background image

GEOLOGICA CARPATHICA

, OCTOBER 2016, 67, 5, 463 – 469

doi: 10.1515/geoca-2016-0029

www.geologicacarpathica.com

A tiny short-legged bird from the early Oligocene of Poland

ZBIGNIEW M. BOCHENSKI

1

, TERESA TOMEK

1

 and EWA SWIDNICKA

2

1

Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, 31-016 Kraków, Poland;  

bochenski@isez.pan.krakow.pl, tomek@isez.pan.krakow.pl

2

Department of Palaeozoology, Chair of Evolutionary Biology and Ecology, University of Wrocław, Sienkiewicza 21,  

50-335 Wrocław, Poland; gama@biol.uni.wroc.pl

(Manuscript received February 3, 2016; accepted in revised form September 22, 2016)

Abstract: We describe an articulated partial leg of an Oligocene bird. It is one of the smallest avian fossils ever 

recorded. Its slender and exceptionally short tarsometatarsus, hallux as long as the tarsometatarsus and stout  

moderately curved claws agree with stem-group Apodidae (swifts), stem-group Trochilidae (hummingbirds), and 

stem-group Upupidae/Phoeniculidae (hoopoes/woodhoopoes). Unfortunately, due to the poor preservation of  

the specimen its more precise affinities remain unresolved. The specimen differs in many details from all other tiny  

Palaeogene birds and therefore most probably it represents a new taxon but it is too fragmentary to describe it. It is just 

the twelfth avian fossil from the Oligocene marine deposits of the Outer Carpathians and Central Palaeogene Basin 

— a huge area that covers south-eastern Poland, north-eastern Czech Republic and northern Slovakia — and therefore 

it adds to our very limited knowledge on the avifauna of that region. The remains of land birds from Jamna Dolna and 

other sites of the region can be attributed to the general sea level fall at that time, which led to limitation of  

the connection with the open ocean and resulted in many shallow shoals, temporary islands and exposed dry land areas 

along the coast.

Keywords: Fossil birds, Menilite shales, Carpathian flysch, Palaeogene.

Introduction

The  Menilite  beds  of  the  Carpathian  flysch  zone  that  are 

found in north-eastern Czech Republic and south-eastern 

Poland, and the Central Palaeogene basin of northern Slovakia 

are  extremely  rich  in  Oligocene  fish  fossils.  Only  in 

south-eastern  Poland,  many  thousand  of  fish  fossils  were 

recovered from more than 200 outcrops between the mid 

1970s and mid 1990s (Kotlarczyk et al. 2006). However,  

animal fossils other than fish are extremely rare. So far only 

eleven avian specimens have been described from the marine 

deposits of the Outer Carpathians and Central Palaeogene 

Basin: two procellariiforms (Gregorová 2006; Elzanowski et 

al. 2012), one galliform (Tomek et al. 2014), one humming-

bird (Bochenski & Bochenski 2008), one putative upupiform 

(Kundrát et al. 2015), one piciform (Mayr & Gregorová 

2012), four passerines (Bochenski et al. 2011, 2013b, 

 

2014a, b) and Aves indet. (Bochenski et al. 2010). Here, we 

describe an extremely small, incomplete avian leg that 

resembles those of stem-group apodid, trochilid or upupid 

birds.

The apodiform birds are nowadays classified within the 

order Caprimulgiformes (del Hoyo & Collar 2014); they 

include three living families: the globally distributed true 

swifts (Apodidae), the Southeast Asian tree swifts 

(Hemiprocnidae), and the hummingbirds (Trochilidae), 

which nowadays occur exclusively in the New World (del 

Hoyo et al. 1999). The Palaeogene fossil record of swifts is 

relatively rich but the systematic position of many fossil taxa 

is often unclear and widely disputed. According to Mayr 

(2009) there are two extinct families: Eocypselidae (Eocy

­

pselus) – a stem group taxon of swifts from the early Eocene 

of the UK and Denmark (Harrison 1984; Dyke et al. 2004), 

and Aegialornithidae (Aegialornis  and  Primapus) with 

 several species from the late Eocene to early Oligocene of 

France and the UK (Harrison & Walker 1975; Mourer- 

Chauviré 1988). The earliest stem group members of the 

Apodidae belong to the genus Scaniacypselus from the early 

Eocene of Europe; other representatives include Procypseloides 

from the late Oligocene of France and Collocalia from the 

late Oligocene/early Miocene of Australia (Mayr 2009).  

