background image

GEOLOGICA CARPATHICA

, FEBRUARY 2017, 68, 1, 29 – 42

doi: 10.1515/geoca-2017-0003

www.geologicacarpathica.com

Long-term landscape evolution of the Molise sector of the 

central-southern Apennines, Italy

VINCENZO AMATO

1

, PIETRO P.C. AUCELLI

2

, VITO BRACONE

1

, MASSIMO CESARANO

1

  

and CARMEN MARIA ROSSKOPF

1

  

1

Department of Biosciences and Territory, University of Molise, C. da Fonte Lappone, 86090 Pesche (IS), Italy;  

vincenzo.amato@unimol.it, vito.bracone@unimol.it, cesarano@unimol.it, rosskopf@unimol.it

2

Department of Science and Technology, “Parthenope” University Naples, Centro Direzionale, Isola C4, 80143 Napoli, Italy;  

pietro.aucelli@uniparthenope.it

(Manuscript received February 11, 2016; accepted in revised form November 30, 2016)

Abstract: This paper concerns the reconstruction of the main stages of the long-term landscape evolution of the Molise 

portion of the central-southern Apennines along a transect divided into three sectors (SW, Central and NE). Analysis 

mainly focused on geomorphological, stratigraphical and structural data supported by chronological constraints, coming 

from an overall review of past literature and several studies carried out by the authors of the paper during the last 20 years. 

The results obtained allowed the elaboration of a conceptual model of the long-term evolution of the Molise sector of the 

central-southern Apennines. Starting from the Pliocene, the emersion of the Molise area occurred gradually from SW to 

NE, allowing a polycyclic landscape to evolve under the major controls first of compression then transtensional to 

 extensional tectonics as well as climatic variations. Principal markers of the Quaternary geomorphological evolution of 

the Molise area are represented by the infill successions of the intermontane tectonic depressions located in its internal, 

SW sector and by four orders of palaeosurfaces that developed between the Early Pleistocene and the beginning of the 

Late Pleistocene across the region. These markers testify to the alternation of phases of substantial tectonic stability and 

uplift whose spatial-temporal distribution could be assessed along the investigated transect. Results highlight that the 

most important stages of landscape evolution occurred during the Early and Middle Pleistocene. At the beginning of the 

Late Pleistocene, the Molise sector of the Apennine chain had already reached its present setting and further landscape 

evolution occurred under the major control of climate and land-use.

Keywords: young orogen, tectonics, Apennine chain, geomorphological evolution, palaeolandscape, chronostratigraphy, 

Plio–Pleistocene. 

Introduction

The Molise region is located in the axial and external sectors 

of the junction zone between the central and southern Apen-

nine chains (Fig. 1). This region is characterized by diversified 

landscapes mainly constituted by high mountain areas (up to 

2000 m), hilly environments, intermontane basins, river valleys 

and alternating high coast and alluvial coastal plain sectors 

(Fig. 1). Each of these landscapes presents different morpho-

logical and geological-structural features in terms of both 

 surface and deep structure, reflecting an individual Quaternary 

morphogenesis and evolution.

Studies concerning landforms and their post-orogenic mor-

phological evolution are generally very complex and require 

an interdisciplinary approach that primarily involves geomor-

phology, field and structural geology and chronostratigraphy, 

and must give due consideration to Quaternary post-orogenic 

tectonic events that occurred in the central and southern Apen-

nine chain. 

For the Apennines that are one of the youngest mountain 

chains in the world, these approaches have been successfully 

applied in several sectors of the central and southern Apen-

nines (Brancaccio et al. 1979, 1988, 2000; Bosi et al. 1996; 

Amato & Cinque 1999; Coltorti & Pieruccini 2000; Bartolini 

et al. 2003; D’Alessandro et al. 2003; Schiattarella et al. 2003, 

2006; Coltorti et al. 2005; Di Bucci et al. 2005; Aucelli et al. 

2011; Amato et al. 2014; Gioia et al. 2014). With particular 

reference to the Molise sector of the Apennines, several studies 

have been conducted and published by our research group 

(Aucelli et al. 2001, 2010, 2011, 2012, 2013, 2014; Russo 

Ermolli et al. 2010; Amato et al. 2011, 2012, 2013, 2014; 

Bracone et al. 2012a), while others are still in progress.

Particularly, the internal, south-western sector of the Molise 

region, including the Matese, Montagnola di Frosolone and 

Venafro mountains (Aucelli et al. 2001, 2010, 2012, 2013; 

Cesarano et al. 2011) and the intermontane basins of Boiano, 

Venafro, Sessano and Isernia (Amato et al. 2011, 2012, 2013, 

2014; Aucelli et al. 2014), has been investigated in great detail 

(Fig. 1). Instead, the central sector, which is located between 

the NE slope of the Montagnola di Frosolone and the Frentani 

Mountains (Fig. 1), has been much less studied, apart from 

some geological (Lanzafame & Tortorici 1976; Vezzani et al. 

2004, 2010) and geomorphological study (Aucelli et al. 2001, 

2010). Finally, the north-eastern, coastal sector was mainly 

investigated first for petroleum research (Casnedi et al.  

1981, 1982; Cello et al. 1989), then subsurface stratigraphic 

background image

30

AMATO, AUCELLI, BRACONE, CESARANO and ROSSKOPF

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

 

charac 

terization of the Pliocene–Pleistocene successions 

(Amorosi  et  al.  2009,  2016;  Bracone  et  al.  2012a, b)  and, 

finally, in relation to the genesis and evolution of the alluvial 

plains of the Trigno and Biferno rivers (Aucelli et al. 2001; 

Frezza et al. 2012; D’Amico et al. 2013; Rosskopf & Scorpio 

2013; Amorosi et al. 2016). 

Available studies to date are integrated by recent, mostly 

unpublished geological data acquired during regional field 

surveys (Vezzani et al. 2004) and the CARG (Geological 

CARtoGraphy) projects (geological maps “Campobasso”, 

“Trivento” and “Vasto”) (ISPRA 2010; Pappone et al. 2010; 

Calamita et al. 2011; ISPRA 2011a, b; Sgrosso & Naso 2011) 

that add important new knowledge on the regional tectono-

stratigraphic setting of the study area. 

However, while these studies clarify the main phases of the 

stratigraphical and geomorphological evolution of several 

 sectors of the Molise Apennine, they do not address the com-

parison and correlation between different sectors. 

The main objectives of the present paper are to order and 

link data coming from different sectors of the Molise  Apennine 

and to fill major gaps in knowledge on its long-term evolution. 

For this purpose, a review and integrated analysis of mainly 

geomorphological, stratigraphical, structural and geo-chrono-

logical  data  (Ar/Ar  dating  and  tephrostratigraphy  on  tephra 

Fig. 1. Geological sketch map showing the distribution of the main tectonic units and Pliocene – Quaternary deposits in the Campania–Molise 

portion of the central-southern Apennines.

background image

31

LANDSCAPE EVOLUTION OF THE MOLISE SECTOR OF THE CENTRAL-SOUTHERN APENNINES, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

layers interbedded with the Quaternary successions, palaeo-

magnetism, palynology) was carried out. The results obtained 

have allowed us to propose for the first time a model of the 

long-term landscape evolution of the Molise sector of the 

Apennine chain. In particular, the main phases of the tectonic 

and long-term geomorphological evolution of the Molise 

Apennines since the Pliocene are detailed along a study 

 transect that crosses the Molise region, from the Matese 

 Massif to the Adriatic coast (Fig. 1).

Geological and geomorphological setting 

The Molise portion of the central-southern Apennines, 

thanks to its diversified geological and morphostructural 

 features, can be divided into three sectors: a south-western, 

a central and a north-eastern sector (hereinafter also named 

SW Sector, Central Sector and NE Sector) (Fig. 1). 

