background image


, FEBRUARY 2017, 68, 1, 43 – 56

doi: 10.1515/geoca-2017-0004

Quaternary evolution of the Southern Apennines  

coastal plains: a review




Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse – Università di Napoli Federico II, Italy;,,

ad memoriam — This paper is dedicated to the beloved memory of our friend and collegue Paola Romano who unfortunately left us too early

(Manuscript received January 20, 2016; accepted in revised form November 30, 2016)

Abstract: The Quaternary evolution of the main coastal basins located along the southwestern margin of the Southern 

Apennines has been reconstructed by integrating the huge amount of existing stratigraphical and geomorphological data. 

The information produced in the last twenty years has shed new light on the recent (late Middle Pleistocene to Present) 

history of the Campanian and Sele plains or basins. During the early Quaternary, the analysed coastal basins originated 

as half-grabens in response to opening processes active since the late Tortonian in the southern Tyrrhenian back-arc basin. 

In some of these basins (e.g. the Campanian Plain), volcanism has also played an important role. In the inner sectors of 

the coastal basins, the complex interplay between block faulting, sedimentary inputs and glacioeustatic fluctuations gave 

rise to relative sea-level change and related coastline migrations, leading to the formation of the present-day coastal 

plains. In the Sele Plain basin, the construction of the present-day landscape mainly resulted from the substantial ceasing 

of subsidence in the final part of the Middle Pleistocene. Conversely, a strong contribution to the recent evolution of the 

Campanian Plain has been provided by abundant volcaniclastic aggradation, able to hinder the effect of the vertical 

motions that occurred in the last 100 ka.

Keywords: Southern Italy, Campania Plain, Sele Plain, palaeogeography, Pleistocene–Holocene. 


Coastal plains are the result of the complex interaction between 

sedimentary inputs, tectonics and eustatism. In Italy, their 

 evolution is also strictly controlled by the geological history of 

the Alpine–Apennine orogenic system. The coastal plains 

located along the Adriatic and Ionian seas (eastern flank of the 

Apennine orogenic system) originated during the end of the 

Miocene and the beginning of the Pliocene as foredeep basins 

(Ricci Lucchi 1986; Ciaranfi et al. 1992).  During the Quater-

nary, they evolved under predominantly glacioeustatic and 

climatic  control  (Amorosi  et  al.  1999 a, b;  Kent  et  al.  2002; 

Amorosi et al. 2004). The coastal plains located along the 

western flank of the chain originated during the Pliocene and 

the Early Pleistocene (Antonioli et al. 1988; Brancaccio et al. 

1991, 1995; Nisi et al. 2003). They represent the inland, sedi-

ment filled, portions of large grabens or half-grabens formed 

in response to back-arc extensional processes, which on a larger 

scale, led to the opening of the Tyrrhenian basin (Elter et al. 

1975; Scandone 1979; Patacca et al. 1990). The sedimentary 

history of these coastal basins has been characterized by  

a gene ral tendency to subside, which allowed deposition, 

during Quaternary times, of thousands of metre-thick sedi-

mentary successions. Depending on the relative intensity of 

subsidence and sedimentation, as well as on glacioeustatic 

fluctuations, the coastal plains have repeatedly been invaded 

or abandoned by the sea. The Tiber and the Campanian plains 

have also been affected by severe volcanic activity (Ippolito  

et al. 1973; Locardi et al. 1976; Aprile & Ortolani 1978; 

 Brancaccio et al. 1991, 1995; Milli 1997; Amorosi & Milli 

2001; Acocella & Funiciello 2006) that further conditioned 

their evolution and sedimentary history. 

The long-term evolution of the coastal basins located along 

the Campanian sector of the Southern Apennines, namely the 

Campanian and Sele plains, is the main focus of this paper.  

In particular, we provide an accurate revision and critical 

 synthesis of all data published in the last twenty years. The last 

synthesis on this matter, in fact, goes back to the 1990s 

 (Brancaccio et al. 1991); since then several studies based on 

various data sets (stratigraphical, structural, volcanological, 

geophysical) have been carried out. New insights mainly come 

from detailed stratigraphical data from two chronological 

intervals, the Middle Pleistocene and the Late Pleistocene–

Holocene. In particular, two palaeo-environmental proxies 

have been analysed and re-interpreted: (1) the distribution of 

the main geomorphological features, such as marine and fluvial 

terraces, ancient emerged or submerged coastal morphologies 

etc.; (2) the distribution, nature and facies of the main marine 

and continental successions covering this time interval. 

Age and facies of the marine sediments allowed the location 

of submerged and emerged areas to be defined, whereas 

 palaeontological and palynological data were used to give 

background image




, 2017, 68, 1, 43 – 56

insights into the evolution of palaeo-environments and climate. 

Our synthesis allowed new palaeogeographical recon  structions 

for the Campanian and Sele coastal plains to be produced for 

the most significant time intervals between 1.8 Ma and 6 ka.  

In particular, the presented palaeogeographical schemes have 

been reconstructed on the basis of the spatial distribution of 

emerged/submerged  areas  and  the  main  landscape  and 

 environmental features for six selected time spans, with  

a  particular  focus  on  tectonically  and/or  glacioeustatically 

controlled coast line migrations.

Geological and geomorphological setting 

The Southern Apennine is a NE-oriented orogenic belt, 

which developed from Miocene to Quaternary times as a result 

of interaction between the Adriatic promontory of the African 

plate and the Sardinia – Corsica block of the European plate 

(e.g., Channel et al. 1979; Dewey et al. 1989; Mazzoli & 

 Helman 1994; Cello & Mazzoli 1999; Turco et al. 2012 and 

references therein). Starting from the late Tortonian, thrust 

sheet emplacement in the Southern Apennines occurred parallel 

to the extension that led to the opening of the Tyrrhenian back-

arc basin, and to the drowning of the innermost portions of the 

orogenic belt (e.g., Malinverno & Ryan 1986; Patacca et al. 

1990; Sartori 1990, 2003 and references therein; Doglioni et 

al. 2004). Since Early Pleistocene times, active extension 

caused formation of large, thousands of metre-deep peri- 

Tyrrhenian basins (e.g., Sartori 1990; Savelli & Schreider 

1991), namely — from the N to the S — the Garigliano Plain –

Gaeta Gulf, the Campanian Plain, the Sele Plain – Salerno Gulf 

and the Policastro Gulf. Uplift of the horst blocks separating 

the basins, coeval to the basin subsidence, is indicated by 

flights of raised marine terraces (e.g., Caiazzo et al. 2006 and 

references therein; Fig. 1A).

Large amounts of surface, subsurface and offshore data 

indicate that the Southern Apennines peri-Tyrrhenian grabens 

share a common, large-scale structural setting. In fact, they 

consist in half-grabens bounded towards the NW by roughly 

NE–SW trending master fault systems. The latter control the 

asymmetrical — northward thickening — basin fills and lower 

the carbonate successions, cropping out in the adjacent horst 

blocks, down to 3000 – 4000 m depth (e.g., Bartole et al. 1984; 

Moussat et al. 1986; Mariani & Prato 1988; Argnani et al. 1989; 

Ascione et al. 1997; Bruno et al. 1998; Florio et al. 1999; Milia 

et al. 2003; Caiazzo et al. 2006; Milia & Torrente 1999; 2015 

and references therein). The largest Southern Apennines 

peri-Tyrrhenian basin, namely the Campanian Plain, is further 

dissected by S and SW-dipping fault zones (e.g., Florio 1998; 

Bruno et al. 2000; Casciello et al. 2006; Milia & Torrente 

2013, 2015), which define the boundaries of two distinct 

sub-basins: the Volturno Plain and the Gulf of Naples (Fig. 1A). 

In the northern half-grabens, volcanism locally occurred 

during the Early Pleistocene in the Campanian Plain and, star-

ting from the Middle Pleistocene, intense volcanism affected 

the Garigliano Plain and various areas of the Campanian Plain 

(e.g., Radicati di Brozolo et al. 1988; Brocchini et al. 2001; 

Rolandi et al. 2003).

The Campanian Plain is a 35 km-wide alluvial-coastal plain 

with a very flat topography and maximum elevation ranging 

between 35 and 50 m above sea level (a.s.l.). It is bounded by 

carbonate ridges and includes, in its central part, the volcanic 

districts of the Phlegrean Fields and Somma-Vesuvius, which 

separate the Volturno river plain to the North from the Sarno 

river plain to the South (Fig. 1A). The geological and geomor-

phological evolution of the Campanian Plain has been exten-

sively studied by several authors (e.g., D’Erasmo 1931; 

Ippolito et al. 1973; Aprile & Ortolani 1978; Brancaccio et al. 