The late Eocene Cypseloides mourerchauvireae from France 

described by Mlíkovsky (1989) in Apodidae is believed to be 

a junior synonym of Aegialornis gallicus (Aegialornithidae) 

(Mayr 2003, 2009). The earliest Trochilidae include several 

genera: Jungornis (described by Karhu (1988) in Jungorni-

thidae), Ar

gornisParargornisCypselavus (all three classi-

fied by Mourer-Chauviré (2006) into Cypselavidae) and 

Eurotrochilus Mayr, 2004. Hemiprocnidae have no Palaeo-

gene fossil record (Mayr 2009). In North America, the Palaeo-

gene fossil swifts include Eocypselus rowei described from 

the Eocene Green River Formation (Ksepka et al. 2013).

The upupiform birds are nowadays classified within the order 

Bucerotiformes which includes, among others, the African 

and Eurasian hoopoes (Upupidae) and the African 

woodhoopoes (Phoeniculidae) (del Hoyo & Collar 2014). 

The stem-group upupids are known from the Eocene deposits 

of the United Kingdom (London Clay) and Germany (Messel 

and the Geisel Valley) (Mayr 1998, 2000, 2006). Three 

species of the extinct family Messelirrisoridae are among the 

background image

464

BOCHENSKI, TOMEK and SWIDNICKA

GEOLOGICA CARPATHICA

, 2016, 67, 5, 463 – 469

most abundant small to tiny birds in Messel; they are 

distinguished by their long beak, short tarsometatarsus and 

very long hallux (Mayr 2009).

Material  and  methods

The osteological terminology used here follows that of 

Baumel & Witmer (1993). Dimensions are given in milli-

metres and refer to the greatest length along the longitudinal 

axis of the bone. The very small size of the specimen excludes 

most avian orders. The fossil was compared with skeletal 

specimens of extant nightjars and allies, hummingbirds and 

swifts, hoopoes, coliiforms and passerines from the osteo   lo-

gical collection of the Institute of Systematics and Evolution 

of Animals, Kraków, Poland, and Palaeogene species of  

the afore-mentioned taxa described in the literature (Peters 

1985; Karhu 1988; Mourer-Chauviré 1988; Mayr 2003a, 

2004, 2007, 2009, 2010, 2015; Mourer-Chauviré & Sigé 

2006; Louchart et al. 2008

Mayr & Micklich 2010; Ksepka 

et al. 2013).

The fossil was found at the former village of Jamna Dolna 

(geographical coordinates of Jamna Dolna: 49

o

37’45.0’’ N, 

22

o

34’08.0’’ E), situated about 8 km south-east of the village 

of Bircza, Podkarpackie Voivodeship, SE Poland (Fig. 1).  

It is a natural exposure of the Menilite strata with more  

than 15-m thick deposits in the high escarpment of the Jam-

ninka stream, a right tributary of the Wiar River. In the 

geologi cal literature (Jerzmańska 1967a, b, 1968; Jerzmańska 

& Kotlarczyk 1968; Kotlarczyk et al. 2006), the exposure is 

known as Jamna Dolna 1, to distinguish it from other smaller 

outcrops located in the same area. The specimen consists of 

one slab (Figs. 2, 3) with imprints of a partial left avian leg. 

It was found by Albin Jamróz who passed it to the Institute of 

Systematics and Evolution of Animals PAS, Kraków, Poland 

where it is housed (ISEA AF/JAM1). ISEA AF/JAM1 is pre-

served on the surface of soft, light brown siliceous marly 

shale, collected from the horizon (Unit C, probably layer 

C-4) of the Kotów Chert Member, the lower part of the  

Menilite Formation of the Skole Unit in the Outer Carpa-

thians. The specimen was found within the ichthyofaunal 

assemblage of the IPM-1C Subzone (according to Kotlarczyk 

et al. 2006, fig. 20) that includes such fossil fish as Aeoliscus  

heinrichi (Heckel, 1850), Anenchelum glarisianum Blainville, 

1818, Capros rhenanus (Weiler, 1920), Oligophus moravicus 

(Paucă 1931), Zenopsis clarus Daniltshenko, 1960, and other 

taxa, which are characteristic of the IPM1 Zone (Kotlarczyk 

et al. 2006, p. 65)

.

 The description of fish taxa can be found 

in  Jerzmańska  (1968)  and  Świdnicki  (1986).  The  fossili-

ferous horizon is dated to the Early Oligocene (Rupelian, 

approximately 32.5 m.y.a.) and correlated with the calcareous 

nannoplankton of the NP22 biozone by Martini (1971) (see 

Berggren et al. 1995; Kotlarczyk et al. 2006).

Description and comparison

As it is often the case in other bird fossils from the Oligo-

cene of Poland (Bochenski & Bochenski 2008; Bochenski et 

al.  2010,  2011,  2013a, b,  2014a, b),  particular  elements  in 

ISEA AF/JAM1 are broken longitudinally and preserved as 

imprints partly lined with remnants of bone. As a result,  

a mixture of an imprint and the inner side of a bone rather 

than its external surface is visible, which hinders compa-

risons with fossil and extant specimens. Better preserved 

specimens are found very rarely in Poland (Elzanowski et al. 

