background image


, FEBRUARY 2017, 68, 1, 3 – 5

Preface: Long-term geomorphological evolution  

of central-southern Italy










Department of Science and Technology, University of Naples “Parthenope”, I-80143 Naples, Italy;


Department of Physical Geography and Geoecology, Comenius University, SK-81499 Bratislava, Slovakia;


Geosciences & GIS Laboratory, Department of Biosciences and Territory, University of Molise, I-86090 Pesche, Italy;


Department of European and Mediterranean Cultures, University of Basilicata, I-75100 Matera, Italy;

The theme of the present issue, “Long-term geomorphological 

evolution of central-southern Italy”, represents a key topic in 

Italian geomorphological research, one that has been strongly 

influenced by the Anglo-Saxon concept of Long-term land-

scape evolution in which the landscape is essentially under-

stood as a physical landscape. 

From the start of the millennium, the understanding of the 

mechanisms of interplay and feedback between tectonics and 

climate has gathered momentum in the worldwide geoscience 

community. In this context, the multidisciplinary approach to 

studying the surface processes and landscape evolution of 

a tectonically active mountain chain represents a necessary 

method for gaining new insights into these topics (Burbank & 

Anderson 2001; Bishop 2007, and references therein). In fact, 

tectonics sets the boundary conditions and the uplift rate of 

an orogeny, whereas the climate and relative changes control 

the modalities of relief shaping, making effective the morpho-

genetic processes acting in different geological and geomor-

phological contexts. One of the main tools for obtaining 

information on the dynamic state of an orogenic chain consists 

in estimations and comparisons of uplift and erosion rates 

 calculated for quite different time intervals, which are subse-

quently used to understand both long and short-term surface 


In this thematic issue, seven groups of authors from different 

academic institutions review the outcomes of approximately 

twenty years of scientific investigations, performed in the cen-

tral and southern segments of the Italian Apennines (Fig. 1). 

Of particular interest is the axial zone of the chain, where 

many intermontane basins filled by Pliocene and Quaternary 

clastic deposits and relevant geomorphic features, such as the 

relics of paleo-landscapes, are present (cf. Schiattarella et al. 

2006 and Aucelli et al. 2011, among others).

The papers included in this issue are essentially review 

 articles. In fact, the syntheses conducted by the author groups 

are largely based on the critical analysis of data from literature 

that is integrated with original geological and geomorphologi-

cal constraints provided by recent, still unpublished research. 

The integration and correlation of data on structural land-

scapes and tectonic landforms, the regional-scaled and basin-

scaled morphostructural analyses, as well as the identification 

of reference levels for uplift rates estimates, have allowed the 

different research groups to obtain a suitable picture of the 

long-term landscape evolution of their study areas. 

This collection of papers fills an important gap in know-

ledge to date. It provides for the first time an overall frame-

work of an updated body of knowledge obtained by means of 

modern chrono-constrained approaches for large sectors of the 

orogenic system, affording an opportunity for the international 

scientific community to compare the spatio-temporal distribu-

tion and modalities of the morphoevolutive stages of the 

 central-southern  Apennines.

The papers here included address study areas covering large 

portions of the Marche, Abruzzo, Molise, Campania, Basili-

cata, Calabria, and Sicily regions. The first four papers of the 

volume enhance the Quaternary and pre-Quaternary morpho-

genesis of a wide sector of the central-southern Apennines.  

In particular, the first three papers show that from the axial 

portion of the Apennine chain up to the Adriatic Sea the conti-

nental morphogenesis commenced during the Neogene period, 

when the orogen was still under compression. These papers 

also illustrate the role of extensional tectonics that influenced 

this sector of the chain since the Early Pleistocene. During the 

Quaternary (in particular from the Early to Middle Pleisto-

cene) this sector of the Apennine chain underwent generalized 

uplift and intense block faulting, due to the activity of high- 

angle faults primarily affecting the axial and Tyrrhenian belts 

of the orogen, and as a result generating many intermontane 

basins. Such tectonics was also responsible for the genesis of 

the wide peri-Tyrrhenian half-grabens, as discussed in the 

fourth paper that sets out the evolution of the Campania and 

Sele coastal plains. The final three papers illustrate the geo-

morphological features on different scales, together with their 

Pliocene to Quaternary evolution from the southernmost sec-

tor of the Italian orogen. The complex morphotectonic settings 

of the Lucanian Apennine (Basilicata), the Crati River graben 

(Calabria), and Sicily — together with some relevant issues 

such as the rates of tectonic and geomorphic processes, the 

correlation between stratigraphic unconformities and erosio-

nal land surfaces, and the meaning of exhumational morpho-

structures — have been effectively examined and typified by 

the authors in the frame of a common Pliocene-Pleistocene 

chronological interval. The contributions regarding the individual 

regions are briefly outlined below, going from north to south.