The SW Sector is dominated by Meso–Cenozoic carbonate 

platform and slope-basin units (respectively the Matese and 

Montagnola di Frosolone units) and, to a lesser extent, by 

upper Miocene siliciclastic foredeep deposits (Molise Flysch, 

Pappone et al. 2010) overlying the carbonate units. This sector 

is dominated by a mountainous landscape with high mountain 

areas including major peaks between 1800 and 2000 m a.s.l., 

and hosts several intermontane basins with floors located 

between 300 and 700 m a.s.l. The Central Sector is located 

between the north-eastern slope of the Montagnola di 

 Frosolone and the Frentani Mountains and characterized by 

a typical hilly morphology, mainly developed on clayey-marly 

limestone successions and siliciclastic deposits belonging to 

the Sannio and Molise basin units. The Upper Cretaceous–

Miocene Sannio basin units (originally located to the west of 

the Apennine carbonate platform, Patacca et al. 1992) over-

lapped, after the Early Messinian, both the Apennine carbo-

nate platform units and the Molise basin units (Cesarano et al. 

2011). The Molise units (Upper Oligocene–Miocene) refer to 

the basin domain (Molise basin) that separated the Apennine 

carbonate platform domain (Matese-Montagnola di Froso-

lone) to the west from the Apulian carbonate platform domain 

to the east, and are made of three distinct tectonic units, 

namely Agnone, Tufillo and Daunia (sensu Patacca et al. 

1992). The Tufillo and Daunia units largely consist of calca-

reous turbiditic successions of Burdigalian–Tortonian age 

(Lirer et al. 2007) that are widespread in the northern and 

 eastern portions of this sector and appear in the San Biase  

area in tectonic windows beneath the Sannio units (Fig. 1). 

The Daunia Unit, which represents the outer portions of the 

Molise basin, is  covered by Pliocene deposits of a wedge- top 

basin that are represented by the Tona Formation (Boni et  

al. 1969). 

Finally, the NE Sector, which stretches between the Frentani 

Mountains and the Adriatic coast, is dominated by sedimen-

tary successions made up of clays, sandstones and conglo-

merates from marine and continental environment. These 

successions  form  a  Pliocene  (Piacenzian  p.p.) – Pleistocene 

(Gelasian–Ionian) regressive cycle (Bracone et al. 2012b and 

references therein) made up, from the bottom to the top, by the 

Montesecco Clays, Serracapriola Sands and Campomarino 

Conglomerates with the latter being divided into two distinct 

sedimentary cycles (Bracone et al. 2012b). This sector is 

charac terized by a low relief energy and regular morphology 

dominated by NNW–SSE oriented terraced ridges gently 

 sloping toward the Adriatic coast and the interposed alluvial 

coastal plains of the Trigno and Biferno rivers. 

The current geological setting of the Molise sector of the 

central-southern Apennines is the result of a complex tectonic 

evolution that started in the Middle–Late Miocene (Patacca et 

al. 1990; Patacca & Scandone 2007 and references therein) 

and was characterized by coeval east and north-eastward 

thrust stacking during the migration of deformation toward the 

Apulian foreland and by hinterland extension due to the ope-

ning of the Tyrrhenian back-arc basin (Channell et al. 1979; 

Malinverno & Ryan 1986; Patacca et al. 1990; Hippolyte et al. 

1994; Mazzoli et al. 2000). These geodynamic processes were 

driven by the passive sinking rollback of the Adriatic-Ionian 

lithosphere (Malinverno & Ryan 1986). The Apennine accre-

tionary prism gradually incorporated the tectonostratigraphic 

units derived alternatively from the carbonate platform and 

basin domains of Mesozoic– Cenozoic age (D’Argenio et al. 

1973; Mostardini & Merlini 1986). The timing of orogenic 

migration toward the east was constrained by the dating of 

thrust-top and foredeep basin deposits which gradually formed 

(Casero et al. 1988; Patacca et al. 1990, 1992; Cipollari & 

Cosentino 1995). The compressional phases produced a signi-

ficant shortening of the accretionary prism that occurred 

through a thin-skinned deformation (e.g., Mostardini & 

 Merlini 1986; Marsella et al. 1995; Doglioni et al. 1996; 

 Mazzotti et al. 2000; Patacca & Scandone 2001; Patacca et al. 

2007; Scrocca 2010). 

Starting from the Early Pliocene, the entire stack of thrust 

sheets was already superimposed on the inner edge of the 

 Apulian platform. The latter, however, underwent shortening 

processes through the formation of duplex structures (Mostar-

dini & Merlini 1986) only in the Middle–Late Pliocene. 

The deformation of the buried Apulian Platform unit produced 

in some cases the development of breaching thrusts that cut 

the original roof-thrust, leading to the formation of out-of- 

sequence within the roof unit and consequently localized 

uplift of the accretionary prism.

Within the Pliocene and Pleistocene p.p. interval (from 3.6 

to 1.4 My), the development of wedge-top basins characte-

rized by shallow marine environments occurred on the thrust 

sheets (Ascione et al. 2012). Starting from the Early Pleisto-

cene, the internal sectors of the central-southern Apennines 

were marginally involved in crustal thinning that affected the 

southern Tyrrhenian, with the formation of NE–SW listric 

faults bordered by NW–SE oriented strike-slip faults (Casciello 

et al. 2006). While the combined activity of these tectonic 

structures led to the identification of large Tyrrhenian coastal 

depressions and probably promoted the genesis of most of the 

intermontane basins located in the internal and axial sectors of 

background image

32

AMATO, AUCELLI, BRACONE, CESARANO and ROSSKOPF

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

the central-southern Apennines, the external portions of the 

chain remained under the control of thrust tectonics.

During the Middle Pleistocene, the flexural retreat of the 

Adriatic plate and tectonic shortening suddenly stopped 

 (Patacca & Scandone 2001; Ascione et al. 2012). Furthermore, 

around 0.7 My the complete detachment of the subducting 

slab occurred (Wortel & Spakman 2000). This is reflected in 

a general uplift of the whole chain (Cinque et al. 1993; 

 Hippolyte et al. 1994) and the onset of extensional tectonics, 

characterized by a NE-SW sense of extension (Cinque et al. 

1993; Hippolyte et al. 1994; Montone et al. 1999) that con-

trolled the landscape response in this chain sector.

Data useful for the long-term morphoevolutive 

model

Hereafter, the main geological and geomorphological data 

available for the three study sectors are presented, highlighting 

the chronological and morpho-stratigraphic markers used to 

support the identification of the main stages of the long-term 

evolution of the Molise Apennines.

 

The SW Sector 

The current orography and hydrography of this sector is the 

result of its complex tectonic-stratigraphic setting, charac-

terized by alternating structural highs (mountain areas) and 

lows (alluvial plains and intermontane basins), generally 

bounded and intersected by faults, some of which are still 

active (Amato et al. 2014). 

The most ancient landscape features are located 

in the high 

mountain areas and represented by gentle erosional landscapes 

mainly generated by fluvial and karst processes

 (Aucelli et al. 

2013).

 These erosion surfaces are of varied extent and located 

between 1300 and 1800 m a.s.l. in the Matese Mountains and 

between 1000 and 1400 m a.s.l. in the Montagnola di Froso-

lone massif, but variously displaced by tectonics and difficult 

to group into separate orders.

Although no chronological constraints are available for 

these oldest landscape markers, their genesis can probably be 

referred to the first phases of morphogenesis that occurred 

immediately after the emersion of this sector. Published data 

on the beginning of the morphogenesis of the central-southern 

Apennines (Bosi et al. 1996; Ascione et al. 1997, 2012, 2014; 

Ascione & Cinque 1999; Basili et al. 1999; D’Alessandro et 

al. 2003; Schiattarella et al. 2006, 2008; Giano & Schiattarella 

2014; Gioia et al. 2014; Miccadei et al. 2014) suggest that its 

internal portion gradually emerged during the Pliocene. Parti-

cularly, these authors have demonstrated that the emersion 

and, therefore, the beginning of the morphogenesis occurred 

gradually from the NW (Abruzzo-Molise sector) to SE (Cam-

pania-Lucania sector), between the Early –Middle Pliocene 

and the Lower Pleistocene. This thesis is also supported by  

the lack of Pliocene deposits throughout the internal sector 

between the Matese, Montagnola di Frosolone and Venafro 

mountains as well as within the surrounding intermontane 

basins. 