2012; Tomek et al. 2014).

Measurements (maximum length in mm). Tibiotarsus as 

preserved, 13.8; tarsometatarsus, 6.3; os metatarsale I, 1.4; 

hallux: proximal phalanx, 4.1; hallux: claw, 2.1; first phalanx 

of digit II, ~1.6; second phalanx of digit II, ~2.9; claw of  

digit II, 2.1; first phalanx of digit III, ~1.9; second phalanx of 

digit III, ~2.1; third phalanx of digit III, 2.4; claw of digit III, 

2.1; first phalanx of digit IV, ~1.5; second phalanx of digit IV, 

1.4; third phalanx of digit IV, 1.2 (fourth phalanx of digit IV 

and claw of digit IV could not be measured because they are 

partly under the hallux claw).

Tibiotarsus. The tibiotarsus is visible in lateral view. Its 

proximal part is missing, a fragment of the condylus lateralis 

is visible but it is too poorly preserved to allow meaningful 

comparisons. A short fragment of the fibula is also 

preserved.

Tarsometatarsus. The tarsometatarsus is visible in lateral 

view but the surface of the bone is missing and only its inner 

Fig. 1. The location of the village of Jamna Dolna (asterisk)  

in south-eastern Poland, where the specimen ISEA AF/JAM1 was 

found.

background image

465

LOWER OLIGOCENE TINY SHORT-LEGGED BIRD FROM POLAND

GEOLOGICA CARPATHICA

, 2016, 67, 5, 463 – 469

part can be seen. The bone is relatively slender and about half 

the length of the tibiotarsus. With the length of just 6.3 mm it 

is among the shortest fossil tarsometatarsi ever recorded; it is 

by far shorter than that in any extant and extinct Passeri-

formes, Coliiformes or Caprimulgidae. In the Palaeogene, 

there were three groups of birds with representatives that had 

equally small tarsometatarsi: swifts, hummingbirds and hoo-

poes. ISEA AF/JAM1 is most similar in length and slender-

ness to the early Oligocene Eurotrochilus inexpectatus 

 (Trochilidae) (6.4–6.7 mm, see Mayr 2004, 2007; Louchart 

et al. 2008) and Eocene Scaniacypselus szarskii (Apodidae) 

(5.5–5.9 mm, see Peters 1985; Mayr 2015), whereas among 

Palaeogene stem lineage upupiforms its size resembles most 

small specimens of Messelirrisor parvus  (≥7.2  mm,  Mayr 

1998) and SNMZ 27188 (7.1 mm, Kundrát et al. 2015).  

No details of hypotarsal canals and/or furrows nor the exact 

arrangement of the trochlea metatarsi II, III and IV are 

visible. 

Regarding the tibiotarsus / tarsometatarsus proportion, 

ISEA AF/JAM1 is most similar to the Palaeogene Scania­

cypselus szarskii (Apodidae),  Eurotrochilus inexpectatus 

(Trochilidae) and species of the genus Messelirrisor (Messe-

lirrisoridae) (Table 1). Also many extant hummingbirds show 

similar proportion, contrary to extant swifts that have rela-

tively shorter tarsometatarsus, and extant hoopoes whose 

 tarsometatarsus is relatively longer. Passerines — even such 

short-legged species as swallows — have proportionally  

longer tarsometatarsus. Similar results based on different set 

of taxa are obtained when the measurements of ISEA AF/

JAM1 are plotted on a log diagram with other groups of 

birds: ISEA AF/JAM1 is between the clusters of Messelirrisor 

and extant hummingbirds, well apart from other extinct and 

extant taxa (Kundrát et al. 2015, fig. 9).

Toes. The foot has anisodactyl arrangement of toes, with 

digits II, III, and IV directed forward and digit I (hallux) 

directed backward. The phalangeal formula is 2–3–4–5. As 

in Eurotrochilus inexpectatus, (Trochilidae), Scaniacypselus 

szarskii (Apodidae) and stem-group upupiforms including 

Messelirrisor spp. and SNMZ 27188, all digits are relatively 

long although this is especially evident in the hallux which in 

ISEA AF/JAM1 is similar in length to the tarsometatarsus 

and in the afore-mentioned taxa just a little shorter (Peters 

1985; Mayr 1998; Kundrát et al. 2015); in extant Apodidae 

and Hemiprocnidae as well as all Passeriformes, Coliiformes 

and Caprimulgidae the hallux is less than half the length of 

the tarsometatarsus. As in Eurotrochilus inexpectatusScania­

cypselus szarskii and also the putative upupiform SNMZ 

27188 from Slovakia, the proximal phalanx of the hallux is 

clearly more than half the length of the tarsometatarsus 

(Peters 1985; Mayr 2004, fig. 2; Kundrát et al. 2015), whereas 

in Palaeogene representatives of other Apodidae (Eocypselus 

Fig. 2. Specimen ISEA AF/JAM1 of an avian foot from south- 

eastern Poland, Jamna Dolna 1, early Oligocene, ca. 32.5 Mya.  