1991, 1995; Brocchini et al. 2001; Aprile et al. 2004;  Putignano 

et al. 2007). In particular, stratigraphical studies based on 

interpretation of shallow (≤100 m deep) boreholes have 

allowed reconstruction of the recent evolution of both the 

northern (Romano et al. 1994; Barra et al. 1996) and southern 

sectors (Bellucci 1994, 1998) of the plain.

Surface and subsurface information indicates that exten-

sional tectonics and associated strike-slip motions have 

affected the Campanian Plain area since the beginning of the 

Early Pleistocene (Brancaccio et al. 1991; Cinque et al. 1993). 

Extensional processes caused the subsidence and consequent 

submersion of large portions of the Campanian Plain, as 

inferred from the recovery of Early Pleistocene marine sedi-

ments on top of Mesozoic or Miocene rocks in deep wells 

(e.g., Trecase, Castelvolturno, Villa Literno and Cancello 

wells; Fig. 1B; Ippolito et al. 1973; Bernasconi et al. 1981, 

Balducci et al. 1983; Brancaccio et al. 1991; Brocchini et al. 

2001; ViDEPI 2009). From the Middle Pleistocene, strong 

subsidence led to the submersion of the entire plain (Brancaccio 

et al. 1991; Hippolyte et al. 1994) while during the Late 

 Pleistocene, volcanism started intense activity in different 

source areas of the Campanian Plain. The onset of volcanic 

activity is recorded at Ischia (Gillot et al. 1982) and the 

Phlegrean Fields (Rosi & Sbrana 1987) in the first part of  

the Late Pleistocene, and at Somma-Vesuvius in the later part 

of the Late Pleistocene (Brocchini et al. 2001; Di Renzo et  

al. 2007). 

The Sele Plain (Fig. 1A) rests on Quaternary sediments that 

accumulated within a coastal half-graben, which extends in 

the  offshore  with  the  deep  Salerno  Gulf.  The  Sele  Plain –  

Salerno Gulf structure is described by Sacchi et al. (1994) for 

the offshore sector and by Cinque et al. (2009) for the faults 

running both near the coast and on land. The logs of Mina, 

Milena, Margherita Mare and Sele (Fig. 1B; Brancaccio et al. 

1991; ViDEPI 2009) account for the deep stratigraphy of the 

basin infill, although the age of its lowest terms and, conse-

quently, the beginning of the collapse are not well defined. 

However, most authors agree on the assumption that the pres-

ent-day morphostructural setting is due to Quaternary exten-

sional tectonics. On land, the first phases (1.5 Ma) of collapse 

generated a high-energy relief, the growth of which is testified 

by the deposition of epiclastic conglomerates, preserved in 

both the northeastern horst block (Picentini Mts.) and its pied-

mont (Capaldi et al. 1988; Cinque et al. 1988, 1991, 2009; 

background image




, 2017, 68, 1, 43 – 56

Fig. 1

A — Simplified geological map of the northern part of the Southern Apennines Tyrrhenian margin (modified after Ascione et al. 2013), 

showing the coastal half-grabens analysed in this study and the main Quaternary faults at their boundaries. Location, elevation and age of 

uplifted marine terraces that occur in the coastal horsts are also reported (data from various authors; see text). Location of deep well logs of 

frame (B) and of shallow boreholes SM (Fig. 4) and SME (Fig. 5). Traces of cross sections A–A’ to D–D’ of Fig. 4 and cross sections X–X’ and 

Y–Y’ of Fig. 2. B — Logs of the main deep wells drilled onshore and offshore in the Campanian and Sele coastal basins. CA: Cellole Aurunci; 

CV: Castelvolturno; Ce: Cancello; VL: Villa Literno; P: Parete; T: Trecase; M: Mina; Mi: Milena; MM: Margherita mare; S: Sele. Well logs are 

redrawn and modified after Ippolito et al. (1973), Brancaccio et al. (1991 and references therein), Brocchini et al. (2001) and ViDEPI (2009).

background image




, 2017, 68, 1, 43 – 56

Brancaccio et al. 1987). The thick and widespread deposits 

forming the foothills of the Picentini massif are mostly com-

posed of fanglomerates with clasts derived from 


erosion of the Mesozoic limestones and dolostones cropping 

out in that massif. This Early Pleistocene unit, named Eboli 

Conglomerates, is strongly deformed and deeply buried in  

the southwestern part of the plain (Fig. 2A; Cinque et al. 1991; 

Hippolyte et al. 1995; Hippolyte 2001; Cinque et al. 2009).


Evolution of the Southern Apennines coastal plains 

in the last 1.80 Ma 

Overall surface and subsurface information on the Campa-

nian and Sele coastal basins and on the horst blocks bounding 

them, allows the most significant stages of the geomorpho-

logical and stratigraphical evolution of such basins to be 

defined. A picture of the main evolutionary stages is provided 

Fig. 2. A — Stratigraphic-structural scheme along the section X–X’, showing the relationship among the main sedimentary units of the Sele 

Plain infilling. B —  Geological cross-section Y–Y’ in the western part of Sele river coastal plain, showing the stratigraphic relationship 

between the Gromola and Campolongo Units. For location of XX’ and YY’ see Fig.1. Modified after Cinque et al. (2009).

background image




, 2017, 68, 1, 43 – 56

in the palaeogeographical schemes of Fig. 3, where past posi-

tions of the coastline are outlined.

The late Early Pleistocene (Calabrian stage, 1.80 – 0.78 Ma)

Most of the data covering this time interval are rather scat-

tered and mainly come from the reinterpretation of deep well 

logs (Fig. 1B; Cellole Aurunci, Castelvolturno, Cancello, Villa 

Literno, Parete and Trecase in the Campanian Plain; Mina, 

Milena, Margherita Mare and Sele in the Sele Plain – Salerno 

Gulf. Ippolito et al. 1973; Brancaccio et al. 1991; Brocchini  

et al. 2001; ViDEPI 2009) drilled both onshore and offshore 

during the 70’s. The hypothetical morphology of the Tyrrhe-

nian coastline was already characterized by the presence of 

two gulfs (Fig. 3A), although they were probably less pro-

nounced than at present. In the basins, in fact, the coastline 

was located westward with respect to its modern position  

and the promontories separating the basins were wider than  

at present. 

These hypotheses are based on the presence, in the Sele 

Plain – Salerno  Gulf  half-graben,  of  marine  sediments,  not 

older  than  the  Gelasian  (2.58 –1.8  Ma),  between  2000  and  

990 m depth in the Mina borehole (Cinque et al. 2009). Sub-

sidence of the western portion of this basin was accompanied 

by deposition in its inner portion, namely at the toes of the 

Picentini Mts., of the thick epiclastic Eboli Conglomerates, 

dated from 1.5 to 0.9 Ma (Brancaccio et al. 1987, 1991; Cinque 

et al. 1988).

The presence of a gulf in the northern part of the Campanian 

Plain is testified by the marine and transitional (delta facies; 

ViDEPI 2009) deposits drilled in the Castelvolturno and 

 Cellole wells (Figs. 1B and 3A). Marine silts and clays, not 

older than the Emilian substage (1.5–1.2 Ma), have been 

drilled down to 2400 m depth in the Castelvolturno well  

(Fig. 1B; Brancaccio et al. 1991). In the central part of this 

coastal basin, continental volcanic deposits (mainly lavas), 

encountered by the Parete borehole down to 1800 m depth and 

by the Villa Literno well down to about 2900 m (Fig. 1B), 

testify to the presence of an ancient volcanic centre, known in 

the literature as the Parete volcano (Fig. 3A). In the Parete 

well,  the  base  of  the  volcanic  deposits  has  a  K/Ar  age  of  

1.8 Ma (Di Girolamo et al. 1976). 

In the southern part of the Campanian Plain, the thick conti-

nental conglomerate deposits found in the Trecase well above 

the basal dolostones and aged older than 1.24 Ma (Brocchini 

et al. 2001; Fig. 1B), suggests a strong erosional phase follo-

wing the first uplift phases which affected the Sorrento ridge 

horst block during the Early Pleistocene (Caiazzo et al. 2006). 

According to these authors, the extensional faulting caused  

a strong vertical fragmentation, which led to the development, 

along NW–SE to N–S trending faults, of a horst-and-graben 

structure. Slope and alluvial sediments were then deposited 

along the main footslopes and in newly created structural 

basins (i.e. the Agerola basin). The absence of Early Pleisto-

cene marine terraces all along the Sorrento Peninsula (Caiazzo 

et al. 2006) and the Licosa promontory, in northern Cilento 

(Cinque et al. 1994; Iannace et al. 2001; Fig. 1A), suggests 

that during that time span these headlands were wider and had 

different shapes. However, the presence of Early Pleistocene 

marine terraces on Capri island (Fig. 1A; Barattolo et al. 1992) 

and the flight of Early Pleistocene (Santernian and Emilian 

substages, 1.8 –1.2 Ma) marine terraces in the Mt. Bulgheria 

area (Fig. 1A; Ascione & Romano 1999), proves that the 

Tyrrhenian coastline had reached both the western part of the 

Sorrento – Capri  ridge  and  the  southern  Cilento  in  the  early 

part of the Early Pleistocene.