The remnants of palaeosurfaces recognized at lower heights 

and the Quaternary infills of the major morphostructural 

depressions are the most suitable for the reconstruction of the 

long-term evolution of the SW Sector. Both the Montagnola di 

Frosolone Mountain and the northern slope of the Matese 

Massif are rich in such palaeosurface remnants (Fig. 2) that 

are the response, as discussed below, to the successions of 

 tectonic events that occurred in this sector of the chain.  

Uplift phases and consequent valley downcutting alternated 

with phases of substantial stability of local base levels of 

 erosion during which fluvial denudational processes prevailed 

(valley flank retreat and valley floor widening). Most of the 

palaeosurfaces are of erosional origin, cut into the Mesozoic–

Cenozoic bedrock, and only in some cases thin covers of 

 Quaternary deposits are present. Taking into account their dis-

tribution and height above sea level, these palaeosurfaces were 

referred to four distinct orders (Fig. 2): I order (1000 – 900 m), 

II  order  (820 –760  m),  III  order  (680 – 600  m)  and  IV  order 

(540 –500 m). 

The I order palaeosurface is generally cut into the bedrock 

and appears reduced to small and elongated ridges, hanging 

ca. 500 m over the Boiano basin floor. Although no chrono-

logical constraints are available for this order, regional 

 geological-structural and geomorphological data allow us to 

tentatively refer its genesis to the Lower Pleistocene. In fact, 

close to Campobasso (Fig. 2), this order is cut into the  Pliocene 

fluvial-transitional succession of the Campobasso (Vezzani et 

al. 2004) and M. Vairano Conglomerates (Pappone et al. 2010) 

that suggest a post-quem term for its development (Fig. 2b). 

The II order palaeosurface, generally of erosional origin, is 

locally cut into the fluvial-lacustrine deposits that crop out at 

Serra S. Giorgio near S. Massimo and contain tephra layers 

that have been recently Ar/Ar dated to 649 ± 21 and 621 ± 6 ky 

BP (Di Bucci et al. 2005). This data allows us to refer the 

 genesis of the II order palaeosurface to the Middle Pleistocene 

(Fig. 2b), and more precisely to ca. 600 ky BP. 

The III order palaeosurface is mainly constituted by ero-

sional and/or depositional planar surfaces that are found both 

along the borders of the Sepino, Boiano and Isernia intermon-

tane basins and the flanks of major valleys (Aucelli et al. 2011, 

2014). This III order can also be dated to the Middle Pleisto-

cene, to after 400 ky BP. In fact, some remnants of this order 

are cut into fluvial-palustrine deposits cropping out in the 

 Sessano intermontane basin (SBP, Fig. 2a) that contain a tephra 

layer dated by Ar/Ar to 437 ky BP (Russo Ermolli et al. 2010; 

Amato et al. 2011). 

Finally, the IV order palaeosurface, represented by both 

 erosional and depositional surfaces, is found along the borders 

of the intermontane basins and the major valley flanks at  

a few tens of metres above the local base levels. The presence 

of the Neapolitan Yellow Tuff (15.3 ky BP, Deino et al. 2004) 

within the fluvial-marshy succession of the Boiano basin 

infilling, allows us to hypothesize for this order a late Upper 

Pleistocene age.

background image

33

LANDSCAPE EVOLUTION OF THE MOLISE SECTOR OF THE CENTRAL-SOUTHERN APENNINES, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

The major structural depressions located in the SW Sector are 

grabens or semi-grabens and bordered by generally NW–SE, 

NE–SW and E–W oriented high angle faults. Their basin floors 

are characterized by a quite flat morphology due to aggra-

dation and are only partly incised by rivers. Infill successions 

reach thicknesses of 80 to 240 m (Isernia 80 m, Sessano >80 m, 

Venafro >200 m and Boiano 240 m) and are mainly made  

of fluvial-marshy and lacustrine deposits with intercalations  

of volcaniclastic layers and palaeosols (Amato et al. 2014). 

Based on stratigraphic features, several phases of deposition, 

favoured by tectonic subsidence, are distinguished. 

Collected chronostratigraphic data highlight that the infill 

successions directly overly the Miocene and/or Mesozoic bed-

rocks and are made of Lower Pleistocene lacustrine-palustrine 

and fluvial marshy deposits and Middle Pleistocene and Upper 

Pleistocene–Holocene fluvial marshy and alluvial fan deposits 

(Russo Ermolli et al. 2010; Aucelli et al. 2001, Amato et al. 

2012, 2013, 2014). 

The genesis and early stages of evolution of these basins 

occurred under the control of tectonic transtension, while their 

further evolution was guided by extension (Fig. 3) that repla-

ced the transtensive regime at the beginning of the Middle 

Pleistocene. The subsequent intensification of the extensional 

regime, acting along generally NW–SE oriented high angle 

faults, caused an increase of subsidence within the basins  

that favoured the sedimentation of thick fluvial-marshy 

succes sions rich in tephra layers and reworked volcaniclastic 

material (Amato et al. 2014), and also caused the terracing  

of some portions of the infill successions (Amato et al. 2011, 

2014) (Fig. 3). The intensity of tectonic processes seems to be 

very high from 0.6 to 0.4 My BP, then gradually decreased 

starting from the upper part of the Middle Pleistocene (Amato 

et al. 2014). Furthermore, during the late Middle Pleistocene 

and the Upper Pleistocene–Holocene, sedimentation was   

also controlled by more intense 100 ky cycles climatic 

fluctuations. 

The Central Sector 

The Central Sector is characterized by a hilly morphology 

and elevations ranging between 150 m (minimum elevation of 

the main valley floors) and 1000 m (maximum height of some 

isolated peaks). The prevalence of mostly pelitic rocks (Molise 

and Sannio basin units) with scarce to nil permeability has 

allowed the development of a dense fluvial network. By flowing 

to the Adriatic Sea across the thrust-belt system, the main 

 rivers (Trigno and Biferno) have incised deep valleys in which 

ancient fluvial and slope deposits are practically lacking, high-

lighting that river downcutting and valley widening have 

largely prevailed over sedimentation. Therefore, in this sector, 

the long-term landscape evolution is essentially indicated by 

erosional landforms, as highlighted by Aucelli et al. (2012) 

Fig. 2. a — Distribution of the four orders of recognized palaeosurfaces in the SW sector (from Amato et al. 2014, modified); b — table sum-

mary reporting the height a.s.l. of the palaeosurface remnants along the NE slope of the Matese Massif and along the S slope of Montagnola di 

Frosolone, their height above the Boiano basin floor (∆h in m) and their age attribution.

background image

34

AMATO, AUCELLI, BRACONE, CESARANO and ROSSKOPF

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

and, specifically, by relics of ancient erosion surfaces and 

hanging valley side glacis. The first ones coincide with narrow 

water divides located at various heights, while the valley side 

glacis are found along the valley flanks of the main rivers and 

tributaries. Precisely, these glacis coincide with the downslope 

terminations of gentle convex-concave hillslopes, typically 

represented by almost planar surfaces dipping very gently 

toward the valley axes, and separated from the thalwegs by 

steep high fluvial scarps. 

Four orders of palaeosurfaces could be distinguished in this 

sector (Fig. 4): I order (980 –900 m), II order (800 –760 m),  

III order (640 – 600 m) and IV order (540 –500 m). 

The remnants of the I order palaeosurface are generally cut 

into the bedrock and appear reduced to small and elongated 

Fig. 3. Synthesis of major geomorphological and depositional events and related palaeo-environments reconstructed within and around  

the Molise intermontane basins during the Pleistocene, and reconstructed tectonic regimes (data source: Russo Ermolli et al. 2010; Amato et al. 