a — Slab; b — Interpretative drawing of the slab.

background image

466

BOCHENSKI, TOMEK and SWIDNICKA

GEOLOGICA CARPATHICA

, 2016, 67, 5, 463 – 469

vincenti,  Eocypselus rowei) and Messelirrisoridae (Messe­

lirrisor spp.) it is definitely shorter (Mayr 2010; Ksepka et al. 

2013, fig. 1). As in extant hummingbirds (Mayr2004, p. 863), 

the long hallux attaches to the tarsometatarsus approximately 

at the beginning of its distal third, whereas in Scaniacypselus 

szarskii (Apodidae) it attaches to the tarsometatarsus at its 

mid-length (Peters 1985, p. 153). As in Eurotrochilus 

inexpec tatus and the putative upupiform SNMZ 27188 from 

Slovakia but contrary to the modern common swift Apus 

apus, the os metacarpale I exhibits an elongated shaft (Mayr 

2004, fig. 2; Kundrát et al. 2015); other details are too poorly 

preserved for a meaningful comparison. On digits II and III 

the penultimate phalanx is the longest (its length in digit IV 

is unknown). Similar to Eurotrochilus inexpectatus (Trochi-

lidae),  Messelirrisor  spp. and SNMZ 27188 (both upupi-

forms), the proximal phalanges of digits II, III and IV are 

relatively long; in many extant Apodidae (e.g., ApusAero­

nantesCollocaliaCypsiurusPanyptila) they are extremely 

short but in the Eocene Eocypselus vincenti and 

Scaniacypselus szarskii they were not so much abbreviated 

(Peters 1985; Mayr 2010, 2015). The claws are robust, mode-

rately curved and their tubercula flexoria are rounded and 

rather well-developed; in extant swifts tubercula flexoria are 

elongated proximo-distally.

Discussion

It seems that there are just two avian orders — Caprimulgi-

formes and Bucerotiformes — with some representatives 

that show a combination of characters observed on ISEA AF/

JAM1. The extremely small size of the specimen, very short 

and slender tarsometatarsus, hallux as long as the tarso-

metatarsus, proximal phalanges of all digits elongated 

(extremely so in the hallux), and stout, rather massive, mode-

rately curved claws with well-developed tubercula flexoria 

make the specimen look similar to a stem taxon of either 

swifts, hummingbirds or hoopoes/woodhoopoes. Other avian 

Fig. 3. Enlarged fragment of Figure 2a. Abbreviations: d I, pp — digit I, proximal phalanx; d I, up — digit I, ungual phalanx;  

d II, p1 — digit II, phalanx 1; d II, p2 — digit II, phalanx 2; d II, up — digit II, ungual phalanx; d III, p1 — digit III, phalanx 1;  

d III, p2 — digit III, phalanx 2; d III, p3 — digit III, phalanx 3; d III, up — digit III, ungual phalanx; d IV, p1 — digit IV, phalanx 1;  

d IV, p2 — digit IV, phalanx 2; d IV, p3 — digit IV, phalanx 3; d IV, p4 — digit IV, phalanx 4; d IV, up — digit IV, ungual phalanx.

background image

467

LOWER OLIGOCENE TINY SHORT-LEGGED BIRD FROM POLAND

GEOLOGICA CARPATHICA

, 2016, 67, 5, 463 – 469

higher-level taxa including Coliiformes and Passeriformes 

can be excluded. Unfortunately, due to the poor preservation 

of the specimen and its incompleteness its more precise affi-

nities remain unresolved. The specimen differs in many 

details from all other tiny Palaeogene swifts, hummingbirds 

and hoopoes and therefore most probably it represents a new 

taxon but in our opinion it is too fragmentary to describe it. 

Nevertheless, it is a valuable addition to our knowledge of 

Palaeogene birds from the Carpathians — a large region that 

has yielded only a handful of avian specimens so far.

Most Palaeogene swifts, hummingbirds and also hoopoes 

are represented by the wing and/or pectoral girdle bones. 

