sensu Willett & Brandon 2002). 

The quantitative geomorphic analysis has been used for the 

computation of the linear erosion and the estimation of the 

missing volume of sediment in many fluvial catchments 

 (Schiattarella et al. 2004, 2006, 2008). Several indices have 

been calculated for quite different drainage basins. Some of 

them may have a morphotectonic meaning, whereas others are 

needed for erosion estimates (Strahler 1957). Bifurcation ratio 

and index (RbRbd, and R) express the state of hierarchical 

organization of the drainage network, which is related to the 

maturity of the basin and to its geomorphological processes. 

Hierarchic anomaly number and index (GaDa, and ga, after 

Avena et al. 1967) and the morphometric estimation of sus-

pended sediment yield (Tu [t/km

2

/year], after Ciccacci et al. 

1980) represent an expression of the strength of the fluvial 

erosion (Della Seta et al. 2007).

Such an analysis permitted us to suppose the existence of 

a linear correlation between the suspended sediment yield (Tu

and the missing volume of sediment in the drainage basins  

(V in Fig. 6) thus supplying a tool for the evaluation of the 

erosion rate. Short-term denudation rates have been calculated 

converting the parameter Tu, derived from the quantitative 

geomorphic analysis, in the parameter Ta (expressed in mm/yr), 

obtained considering the average density of outcropping rocks 

of sample areas according to the following expression:

Ta = Tu / γs * 10

-3

where Tu is the suspended sediment yield and γs is the spe-

cific weight of the drained rocks.

Mid- to long-term denudation rates have been obtained from 

the calculation of eroded volumes of rocks with regard to refe-

rence levels such as fluvial terraces and palaeosurfaces, or 

from the estimation of bedrock incision rates (Burbank & 

Anderson 2001). Refinements of the rate values have been 

achieved by comparisons between long- and short-term ero-

sion rates, so obtaining an average value of about 0.2 mm/yr in 

the Middle Pleistocene to Holocene range (Fig.7).

The average values of the Quaternary regional uplift rates of 

the south Apennines axial zone are equal to 0.6 – 0.7 mm/yr, 

with peaks of ~1.2–1.3 mm/yr in the Agri Valley and Pollino 

Ridge (see location of these sites in Fig. 1 and rate values in 

Fig. 5. Diagrams showing the variation of the regional and local uplift rates from five key-areas of the axial zone of the southern Apennines 

during the Quaternary.

background image

64

SCHIATTARELLA, GIANO and GIOIA

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

Fig. 5). An increasing trend of uplift rate toward the south can 

be observed. An acceleration of the local component of  vertical 

motion starting from the beginnings of the Middle Pleistocene 

and slowing of the uplift rates during the Late Pleistocene 

down to 0.2 mm/yr can be deduced as well (Boenzi et al. 2004; 

Giano & Schiattarella 2014).

Since erosion and uplift rates match well in the Late Pleisto-

cene,  the  axial  zone  landscape  could  have  reached  a  flux 

steady state (Willett & Brandon 2002) just in that stage. This 

is also suggested by low values of fault slip rate, as in the case 

of the fault-bounded upper Agri Valley and Pergola-Melandro 

basin — among the most active seismic zones of Italy — in 

which during the last 30 ky, the main high-angle faults were 

characterized  by  a  slip  rate  decreasing  to  about  0.1  mm/yr 

(data from Giano et al. 2000).

Nevertheless, it is worth noting that the ratio between uplift 

and erosion rates related to Quaternary long-term landscape 

evolution of the chain is about 3:1. Further, in the Middle 

Pleistocene to Holocene time span, low values of denudation 

rates (i.e. about 0.1 mm/yr) have recently been recognized in 

the northern sector of the Pliocene–Pleistocene foredeep of  

the southern Apennines on the basis of fluvial terrace 

chrono stratigraphy, supported by OSL and AAR dating (Gioia 

et al. 2014). In this sector, Middle to Late Pleistocene uplift 

rates from the elevation of marine terraces are quite similar to 

the denudation rates, thus suggesting a near steady-state 

landscape.

