background image

GEOLOGICA CARPATHICA

, OCTOBER 2016, 67, 5, 433 – 450

doi: 10.1515/geoca-2016-0027

www.geologicacarpathica.com

Taxonomic diversity of cockroach assemblages  

(Blattaria, Insecta) of the Aptian Crato Formation 

(Cretaceous, NE Brazil)

SHIH-WEI LEE

National Museum of Marine Science & Technology, No. 367 Pei-Ning Road, Zhongzheng District, Keelung 20248, Taiwan;  

leesw@mail.nmmst.gov.tw

(Manuscript received November 11, 2015; accepted in revised form September 22, 2016)

Abstract: A comprehensive revision of 981 specimens of fossil cockroaches from the Lower Cretaceous laminated 

limestones of the Crato Formation of Northeast Brazil shows that they belong to eleven taxa, including Piniblattella 

limaiP. magna sp. n., Perlucipecta santanensis. sp. n., Raptoblatta waddingtonaeOcelloblattula santanensis sp. n., 

Elisama brevis (= E. americana, syn.n.), E. hindwingnii sp. n., Ponopterix axelrodi (= P. maxima syn.n.), Umenopterix 

burkhardi  comb. n., and Cratovitisma oldreadi  (Umenocoleidae = Cratovitismidae  syn.n. = Ponopterixidae  syn.n.).   

The family Ectobiidae is numerically most abundant in the assemblage of cockroaches of the Crato Formation  

(83 % of cockroaches), followed by Blattulidae (13 %) and Umenocoleidae (4 %). 79.2 % of specimens are complete 

and fully articulated. Members of the family Alienopteridae are probably also present. Representatives of a relatively 

common Mesozoic superfamily Caloblattinoidea are missing. With the exception of the endemic genera Cratovitisma 

and  Raptoblatta and the exclusively Gondwanan genus Ocelloblattula, all other genera were cosmopolitan.  

Taxonomic richness of cockroaches of the Crato Formation is thus rather low, and consists of geologically long- 

ranging and geographically-widespread genera, genera restricted to Gondwana, and short-ranging endemic genera 

found in the Crato Formation only.

Keywords: Fossil insects, new species, Blattodea, variability, taphonomy, Mesozoic, Early Cretaceous, Gondwana.

Introduction

Cockroaches, mantises and termites represent the tradi-

tionally monophyletic Dictyoptera (Hennig 1981; Grimaldi 

& Engel 2005; Djernaes et al. 2012, 2015; Bai et al. 2016), 

originating in the Late Carboniferous (Zhang et al. 2012) and 

being numerically abundant during the Palaeozoic (Schneider 

1977; 1978a, b; 1980a, b: 1983; 1984; Schneider & Werne-

burg 1993). In the Mesozoic, both termites (Isoptera) and 

mantises  (Mantodea)  evolved  by  the  pattern  (Mantodea + 

(“Blattaria”+ Isoptera))  (Grimaldi  2007)  or  independently 

originated from the cockroach family Liberiblattinidae 

(Vršanský 2002; Vršanský & Aristov 2014; Vršanský & 

Bechly 2015). Cockroaches possessed diverse life habits 

(Barna 2014) and played an important ecological role as 

decomposers in the present and past (Zherikhin 1993; 

Vršanský et al. 2013).

Exceptionally-preserved insects dominate both in abun-

dance and taxonomic diversity in the fossils of the Crato  

Formation. More than 350 species representing over 20 

insect orders have been described, with terrestrial adult 

orthopterans, hemipterans, ephemeropterans and odonatas 

(Menon & Martill 2007; Bechly 2007 b; Heads & Leuzinger 

2011; Barling et al. 2015). Three mantises and six termite 

species have been described so far (Bechly 2007 c; Hörnig et 

al. 2013; Lee 2014), but about a quarter of the arthropod 

specimens from the Crato Formation are cockroaches 

(Bechly 1998; Menon & Martill 2007; Dittman et al. 2015; 

n = 3,651), with only dozens of species described. The aim of 

this study is the revision of cockroaches from the Crato For-

mation, including older descriptions.