Consequently, the taxonomies of the groups are largely based 

on those elements. The leg bones are only seldom preserved 

and even rarer are the pedal digits described above. This 

study, based on a specimen with known lengths of particular 

phalanges, is a small step forward to fill the gap in our 

knowledge.

Although there is no way to know what the rest of our 

specimen looked like, the relative proportions of leg and foot 

Table 1: Total lengths and ratios of two leg bones of chosen extant and extinct taxa with short tarsometatarsus. Measurements are given in 

millimetres. A dagger (†) indicates extinct taxa, and an asterisk (*) arithmetic mean of left and right bones. Measurements after: 

1

Ksepka et 

al. (2013); 

2

Mayr (2010); 

3

Peters (1985); 

4

Mayr (2015); 

5

Mayr (2004); 

6

Mayr (2007); 

7

Louchart et al. (2008); 

8

Mayr (1998); 

9

Kundrát et al. 

2015; 

10

Mayr (2000); other specimens measured by the authors in the skeletal collection of ISEA PAS.

Taxon

Number

TBT

TMT

TBT/TMT

Aves indet. (present study)

†ISEA AF/JAM1

~13.8

6.3

2.19

†Eocypselidae
Eocypselus rowei

1

WDC-CGR-109

20.1*

10.0*

2.01

Eocypselus vincenti

2

MGUH 26729

20.2

10.9

1.85

Apodidae
Scaniacypselus szarskii

3

LNK-Me 301, holotype

12.0

5.5

2.18

Scaniacypselus szarskii

4

SMF-ME 3409A+B

~11.4

~5.9

1.93

Apus apus

A/4117/84

24.7

10.5

2.35

Apus apus

A/5858/01

25.6

10.1

2.53

Hirundapus caudacutus

A/5001/91

36.3

15.7

2.31

Trochilidae
Eurotrochilus inexpectatus

5

SMNS 80739/4, holotype

14.9

6.5

2.29

Eurotrochilus inexpectatus

6

SMNK-PAL 5591, 2

nd

 slab of holotype

~15.0

6.7

2.24

Eurotrochilus sp.

7

NT-LBR-040

15.1

6.8

2.22

Eupeptomena macroura

A/5441/95

14.3

6.2

2.31

Ramphodon naevius

A/5516/96

13.2

6.5

2.03

Clytolaema rubricauda

A/5539/96

13.5

6.3

2.14

Calypta costae

A/4174/85

10.7

4.2

2.55

Phaethornis bourcieri

A/4074/84

11.2

4.3

2.60

†Messelirrisoridae
Messelirrisor halcyrostris

8

SMF-ME 1883, holotype

16.9

9.6

1.76

 Messelirrisor halcyrostris

9

SMF-ME 11117a+b

15.5*

8.8*

1.76

 Messelirrisor halcyrostris

9

SMF-ME 10987a+b

15.3

9.2

1.66

Messelirrisor grandis

10

SMF-ME 600

~19.0

~10.4

1.83

 Messelirrisor grandis

5

SMF-ME 108.33

18.2*

9.6*

1.90

Messelirrisor parvus

8

SMF-ME 2793, holotype

15.8

8.4

1.88

 Messelirrisor parvus

8

SMF-ME 2466

14.0*

7.2*

1.94

 Messelirrisor parvus

8

SMF-ME 1180

14.8

7.9

1.87

 Messelirrisor parvus

8

SMNK-Me 300

15.8*

8.0*

1.98

 Messelirrisor parvus

8

SMNK-Me 776

15.0

8.1

1.85

Stem-group upupiform

† SNM-Z 27188

9

SNM-Z 27188

~19.0

7.1

2.68

Upupidae

Upupa epops

A/4006/84

36.7

21.8

1.68

Upupa epops

A/216/61

38.5

24.5

1.57

Passeriformes

Hirundo rustica

A/6106/02

21.2

11.5

1.84

Delichon urbica

A/5334/94

20.9

11.6

1.80

Riparia riparia

A/3133/76

19.4

10.2

1.90

background image

468

BOCHENSKI, TOMEK and SWIDNICKA

GEOLOGICA CARPATHICA

, 2016, 67, 5, 463 – 469

bones and the general shape of claws indicate a bird that 

perched regularly. Short legs with long toes preclude a ground 

dwelling bird and the claws are too robust and show too little 

curvature for a bird that would cling to vertical tree trunks. 