2011, 2012, 2014; Aucelli et al. 2011, 2012).

background image

35

LANDSCAPE EVOLUTION OF THE MOLISE SECTOR OF THE CENTRAL-SOUTHERN APENNINES, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

ridges. Although no chronological data are available for this 

order, some morpho-stratigraphical data allow us to hypothe-

size an Early Pleistocene age. In fact, along the NE slopes of 

Montagnola di Frosolone, the I order is clearly younger with 

respect to the oldest surfaces of the high-mountain area 

between 1400 –1000 m a.s.l. that, as mentioned above, are ten-

tatively referred to the Pliocene. Furthermore, in the medium 

reaches of the Trigno and Biferno river valleys, the I order 

remnants coincide with flat to rounded summit areas including 

the major water divides, and close to Campobasso cut the 

 Pliocene transitional and fluvial deposits of the Campobasso 

Conglomerates (Vezzani et al. 2004) and M. Vairano Con-

glomerates (Pappone et al. 2010). These data, given the lack in 

this sector of Middle to Upper Pliocene deposits (Casnedi et 

al. 1981), most likely can be proposed as post-quem terms in 

order to tentatively date the I order palaeosurface, allowing us 

to suggest that this sector was already substantially emerged 

during the Pliocene. 

The II order palaeosurface is represented by remnants both 

in summit position and hanging along valley sides, forming 

respectively narrow water divides and erosional valley side 

glacis (Fig. 4)

This order is correlated to the II order palaeo-

surface recognized in the SW Sector, in the areas around the 

Boiano basin that belong to the Adriatic flank of the chain, and 

constrained to the first part of the Middle Pleistocene (Aucelli 

et al. 2011; Amato et al. 2011, 2014). 

Starting from the Middle Pleistocene, the general uplift of 

the Apennine chain enhanced fluvial downcutting, which was 

also favoured by climatic changes. Valley evolution occurred 

through several phases of river incision alternating with phases 

of substantial nil incision during which valley flank retreat and 

decline due to lateral erosion and slope processes dominated 

(Aucelli et al. 2001, 2010, 2012). Consequently, in this sector, 

only some relics of valley side glacis and terraced surfaces are 

found, hanging some tens of metres above the present valley 

floors and forming remnants of the III and IV order palaeo-

surface. Taking into account their present heights above the 

valley floors and the supposed former valley gradients they 

can be tentatively correlated to the III (680 – 600 m a.s.l.) and 

IV (540 –500 m a.s.l.) orders of the well-dated palaeosurfaces 

present in the SW Sector and, therefore, constrained between 

the Middle and Upper Pleistocene. In particular, the III order 

palaeosurface can be constrained to the late Middle Pleisto-

cene on the basis of the age of the SBP palaeosurface of the 

very close Sessano Basin (Aucelli et al. 2011; Amato et al. 

2011, 2014) dated to ca. 0.3 My BP. The spatial distribution, 

aspects and gradients of the III and IV order palaeosurfaces 

indicate that the valley axes of the Trigno, Biferno and Fortore 

Fig. 4. a — Sketch map showing the distribution of the four orders of palaeosurfaces recognized in the Central Sector of the Molise Apennine; 

b — a large relict of the I order palaeosurface forming the top of the local relief in the Trivento area; c and d — examples of major I and II 

order palaeosurface remnants.

background image

36

AMATO, AUCELLI, BRACONE, CESARANO and ROSSKOPF

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

rivers had already reached their current position in the Middle 

Pleistocene. During the Late Pleistocene, alternating phases of 

aggradation and river incision have allowed the development 

of some alluvial terraces, now hanging only a few metres 

above the current valley floors (Rosskopf & Scorpio 2013; 

Sgrosso & Naso 2011).

The NE Sector 

The NE Sector extends from the Frentani Mountains (about 

40 km from the coast) to the Adriatic Sea (Fig. 5). The internal 

portion of this sector corresponds to the outer wedge of the 

chain where the Molise basin units crop out. It mainly lies at 

400 to 600 m a.s.l., although some peaks located near its inner 

margin  reach  altitudes  of  up  to  900 –1000  m.  The  external 

 portion of this sector reaches a maximum elevation of ca.  

350 m a.s.l. and corresponds to the foreland area (wedge-top 

basin) dominated by the Plio–Pleistocene regressive sedimen-

tary succession (Amorosi et al. 2009).

Within the internal portion, the landscape is dominated by 

elongated NW–SE oriented ridges alternating with secondary 

river incisions orientated parallel to the tectonic structures of 

the chain. Ridges and valley incisions coincide with anticlinal 

and synclinal fold structures that are underlain respectively by 

calcareous lithologies and clayey terrains. The external por-

tion, instead, is characterized by terraced planar surfaces dis-

sected by fluvial incision that appear wider and better 

preserved when underlain by arenaceous and conglomeratic 

lithologies.

During the Middle Pliocene–Early Pleistocene time interval, 

the internal portion of the NE Sector was affected by thrust 

tectonics that determined the growth both of the outer wedge 

and the mountain front, while the external portion was still 

under marine domain. In the late Early Pleistocene, tectonic 

activity caused a further NE shift of the coastline and the depo-

sition of nearshore deposits in the external portion. The transi-

tion from Early to Middle Pleistocene is marked by the last 

phase of tectonic activity that also involved the Apennine 

frontal thrust, with the ensuing emersion of the entire NE sector 

and the instauration of alluvial environments. The following 

regional uplift caused river downcutting and promoted the 

development of the terraced palaeolandscapes.

Four orders of palaeosurfaces have been distinguished  

(Fig. 5a) at altitudes between 10 and 625 m a.s.l. The I order 

palaeosurface is a summit erosion surface located at altitudes 

ranging from 550 to 625 m and represents the oldest landscape 

recognized in this sector (Fig. 5b). Its remnants are largely 

concentrated in the internal portion and of limited extension, 

with the only exception of the remnant present in the S. Croce 

di Magliano area (Fig. 5a). The genesis of this palaeosurface is 

related to the reshaping of the mountain front during the Early 

Pleistocene and, therefore, is tentatively correlated to the for-

mation of the I order palaeosurface in the Central Sector. 

The II order palaeosurface (PS1 in Bracone et al. 2012a),  

is located between 225 and 500 m a.s.l. It is cut into the Qc1 

sequence, the first sedimentary cycle of the Campomarino 

Conglomerates (early Middle Pleistocene, Bracone et al. 

2012a), and, therefore, can be attributed to the early Middle 

Pleistocene. 

The III order palaeosurface (PS2 in Bracone et al. 2012a) is 

of depositional origin and found in the external portion of the 

NE Sector at altitudes ranging from 75 to 215 m a.s.l. (Fig. 5a 

and c). Its remnants are characterized by a N-NE dip and are 

larger when compared to the I and II order palaeosurface rem-

nants (Fig. 5a). This palaeosurface coincides with the top of 

the palaeosol that closes up the Qc2 sequence, the second sedi-

mentary cycle of the Campomarino Conglomerates (Bracone 

et al. 2012a), and, therefore, is Middle Pleistocene in age.  

A palaeosol, correlated to the previous one, is present immedia-

tely north of the Molise area, in the Abruzzo and Marche foot-

hills, and dated to MIS 9 (Di Celma et al. 2015), confirming 

the Middle Pleistocene age of the III order palaeosurface. 

During the second part of the Middle Pleistocene, a genera-

lized regional uplift deactivated the III order palaeosurface 

and caused the entrenchment of the river network.

Tectonic uplift along with glacio-eustatic sea level fluctua-

tions deeply controlled processes of valley downcutting and 

led to the formation of river terraces and the IV order palaeo-

surface (PS3 in Bracone et al. 2012a) which is located at 

 elevations of 10 to 60 m a.s.l. Generally, this palaeosurface is 

cut into Plio –Pleistocene units, but locally (at 10 m a.s.l.) has  

a depositional origin associated with Upper Quaternary near-

shore or transitional deposits. Although no absolute data are 

available, the developed chronostratigraphic framework 

 (Bracone et al. 2012a; Amorosi et al. 2016) allows us to con-

strain the age of this palaeosurface to the Middle–Late 

Pleistocene.