Gentili and co-authors illustrate the Plio-Pleistocene evolu-

tion of the Apennine and the peri-Adriatic belt of the Marche 

region. The beginning of the sub-aerial landscape modelling is 

evidenced by the summit relict surface. The genesis of this 

background image




, 2017, 68, 1, 3 – 5

land surface started during the Messinian and ended in the 

Early Pleistocene, when climate conditions favoured areal 

 erosion and its final modelling. The fingerprint of the  present- day 

landscape took shape during the Late Pliocene–Pleistocene 

time-span. Tectonic uplift caused the fragmentation of the relict 

surface, and its dislocation caused the generation of second- 

order land surfaces. During this phase, bending and faulting of 

the summit relict surface and the opening of tectonic inter-

montane basins occurred. During the Middle and Late Pleisto-

cene, the rapid tectonic uplift of the area along with climate 

fluctuations favoured the deepening of the hydrographic 

 network and the genesis of three orders of fluvial terraces, thus 

completing the basic features of the present landscape.

Miccadei et al. outline the main stages of the geomorpho-

logical evolution of the Abruzzo Apennine that started in the 

Neogene, and then subsequently underwent a spatio-temporal 

variation under the major influences of climate change and the 

effects of regional uplift. Here the landscape is the result of 

a long polyphasic morphogenesis due to the continuous com-

bination of tectonics and selective erosion, favoured by the 

juxtaposition of different lithological sequences resulting from 

compressive and extensional tectonics and regional uplift. In 

the axial portion of the chain, the evolution of the landscape 

was connected to regional uplift, local tectonic subsidence, 

and local base level variations that led to changes in the drai-

nage systems, shifting alternately from exoreic to endorheic. 

In the Adriatic Piedmont, landscape shaping started in the late 

Early Pleistocene and progressed under the influence of 

a combination of uplift and eustatic sea-level fluctuations, 

together with climate changes and selective erosion. This gave 

rise to its present-day dominant homoclinal morphostructural 

setting (plateaux and mesa structures), incised by large conse-

quent river valleys. In the coastal Adriatic area, landscape 

modelling has been the result of selective erosion, due to the 

interaction between marine and slope processes induced by 

uplift and which occurred under the influence of Late Quater-

nary eustatic sea-level variations.

Amato et al. describe the main evolutive stages of a poly-

cyclic landscape that started to form in the Pliocene when the 

Molise Apennine gradually emerged from SW to NE. Their 

synthesis highlights that the landscape evolution of the region 

varied over space and time and initially occurred under the 

influence of compressional tectonics and subsequently under 

that of transtensive and extensional faulting. The most impor-

tant stages of landscape evolution occurred during the Early 

and the Middle Pleistocene. The internal SW Sector had 

already emerged in the Pliocene, while the NE Sector remained 

largely under the marine domain until the Early Pleistocene. 

During the Early Pleistocene, in addition to the Central Sector, 

the internal portion of the NE sector emerged but continued to 

be affected by compression, while the morphogenesis of the 

SW sector was already deeply influenced by transtensional 

tectonics responsible for the genesis of the main intermontane 

basins. Starting from the Middle Pleistocene, the SW sector 

underwent a NE–SW oriented extension that promoted the 

further reshaping and widening of the morphostructural 

troughs, whereas the Central and the NE sectors were mainly 

influenced by the general uplift that controlled several cycles 

of valley floor incision and widening. At the beginning of the 

Late Pleistocene, the Molise Apennine had already reached its 

present setting, and further landscape evolution occurred prin-

cipally under the control of climate.

Santangelo and co-authors have studied the Quaternary 

evolution of the Campania and Sele coastal plains, which are 

located along the southwestern margin of the Southern Apen-

nines and which originated as half-grabens in response to 

opening processes active in the Tyrrhenian back-arc basin. 

From the Early Pleistocene up to the first part of the Middle 

Pleistocene, due to intense tectonic subsidence, these alluvial 

coastal plains were submerged and the coastline was located at 

the foot of their morphostructural borders. Starting from the 

late Middle Pleistocene until the first part of the Late Pleisto-

cene, the Sele Plain was affected by uplift that caused its 

 gradual emersion and shoreline progradation. Conversely, the 

Campania Plain remained under the control of tectonic subsi-

dence up to the Late Pleistocene. The volcanic activity of the 

Phlegraean Fields, especially the explosive events that occurred 

between 150 and 130 ka and between 105 and 39 ka BP, 

strongly favoured the aggradation of the Campania plain. Espe-

cially 39 ka ago, when the Campanian Ignimbrite eruption 

occurred, tens of meters of pyroclastic flow deposits covered 

the plain causing a significant seaward migration of the coast-

line. During the Last Glacial Maximum, the Campania plain 

was completely emerged and affected by fluvial incision. 

During the Holocene, in concomitance with the peak of 

post-glacial transgression, lagoons and swamps formed in both 

plains some kilometres inland from the present coastline.