Thus, the specimen must have been a flying non-ground 

dwelling bird that perched regularly. A similar but not iden-

tical, unspecialized foot was observed in the putative upupi-

form SNMZ 27188 (Kundrát et al. 2015) and stem-group 

apodid Scaniacypselus (see Mayr 2015). It is noteworthy that 

with the exception of two procellariiforms, all other speci-

mens — including ISEA AF/JAM1 — recorded from the 

Outer Carpathians and Central Palaeogene Basin are land 

birds that must have lived in the forests or shrubs near the 

shoreline. The predominance of terrestrial birds in marine 

deposits is nothing unusual; it was also observed in the 

Eocene Fur Formation of Jutland in Denmark (Kristoffersen 

2002), London Clay Formation in southern England 

(Mlíkovský 2002), or the Oligocene Wiesloch-Frauenweiler 

in southern Germany (Mayr 2009).

Although remains of Oligocene birds are extremely rare in 

Poland (Bochenski et al. 2013a), the exposure at Jamna 

Dolna 1 has already yielded several such fossils. The present 

find is the oldest within the site (Unit C, ca. 32.5 Mya), 

closely followed by a nearly complete passerine bird Jamna 

szybiaki (Unit E, ca. 31.5 Mya) (Bochenski et al. 2011). 

Moreover, three isolated feathers of unknown birds were 

reported (Units G–H, ca. 31.0 Mya) (Bieńkowska-Wasiluk 

2010,  text-fig.  41A– C).  The  remains  of  land  birds  from 

Jamna Dolna and other sites in the region can be attributed to 

the general sea level fall at that time, which led to limitation 

of the connection with the open ocean and resulted in many 

shallow shoals, temporary islands and exposed dry land areas 

along the coast (e.g., Rögl 1999; Kotlarczyk et al. 2006).

Acknowledgements:  We thank Krzysztof Wertz (Institute  

of Systematics and Evolution of Animals, Polish Academy  

of Sciences, Kraków, Poland) for his help in preparing the 

illustrations and comments on the early version of the manu-

script, and Andrea Pereswiet-Soltan for taking the photo-

graphs in Figure 3.

References

Baumel J.J. & Witmer L.M. 1993: Osteologia. In: Baumel J.J.,  

King A.S., Breazile J.E., Evans H.E. & Vanden Berge J.C. 

(Eds.): Handbook of Avian Anatomy: Nomina Anatomica 

Avium.  Nuttall Ornithological Club, Cambridge, Massa-

chusetts, 45–132.

Berggren W.A., Kent D.V., Swisher C.C. & Aubry M.P. 1995:  

A revised Cenozoic geochronology and chronostratigraphy.  

In: Berggren W.A., Kent D.V., Aubry M.P. & Hardenbol J. 

(Eds.): Geochronology, Time Scales and Global Stratigraphic 

Correlation. SEPM Special Publication No. 54. Society for 

Sedimentary Geology, Tulsa, 129–212.

Bieńkowska-Wasiluk  M.  2010:  Taphonomy  of  Oligocene  teleost 

fishes from the Outer Carpathians of Poland. Acta Geol. Pol. 

60, 479–533.

Bochenski Z. & Bochenski Z.M. 2008: An Old World hummingbird 

from the Oligocene: a new fossil from Polish Carpathians.  

J. Ornithol. 149, 211–216.

Bochenski Z.M., Tomek T. & Swidnicka E. 2010: A columbid-like 

avian foot from the Oligocene of Poland. Acta Ornithol. 45, 

233–236.

Bochenski Z.M., Tomek T., Bujoczek M. & Wertz K. 2011: A new 

passerine bird from the early Oligocene of Poland. J. Ornithol. 

152, 1045–1053.

Bochenski Z.M., Tomek T. & Swidnicka E. 2013a: A review of 

avian remains from the Oligocene of the Outer Carpathians and 

Central Paleogene Basin. In: Göhlich U.B. & Kroh A. (Eds.): 

Paleornithological Research 2013 — Proceedings of the 

 

8

th

 International Meeting of the Society of Avian Paleontology 

and Evolution. Naturhistorisches Museum Wien, Vienna, 

37–41.

Bochenski Z.M., Tomek T., Wertz K. & Swidnicka E. 2013b:  

The third nearly complete passerine bird from the early  

Oligocene of Europe. J. Ornithol. 154, 923–931.

Bochenski  Z.M.,  Tomek  T.  &  Swidnicka  E.  2014a:  The  first  

complete leg of a passerine bird from the early Oligocene of 

Poland. Acta Palaeontol. Pol. 59, 281–285.

Bochenski Z.M., Tomek T. & Swidnicka E. 2014b: A complete  

passerine foot from the late Oligocene of Poland. Palaeontol. 

Electron. 17.1.6A, 1–7. [http://palaeo-electronica.org/

content/    2014/674-oligocene-passerine-foot]

Daniltshenko P.G. 1960: Bony fishes from the Maikop deposits in 

the Caucasus. [Kostistye ryby maykopskikh otlozheniy 

Kavkaza.]  Tr. Paleontol. Instit. Akad. Nauk SSSR 78, 1–208  

(in Russian).

de Blainville H.D. 1818: Sur les Ichthyolites ou les poissons fossils. 