The early Middle Pleistocene (0.78 – 0.40 Ma)

Following a strong phase of block faulting at the beginning 

of the Middle Pleistocene, the coastal promontories reached  

a perimeter quite similar to their present state (Fig. 3B). Raised 

marine terraces, Middle Pleistocene in age, are noteworthy in 

the Sorrento Peninsula headland (Cinque & Romano 1990; 

Caiazzo et al. 2006) and in the southern part of the Cilento 

promontory (Ascione & Romano 1999). 

The marine deposits, found in the Trecase borehole above 

the conglomerate layers (down to 1490 m depth) and dated 

1.24 – 0.90 Ma through nannofossils (Brocchini et al. 2001), 

provide evidence for a strong subsidence phase at the 

 beginning of this interval, which caused the flooding of  

the southern part of the Campanian Plain (Fig. 3B). In the 

northern part of the plain (Volturno Plain, Castelvolturno  

well; Brancaccio et al. 1991; Fig. 1A and B) marine sands and 

clays, drilled between 1000 and 150 m depth, indicate the 

 persistence of a marine environment during the early Middle 

Pleistocene. Regional stratigraphical data indicate that sub-

sidence also affected the perimeter zone of this basin, as testi-

fied by  fluvial-lacustrine sequences recovered in the main 

feeding river valleys (Corniello & Russo 1990; Brancaccio et 

al. 1995).

In the Sele Plain, block faulting caused the uplift of the inner 

portion of the graben, as testified by the deformation and rela-

tive uplift of the Eboli Conglomerate Unit and the coeval 

 subsidence of blocks to the W and SW of that area (Fig. 2A). 

At that stage, a pronounced gulf existed (Fig. 3B) in which the 

deposition of the marine/transitional Battipaglia–Persano Unit 

occurred (Amato et al. 1991; Cinque et al. 2009; Fig. 2A). 

These deposits are mainly made up of gravels and clays and 

reach a minimum thickness of 250 m. Although not directly 

dated, they can be ascribed to the Middle Pleistocene on the 

basis of their stratigraphical position. The Battipaglia–Persano 

Unit, in fact, covers the Eboli Conglomerate Unit (1.5 – 0.9 Ma) 

and underlies littoral deposits related to MIS 5.5 (Fig. 2A). 

The younger part of this succession was investigated in detail 

with numerous new drillings, palaeo-ecological analyses and 

correlation with many pre-existing shallow borehole logs 

(Cinque et al. 2009). It is composed of several coastal para-

sequences, recording various regressions and transgressions. 

Based on pollen data and relative chronology criteria, these 

relative sea-level fluctuations are tentatively framed between 

MIS 9 and 5.5 (Fig. 2A and B).


background image




, 2017, 68, 1, 43 – 56

Fig. 3. Schematic palaeogeographic sketches showing the main evolutionary stages of the Campanian and Sele plains during the Quaternary. 

Position of palaeo-coastlines are based on spatial distribution of continental, marine and transitional deposits inferred from surface strati-

graphy, geomorphology, subsurface data from deep wells, shallow boreholes and offshore data.

background image




, 2017, 68, 1, 43 – 56

From  the  late  Middle  Pleistocene  to  the  Last  Interglacial 

(0.40 –0 .10 Ma)

Recent studies provide new data useful to reconstruct the 

palaeolandscape during this time interval, especially for the 

Campanian Plain (Fig. 3C and D).

Collection and re-interpretation of data coming from more 

than 500 shallow boreholes, 30 to 200 m-deep, drilled in the 

northern part of this coastal depression (Romano et al. 1994), 

have pointed out the presence of a widespread marine unit 

(Fig. 4, number 6) in the central and south-eastern sector of the 

plain (sections A–A’, B–B’ and C–C’ in Fig. 4). Due to the fact 

Fig. 4. Geological cross sections of the northern portion of the Campanian Plain. For location see Fig. 1.  1 — Holocene beach sands and lagoon 

clays; 2 — pyroclastic deposits, locally reworked (Late Pleistocene–Holocene); 3 — Campanian Ignimbrite Formation (CI, 39 ka); 4 — marine 

sands and lagoon clays (Late Pleistocene, MIS 3); 5 — pyroclastic and lava deposits (Late Pleistocene); 6 — marine sands (late Middle–Late 

Pleistocene); 7 — Meso–Cenozoic bedrock; 8 — faults; 9 — boreholes; 10 — dated fossiliferous layer (0.126 ± 0.011 Ma). Modified after 

Romano et al. (1994).

background image




, 2017, 68, 1, 43 – 56

that no borehole has reached the base of this unit, its minimum 

thickness is estimated to be ca. 50 metres. The lower portion 

of this unit has been ascribed to the latest Middle Pleistocene– 

Late Pleistocene based on the 




U age of Cladocora 

coespitosa fragments (0.126 ± 0.011 Ma; Romano et al. 1994) 

sampled at its top (S. Marcellino borehole, section D–D’ in 

Fig. 4). It is mainly made up of silts and sands with remnants 

of shells, but the log data do not allow a better definition of the 

sedimentary environment and, consequently, of the bathy-

metry. The reconstructed cross sections of Fig. 4 also show 

that, at the top of these marine sediments, a continental volca-

nic unit is present (number 5 in Fig. 4). This unit, which is 

mainly made up of pyroclastic sands and ashes and subordi-

nately of tuffs and lavas, reaches a maximum thickness of 

about 40 metres in the surroundings of Aversa and San 

 Marcellino (cross section D–D’ in Fig. 4), where it also shows 

a dome-like shape. In this portion of the plain, it is covered by 

the Campanian Ignimbrite Formation (CI), the most ancient 

product of the Phlegrean Fields volcanic district, aged 39 ka 

(number 3 in Fig. 4; for its description see section 3.4).  Moving 

towards  both  the  NW  and  NE  of  the Aversa – S.  Marcellino 

area, the two volcanic units are separated by marine sediments 

mainly made up of sands, silts and clays with fossil remains, 

which locally include peaty-clay layers of a probable transi-

tional environment. This unit, the top of which is found  

at depths ranging from –30 to –10 m a.s.l., has tentatively  

been ascribed to MIS 3.3, on the basis of its stratigraphical 


An 80-m deep core (SME core, Santangelo et al. 2010;  

Figs. 1A and 5), drilled near Caserta in the northeastern sector 

of the Campanian Plain, made it possible to better define the 

features of the marine and volcanic successions lying below 

the CI deposits. On the basis of macro- and micro-palaeonto-

logical data, palynological and tephrostratigraphical informa-

tion and direct dating, the authors identified four stratigraphic 

units, defined their depositional environment and constrained 

their age (Fig. 5). The lower lagoon environment (Unit 1 in 

Fig. 5), with its top located at – 40 m a.s.l., has been ascribed 

to MIS 7 thanks to the 142 ka 




Ar age of a tephra layer 

sampled two metres above its top. These data indicate that at 

around 150 ka the coastline was close to the SME borehole 

site, placing it 28 km inland with respect to its present position 

(Fig. 3C).

A strong phase of volcaniclastic aggradation (Unit 2 in Fig. 5) 

occurred in the northern sector of the Campanian Plain from 

142 ka to 130 ka, together with the sea level fall related to  

MIS 6, and produced a temporary emersion of that area. 

 Subsequently, and probably as a consequence of tectonic sub-

sidence, the coastline reached again the SME borehole area 

Fig. 5. Inferred coastline fluctuations along the SME record. The grey 

bars  in  the  coastline  progradation/retrogradation  plot  indicate  the 

periods of sea level high stands. 1 — Campanian Ignimbrite Forma-

tion, 39 ka; 2 — palaeosoil; 3 — continental deposits, mainly volcanic 

in nature; 4 — lagoon and marine (emerged/submerged beach) depo-

sits. Modified after Santangelo et al. (2010).

background image




, 2017, 68, 1, 43 – 56

(see Section 3.3), allowing deposition of lagoon and infra-lit-

toral sediments (Unit 3 in Fig. 5). This unit was constrained to 

MIS 5.5 thanks to tephrostratigraphic correlation with the X-5 

tephra marker layer (Keller et al., 1978), aged 105 ka. This 

attribution is also supported by pollen analyses, which high-

lighted in these levels a warm and humid vegetation including 

Zelkova, a tree that disappeared from central Italy during the 

last glacial period (Follieri et al. 1986). Based on their 

stratigrahical position, Unit 3 deposits can be correlated to the 

marine sediments drilled at -80 m a.s.l. in the central part of 

the plain and dated to 126 ± 11 ka (San Marcellino borehole; 

Romano et al. 1994). 