Such a space-time pattern suggests that the Late Quaternary 

steady state could represent only a fluctuation of a more 

 general transient state of the orogenic segment here studied.

Final remarks

The data acquired of the last fifteen years has made possible 

to discriminate between the amount of the regional uplift and 

the local uplift generated by master faults of basins that 

together have produced the present day elevation a.s.l. of the 

ancient planation surfaces. In some axial-zone basins (such as 

the Melandro River basin) a comparable partitioning between 

local (i.e. induced by faulting) and regional (tectonic) uplift 

was responsible for the present elevation of the relict land sur-

faces, whereas the relief of the Agri River upper valley can be 

almost totally ascribed to the activity of basin-border faults. 

Higher uplift rates, recorded in the Mercure basin-Pollino 

Ridge area and in the Calabria Coastal Range (Fig. 1), indicate 

a southward increasing trend of the uplift rate related to the 

stronger activity of the high-angle faults. During the Quater-

nary, the total amount of tectonic uplift of the axial zone of the 

southern Apennines is ~1.2–1.3 km, with local peaks of  

1.5 km (Schiattarella et al. 2006). The most relief of the chain 

was gained starting from the Middle Pleistocene, when normal 

faulting became the major deformational mechanism.

Tectonic loadings suffered by the Mesozoic deep-sea rocks 

of the southern Apennines have been estimated to be not less 

than 4–5 km (Schiattarella et al. 2003, 2006; Aldega et al. 

2005), or greater for the area of the Calabria-Lucania boun-

dary (Di Leo et al. 2005; Invernizzi et al. 2008). The conside-

rable difference (about 3 km) between the relief gain and the 

lost overburden needs an alternative explanation with regard 

to the ordinary erosion processes (i.e. not exclusively linked to 

the uplift-erosion interplay). Assuming a fixed uplift rate of 

0.6 mm/yr to reach a response of ~4–5 km in denudation (i.e. 

rock uplift), a Tortonian (Late Miocene) exhumation age can 

be obtained. This age is concordant with the older exhumation 

age  furnished  by  apatite  fission-track  analysis  (Aldega  et  

al. 2005). Tectonic exhumation (“tectonic erosion” sensu 

 Mancktelow 2000; see also “tectonic denudation” in Ring et 

al. 1999 and in Burbank and Anderson 2001) may be a reliable 

explanation for the above mentioned gap (i.e. between the 

amounts of rock uplift and surface uplift, sensu England and 

Molnar 1990). Low-angle extensional faulting may be taken 

into account as the dominant mechanism of such an evolution, 

responsible for both the exhumation of the Mesozoic core of 

the chain (Lagonegro units) and the reactivation and inversion 

of older thrusts on its Tyrrhenian side, whereas gravitative 

stacking represents the counterpart of those phenomena on the 

frontal sector of the orogen (Schiattarella et al. 2006).

Fig. 6. Relationships between the suspended sediment yield (Tu) and 

the eroded volumes (V) calculated for the fluvial sub-basins of the a) 

Auletta basin (i.e. Tanagro River lower valley), b) Melandro River 

catchment, and c) Fiumara di Tito-Picerno catchment.

background image

65

GEOMORPHOLOGICAL EVOLUTION OF THE CAMPANIA-LUCANIA APENNINE, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

The orogen derived from the fold-and-thrust tectonics and 

subsequent exhumation processes was largely modelled as 

a long-wavelength or flat landascape from the Late Pliocene, 

as suggested by both the more recent cluster of AFT (Fig. 4) 

and field data. The chain was subsequently cut off by trans-

current and normal high-angle faults responsible for its recent 

uplift in combination with several regional mechanisms, such 

as deep stacking of crustal elements in the axial portion of the 

chain and footwall uplift of its western sector by back-arc 

extension (Schiattarella et al. 2006, 2013).

Since the long-term fluvial erosion did not match the tec-

tonic uplift of the axial zone of the southern Apennines, this 

region has been largely hit by other erosion phenomena. 