As remarked by Amorosi et al. (2016), from 200 –150 ky BP 

the main river valleys formed and the glacio-eustatic fluctua-

tions mainly produced their effects in the coastal plains of  

the study area. Particularly, in the Biferno valley alternating 

 glacial and interglacial conditions produced a multiple buried 

palaeovalley system formed by alternating phases of valley 

incision and filling, as testified by buried river terraces and  

a valley infill made up of alluvial, transitional and nearshore 

deposits of Late Pleistocene to Holocene age (Amorosi et al. 

2016). Especially, transgressive and highstand deposits in the 

coastal plain showed a clear transition from alluvial to transi-

tional and marine environments (D’Amico et al. 2013; 

 Amorosi et al. 2016) during the Holocene transgression.

The long-term landscape evolution of Molise region

Below we discuss the main stages of the tectonic and land-

scape evolution that are reconstructed for the Molise sector of 

the central-southern Apennines and schematically illustrated 

in Figure 6.

The starting point of our reconstruction is the tectono-strati-

graphic setting acquired by the Molise Apennines due to tec-

tonic compression during Upper Miocene. The latter, in fact, 

caused a strong shortening of the accretionary prism. During 

background image

37

LANDSCAPE EVOLUTION OF THE MOLISE SECTOR OF THE CENTRAL-SOUTHERN APENNINES, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

Fig. 5. a — Sketch map showing the distribution of the four orders of paleosurfaces recognized in the NE sector of the Molise Apennine;  

b — panoramic view of the I and II order paleosurfaces; c — panoramic view of the II and III order paleosurfaces present on the left of  

the Trigno valley. Please note that the differences in height between the II and III order paleosurfaces are not significant due to the elevated 

distance of the observation point.

background image

38

AMATO, AUCELLI, BRACONE, CESARANO and ROSSKOPF

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

this phase of shortening, the prism incorporated the sedimen-

tary covers referring to the Mesozoic–Cenozoic palaeogeo-

graphic carbonate platform and basin domains located on top 

of the subducting Adriatic plate. Especially the Matese- 

Frosolone carbonate platform and the Molise basin units  

were incorporated as testified by the Upper Tortonian–Lower 

 Messinian foredeep deposits (Molise Flysch, Pappone et al. 

2010) placed on top of them.

During the Early Pliocene (Fig. 6a) compressive tectonics 

led to a complete emersion of the internal sector of the chain 

(our SW Sector), while the Pliocene sea still occupied the 

remaining part of the Molise Apennines with wedge-top basins 

(Tona Formation) placed in the frontal zones of the accretio-

nary prism and connected eastwards to the foredeep domain. 

In the Middle–Late Pliocene (Fig. 6b), the migration of the 

thrust sheets toward the Adriatic foreland induced the defor-

mation of the buried Apulian units through the development of 

duplex structures that caused the thickening of the accretionary 

prism. These processes produced the uplift of the chain and the 

consequent dismantling of the Sannio Units present on the 

roof of the accretionary wedge. These stages of structuring of 

the chain determined in the SW Sector the exhumation of  

the carbonate successions of the Matese-Frosolone units 

 (Pappone et al. 2010; Cesarano et al. 2011), and in the Central 

Sector the enucleation of the S. Biase structural high (Mazzoli 

et al. 2000) which most likely represented the seaward limit of 

the Campobasso Conglomerates sedimentation. 

The described configuration of the chain and the almost 

complete lack of Pliocene deposits above the thrust sheets in 

the internal sector leads us to presume that in this period most 

of the SW and Central sectors of the chain had already 

emerged. Conversely, the internal portion of the NE Sector 

was still occupied by wedge-top basins and the external 

 portion by a foredeep basin.

Starting from the Late Pliocene–Early Pleistocene, the Sannio 

nappe on the Matese Massif and Montagnola di Frosolone 

Mountain was almost completely eroded, leaving an erosional 

landscape, remnants of which constitute the palaeosurfaces 

over 1000 m a.s.l. 

During the Early Pleistocene (Fig. 6c), due to the onset  

of transtensive tectonics, a more complex landscape with 

structural highs and lows started to develop in the SW Sector. 

In the external portion of the NE Sector, instead, a marine 

wedge-top basin and the sedimentation of the Montesecco 

Clays persisted. 

Particularly, starting from the late Early Pleistocene, the 

Molise intermontane basins, poorly drained, started to be 

filled with predominantly lacustrine and palustrine deposits. 

In the SW and Central sectors and in the internal portion of the 

NE Sector, now completely emerged, the I order palaeosurface 

started to be shaped. The intermontane basins were still subject 

to strong subsidence and continued to accommodate predomi-

nantly palustrine and fluvial-marshy deposits. Meanwhile, in 

the internal portion of the NE Sector compression continued to 

affect the frontal thrusts of the chain, enhancing the uplift and 

tilting of the Montesecco Clays and the formation of erosion 

surfaces, while the upper to lower shoreface Serracapriola 

Sands deposited in the external portion.

During the Middle Pleistocene (Fig. 6d), starting from ca. 

700 ky BP, a NE–SW extensional regime became established 

that deeply controlled the further evolution of  structural highs 

and lows in the SW Sector. This regime was characterized by 

at least two important paroxysmal episodes about 600 ky and 

400 ky BP that preceded respectively the genesis of the II and 

III order palaeosurfaces. Within the intermontane basins, sedi-

mentation gradually became predominantly fluvial-marshy 

thanks to the reduction of subsidence rates and the significant 

contributions of volcaniclastic deposits produced by several 

eruptions of the Roccamonfina volcano. Furthermore, regres-

sive erosion caused the capture of the intermontane basins. As 

demonstrated by Amato et al. (2014), the capture of the Boiano 

basin occurred between 600 and 400 ky. In the Central Sector, 

major geomorphic events are related to the genesis of the  

II and III order palaeosurfaces during periods of relatively low 

uplift, although within an overall context of general uplift and 

consequent valley downcutting. In the NE Sector, the com-

pression at the front of the accretionary prism promoted the 

sedimentation of the first cycle of the Campomarino Conglo-

merates, the Qc1 sequence, cut by the II order palaeosurface 

during the early Middle Pleistocene. After the deposition of 

the second cycle of the Campomarino conglomerates (Qc2), 

during a period of substantial tectonic stability, the III order 

palaeosurface developed. During the second part of the  Middle 

Pleistocene, a generalized regional uplift caused the entrench-

ment of the river network and the consequent deactivation of 

the III order palaeosurface.

At the beginning of the last considered stage (Late Pleisto-

cene–Holocene, Fig. 6e), the Molise sector of the Apennine 

chain had already reached its present setting. Regarding the 

SW Sector, among the most significant events are the reduc-

tion of subsidence rates in the intermontane basins and the 

genesis of the IV order palaeosurface. Meanwhile, in the 

 Central Sector the deepening of river valleys and the intensifi-

cation of landslide phenomena along the valley flanks con-

tinued, also favoured by first land cover changes due to human 

activities during the Holocene (Rosskopf & Scorpio 2013).  

In the external portion of the NE Sector, glacio-eustatic sea 

level changes caused repeated changes of the coastline posi-

tion and consequent shifts from continental to littoral environ-

ments as well as the remodelling of the sea cliffs in the areas 

of Termoli and Campomarino. 

Conclusions

The proposed reconstruction of the long-term landscape 

evolution of the Molise sector of the central-southern Apen-

nines is based on the revision of already published data, inte-

grated by some recent data collected by the authors, or not 

published or still under examination. The total of available 

data allowed us to propose, for the first time, a conceptual 

model of the palaeolandscape setting during the Early 

background image

39

LANDSCAPE EVOLUTION OF THE MOLISE SECTOR OF THE CENTRAL-SOUTHERN APENNINES, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

Fig. 6. Schematic geological cross sections across the Molise Apennine to the Adriatic coast (not drawn to scale) illustrating the overall strati-

graphic-tectonic setting along with tectonic events and tectonics regimes that have characterized its SW, Central and NE sectors during various 

time intervals (a – e) starting from the Early Pliocene.

background image

40

AMATO, AUCELLI, BRACONE, CESARANO and ROSSKOPF

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

Pliocene and a reliable synthesis of the landscape evolution of 

the Molise Apennines since the Late Pliocene.