These new chronological and stratigraphical constraints 

show that during MIS 7 and MIS 5 the northern Campanian 

Plain was characterized by the presence of a pronounced gulf 

with lagoon systems located on its eastern flank (present day 

Caserta Mts area; Figs. 3C and 3D). This palaeolandscape was 

affected by two significant volcanic events at 140 and 130 ka 

that allowed either temporary (SME area) or definitive emer-

sion (Aversa-San Marcellino area) of several sectors of the 

gulf. In particular, strong volcanic activity at the end of the 

Middle Pleistocene is testified by the eruptive event recorded 

by the tephra layer (Sep 8 in Santangelo et al. 2010) with an 

age, constrained between 156 and 128 ka, that slightly over-

laps the age of the Taurano Ignimbrite (157.4 ±1 ka; De Vivo 

et al. 2001) cropping out on the eastern margin of the Campa-

nian Plain. 

Aprile et al. (2004) correlated to the Taurano Ignimbrite the 

pyroclastic deposits found in the subsurface of the southeast-

ern part of Campanian Plain (present day Sarno Plain) on top 

of marine sediments. Such sediments (the top of which stands 

at -35 m a.s.l.; Aprile & Toccaceli 2002) have been related to 

MIS 7 by Cinque & Irollo (2004) and are very close to the 

inner boundary of the plain, thus indicating that also the south-

eastern sector of the Campanian Plain, as the northern one, 

was entirely submerged in the late part of the Middle Pleisto-

cene. The thick succession of sands, drilled from 700 to 365 m 

depths in the Trecase borehole (Fig. 1B), should be ascribed to 

this same time interval (Brocchini et al. 2001). These sands, 

deposited in a marginal marine environment with a transition 

to a shore environment, rest on tephritic lavas aged 0.3 ±0.045 

Ma, testifying to the presence of effusive centres in the 

south-central portion of the Campanian Plain between 0.4 and 

0.3 Ma. 

More recent beach and transitional deposits, occurring in 

the subsurface of the present-day Sarno Plain, have been cor-

related by Barra et al. (1991) to the Last Interglacial period. 

Such deposits (the top of which is found at –23 m a.s.l.), allow 

the Last Interglacial coastline position to be identified at about 

13 kilometres inland with respect to the present-day shoreline 

(Barra et al. 1991; Cinque 1991).

In the Sele coastal half-graben, the beach and lagoon depos-

its of the Battipaglia-Persano Unit experienced some uplift (up 

to about 30 m) at the end of the Middle Pleistocene (Fig. 2A). 

Both stratigraphical and geomorphological evidence indicates 

that the western part of the plain was also affected by fault 

activity, which resulted in both terracing of deposits of the 

Battipaglia-Persano Unit, and westward migration of the 

coastline. At 0.13 Ma (Fig. 3D) the coastline was located 

about 3.5 kilometres inland with respect to the present one, as 

testified by the sedimentary succession of the Gromola Unit 

(Fig. 2A and 2B; Russo et al. 1992; Cinque et al. 2009; Aucelli 

et al. 2012). This transgression first advanced with transitional 

(lagoon to palustrine) deposits and then with sandy beaches 

(Fig. 2B). The back-barrier domains were eventually filled up 

with marshy and fluvio-palustrine sediments when the sea-rise 

stopped  and  aeolian  sands  were  finally  accumulated  on  the 

coastal ridge. Some isoleucine datings and stratigraphical evi-

dence suggest that the Gromola ridge incorporates two peaks 

of MIS 5 (5.3 and 5.1).


From the Last Interglacial to the Holocene p.p. (0.10 – 0.06 Ma)

Data collected in recent decades fundamentally confirm 

that, in terms of vertical motions, the behaviours of the Cam-

panian and Sele plains during the last 100 ka were different 

(e.g., Brancaccio et al. 1991 and references therein). A slight 

uplift of the Sele Plain after the end of the Last Interglacial is 

inferred from the occurrence of MIS 5.5 back-barrier terraces 

at 11 ÷ 14 m a.s.l., and coeval shoreface and dune sediments up 

to 13 and 23 m a.s.l., respectively (Fig. 2B; Aucelli et al. 

2012). Conversely, the Campanian Plain basin was still under-

going subsidence, the pattern of which is nowadays better 

defined. In the southeastern part of the Campanian Plain, such 

subsidence is inferred by the lowering, down to –23 m a.s.l., of 

the top of the Last Interglacial deposits (Barra et al. 1991; 

Cinque 1991). In the northern part of the Campanian Plain, the 

elevation difference between the 126 ka marine deposits 

drilled in the S. Marcellino area (Romano et al. 1994) and the 

basically coeval lagoon sediments of Unit 3 of the SME core 

(Santangelo et al. 2010; Fig. 5), which stand at –80 and  

–18 m a.s.l. respectively, suggests that different rates of sub-

sidence have affected the eastern and central sectors of this 

part of the plain since the Last Interglacial. In the SME core, 

the abrupt transition between Unit 3 and Unit 4, marked by 

barren pyroclastic deposits (Fig. 5), suggests that a new 

important eruptive phase supplied the volcaniclastic material, 

which caused the final emersion of the SME area. The alterna-

tion of pyroclastic deposits and palaeo-soils suggests that 

 several eruptions took place in that area from 105 ka to 39 ka, 

when the catastrophic eruption of the CI occurred.

The Last Glacial regression (60 – 15 ka) and the CI eruption 

represent the main events which have affected the palaeo-

landscape of the study area during the Late Pleistocene  

(Fig. 3E and F). 

The extremely violent explosive CI eruption (Di Girolamo 

1968; Di Girolamo et al. 1973, 1984; Barberi et al. 1978; 

Deino et al. 1994; De Vivo et al. 2001) covered the entire 

Campanian Plain with the emplacement of pyroclastic flow 

deposits tens of metres thick. This unit is clearly identified 

from the onshore stratigraphic record all over the plain 

(Romano et al. 1994; Aprile et al. 2004; Fig. 4) and in the 

background image




, 2017, 68, 1, 43 – 56

offshore area. In the eastern part of the northern Campanian 

Plain, the CI covers older volcanic deposits (e.g., SME core 

log; Fig. 5) while towards the coast it rests on marine sands 

and clays related to MIS 3 (Romano et al. 1994; Fig. 4).

Milia and Torrente (2003) interpreted a thick seismically 

chaotic unit recognized in the Bay of Naples as the CI. This 

unit, with a thickness up to 135 metres, is identified in the 

central part of the continental shelf and its top lies between 

150 and 100 m below the sea level. Both at the base and the 

top, it is bounded by erosional surfaces characterized by 

incised valleys, indicating a subaerial environment for this 

eruption (Milia 1998, 2000). 

These data indicate that most of the Campanian Plain was 

located above the sea level at the moment of the CI emplace-

ment. This was possible thanks to the progressive sea level 

drop during the Last Glacial period (Fig. 3E). Data from 

 several authors indicate that the sea level at 37 ka was about  

80 metres lower than at present and reached a minimum of 

–120 m at about 20 ka (Bintanija et al. 2005; Siddall et al. 

2005; Caputo 2007).

According to Romano et al. (1994) and Amorosi et al. 

(2012), deep valley incision down to 30 metres occurred 

immediately after the CI deposition in the northern part  

of the Campanian Plain. This down-cutting phase was likely 

enhanced by the huge thickness of unconsolidated pyroclastic 

material emplaced instantaneously in that area. The following, 

further sea-level fall occurred at the Last Glacial Maximum, 

and caused additional river downcutting. Comparable evi-

dence is available from the subsurface of the southeastern 

 part of the Campanian Plain, namely in the present-day Gulf 

of Naples onshore area. In the northern part of this area, 

 valley fill deposits, consisting in alluvial sediments with peat 

layers, occur on top of the CI (Pescatore et al. 1984; Bellucci 

1994, 1998) whereas in the southern part (present-day 


Sarno Plain), the top surface of the CI is dissected by a valley 

shaped morphology, the bottom of which stands at around  

30 m below the sea level in the Pompeii area (Cinque &  

Irollo 2004).

Based on new data from recent offshore geological surveys 

(ISPRA 2015), it was possible to outline the coastline shape 

during the LGM (Fig. 3E). It was located tens of kilometres 

westward with respect to the present one, allowing the connec-

tion of Ischia and Capri islands to the continent. 