Schiattarella and co-authors provide a synthesis of the 

long-term geomorphological evolution of a large sector of the 

Campania-Lucania Apennine and the Calabrian arc. Further-

more, they calculate and compare uplift and erosion rates in 

order to determine the past and recent dynamic state of the 

chain. The uplift rates have been estimated by the authors by 

means of the identification of reference levels such as palaeo-

surfaces and fluvial terraces or stratigraphic markers. Average 

values of the Quaternary uplift rates in the axial zone of the 

southern Apennines are equal to 0.6 – 0.7 mm/yr, with peaks of 

~1.2–1.3 mm/yr. The erosion rate, obtained from both quanti-

tative geomorphic analysis and computation of missing volu-

mes,  has  been  estimated  at  0.2  mm/yr  since  the  Middle 

Pleistocene. Since the Late Pleistocene erosion and uplift rates 

match well, the axial-zone landscape could have reached a flux 

steady-state during that time, although it is more probable that 

the entire study area may be a transient landscape. All along 

the axial belt, the exhumation of the ancient Mesozoic core 

occurred due to tectonic denudation. An impressive regional 

planation started in the Late Pliocene and the work of hydro-

graphic nets during the Pleistocene has successively generated 

the main landforms and polycyclic morphological features of 

this orogenic segment of southern Italy.

Robustelli and Muto show the results of an integrated geo-

morphological and stratigraphical study carried out on the 

background image




, 2017, 68, 1,  3 – 5

eastern side of the Crati River valley in northern Calabria.  

In this area, three orders of palaeosurfaces along with low- 

sloping palaeovalleys and structural landforms represent the 

peculiar features of the landscape. Two main unconformities 

in the Quaternary basin fill are correlated to different steps of 

landscape evolution. Both erosional and depositional land sur-

faces have been used by the authors for reconstructing sedi-

mentary and morphogenetic events, drainage network 

evolution, and changes in sediment source areas. During the 

Late Pliocene–Early Pleistocene, the study area experienced 

a period of subaerial landscape modelling as suggested by 

low-sloping palaeovalleys and related fluvial deposits 




 Order Palaeosurface), when the Sila Massif was the pri-

mary source area of the detrital constituents of the sandstones. 

The onset of growing and uplifting of the Coastal Range in the 

Early Pleistocene marked a change in the geomorphic scenario 

with tectonically driven stream incision and valley develop-

ment along the eastern side of the Coastal Range, along with 

the occurrence of depositional and erosional land surfaces  



 Order Palaeosurface) on the footslopes. During this 

period, both the Coastal Range and the Sila Massif sourced the 

detrital constituents of the sandstones. The progressive uplift 

of the Coastal Range during the late Early Pleistocene and the 

marked back-stepping of the depositional systems along the 

Sila footslope were accompanied by alternating phases of 

downcutting and base-level stability that 

resulted in the development of step-like 


distributed land surfaces (3



Palaeo surface).

The paper by Di Maggio et al. on the geo-

morphology of western Sicily presents a bright 

and articulated morphoevolutionary model 

for the last 3.6 Ma. The relief of this region is 

still due to tectonic activity. Rocks, land-

forms and landscapes are progressively older 

from south to north. Results display the fol-

lowing steps: i) gradual emersion of land due 

to tectonic uplift that interacts with Quater-

nary sea-level changes, and consequent pro-

duction of a staircase of marine terraces in 

southern Sicily; ii) down-cutting processes 

that gradually dismantle the oldest terraces; 

iii) competition between uplift and incision, 

responsible for the genesis of river valleys 

and isolated rounded hills in central Sicily; 

iv) exhumation of the oldest and hardest 

rocks in northern Sicily where the region 

reaches greater altitudes and the ancient 

forms are retained; v) extensional tectonics at 

the northern margin of Sicily and collapse of 

large blocks drowned along the Tyrrhenian 

Sea and sealed by coastal-marine deposits 

during the Calabrian stage; vi) uplift of the 

previously subsided blocks and interplay of 

uplift with coastal processes and sea-level 

fluctuations that produced successions of 

marine terraces during the Middle–Upper Pleistocene stages.

This collection of papers is dedicated to Professor Ludovico 

Brancaccio, one of the fathers of the modern approach of geo-

morphological research in Italy and a man of immense scien-

tific  stature,  humanity,  and  wisdom.  The  authors  offer  their 

sincere gratitude to Professor Brancaccio for the valuable 

instruction and support that many of them received during 

their careers.


Aucelli P.P.C., Amato V., Cesarano M., Pappone G., Rosskopf C.M., 

Russo Ermolli E. & Scarciglia F. 2011: New morphostratigraphic 

and chronological constraints for the Quaternary paleosurfaces 

of the Molise Apennine (southern Italy). Geol. Carpath. 62, 


Burbank D.W. & Anderson R.S. 2001: Tectonic Geomorphology. 

Blackwell Science, Oxford, 1–274.

Bishop P. 2007: Long-term landscape evolution: Linking tectonics 

and surface processes. Earth Surface Processes and Landforms 

32, 329–365.

Schiattarella M., Di Leo P., Beneduce P., Giano S.I. & Martino C. 

2006: Tectonically driven exhumation of a young orogen:  

an example from southern Apennines, Italy. In: Willett S.D., 

Hovius N., Brandon M.T. & Fisher D. (Eds.): Tectonics, climate, 

and landscape evolution. Geol. Soc. Am., Spec. Pap. 398, Pen-

rose Conference Series, 371–385.

Fig. 1.