The main morpho-evolutionary stages that have occurred 

since the Late Pliocene mainly under the control of tectonic 

activity have been traced. The principal markers used are the 

chrono-stratigraphical records derived from infill successions 

of intermontane basins and Plio–Quaternary piggyback and 

foredeep successions, as well as the remnants of palaeosur-

faces attributed to four orders at the regional scale and 

 chro nologically constrained between the Early and Late 

 Pleistocene. These markers testify to the alternation of phases 

of substantial tectonic stability and uplift, allowing to assess 

their spatial-temporal distribution along the investigated tran-

sect, and highlighting that the emersion of the chain did not 

occur synchronously, but gradually from SW to NE. Espe-

cially, the internal SW Sector was already emerged in the Plio-

cene, while the NE Sector remained largely under the marine 

domain until the end of the deposition of the Montesecco 

Clays (Lower Pleistocene). Starting from the Middle Pleisto-

cene, the evolution of the Molise area significantly differed 

from sector to sector. While the SW Sector was under the 

influence of NE–SW oriented extensional tectonics that pro-

moted the further reshaping and widening of the morpho- 

structural depressions and their infilling, the Central and the 

NE sectors were mainly influenced by general uplift that con-

trolled several cycles of valley floor incision and widening. 

Acknowledgements:  We are grateful to A. Omran and the 

other two anonymous reviewers, to the Editors and the Guest 

Editors for their suggestions that have helped us to improve 

the manuscript and figures.

References 

Amato A. & Cinque A. 1999: Erosional landsurfaces of the 

 Campano-Lucano Apennines: genesis, evolution and tectonic 

implications. Tectonophysics 315, 251–267. 

Amato V., Aucelli P.P.C., Cesarano M., Pappone G., Rosskopf C.M. 

& Russo Ermolli E. 2011: The Sessano intramontane basin: new 

multi-proxy data for the Quaternary evolution of the Molise sec-

tor of the Central-Southern Apennines (Italy). Geomorphology 

128, 15–31. 

Amato V., Aucelli P.P.C., Russo Ermolli E., Rosskopf C.M., Cesarano 

M. & Pappone G. 2012: Quaternary morpho-evolution, tectonic 

and environmental changes in the Boiano intermontane basin 

(central-southern Italy). Rend. Online Soc. Geol. Ital. 21, 

1225–1227. 

Amato V., Aucelli P., Capozzi A., DE Benedittis G.F., Pappone G. & 

Rosskopf C.M. 2013: Environmental changes in the Boiano 

intramontane basin (Molise, Italy) since the times of Ancient 

Bovianum (IVth century BC). Alp. Med. Quat. 26, 1, 15–29. 

Amato V., Aucelli P.P.C., Cesarano M., Jicha B., Lebreton V., Orain 

R., Pappone G., Petrosino P. & Russo Ermolli E. 2014: Quater-

nary evolution of the largest intermontane basin of the Molise 

Apennine (central-southern Italy). Rend. Fis. Acc. Lincei 25, 2, 

197–216.

Amorosi A., Bracone V., Di Donato V., Rosskopf C.M. & Aucelli 

P.P.C. 2009: The Plio–Pleistocene succession between Trigno 

and Fortore rivers (Molise and Apulia Apennines): stratigraphy 

and facies characteristics. GeoActa 8, 1–12.

Amorosi A., Bracone V., Campo B., D’Amico C., Rossi V. &  Rosskopf 

C.M. 2016: A late Quaternary multiple paleovalley system from 

the Adriatic coastal plain (Biferno River, Southern Italy). 

 Geomorphology 254, 146–159.

Ascione A. & Cinque A. 1999: Tectonics and erosion in the long-term 

relief history of Southern Apennines (Italy). Z. Geomorphol. 

Suppl.-Bd. 117, 1–15.

Ascione A., Caiazzo C., Hippolyte J.C. & Romano P. 1997: Pliocene–

Quaternary extensional tectonics and morphogenesis at the 

 eastern margin of the southern Tyrrhenian basin (Mt. Bulgheria, 

Campania region, Italy). Il Quaternario, Ital. J. Quat. Sci. 10, 2, 

571–578.

Ascione A., Ciarcia S., Di Donato V., Mazzoli S. & Vitale S. 2012: 

The Pliocene–Quaternary wedge-top basins of southern Italy: an 

expression of propagating lateral slab tear beneath the Apen-

nines. Basin Res. 23, 1–19.

Ascione A., Donadio C., Pennetta M., Romano P., Russo Ermolli E. & 

Santangelo N. 2014: Thirty years of geomorphological 

researches in Southern Apennines. In: Rosskopf C.M. & Aucelli 

P.P.C. (Eds.): Long-term geomorphological evolution of the 

Southern Italy landscapes. The local university contributions. 

AGR Editrice Arti Grafiche la Regione srl, Ripalimosani (CB), 

65–86 (in Italian). 

Aucelli P.P.C., Cinque A. & Robustelli G. 1997: Quaternary evolution 

of the Larino-Apricena portion of the Apenninic Foredeep (SE 

Italy). Il Quaternario, Ital. J. Quat. Sci. 10, 453–460 (in Italian 

with English abstract).

Aucelli P.P.C., Cinque A. & Rosskopf C.M. 2001: Geomorphological 

map of the Trigno basin (Italy): explanatory notes. Geogr. Fis. 

Dinam. Quat. 24, 1, 3–12. 

Aucelli P.P.C., Robustelli G., Rosskopf C.M., Scarciglia F., Di Paola 

G. & Lucà F. 2010: Geomorphologic map of the area between 

Frosolone and Trivento (Molise, Italy). Journal of Maps 6, 1, 

423–434. 

Aucelli P.P.C., Amato V., Cesarano M., Pappone G., Rosskopf C., 

Russo Ermolli E. & Scarciglia F. 2011: New morphostratigraphic 

and chronological constraints for the Quaternary palaeosurfaces 

of the Molise Apennines (southern Italy). Geol. Carpath. 62, 1, 

17–26. 

Aucelli P.P.C., Amato V., Scorpio V., Bracone V. & Rosskopf C.M. 

2012: Palaeo-landscape reconstruction and assessment of long-

term erosion rates through DEM analysis: preliminary results 

from the Molise Apennine (Central-Southern Italy). Rend. 

Online Soc. Geol. Ital. 21, 1105–1107. 

Aucelli P.P.C., Cesarano M., Di Paola G., Filocamo F. & Rosskopf 

C.M. 2013: Geomorphological map of the central sector of the 

Matese Mountains (Southern Italy): an example of complex 

landscape evolution in a Mediterranean mountain environment. 

Journal of Maps 9, 4, 604–616. 

Aucelli P.P.C., D’Argenio B., Della Seta M., Giano S.I. & Schiat-

tarella M. 2014: Intermontane basins: Quaternary morphoevolu-

tion of Central-Southern Italy. Rend. Fis. Acc. Lincei 25, 

107–110.

Bartolini C., D’Agostino N. & Dramis F. 2003: Topography, exhuma-

tion and drainage network evolution of the Apennines. Episodes 

26, 3, 212–216.

Basili R., Galadini F. & Messina P. 1999: The application of palaeo-

landsurface analysis to the study of recent tectonics in central 

Italy. In: Smith B.J., Whalley W.B. & Warke P.A. (Eds.): Uplift, 

erosion and Stability: perspectives on long-term landscape 

development. Geol. Soc. LondonSpec. Publ. 162, 109–117.