In: Levrault F.G. (Ed.): Nouveau Dictionnaire d’Histoire 

Naturelle, appliqué aux arts, à l’économie rurale et domestique, 

à la Médecine, etc., 27. Deterville, Paris, 310–395.

del Hoyo J. & Collar N.J. 2014: HBW and BirdLife International 

Illustrated Checklist of the Birds of the World. Volume 1: 

Non-passerines. Lynx Edicions, Barcelona, 1–903.

del Hoyo J., Elliott A. & Sargatal J. (Eds.) 1999: Handbook of the 

birds of the world, Volume 5: Barn owls to hummingbirds. 

Lynx Edicions, Barcelona, 1–759.

Dyke G.J., Waterhouse D.M. & Kristoffersen A.V. 2004: Three new 

fossil landbirds from the early Paleogene of Denmark. Bulletin 

of the Geological Society of Denmark, 51, 47–56.

Elzanowski A., Bienkowska-Wasiluk M., Chodyn R. & 

 Bogda nowicz W. 2012: Anatomy of the coracoid and diversity 

of the Procellariiformes (Aves) in the Oligocene of Europe. 

Palaeontology 55, 1199–1221.

Gregorová R. 2006: A new discovery of a seabird (Aves: Procellarii-

formes) in the Oligocene of the “Menilitic Formation” in 

Moravia (Czech Republic). 

Hantkeniana 5, 90.

Harrison C.J.O. 1984: A revision of the fossil swifts (Vertebrata, 

Aves, suborder Apodi), with descriptions of three new genera 

and two new species. Mededelingen van de Werkgroep voor 

Tertiaire en Kwartaire Geologie 21, 4, 157–77.

Harrison C.J.O. & Walker C.A. 1975: A new swift from the Lower 

Eocene of Britain. Ibis 117, 2, 162–164.

Heckel J.J. 1850: Beiträge zur Kenntniss der fossilen Fische 

 Osterreiches.  Denkschr. Kais. Akad. Wiss. Math.­Nat. Classe 1, 

1, 201–242.

Jerzmańska A. 1967a: Argentinidés (Poissons) fossiles de la serie 

ménilitique des Karpates. Acta Palaeontol. Pol. 12, 195–211.

Jerzmańska A. 1967b: Crabs of the genus Portunus Weber from the 

Menilite Series of the Carpathians. [Kraby z rodzaju Portunus 

Weber z serii menilitowej Karpat.] Ann. Soc. Geol. Pol. 37, 

539–545 (in Polish with English summary).

background image

469

LOWER OLIGOCENE TINY SHORT-LEGGED BIRD FROM POLAND

GEOLOGICA CARPATHICA

, 2016, 67, 5, 463 – 469

Jerzmańska A. 1968: Ichtyofaune des couches į ménilite (flysch des 

Karpathes). Acta Palaeontol. Pol. 13, 379–488.

Jerzmańska A. & Kotlarczyk J. 1968: Ichtyofaunal assemblages in 

the Menilite beds of the Carpathians as indicators of sedimen-

tary environment. [Zespoły ichtiofauny z warstw menilitowych 

Karpat jako wskaźnik zmian środowiska sedymentacyjnego.] 

Ann. Soc. Geol. Pol. 38, 9–66 (in Polish with English 

summary).

Karhu A. 1988: A new family of swift-like birds from the Paleogene 

of Europe. [Novoye semeystvo strizheobraznykh iz paleogena 

Yevropy.] Paleontol. J. 3, 78–88 (in Russian).

Kotlarczyk  J.,  Jerzmańska  A.,  Swidnicka  E.  &  Wiszniowska  T. 

2006: A framework of ichthyofaunal ecostratigraphy of the 

 Oligocene-Early Miocene strata of the Polish Outer Carpathian 

basin. Ann. Soc. Geol. Pol. 76, 1–111.

Kristoffersen A.V. 2002: The avian diversity in the latest Paleocene- 

earliest Eocene Fur Formation, Denmark. A synopsis. PhD 

 thesis.  University 

of Copenhagen, Copenhagen, Denmark, 1–91.

Ksepka D.T., Clarke J.A., Nesbitt S.J., Kulp F.B. & Grande L. 2013: 

Fossil evidence of wing shape in a stem relative of swifts and 

hummingbirds (Aves, Pan-Apodiformes). Proc. R. Soc. B 280, 

20130580, 1–8.

Kundrát M., Soták J. & Ahlberg P.E. 2015: A putative upupiform 

bird from the Early Oligocene of the Central Western 

 Carpathians and a review of fossil birds unearthed in Slovakia. 