Above all, mass movements are needed to drop the disequi-

librium triggered by rates differential (Schiattarella et al. 2008; 

Lazzari & Schiattarella 2010; Santangelo et al. 2013).

Acknowledgements:  We sincerely thanks two anonymous 

referees for the accurate revision of the manuscript and 

 Professor J. Minár for his helpful suggestions. This study was 

financially supported by RIL 2015 (Basilicata University) 

grants (M. Schiattarella and S.I. Giano).

References

Aldega L., Corrado S., Di Leo P., Giampaolo C., Invernizzi C.,  

Martino C., Mazzoli S., Schiattarella M. & Zattin M. 2005:  

The southern Apennines case history: thermal constraints and 

reconstruction of tectonic and sedimentary burials. Atti Ticin. 

Scienze della Terra, Serie Spec. 10, 45–53.

Amato A. & Cinque A. 1999: Erosional landsurfaces of the 

 Campano-Lucano Apennines (S. Italy): genesis, evolution, and 

tectonic implication. Tectonophysics 315, 251–267.

Amato V., Aucelli P.P.C., Cesarano M., Pappone G., Rosskopf C.M. 

& Russo Ermolli E. 2011: The Sessano intra-montane basin: 

New multi-proxy data for the Quaternary evolution of the Molise 

sector of the Central-Southern Apennines (Italy). Geomorpho-

logy 128, 15–31.

Aucelli P.P.C., D’Argenio B., Della Seta M., Giano S.I. & 

 

Schiattarella M. 2014: Foreword: Intermontane basins: Quater-

nary morphoevolution of Central-Southern Italy. Rend. Fis. Acc. 

Fig. 7. Location of the study areas in southern Italy and related values of erosion rates. Toponyms: 1) Fiumara di Tito-Picerno basin;  

2) Melandro River Valley; 3) Agri River Upper Valley; 4) Tanagro River Lower Valley (i.e. Auletta basin); 5) Sinni River Upper Valley;  

6) Mercure River basin; 7) Fiumara di Venosa basin; 8) Tavoliere di Puglia plain (modified after Schiattarella et al. 2008).

background image

66

SCHIATTARELLA, GIANO and GIOIA

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

Lincei 25, Suppl. 2, 107–110.

Avena G.C., Giuliano G. & Lupia Palmieri E. 1967: On the quantita-

tive evaluation of the hierarchization and evolution of the fluvial 

networks.  Boll. Soc. Geol. Ital. 86, 781–796 (in Italian with 

 English  abstract).

Beneduce P., Festa V., Francioso R., M. Schiattarella M. & Tropeano 

M. 2004: Conflicting drainage patterns in the Matera Horst Area, 

southern Italy. Phys. Chem. Earth 29, 717–724.

Boenzi F., Capolongo D., Cecaro G., D’andrea E., Giano S.I., Lazzari 

M. & Schiattarella M. 2004: Morphostructural evolution and 

uplift rates of the western side of the upper Agri River valley, 

southern Apennines, Italy. Boll. Soc. Geol. Ital. (Ital. J. Geosci.) 

123, 357–372 (in Italian with English summary).

Boulton S.J. & Whittaker A.C. 2009: Quantifying the slip rates, spa-

tial distribution and evolution of active normal faults from geo-

morphic analysis: Field examples from an oblique-extensional 

graben, southern Turkey. Geomorphology 104, 299–316.

Brancaccio L., Cinque A. & Sgrosso I. 1978: Morphological analysis 

of slopes as a tool for the reconstruction of neotectonic events. 

Mem. Soc. Geol. Ital. 19, 621–626 (in Italian with  English 

abstract).

Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F., 

 Santangelo N. & Santo A. 1991: Geomorphology and neotec-

tonic evolution of a sector of the Tyrrhenian flank of the southern 

Apennines (Region of Naples, Italy). Z. Geomorphol. 82, 47–58.

Burbank D.W. & Anderson R.S. 2001: Tectonic Geomorphology. 