Boni A., Bruno G., Casnedi R., Centamore E., Colantoni P., Cremo-

nini G., Elmi C., Monesi A., Motta E., Perotto G. & Valletta M. 

1969: Geological Map of Italy (1:100,000 in scale), 155 sheet 

“San Severo”. Servizio Geologica d’Italia, Rome, (in Italian).

background image

41

LANDSCAPE EVOLUTION OF THE MOLISE SECTOR OF THE CENTRAL-SOUTHERN APENNINES, ITALY

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

Bosi C., Caiazzo C., Cinque A. & Messina P. 1996: Remnant surfaces 

of the Fucino Basin and surrounding areas (Central Apennines) 

and their possible significance in reconstructing the local geo-

logical evolution. Il Quaternario,  Ital. J. Quat. Sci. 9, 1,  

381–386 (in Italian with English abstract).

Bracone V., Amorosi A., Aucelli P.P.C., Rosskopf C.M., Scarciglia F., 

Di Donato V. & Esposito P. 2012a: The Pleistocene tectono-sed-

imentary evolution of the Apenninic foreland basin between Tri-

gno and Fortore rivers (Southern Italy) through a sequence 

stratigraphic perspective. Basin Res. 24, 213–233, 

Bracone V., Amorosi A., Aucelli P., Ciampo G., Di Donato V. & 

 Rosskopf C. 2012b: Palaeoenvironmental evolution of the Plio–

Pleistocene Molise Periadriatic Basin (Southern Apennines, 

Italy): insight from Montesecco Clays. Ital. J. Geosci. 131, 2, 

272–285.

Brancaccio L.& Cinque A. 1988: Geomorphological evolution of the 

Campanian-Lucanian Apennines. Mem. Soc. Geol. Ital. 41, 

83–86 (in Italian with English abstract). 

Brancaccio L., Cinque A., Orsi G., Pece R., Rolandi G. & Sgrosso I. 

1979: Remnants of Pleistocene lacustrine deposits terraced on 

the Northern slope of the Matese, close to S. Massimo. Bollettino 

Società Naturalisti in Napoli 88, 275–286 (in Italian with 

English abstract). 

Brancaccio L., Di Crescenzo G., Rosskopf C., Santangelo N. & 

 Scarciglia F. 2000: Geological map of Quaternary deposits and 

Geomorphlogical map of the Upper Volturno River Valley 

(Molise, Southern Italy). Il Quaternario, Ital. J. Quat. Sci. 13, 

1–2, 81–94 (in Italian with English abstract). 

Calamita F., Piacentini T., Pizzi A., Rusciadelli G. & Trincardi F. 

2011: Explanatory notes of the Geological map of Italy (1:50,000 

in scale), 172 sheet “Vasto”. Servizio Geologico d’Italia. http://

www.isprambiente.gov.it/Media/carg/note_illustrative/372_

Vasto.pdf (in Italian with English abstract).

Casero P., Roure F., Endignoux L., Moretti I., Muller C., Sage L. & 

Vially R. 1988: Neogene geodynamic evolution of the southern 

Apennines. Mem. Soc. Geol. Ital. 41, 109–120. 

Casciello E., Cesarano M. & Pappone G. 2006: Extensional detach-

ment faulting on the Tyrrhenian margin of the Southern Apennines 

contractional belt (Italy).  Geol. Soc. London 163, 671–629.

Casnedi R., Crescenti U., D’Amato C., Mostardini F. & Rossi U. 

1981: The Plio–Pleistocene of the Molise underground. Geol. 

Romana 20, 1–42 (in Italian with English summary).

Casnedi R., Crescenti U. & Tonna M. 1982: Evolution of the Southern 

Adriatic Foredeep during Plio–Pleistocene by deep borehole data. 

Mem. Soc. Geol. Ital. 24, 243–260 (in Italian with English abstract).

Cello G., Martini N., Paltrinieri W. & Tortorici L. 1989: Structural 

styles in the frontal zones of the southern Apennines, Italy:  

an example from the Molise district. Tectonics 8, 753–768.

Cesarano M., Pappone G., Amato V., Aucelli P., Baranello S.,  Cascella 

A., Casciello E., Ferrarini F., Lirer F., Monaco R. & Rosskopf 

C.M. 2011: Stratigraphy and tectonic setting of the Sannio Unit 

in the northern sector of Matese Mountains. Rend. Online Soc. 

Geol. Ital. 12, 35–38 (in Italian with English abstract).

Channell J.E.T., D’Argenio B. & Horvath F. 1979: Adria, the African 

promontory, in Mesozoic Mediterranean paleogeography. Earth- 

Sci. Rev. 15, 213–292. 

Cinque A., Patacca E., Scandone P. & Tozzi M. 1993: Quaternary 

kinematic evolution of the Southern Apennines. Relationships 

between surface geological features and deep lithospheric struc-

tures. Annali di Geofisica 36, 249–260.

Cipollari P. & Cosentino D. 1995: Miocene unconformities in Central 

Apennines: geodynamic significance and sedimentary basin 

evolution. Tectonophysics 252, 375–389.

Coltorti M. & Pieruccini P. 2000: A late Lower Pliocene planation 

surface across the Italian Peninsula: a key tool in neotectonic 

studies. J. Geodyn. 29, 323–328. 

Coltorti M., Ferand G., Marzoli A., Peretto C., Ton That T., Voinchet 

P., Bohain J.J., Minelli A. & Thun Hohenstein U. 2005: New 

40

Ar/

39

Ar stratigraphic and palaeoclimatic data on the Isernia La 

Pineta Lower Palaeolithic site, Molise, Italy. Quat. Int. 131, 

11–22. 

D’Alessandro L., Miccadei E. & Piacentini T. 2003: Morphostruc-

tural elements of central-eastern Abruzzi: contributions to the 

study of the role of tectonics on the morphogenesis of the Apen-

nine chain. Quat. Int. 101–102, 115–124.

D’Amico C., Aiello G., Barra D., Bracone V., Di Bella L., Esu D., 

Frezza V. & Rosskopf C.M. 2013: Late Quaternary foraminife-

ral, molluscan and ostracod assemblages from a core succession 

in the Trigno River mouth area (Central Adriatic Sea, Italy). 

Boll. Soc. Paleont. Ital. 52, 3, 197–205

D’Argenio B., Pescatore T. & Scandone P. 1973: Geological scheme 

of the Southern Apennines (Campania and Lucania). In: New 

views on the Geology of the Apennines. Atti Acc. Naz. dei  Lincei, 

Quad. 183, 49–72 (in Italian). 

Deino A.L., Orsi G., De Vita S. & Piochi M. 2004: The age of the 

Neapolitan Yellow Tuff caldera forming eruption (Campi Flegrei 

caldera - Italy) by 40Ar/39Ar dating method. J. Volcanol. Geo-

therm. Res. 133, 157–170.

Di Bucci D., Naso G., Corrado S. & Villa I. 2005: Growth, interaction 

and sismogenic potential of coupled active normal faults (Isernia 

Basin, Central-Southern Italy). Terra Nova 17, 44–55. 

Di Celma C., Pieruccini P.L. & Farabollini P. 2015: Major controls on 

architecture, sequence stratigraphy and paleosols of middle 

Pleistocene continental sediments (“Qc Unit”), eastern central 

Italy. Quat. Res. 83, 3, 77–89. 

Doglioni C., Harabaglia P., Martinelli G., Mongelli F. & Zito G. 1996: 

A geodynamic model of the Southern Apennines accretionary 

prism. Terra Nova 8, 540–547.

Frezza V., D’Amico C., Aiello G., Barra D., Bracone V., Di Bella L., 

Esu D. & Rosskopf C.M. 2012: Late Quaternary palaeoenviron-

mental evolution of the central Adriatic coast in the Trigno 

mouth area (Molise region). Rend. Online Soc. Geol. Ital. 21, 

1086–1088

Giano S.I. & Schiattarella M. 2014: Age constraints and denudation 

rate of a multistage fault line scarp: an example from southern 

Italy. Geochronometria 41, 3, 245–255.