Acta Zool. 96, 45–49.

Louchart A., Tourment N., Carrier J., Roux T. & Mourer-Chauviré C. 

2008: Hummingbird with modern feathering: an exceptionally 

well-preserved Oligocene fossil from southern France. 

 Naturwissenschaften 95, 171–175.

Martini E. 1971: Standard Tertiary and Quaternary calcareous 

 nannoplankton zonation. In: Farrinacci A. (Ed.): Proceedings 

of the II Planktonic Conference, Roma, 1970: Volume 2. 

 Edizioni T

ectoscienza, Rome, 739–785.

Mayr G. 1998: “Coraciiforme” und “piciforme” Kleinvögel aus 

dem Mittel-Eozän der Grube Messel (Hessen, Deutschland). 

Cour. Forsch.­Inst. Senckenberg 205, 1–101.

Mayr G. 2000: Tiny hoopoe-like birds from the Middle Eocene of 

Messel (Germany). The Auk 117, 4, 964–970.

Mayr G. 2003: A new Eocene swift-like bird with a peculiar 

 feathering.  Ibis 145, 382–391.

Mayr G. 2004: Old World fossil record of modern-type humming-

birds. Science 304, 861–864.

Mayr G. 2006: New specimens of the Eocene Messelirrisoridae 

(Aves: Bucerotes), with comments on the preservation of 

 uropygial gland waxes in fossil birds from Messel and the 

 phylogenetic  affinities  of  Bucerotes.  Paläontologische 

Zeitschrift 80, 4, 390–405.

Mayr G. 2007: New specimens of the early Oligocene Old World 

hummingbird  Eurotrochilus inexpectatus.  J. Ornithol 148, 

105–111.

Mayr G. 2009: Paleogene Fossil Birds. Springer, Berlin, 1–262.

Mayr G. 2010: Reappraisal of Eocypselus — a stem group  apodiform 

from the early Eocene of Northern Europe. Palaeobiodiversity 

and Palaeoenvironments 90, 395–403.

Mayr G. 2015: Skeletal morphology of the middle Eocene swift 

Scaniacypselus and the evolutionary history of true swifts 

(Apodidae). J. Ornithol. 156, 441–450.

Mayr G. & Gregorová R. 2012: A tiny stem group representative of 

Pici (Aves: Piciformes) from the early Oligocene of the Czech 

Republic. Paleontol. Z. 86, 333–343.

Mayr G. & Micklich N. 2010: New specimens of the avian taxa 

Eurotrochilus  (Trochilidae) and Palaeotodus (Todidae) from 

the early Oligocene of Germany. Paleontol. Z. 84, 387–395.

Mlíkovský J. 2002: Cenozoic birds of the world. Part 1: Europe. 

Ninox Press, Prague, 1–416.

Mourer-Chauviré C. 1988: Les Aegialornithidae (Aves: 

 Apodiformes) des Phosphorites du Quercy. Comparaison avec 

la forme de Messel. Cour. Forsch.­Inst. Senckenberg 107, 

369–381.

Mourer-Chauviré C. 2006: The avifauna of the Eocene and 

 Oligocene phosphorites du Quercy (France): an updated list. 

Strata ser. 1 13, 135–149.

Mourer-Chauviré C. & Sigé B. 2006: Une nouvelle espèce de 

 Jungornis (Aves, Apodiformes) et de nouvelles formes de 

Coraciiformes s.s. dans l’Éocène supérieur du Quercy. Strata 

ser. 1 13, 151–159.

Paucă  M.  1931:  Zwei  Fischfaunen  aus  den  Oligozänen  Menilit-

schiefern von Mähren. Ann. Nat.hist. Mus. Wien 46, 147–152.

Peters D.S. 1985: Ein neuer Segler aus der Grube Messel und seine 

Bedeutung für den Status der Aegialornithidae (Aves: 

 Apodiformes).  Senckenberg. Lethaea 66, 143–164.

Rögl F. 1999: Mediterranean and Paratethys. Fact and hypothesis of 

an Oligocene to Miocene paleogeography (short overview). 

Geol. Carpath. 50, 339–349.

Świdnicki J. 1986: Oligocene Zeiformes (Teleostei) from the Polish 

Carpathians. Acta Palaeontol. Pol. 31, 111–135.

Tomek T., Bochenski Z.M., Wertz K. & Swidnicka E. 2014: A new 

genus and species of a galliform bird from the Oligocene of 

Poland. Palaeontol. Electron. 17.3.38A, 1–15.

Weiler W. 1920: Die Septarientonfische des Mainzer Beckens. Eine 

vorläufige Mitteilung. Jahrb. Nassau. Ver. Nat. 72, 2–15.