Blackwell Science, Oxford, 1–274.

Capolongo D., Cecaro G., Giano S.I., Lazzari M. & Schiattarella M. 

2005: Structural control on drainage pattern of the south-western 

side of the Agri River upper valley, southern Apennines, Italy. 

Geogr. Fis. Dinam. Quat. 28, 169–180.

Ciccacci S., Fredi F., Lupia Palmieri E. & Pugliese F. 1980: Contribu-

tion of the quantitative geomorphic analysis to the erosion esti-

mation in fluvial catchments. Boll. Soc. Geol. Ital. 99, 455–516 

(in Italian).

Corrado S., Aldega L., Di Leo P., Giampaolo C., Invernizzi C., 

 Mazzoli S. & Zattin M. 2005: Thermal maturity of the axial zone 

of the southern Apennines fold-and-thrust belt (Italy) from mul-

tiple organic and inorganic indicators. Terra Nova 17, 56–65.

Della Seta M., Del Monte M., Fredi P. & Lupia Palmieri E. 2007: 

Direct and indirect evaluation of denudation rates in Central 

Italy. Catena 71, 21–30.

Di Leo P., Schiattarella M., Cuadros J. & Cullers R. 2005: Clay min-

eralogy, geochemistry and structural setting of the ophi-

olite-bearing units from southern Italy: a multidisciplinary 

approach to assess tectonic history and exhumation modalities. 

Atti Ticin. Scienze della Terra Spec. Ser. 10, 87–93.

Di Leo P., Giano S.I., Gioia D., Mattei M., Pescatore E. & Schiat-

tarella M. 2009: Quaternary morphotectonic evolution of the 

Sanza intermontane basin (southern Apennines). Il Quaternario 

22, 189–206 (in Italian with English abstract). 

Di Leo P., Gioia D., Martino C., Pappalardo A. & Schiattarella M. 

2011: Geomorphological, mineralogical, and geochemical 

 evidence of Pleistocene weathering conditions in the southern 

Italian Apennines. Geol. Carpath. 62, 43–53.

England P. & Molnar P. 1990: Surface uplift, uplift of rocks, and 

exhumation of rocks. Geology 18, 1173–1177.

Giannandrea P., Marino M., Romeo M. & Schiattarella M. 2014: 

 Pliocene to Quaternary evolution of the Ofanto Basin in southern 

Italy: an approach based on the unconformity-bounded strati-

graphic units. Ital. J. Geosci. 133, 27–44 (with an attached 

1:25,000 scale geological map).

Giano S.I. 2011: Quaternary alluvial fan systems of the Agri inter-

montane basin (southern Italy): tectonic and climatic controls. 

Geol. Carpath. 62, 65–76.

Giano S.I. 2016: Geomorphology of the Agri intermontane basin (Val 

d’Agri-Lagonegrese National Park, Southern Italy). Journal of 

Maps 12, 639–648.

Giano S.I. & Giannandrea P. 2014: Late Pleistocene differential uplift 

inferred from the analysis of fluvial terraces (southern Apen-

nines, Italy). Geomorphology 217, 89–105.

Giano S.I. & Schiattarella M. 2014: Age constraints and denudation 

rate of a multistage fault line scarp: an example from southern 

Italy. Geochronometria 41, 245–255.

Giano S.I., Maschio L., Alessio M., Ferranti L., Improta S. & Schiat-

tarella M. 2000: Radiocarbon dating of active faulting in the 

Agri high valley, southern Italy. J. Geodyn. 29, 371–386.

Giano S.I., Gioia D., Laurenzi M.A. & Schiattarella M. 2014a: New 

constraints on age, amount, and rate of Quaternary fault dis-

placements in the Vallo di Diano area (southern Apennines). 

Culture Territori Linguaggi 4, 159–173 (in Italian with English 

abstract).

Giano S.I., Gioia D. & Schiattarella M. 2014b: Morphotectonic 

 evolution of connected intermontane basins from the southern 

Apennines, Italy: the legacy of the pre-existing structurally- 

controlled landscape. Rend. Fis. Acc. Lincei 25, Suppl 2, 

241–252.