Re-emergence of volcanic activity at the present-day 

 Somma-Vesuvius volcano occurred only after the CI eruption 

(Brocchini et al. 2001; Di Renzo et al. 2007). Magma rose 

along and at the intersection of linear and curved tectonic and 

volcano-tectonic elements. It gave rise to a number of small 

lava and scoria edifices termed “lava ridges”, identified on top 

of the CI by Di Vito et al. (1998). One of these tephritic centres 

lies above the CI deposits in the subsurface of the area around 

the Trecase well, as shown by the tephritic lava sequence 

encountered between 250 and 200 m depth in this well  

(Fig. 1B; Brocchini et al. 2001). In addition, the chemical 

composition of the 290–275 m-deep fallout level of the 

 Trecase well is comparable to that of the deposits of the Codola 

eruption that is aged 33 ka (Giaccio et al. 2008), and testifies 

to the onset of the Somma volcano activity. 

The progressive growth of the Somma-Vesuvius and 

Phlegrean Fields volcanic edifices, during the Late Pleisto-

cene-Holocene, caused the final separation of the Campanian 

Plain into two main zones: the Volturno Plain to the NW and 

the Sarno Plain to the SW (Fig. 3F). Combined geomorpho-

logical and stratigraphical evidence of latest Pleistocene 

(post-CI) or Holocene faulting at the boundaries of such plains 

(Cinque et al. 2000; Irollo et al. 2005), indicates that these 

areas were subject to subsidence until very recent times.

The  latest  Pleistocene – early  Holocene  (ca.  15–6  ka)  sea 

level rise promoted the rapid flooding of the lower Volturno 

Plain, leading to a generalized widening of the shelf. Based on 

subsurface data, the lower transgressive portion of the latest 

Pleistocene–early Holocene succession, which reflects the 

sedimentary evolution of a back-stepping estuary system, is 

bounded on top by a wave ravinement surface overlain by 

transgressive barrier sands (Amorosi et al. 2012). Since  

ca. 6.5 ka, the turnaround from transgressive to ‘regressive’ 

(highstand) conditions marked the onset of the present 

Volturno river delta and the late Holocene progradation of  

3– 6 kilometres of the adjacent coastal plain (Barra et al. 1996; 

Amorosi et al. 2013). Deceleration of the post-glacial sea level 

rise is testified by middle –late Holocene prograding deposits 

of prodelta and delta front/strandplain facies, capped by modern 

alluvial, delta plain and coastal plain deposits (Amorosi et al. 

2012; Sacchi et al. 2014).

In the Sarno Plain, at the Holocene transgressive maximum, 

the sea formed a beach ridge (Messigno, 5600 and 4500 yr B.P.) 

more than 2 kilometres inland from the present-day shore, 

whereas progradation of the plain, due to high volcanic supply 

during the following highstand, resulted in a new beach ridge 

formation (Bottaro-Pioppaino, 3600 yr B.P.), 0.5 kilometres 

seaward of the Messigno ridge (Barra et al. 1989; Cinque 1991). 

The Sele Plain was not directly affected by the devastating 

CI  eruption,  with  the  exception  of  the  Salerno – Fratte  and 

 Pontecagnano areas (Pappone et al. 2009). The landscape 

 evolution was mainly dominated by fluvial dissection during 

the Last Glacial regression. During this period (probably in the 

late part of it), the deposition of alluvial sediments took place 

along the lower Tusciano River course. The load carried by the 

Sele River probably fed the deposition of less inclined valley 

floor beds, nowadays found under similar Holocene deposits 

(Budillon et al. 1994).

After the marine regression of MIS 4 and largely before the 

Holocene optimum, the southernmost part of the plain was 

affected by deposition of calcareous tufa (Amato et al. 2009; 

Cinque et al. 2009).

The deposition of the Campolongo Unit (Fig. 2B; Cinque et 

al. 2009) in the lower Sele Plain dates from the late part of the 

Post Glacial transgression and the following period of high-

stand. The early Holocene part of the Campolongo Unit shows 

a clear transgressive trend, while the late Holocene part has  

a progradational trend (Fig. 2B). This last transgression was 

pre-announced by lagoon deposits, basal part of which has 

background image




, 2017, 68, 1, 43 – 56



C dated to around 9000 yr B.P. The ingression peak 

recorded at around 5300 yr B.P. caused the formation of the 

innermost part of the composite Laura coastal ridge, up to 1.5 

kilometres from the present-day coastline (Fig. 2B). The beach 

deposits, forming the most internal part of the composite 

 Sterpina coastal ridge (generally located at some 250 metres 

from the modern shore), have ages ranging from the 6th cen-

tury B.C. to about 2000 years ago (Cinque et al. 2009; Amato 

et al. 2013).


The present study, by means of an accurate revision and 

 critical synthesis of all data published in the last twenty years, 

provides a comprehensive framework of the Quaternary geo-

morphological evolution of the main coastal plains of the 

Southern Apennines.  It focuses, in particular, on tectonically 

and glacio-eustatically controlled coastline migrations.  

During the Early Pleistocene, the studied plains were 

strongly subsiding and, up to the first part of the Middle 

 Pleistocene, the coastline was located in the innermost part of 

the basins, at the foot of the main border carbonate massifs. 

Starting from the late part of the Middle Pleistocene, the tec-

tonic behaviour of the Sele Plain changed to uplift. The shape 

of the present-day landscape mainly resulted from the substan-

tial ceasing of subsidence in this period. Conversely, the Cam-

panian Plain was affected by significant subsidence all through 

the Middle and Late Pleistocene and a strong contribution to 

its recent evolution has been provided by important volcani-

clastic aggradation. The subsidence rates were not homo-

geneous all over the plain, and recent data suggest that, in the 

last 130 ka, periods of relative tectonic stability alternated 

with moments of increasing subsidence that occurred mainly 

after the main volcanic events. Huge explosive events occurred 

between 150 and 130 ka, strongly influencing the coastline 

position during MIS 7 and 5, and between 105 and 39 ka.  

An outstanding phase of volcaniclastic aggradation occurred 

at about 39 ka, when the tens of metres thick CI pyroclastic 

flow deposit was emplaced. In response to the dramatic CI 

eruption, the Campanian Plain was completely emerged and 

affected by fluvial downcutting, also induced by the sea level 

lowering of the Last Glacial regression. At this stage, the 

 palaeolandscape was characterized by a coastline located at its 

most westerly position, never reached during the Pleistocene. 

During the Holocene, in concomitance with the peak of the 

post-glacial transgression, lagoon and swamp systems formed 

in both plains some kilometres inland from the present 



Acocella V. & Funiciello R. 2006: Transverse systems along the 

extensional Tyrrhenian margin of central Italy and their  influence 

on volcanism. Tectonics 25, 1–24.

Amato A., Ascione A., Cinque A. & Lama A. 1991: Morphoevolution, 

sedimentation and tectonics of high Sele Plain and its tributary 

valleys. Geogr. Fis. Dinam. Quat. 14, 1, 5–16 (in Italian with 

English abstract).

Amato V., Avagliano G., Cinque A., Cipriani M., Di Paola G., 


Pontrandolfo A., Rosskopf M.C. & Santoriello A. 2009: 

 Geomorphology and geoarcheology of the area of Paestum: 

modifications of the physical environment in historical times. 

Méditerranée 112, 129–135.

Amato V., Aucelli P., Ciampo G., Cinque A., Di Donato V., Pappone G., 

Petrosino P., Romano P., Rosskopf C.M. & Russo Ermolli E. 

2013: Relative sea level changes and paleogeographical evolu-

tion of the southern Sele Plain (Italy) during the Holocene. Quat. 

Int. 288, 112–128. 

Amorosi A. & Milli S. 2001: Late Quaternary depositional architec-

ture of Po and Tevere river deltas (Italy) and worldwide compa-

rison with coeval deltaic succession. Sed. Geol. 144, 357–375.

Amorosi A., Colalongo M.L., Fusco F., Pasini G. & Fiorini F. 1999a: 

Glacio-eustatic control of continental-shallow marine cyclicity 

from Late Quaternary deposits of the south-eastern Po Plain 

(Northern Italy). Quat. Res. 52, 1–13.

Amorosi A., Colalongo M.L., Fusco F., Pasini G. & Preti D. 1999b: 

Sedimentary response to late Quaternary sea level changes in the 

Romagna coastal plain (northern Italy). Sedimentology 46, 


Amorosi A., Colalongo M.L., Fiorini F., Fusco F., Pasini G., Vaiani 

S.C. & Sarti G. 2004: Palaeogeographic and palaeoclimatic 

 evolution of the Po Plain from 150-ky core records. Global 

Planet. Change 40, 55–78.

Amorosi A., Pacifico A., Rossi V. & Ruberti D. 2012: Late Quater-

nary incision and deposition in an active volcanic setting:  

The Volturno valley fill, southern Italy. Sed. Geol. 282, 307–320.

Amorosi A., Molisso F., Pacifico A., Rossi V., Ruberti D., Sacchi M. 