Gioia D., Gallicchio S., Moretti M. & Schiattarella M. 2014: Land-

scape response to tectonic and climatic forcing in the foredeep of 

the southern Apennines, Italy: insights from Quaternary stratig-

raphy, quantitative geomorphic analysis, and denudation rate 

proxies. Earth Surf. Process. Landf. 39, 814–835. 

Hippolyte J.C., Angelier J. & Roure F. 1994: A major geodynamic 

change revealed by Quaternary stress patterns in the Southern 

Apennines (Italy). Tectonophysics 230, 199–210.

ISPRA 2010: Geological Map of Italy (1:50,000 in scale). 405 sheet 

“Campobasso”. Servizio Geologico d’Italia. http://www.ispram-

biente.gov.it/Media/carg/405_CAMPOBASSO/Foglio.html  (in 

Italian).

ISPRA 2011a: Geological Map of Italy (1:50,000 in scale). 393 

sheet“Trivento”.  Servizio Geologico d’Italia.  http://www.

isprambiente.gov.it/Media/carg/393_TRIVENTO/Foglio.html 

(in Italian).

ISPRA 2011b: Geological Map of Italy (1:50,000 in scale). 372 sheet 

“Vasto”. Servizio Geologico d’Italia. http://www.isprambiente.

gov.it/Media/carg/372_VASTO/Foglio.html (in Italian).

Lanzafame G. & Tortorici L. 1976: Geological data on middle and 

low sectors of the Biferno River (Molise, Central-Southern 

Italy).  Geol. Romana 15, 199–222 (in Italian with English 

summary). 

Lirer F., Cascella A., Cesarano M., Casciello E. & Pappone G.

 

2007: 

Micropaleontological study on the Miocene calcareous turbidite 

deposits of Faeto and Tufillo formations (eastern sector of the 

background image

42

AMATO, AUCELLI, BRACONE, CESARANO and ROSSKOPF

GEOLOGICA CARPATHICA

, 2017, 68, 1, 29 – 42

Southern Apennine chain). Rivista Italiana di Paleontologia e 

Stratigrafia 113, 2, 269–286.

Malinverno A. & Ryan W.B.F. 1986: Extension in the Tyrrhenian Sea 

and shortening in the Apennines as a result of arc migration 

driven by sinking of the lithosphere. Tectonics 5, 227–243.

Marsella E., Bally A. W., Cippitelli G., D’Argenio B. & Pappone G. 

1995: Tectonic history of the Lagonegro Domain and Southern 

Apennine thrust belt evolution. Tectonophysics 252, 307–330.

Mazzoli S., Corrado S., De Donatis M., Scrocca D., Butler R.W.H., 

Di Bucci D., Naso G., Nicolai C. & Zucconi V. 2000: Time and 

space variability of thin-skinned and thick  skinned thrust tecto-

nics in the Apennines (Italy). Rend. Lincei 9, 11, 5–39.

Mazzotti A., Stucchi E., Fradelizio G., Zanzi L. & Scandone P. 2000: 

Seismic exploration in complex terrains: A processing experi-

ence in the southern Apennines. Geophysics 65, 1402–1417.

Miccadei E., Piacentini T. & Buccolini M. 2014: The long-term geo-

morphological evolution of the Abruzzo areas. In: Rosskopf C. M.  

& Aucelli P. P.C. (Eds.): The long-term geomorphological evolu-

tion of the Southern Italy landscapes. The local university contri-

butions. AGR Editrice Arti Grafiche la Regione srl, Ripalimosani 

(CB), 49–64 (in Italian). 

Montone P., Amato A. & Pondrelli S. 1999: Active stress map of Italy. 

J. Geophys. Res. 104, 25595–25610.

Mostardini F. & Merlini S. 1986: Central-Southern Apennines: geo-

logical cross-sections and structural model. Mem. Soc. Geo. Ital. 

35, 177–202 (in Italian with English abstract).

Pappone G., Aucelli P.P.C., Cesarano M., Putignano M.L. & Ruberti 

D. 2010: Explanatory notes of the Geological Map of Italy 

(1:50,000 in scale), 405 sheet “Campobasso”. Servizio Geolog-

ico d’Italia.  http://www.isprambiente.gov.it/Media/carg/note_

illustrative/405_Campobasso.pdf  (in  Italian  with    English 

abstract).

Patacca E. & Scandone P. 2001: Late thrust propagation and sedimen-

tary response in the thrust-belt–foredeep system of the Southern 

Apennines (Pliocene–Pleistocene). In: Vai G.B. & Martini I.P. 

(Eds.): Anatomy of an Orogen: The Apennines and Adjacent 

Mediterranean Basins, Kluwer Academic Publishers,  401–440.

Patacca E. & Scandone P. 2007: Geology of the Southern Apennines

Boll. Soc. Geol. Ital. (Ital. J. Geosci.), Spec. Iss. 7, 75–120.

Patacca E., Sartori R. & Scandone P. 1990: Tyrrhenian Basin and 

Apenninic arcs: kinematic relations since late Tortonian times. 

Mem. Soc. Geol. Ital. 45, 425–451.

Patacca E., Scandone P., Bellatalla L., Perilli N. & Santini U. 1992: 

The junction zone between the Northern and Southern Apen-

ninic arcs in the Abruzzo-Molise areas. Studi Geol. Camerti 

Spec. Iss. CROP 11, 1991/2, 417–441 (in Italian with English 

abstract).

Rosskopf C.M. & Scorpio V. 2013: Geomorphologic map of the 

Biferno River valley floor system (Molise, Southern Italy). 

 Journal of Maps 9, 1, 106–114. 

Russo Ermolli E., Aucelli P.P.C., Di Rollo A., Mattei M., Petrosino P., 

Porreca M. & Rosskopf C.M. 2010: An integrated stratigraphical 

approach to the late Middle Pleistocene succession of the 

 Sessano lacustrine basin (Molise, Italy). Quat. Int. 225, 114–127. 

Schiattarella M., Di Leo P., Beneduce P. & Giano S.I. 2003: Quater-

nary uplift vs tectonic loading. A case-study from the Lucanian 

Apennine, southern Italy. Quat. Int. 101–102, 239–251.

Schiattarella M., Di Leo P., Beneduce P., Giano S. I. & Martino C. 

2006: Tectonically driven exhumation of a young orogen: An 

example from the southern Apennines, Italy. Geol. Soc. Am., 

Spec. Pap. 398, 371–385.

Schiattarella M., Beneduce P., Capolongo D., Di Leo P., Giano S. I., 

Gioia D., Lazzari M. & Martino C. 2008: Uplift and erosion rates 

from the southern Apennines, Italy. Boll. Geof. Teor. Appl. 49, 2, 

470–475.

Scrocca D. 2010: Southern Apennines: structural setting and tectonic 

evolution. The geology of Italy: tectonics and life along plate 

margins. In: Beltrando M., Peccerillo A., Mattei M., Conticelli S. 

& Doglioni C. (Eds.): Journal of the Virtual Explorer 36, 48–56.

Sgrosso I. & Naso G. (2011): Explanatory notes of the Geological 

Map of Italy (1:50,000 in scale), 393 sheet “Trivento”. Servizio 

Geologico d’Italia. http://www.isprambiente.gov.it/Media/carg/

note_illustrative/393_Trivento.pdf (in Italian with English 

abstract).

Vezzani L., Ghisetti F., Festa A. & Follador U. 2004: Explanatory 

notes of the geological map of Molise Region (1:100,000 in 

scale).  Regione Molise. S.E.L.C.A. Firenze (in Italian with 

English summary).

Vezzani L., Festa A. & Ghisetti F. 2010: Geology and tectonic evolu-

tion of Central-Southern Apennines, Italy. Geol. Soc. Am, Spec. 

Pap. 469, 1–58.

Wortel M.J.R. & Spakman W. 2000: Subduction and slab detach-

ment in the Mediterranean-Carpathian region. Science 290, 

1910–1917.