Gioia D. & Schiattarella M. 2010: An alternative method of azimuthal 

data analysis to improve the study of relationships between tec-

tonics and drainage networks: examples from southern Italy.  

Z. Geomorphol. 54, 225–241.

Gioia D., Martino C. & Schiattarella M. 2011a: Long- to short-term 

denudation rates in the southern Apennines: geomorphological 

markers and chronological constraints. Geol. Carpath. 62, 

27–41.

Gioia D., Schiattarella M., Mattei M. & Nico G. 2011b: Quantitative 

morphotectonics of the Pliocene to Quaternary Auletta basin, 

southern Italy. Geomorphology 134, 326–343.

Gioia D., Gallicchio S., Moretti M. & Schiattarella M. 2014: Land-

scape response to tectonic and climatic forcing in the foredeep of 

the southern Apennines, Italy: insights from Quaternary strati-

graphy, quantitative geomorphic analysis, and denudation rate 

proxies. Earth Surface Processes and Landforms 39, 814–835.

Guzzetta G. 1974: Ancient tropical weathering in Calabria. Nature 

251, 302–303.

Invernizzi C., Bigazzi G., Corrado S., Di Leo P., Schiattarella M. & 

Zattin M. 2008: New thermobaric constraints on the exhumation 

history of the Liguride accretionary wedge, southern Italy. 

 Ofioliti 33, 21–32.

Karner D.B., Juvigné E., Brancaccio L., Cinque A., Russo Ermolli E., 

Santangelo N., Bernasconi S. & Lirer L. 1999: A potential early 

middle Pleistocene tephrostratotype for the Mediterranean basin: 

the Vallo di Diano, Campania, Italy. Global Planet. Change 21, 

1–15.

Lazzari M. & Schiattarella M. 2010: Estimating long to short-term 

erosion rates of fluvial vs mass movement  processes: an exam-

ple from the axial zone of the southern Italian Apennines. Italian 

Journal of Agronomy 5, 57–66.

Mancktelow N. 2000: Exhumation of high-pressure rocks. In: Ranalli 

G. , Ricci C.A.  & Trommsdorff V.  (Eds.): Crust-Mantle Interac-

tions: Proceedings of the International School Earth and Plane-

tary Sciences. Siena, 41–52.

Martino C. & Schiattarella M. 2006: Morphotectonics remarks on the 

geomorphological evolution of the Melandro Valley (Campa-

nia-Lucania Apennine). Il Quaternario, Ital. J. Quat. Sci. 19, 

119–128 (in Italian with English abstract).

Martino C. & Schiattarella M. 2010: Relationships among climate, 

uplift and palaeo-landslides generation in the Melandro River 

basin, southern Apennines, Italy. Geogr. Fis. Dinam. Quat. 33, 

37–43.

Martino C., Nico G. & Schiattarella M. 2009: Quantitative analysis of 

InSAR Digital Elevation Models for identification of areas with 

background image

67

GEOMORPHOLOGICAL EVOLUTION OF THE CAMPANIA-LUCANIA APENNINE, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 57 – 67

different tectonic activity in southern Italy. Earth Surface 

 Processes and Landforms 34, 3–15.

Mazzoli S., D’Errico M., Aldega L., Corrado S., Invernizzi C., Shiner 

P.  &  Zattin  M.  2008:  Tectonic  burial  and  “young”  (<10  Ma) 

exhumation in the southern Apennines fold-and-thrust belt 

(Italy). Geology 36, 243–246.

Moro M., Amicucci L., Cinti F.R., Doumaz F., Montone P., Pierdomi-

nici S., Saroli M., Stramondo S. & Di Fiore B. 2007: Surface 

evidence of active tectonics along the Pergola-Meandro fault:  

A critical issue for the seismogenic potential of the southern 

Apennines, Italy. J. Geodyn. 44, 19–32.

Patacca E. & Scandone P. 2007: Geology of the Southern Apennines. 