& Vigliotti M. 2013: The Holocene evolution of the Volturno 

River coastal plain (southern Italy). J. Medit. Earth Sci., Spec. 

Iss. 7–11.

Antonioli F., Dai Prà G. & Hearty P.J. 1988: The quaternary sedi-

ments along the costal stretch of the Fondi Plain (southern 

Latium).  Boll. Soc. Geol. Ital. 107, 491–501 (in Italian with 

English abstract).

Aprile F. & Ortolani F. 1978: New data on the deep structure of the 

Campanian Plain. Boll. Soc. Geol. Ital. 97, 591–608.

Aprile F. & Toccaceli R.M. 2002: New knowledge about stratigraphy 

and the distribution of Quaternary ignimbrite deposits in the sub-

surface of the Sarno Plain (Salerno-Campania, Southern Italy).  

Il Quaternario 15, 2, 169–174 (in Italian with English abstract).

Aprile F., Toccaceli R.M. & Sbrana A. 2004: The role of pyroclastic 

deposits in the chronostratigraphic analysis of the Quaternary 

terrains in the subsoil of the Campanian Plain (Southern Italy). 

Ital. J. Quat. Sci. 17, 547–554 (in Italian with English abstract).

Argnani A., Bortoluzzi G., Bozzani A., Canepa A., Ligi M., Palumbo 

V., Serracca P. & Trincardi F. 1989: Sedimentary dynamics on 

the Eastern Tyrrhenian Margin, Italy. PS/87 Cruise report. Giorn. 

Geol. 51, s. III, 1, 165–178.

Ascione A. & Romano P. 1999: Vertical movements on the eastern 

margin of the Tyrrhenian extensional basin. New data from Mt. 

Bulgheria (Southern Apennines, Italy). Tectonophysics 315, 


Ascione A., Caiazzo C., Hippolyte J.C. & Romano P. 1997: Pliocene–

Quaternary extensional tectonics and morphogenesis at the 

 eastern margin of the southern Tyrrhenian basin (Mt. Bulgheria, 

Campania region, Italy). Il Quaternario 10, 2, 571–578.

Ascione A., Mazzoli S., Petrosino P. & Valente E. 2013: A decoupled 

kinematic model for active normal faults: Insights from the 

1980, M


=6.9 Irpinia earthquake, southern Italy. Geol. Soc. Am. 

Bull. 125, 7–8, 1239–1259.

background image




, 2017, 68, 1, 43 – 56

Aucelli P.P.C., Amato V., Budillon F., Senatore M.R., Amodio S., 

D’Amico C., Da Prato S., Ferraro L., Pappone G. & Russo 

Ermolli E. 2012: Evolution of the Sele river coastal plain (South-

ern Italy) during the Late Quaternary by inland and offshore 

stratigraphical data. Rend. Fis. Acc. Lincei 23, 81–102. 

Balducci S., Vaselli M. & Verdini G. 1983: Exploration well in Otta-

viano permit, Italy, Trecase 1. European Geothermal Update 3



Int. Sem., Munich 29 Nov–Dec., 407–418.

Barattolo F., Cinque A., D’Alessandro E., Guida M., Romano P. & 

Russo Ermolli E. 1992: Geomorphology and quaternari tectonic 

evolution of Capri Island. Studi Geol. Camerti Vol. Spec. 1992, 

1, 221–229 (in Italian with English abstract).

Barberi F., Innocenti F., Lirer L., Munno R., Pescatore T. & San-

tacroce R. 1978: The Campania Ignimbrite: a major prehistoric 

eruption in the neapolitan area (Italy). Bull. Volcanol. 41, 1, 1–22.

Barra D., Bonaduce G., Brancaccio L., Cinque A., Ortolani F., Pagli-

uca S. & Russo F. 1989: Holocene geological evolution of Sarno 

river coastal plain (Campania). Mem. Soc. Geol. Ital. 42, 255–

267 (in Italian with English abstract).

Barra D., Cinque A., Gewelt M. & Hurtgen C. 1991: The warm spe-

cies  Sylvestra Seminis (Bonaduce, Masoli e Pugliese, 1976) 

(Crustacea, Ostracoda): a potential  marker  of Last Interglacial 

in the mediterranean area. Il Quaternario 4, 2, 327–332 (in Ital-

ian with English abstract).

Barra D., Romano P., Santo A., Campaiola L., Roca V. & Tuniz C. 

1996: The Versilian transgression in the Volturno river plain 

(Campania, Southern Italy): Palaeoenvironmental history and 

chronological data. Il Quaternario 9, 2, 445–458.

Barra D., Calderoni G., Cinque A., De Vita P., Rosskopf C. & Russo 

Ermolli E. 1998: New data on the evolution of the Sele River 

coastal plain (Southern Italy) during the Holocene. Il Quater-

nario 11, 287–299.

Bartole R., Savelli D., Tramontana M. & Wezel F.C. 1984: Structural 

and sedimentary features in the Tyrrhenian margin off Campa-

nia. Southern Italy. Mar. Geol. 55, 2/2, 163–180.

Bellucci F. 1994: New stratigraphic knowledges on volcanic deposits 

in the underground of southern Campanian Plain. Boll. Soc. 

Geol. Ital. 113, 395–420 (in Italian with English abstract).

Bellucci F. 1998: New stratigraphic knowledges on lavas and pyro-

clastic deposits in the underground of Somma–Vesuvius area. 

Boll. Soc. Geol. Ital. 117, 385–405 (in Italian with English 


Bernasconi A., Bruni P., Gorla L., Principe C. & Sbrana A. 1981: Pre-

liminary results of deep geothermal exploration  in the Somma–

Vesuvius volcanic area. Rend. Soc. Geol. Ital. 4, 237–240 (in 

Italian with English abstract).

Bintanja R., van de Wal R.S.W. & Oerlemens J. 2005: Modelled 

atmospheric temperatures and global sea levels over the past 

million years. Nature 437, 125–128.

Brancaccio L., Cinque A., Belluomini G., Branca M. & Delitalia L. 

1986: Isoleucine Epimerization dating and tectonic significante 

of Upper Pleistocene sea-level features of the Sele Plain (South-

ern Italy). Z. Geomorphol. N.FSuppl. 62, 159–166.

Brancaccio L., Cinque A., D’angelo G., Russo F., Santangelo N. & 

Sgrosso I. 1987: Geomorphological and tectonic evolution of the 

Sele Plain (Campania, Southern Apennines). Geogr. Fis. Dinam. 

Quat. 10, 47–55 (in Italian with English abstract).

Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F., Santan-

gelo N. & Santo A. 1991: Geomorphology and neotectonic evo-

lution of a sector of the Tyrrhenian flank of the southern 

Apennines (region of Naples, Italy). Z. Geomorphol.Suppl. 82, 


Brancaccio L., Fiume G., Grimaldi M., Rapolla A. & Romano P. 

1994: Gravimetric analysis in the low Solofrana river valley 

(Salerno) and considerations on its quaternary evolution. Il Qua-

ternario 117, 2, 131–138 (in Italian with English abstract).

Brancaccio L., Cinque A., Romano P., Rosskopf C., Russo F. & San-

tangelo N. 1995: The evolution of Campania coastal plains : geo-

morpholy and neotectonics. Mem. Soc. Geogr. Ital. 53, 313–337 

(in Italian with English abstract).

Brocchini D., Principe C., Castradori D., Laurenzi M.A. & Gorla L. 

2001: Quaternary evolution of the southern sector of the Campa-

nia Plain and early Somma–Vesuvius activity: insights from the 

Trecase 1 well. Mineral. Petrol. 73, 67–91.

Bruno P.P.G., Cippitelli G. & Rapolla A. 1998: Seismic study of the 

Mesozoic carbonate basement around Mt. Somma–Vesuvius, 

Italy. J. Volcanol. Geotherm. Res. 84, 311–322.

Bruno P.P.G., Di Fiore V. & Ventura G. 2000: Seismic study of the 



 Parallel’ Fault System offshore the Campanian–Latial con-

tinental margin, Italy. Tectonophysics 324, 1, 37–55.

Budillon F., Pescatore T. & Senatore M.R. 1994: Upper Pleistocene– 

Holocene  depositional cycles in the continental platform of 

Salerno Gulf ( Southern Tyrrhenian sea). Boll. Soc. Geol. Ital. 

113, 303–316 (in Italian with English abstract). 

Caiazzo C., Ascione A. & Cinque A. 2006: Late Tertiary–Quaternary 

tectonics of the Southern Apennines (Italy): New evidences from 

the Tyrrhenian slope. Tectonophysics 421, 23–51.

Capaldi G., Cinque A. & Romano P. 1988: Morphoevolutive 

sequneces reconstruction in the Picentini Mounts (Campania, 

southern Italy). Suppl. Geogr. Fis. Dinam. Quat. 1, 207–222 (in 

Italian with English abstract).

Caputo R. 2007. Sea-level curves: Perplexities of an end-user in mor-

photectonic applications. Global Planet. Change 57, 417–423.

Casciello E., Cesarano M. & Pappone G. 2006: Extensional detach-

ment faulting on the tyrrhenian margin of the Southern Apen-

nines contractional belt (Italy). J. Geol. Soc. London 163, 4, 


Cello G. & Mazzoli S. 1999: Apennine tectonics in southern Italy:  

a review. J. Geodyn. 27, 191–211.

Channel J.E.T., D’Argenio B. & Horvath F. 1979: Adria, the african 

promontory in Mesozoic Mediterranean paleogeography. Earth-

Sci. Rev. 15, 213–292.

Ciaranfi N., Pieri P. & Ricchetti G. 1992: Explanations to the Geolo-

gical maps of  Puglie and Salento (centre-southern Puglia). Mem. 

Soc. Geol. Ital. 41, 449–460 (in Italian with English abstract).

Cinque A. 1991: 


The versilian transgression in the Sarno River plain 

(Campania). Geogr. Fis. Dinam. Quat. 14, 63–71 (in Italian with 

English abstract).

Cinque A. & Romano P. 1990: New evidences for ancient shorelines 

in the Sorrento Peninsula (Campania). Geogr. Fis. Dinam. Quat

13, 1, 23–36 (in Italian with English abstract).

Cinque A. & Irollo G. 2004: The “Pompei” volcano. New geomor-

phological and stratigraphical data. Ital. J. Quat. Sci. 17, 1, 

 101–116 (in Italian with English abstract).

Cinque A., Guida F., Russo F. & Santangelo N. 1988: Chronological 

and stratigraphical data on some continental deposits in the Sele 

Plan: the Eboli Conglomerates. Geogr. Fis. Dinam. Quat. 11, 1, 

39–44 (in Italian with English abstract).

Cinque A., Patacca E., Scandone P. & Tozzi M. 1993: Quaternary 

kinematic evolution of the Southern Apennines. Relationships 

between surface geological features and deep lithospheric struc-

tures. Ann. Geofis. 36, 2, 249–259. 

Cinque A., Romano P., Rosskopf C., Santangelo N. & Santo A. 1994: 

Coastal morphologies and quaternari deposits between  Agropoli 

and Ogliastro Marina (Cilento, southern  Italy). Il Quaternario 7, 

1, 3–16 (in Italian with English abstract). 

Cinque A., Ascione A. & Caiazzo C. 2000: Spatial and temporal 

 distribution of Quaternary faultings in the Southern Apppenines. 

In: Galadini F., Meletti C. & Rebez A. (Eds.): Le ricerche del 

GNDT nel campo della pericolosità sismica. CNR — Gruppo 

Nazionale per la Difesa dai Terremoti, Roma (in Italian with 

English abstract).

background image




, 2017, 68, 1, 43 – 56

Cinque A., Romano P., Boudillon F. & D’Argenio B. (Eds.) 2009: 

Explanatory Notes to Geological Map of Italy, scale 1:50,000 

— Sheet 486 Foce del Sele. ISPRA Servizio Geologico d’Italia 

(in Italian with English abstract). 

Corniello A. & Russo D. 1990: The middle Volturno river plain: 

hydrogeology and vulnerability. Atti I Convegno sulla gestione  

e protezione delle acque sotterranee, Modena, 20–22 settembre 

1990, 131–148 (in Italian).

D’Erasmo G. 1931: Geological study of deep boreholes of Campania 

region. Boll. Soc. Nat. Napoli 43, 15–143 (in Italian with English 


De Vivo B., Rolandi G., Gans P.B., Calvert A., Bohrson W.A., Spera 

F.J. & Belkin H.E. 2001: New constraints on the pyroclastic 

eruptive history of Campania volcanic Plain (Italy). Mineral. 

Petrol. 73, 47–65.

Deino A.L., Southon I., Terrasi F., Campajola L. & Orsi G. 1994: 






Ar dating of the Campania Ignimbrite, Phlaegrean 

Fields, Italy. Abstract ICOG, Berkeley, 77.

Dewey J.F., Helman M.L., Turco E., Hutton D.H.W. & Knott S.D. 

1989: Kinematics of the Western Mediterranean. In: Coward 

M.P., Dietrich D. & Park R.G. (Eds.): Alpine Tectonics. Geol. 

Soc. London, Spec. Publ. 45, 265–283.

Di Girolamo P. 1968: Petrography of Campanian tuffs: process of 

Piperno formation. Petrography, survey and nature of the tuff  

nearby Caserta. Rend. Acc. Sc. Fis. MatNapoli 35, 4, 329–394 

(in Italian with English abstract).

Di Girolamo P., Rolandi G. & Stanzione D. 1973: The pomice erup-

tion beneath the Campanian Ignimbrite. Period. Mineral. 42, 

436–468 (in Italian with English abstract).

Di Girolamo P., Nardi G., Rolandi G. & Stanzione D. 1976: Occur-

rence of calc-alkaline two piroxenes andesites from deep bore-

holes in the Phlaegrean Fields. I) Petrographic and petrochemical 

data. Rend. Acc. Sc. Fis. Mat. Napoli 43, 4, 250–255.

Di Girolamo P., Ghiara M.R., Lirer L., Munno R., Rolandi G. & 

 Stanzione D. 1984: Volcanology and petrology of Phlaegrean 

Fields.  Boll. Soc. Geol. Ital. 103, 349–413 (in Italian with 

English abstract).

Di Renzo V., Di Vito M.A., Arienzo I., Carandente A., Civetta L., 

D’Antonio M., Giordano F., Orsi G. & Tonarini S. 2007: 

 Magmatic history of Somma–Vesuvius on the basis of new geo-

chemical and isotopic data from a deep borehole (Camaldoli 

della Torre). J. Petrol. 48, 4, 753–784.

Di Vito M., Sulpizio R., Zanchetta G. & Calderoni G. 1998: The geo-

logy of the South Western Slopes of Somma–Vesuvius, Italy as 

inferred by borehole stratigraphies and cores. Acta Vulcanol. 10, 

2, 383–393.

Doglioni C., Innocenti F., Morellato C., Procaccianti D. & Scrocca D. 

2004: On the Tyrrhenian sea opening. Mem. Descr. Carta Geol. 

Ital. 64, 147–164.

Elter P., Giglia G., Tongiorgi M. & Trevisan L. 1975: Tensional and 

compressional areas in the recent (Tortonian to Present) evolu-

tion of North Apennines. Boll. Geofis. Teor. Appl. 17, 3–18.

Florio G., Fedi M., Cella F. & Rapolla A. 1999: The Campanian Plain 

and Phlegrean Fields: structural setting from potential field data. 

J. Volcanol. Geotherm. Res. 91, 2, 361–379.

Follieri M., Magri D. & Sadori L. 1986: Late Pleistocene Zelkova 

extinction in Central Italy. New Phytol. 103, 269–273.

Giaccio B., Isaia R., Fedele F.G., Di Canzio E., Hoffecker J., 

 Ronchitelli A., Sinitsyng A.A., Anikovichg M., Lisitsyng S.N. & 

Popov V.V. 2008: The Campanian Ignimbrite and Codola tephra 

layers: two temporal/stratigraphic markers for the Early Upper 

Palaeolithic in southern Italy and eastern Europe. J. Volcanol. 

Geotherm. Res. 177, 1, 208–226.

Gillot P.Y., Chiesa S., Pasquaré G. & Vezzoli L. 1982: <33,000 yr   

K/Ar dating of the volcanotectonic horst of the Isle of Ischia, 

Gulf of Naples. Nature 299, 242–245.

Hippolyte J.C. 2001: Paleostress and neotectonic analysis of sheared 

conglomerates: Southwest Alps and Southern Apennines. 


J. Struct. Geol. 23, 421–429.

Hippolyte J.C., Angelier J. & Roure F. 1994: A major geodynamic 

change revealed by Quaternary stress pattern in the Southern 

Apennines. Tectonophysics 230, 199–210.

Hippolyte J.C., Angelier J. & Barrier E. 1995: Compressional and 

extensional tectonics in an arc system: example of the Southern 

Apennines. J. Struct. Geol. 17, 12, 1725–1740.

Iannace A., Romano P. & Tuccimei P. 2003: U/Th dating and geo-

chemistry of carbonate concretions associated with Upper 

 Pleistocene fossil shorelines on the Sorrento Peninsula (Conca 

dei Marini, southern Italy). Il Quaternario 16, 1bis, 49–54.

Ippolito F., Ortolani F. & Russo M. 1973: Tirrhenyan marginal struc-

ture of  Campania Apennines: re-interpretation of old hydro-

carbons researches. Mem. Soc. Geol. Ital. 12, 227–250 (in Italian 

with English abstract).