Boll. Soc. Geol. Ital. (Ital. J. Geosci.), Special Issue 7, 75–119.

Pescatore T., Renda P., Schiattarella M. & Tramutoli M. 1999: Strati-

graphic and structural relationships between Meso-Cenozoic 

Lagonegro basin and coeval carbonate platforms in southern 

Apennines, Italy. Tectonophysics 315, 269–286.

Putignano M.L. & Schiattarella M. 2008: Geology, geomorphology, 

and exhumation modalities of the Monte Motola structure, 

Cilento region, southern Italy. Boll. Soc. Geol. Ital.  (Ital. J. 

 Geosci.) 127, 477–493 (in Italian with English summary).

Ring U., Brandon M.T., Willett S.D. & Lister G.S. 1999: Exhumation 

processes. In: Ring U., Brandon M.T., Lister G.S. & Willett S.D. 

(Eds.): Exhumation processes: Normal Faulting, Ductile Flow 

and Erosion. Geol. Soc. London, Spec. Publ. 154, 1–27.

Robustelli G., Russo Ermolli E., Petrosino P., Jicha B., Sardella R. & 

Donato P. 2014: Tectonic and climatic control on geomorpho-

logical and sedimentary evolution of the Mercure basin,  southern 

Apennines, Italy. Geomorphology 214, 423–435.

Santangelo M., Gioia D., Cardinali M., Guzzetti F. & Schiattarella M. 

2013: Interplay between mass movement and fluvial network 

organization: An example from southern Apennines, Italy. 

 

Geomorphology 188, 54–67.

Scarciglia F. 2015: Weathering and exhumation history of the Sila 

Massif upland plateaus, southern Italy: a geomorphological and 

pedological perspective. Journal of Soils and Sediments 15, 

1278–1291.

Schiattarella M. 1998: Quaternary tectonics of the Pollino Ridge, 

 Calabria-Lucania boundary, southern Italy. In: R.E. Holdsworth, 

R.A. Strachan & J.F. Dewey (Eds.): Continental Transpressional 

and Transtensional Tectonics. Geol. Soc. London, Spec. Publ. 

135, 341–354.

Schiattarella M., Di Leo P., Beneduce P. & Giano S.I. 2003: Quater-

nary uplift vs tectonic loading: a case-study from the Lucanian 

Apennine, southern Italy. Quat. Int. 101–102, 239–251.

Schiattarella M., Beneduce P. & Pascale S. 2004: Comparison 

between uplift and erosion rates of the Lucanian Apennine: the 

example of the Tito-Picerno Fiumara. Bollettino A.I.C. 121–122, 

367–385 (in Italian with English abstract).

Schiattarella M., Di Leo P., Beneduce P., Giano S.I. & Martino C. 

2006: Tectonically driven exhumation of a young orogen: an 

example from southern Apennines, Italy. In: Willett S.D., Hovius 

N., Brandon M.T. & Fisher D. (Eds.): Tectonics, climate, and 

landscape evolution. Geol. Soc. Amer. Spec. Pap., 398, Penrose 

Conference Series, 371–385.

Schiattarella M., Beneduce P., Capolongo D., Di Leo P., Giano S.I., 

Gioia D., Lazzari M. & Martino C. 2008: Uplift and erosion rates 

from the southern Apennines, Italy. Bollettino Geofisica Teorica 

e Applicata 49, suppl. 2, 470–475.

Schiattarella M., Giano S.I., Gioia D., Martino C. & Nico G. 2013: 

Age and statistical properties of the summit palaeosurface of 

southern Italy. Geogr. Fis. Dinam. Quat. 36, 289–302.

Strahler A.N. 1957: Quantitative analysis of watershed geomorpho-

logy. Trans American Geophysical Union 38, 913–920.

Westaway R. 1993: Quaternary Uplift of Southern Italy. J. Geophys. 

Res. 98, 21741–21772.

Willett S.D. & Brandon M.T. 2002: On steady states in mountain 

belts. Geology 30, 175–178.