Irollo G., Ascione A. & Cinque A. 2005: Holocene tectonic activity 

along two fault zones in the Gulf of  Napoli. Atti 24° Convegno 

Nazionale GNGTS, Roma 15–17 nov. 2005, 17–21 (in Italian).

Keller J., Ryan W.B.F., Ninkovich D. & Altherr R. 1978: Explosive 

volcanic activity in the Mediterranean over the past 200,000 

years as recorded in deep-sea sediments. Geol. Soc Am. Bull. 89, 


Kent D.V., Rio D., Massari F., Kukla G. & Lanci L. 2002: Emergence 

of Venice during the Pleistocene. Quat. Sci. Rev. 21, 


ISPRA  2015:  Geological  maps.

catalog/sgilink/ (accessed December 2015).

Locardi E., Lombardi G., Funiciello R. & Parotto M. 1976: The main 

volcanic group of Lazio (Italy): relations between structural 

 evolution and petrogenesis. Geol. Romana 15, 279–300.

Malinverno A. & Ryan W.B. 1986: Extension in the Tyrrhenian Sea 

and shortening in the Apennines as result of arc migration driven 

by sinking of the lithosphere. Tectonics 5, 2, 227–245.

Mariani M. & Prato R. 1988: Neogenic coastal basins of tirrhenyan 

margin: sismostratigraphic approach. Mem. Soc. Geol. Ital. 41, 

519–531 (in Italian with English abstract).

Mazzoli S. & Helman M. 1994: Neogene patterns of relative plate 

motion for Africa–Europe: some implications for recent central 

Mediterranean tectonics. Geol. Rundschau 83, 464–468.

Milia A. 1998: Late quaternary pyroclastic units in the Gulf of Naples. 

Geogr. Fis. Din. Quat. 21, 147–153 (in Italian with English abstract).

 Milia A. 2000: The Dohrn Canyon formation: a response to the 

eustatic fall and tectonic uplift of the outer shelf (Eastern Tyrrhe-

nian Sea margin, Italy). Geo-Mar. Lett. 20, 101–108.

Milia A. & Torrente M.M. 1999: Tectonics and stratigraphic archi-

tecture of a peri-Tyrrhenian half-graben (Bay of Naples, Italy). 

Tectonophysics 315, 301–318.

Milia A. & Torrente M.M. 2015: Tectono-stratigraphic signature of  

a rapid multistage subsiding rift basin in the Tyrrhenian- 

Apennine hinge zone (Italy): A possible interaction of upper 

plate with subducting slab. J. Geodyn. 86, 42–60.

Milia A., Torrente M.M., Russo M. & Zuppetta A. 2003: Tectonics 

and crustal structure of the Campania continental margin: 

 relationships with volcanism. Mineral. Petrol. 79, 33–47.

Milia A., Torrente M.M., Massa B. & Iannace P. 2013: Progressive 

changes in rifting directions in the Campania margin (Italy): 

New constrains for the Tyrrhenian Sea opening. Global Planet. 

Change 109, 3–17.

Milli S. 1997: Depositional setting and high-frequency sequence 

 stratigraphy of the Middle–Upper Pleistocene to Holocene 

deposits of the Roman basin. Geol. Romana 33, 99–136.

Moussat E., Rehault J.P. & Fabbri A. 1986: Rifting et èvolution 

 tectono-sèdimentaire du Bassin Tyrrhènien au cours du Neogene 

et du Quaternaire. Giorn. Geol. 48, 3, 1/2, 41–62.

background image




, 2017, 68, 1, 43 – 56

Nisi M., Antonioli F., Dai Pra G., Leoni G. & Silenzi S. 2003: Coastal 

deformation between the Versilia and the Garigliano plains 

(Italy) since the last interglacial stage. J. Quat. Sci. 18, 


Pappone G., Casciello E., Cesarano M., D’Argenio B. & Conforti A. 

(Eds.) 2009: Explanotary Notes to the Geological Map of Italy, 

scale 1:50,000 — Sheet 467 Salerno. ISPRA Servizio Geologico 

d’Italia (in Italian with English abstract).

Patacca E., Sartori R. & Scandone P. 1990: Tyrrhenian basin and 

apenninic arcs kinematic relations since Late Tortonian times. 

Mem. Soc. Geol. Ital. 45, 425–451. 

Pescatore T., Diplomatico G., Senatore M.R., Tramutoli M. & 

 Mirabile L. 1984: Contributions to the study of Pozzuoli gulf

Mem Soc. Geol. Ital. 27, 133–149 (in Italian with English 


Putignano M.L., Ruberti D., Tescione M. & Vigliotti M. 2007: Late 

Quaternary evolution of campanian Plain in the area surrounding  

Caserta (Southern Italy). Boll. Soc. Geol. Ital. 126, 1, 11–24   

(in Italian with English abstract).

Radicati di Brozolo F., Di Girolamo P., Turi B. & Oddone M. 1988: 




Ar and K–Ar dating of K rich rocks from the Rocca-

monfina Volcano, Roman Comagmatic Region, Italy. Geochim. 

Cosmochim. Acta 52, 1435–1441.

Ricci Lucchi F. 1986: Oligocene to recent foreland basins of northern 

Apennines: Foreland Basins. In: Allen Ph. & Homewood P. 

(Eds.): Int. Ass. Sedim. Spec. Publ. 8, 105–139.

Rolandi G., Bellucci F., Heizler M.T., Belkin H.E. & De Vivo B. 

2003: Tectonic controls on the genesis of ignimbrites from the 

Campania volcanic zone, southern Italy. Mineral. Petrol. 79, 3–31.

Romano P., Santo A. & Voltaggio M. 1994: Geomorphological evolu-

tion of Volturno river plain during late Quaternary (Middle-Late 

Pleistocene–Holocene).  Il Quaternario 7, 1, 41–56 (in Italian 

with English abstract).

Rosi M. & Sbrana A. 1987: Phlegrean Fields. Quaderni de “La 

Ricerca Scientifica”, CNR Roma 114, 9, 1–175. 

Russo F. & Belluomini G. 1992: Outcrops of Tirrenian marine deposits 

along right side of Sele river (Campania, southern Italy).  Boll. 

Soc. Geol. Ital. 111, 25–31 (in Italian with English abstract).

Sacchi M., Infuso S. & Marsella E. 1994: Late Pliocene–Early Pleis-

tocene compressional tectonics in offshore Campania (eastern 

Tyrrhenian margin). Boll. Geof. Teor. Appl.  26,  141/144, 


Sacchi M., Molisso F., Pacifico A., Vigliotti M., Sabbarese C. & 

Ruberti, D. 2014: Late-Holocene to recent evolution of Lake 

Patria, South Italy: An example of a coastal lagoon within a 

Mediterranean delta system. Global Planet. Change 117, 9–27.

Santangelo N., Ciampo G., Di Donato V., Esposito P., Petrosino P., 

Romano P., Russo Ermolli E., Santo A., Toscano F. & Villa I. 

2010: Late Quaternary buried lagoons in the northern Campania 

Plain (southern Italy): evolution of a coastal system under the 

influence of volcano-tectonics and eustatism. Ital. J. Geosci. 

129, 1, 156–175.

Sartori R. 1990: The main results of ODP Leg 107 in the frame of 

Neogene to Recent geology of the PeriTyrrhenian areas. 


In: Kastens A. & Mascle K.J. et al. (Eds.): Proceedings of ODP, 

Scientific Results 107, College Station, TX (Ocean Drilling 

 Program),  715–730.

Sartori R. 2003: The Tyrrhenian backarc basin and subduction of the 

Ionian lithosphere. Episodes 26, 217–221.

Savelli C. & Schreider A.A. 1991: The opening processes in the deep 

Tyrrhenian basins of Marsili and Vavilov, as deduced from 

 magnetic and chronological evidence of their igneous crust. 

 Tectonophysics 190, 119–131.

Scandone P. 1979: Origin of the Tyrrhenian Sea and Calabrian Arc. 

Boll. Soc. Geol. Ital. 98, 27–34.

Siddall M., Rohling E.J., Almogi-Labin A., Hemleben Ch., Melschner 

D., Schmelzer I. & Smeed, D.A. 2003. Sea-level fluctuations 

during the last glacial cycle. Nature 423, 853–858.

Turco E., Macchiavelli C., Mazzoli S., Schettino A. & Pierantoni P.P. 

2012: Kinematic evolution of Alpine Corsica in the framework 

of Mediterranean mountain belts. Tectonophysics 579, 


ViDEPI 2009: Project Free data on oil exploration in Italy. © 2009–

2010  Ministero dello Sviluppo Economico UNMIG, Società 

Geologica Italiana, Assomineraria.  http://unmig.sviluppoeco- Acc. 20 November 2015.