Geological setting

The Crato Formation is situated in the north central part of 

the Chapada do Araripe (Fig. 1), a large plateau in north- 

eastern Brazil (Martill & Bechly 2007). The formation is an 

up to 60 m-thick, mixed carbonate-sicliclastic sequence 

dominated in the middle part by laminated micritic lime-

stones, interbedded at the base with claystones, siltstones, 

and sandstones (Martill & Heimhofer 2007; Barling et al. 

2015). The limestones from this location contain gymno-

sperms and angiosperms, invertebrate fauna with Chilopoda, 

Arachnida, Crustacea and Insecta, and vertebrate fauna 

including fish, anurans, turtles, lizards, crocodiles, pterosaurs 

and birds (Menon & Martill 2007). These fossils occur in the 

lowermost member of the Crato Formation, namely in the 

Nova Olinda Member, with an age of ~120 million years, 

which corresponds to the Aptian stage (Martill 2007; Martill 

& Heimhofer 2007). Chapada do Araripe was located at  

10° to 15° S within the tropics during the Early Cretaceous 

 (Martill 2007). The depositional environment of the Nova 

Olinda Member was a lake/lagoon water body with water- 

background image

434

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

column stratification and bottom-water anoxia 

 

allowing exceptional fossilization, with still unclear sali nity 

conditions. Hypotheses range between a freshwater 

 

and a brackish lake up to a hypersaline lagoon (Martill & 

Bechly 2007). Among the fossils of the Crato Formation, 

insects dominate. According to a large-scale investigation 

(Bechly 1998; Menon & Martill 2007; Dittman et al. 2015; 

n = 3651),  about  26 %  of  arthropod  specimens  are  cock-

roaches.  However, only a dozen cockroach species were 

reported in the Crato Formation, including some unnamed 

species and  species based on a few specimens (

e.g.,

 Crato­

vitisma oldreadi Bechly, 2007; “Ponopterix” burkhardi  

Nel, Prokop et  Kirejtshuk, 2014; 

Raptoblatta waddingtonae 

Dittman,  Hörnig,  Haug  et  Haug,  2015

). Thousands of  

specimens belong to three dominant species, Ponopterix 

axelrodi  Vršanský

 

et Grimaldi, 1999a, Elisama brevis 

 

(= E. americana) Mendes, 2000, and Piniblattella limai 

(Pinto  et Purper, 1986; Pinto, 1989) (Vršanský 2004; 

 

Bechly 2007a). Using the taphonomic categories of speci-

men preservation by Martins-Neto & Gallego (2006), about 

79.2 % of specimens described here belong to Stage I, 

18.8 % belong to Stage II, and 2 % belong to Stage IV. These 

pro portions are in contrast to the results of Martins-Neto 

(2006), Martins-Neto & Gallego (2006), and Martins-Neto 

& Tassi (2009) who found that different genera show  

various preservation states on the basis of large scale  

field data.

Material and methods

The drawings were made from dry specimens directly 

from the fossil surface using a camera lucida attached to 

a Wild M5 and a Leica MZ125 stereo microscope and scan-

ning with a Canon CanoScan 4400F flatbed scanner. Fossils 

were photographed with a Leica DFC490 digital macro  

camera on a Leica Z16-Apo microscope with Synchroscopy 

Auto-Montage™ software. All figures have been sub-

sequently edited with the Adobe Photoshop™ CS3 imaging 

software.

Differences between the right and left side of the wings 

within the same individual were examined. The nomen-

clature for fore- and hind wings is based on Kukalová-Peck 

(1991) and Carpenter (1992). Abbreviations used: C — costa, 

CA — costa anterior, CP — costa posterior, ScA — subcosta 

anterior, ScP — subcosta posterior, RA — radius anterior, 

RP(= RS) — radius posterior, MA — media anterior, MP — 

media posterior, CuA — cubitus anterior, CuP — cubitus 

posterior, AA — anal anterior, AP — anal posterior, JA — 

jugal anterior, JP — jugal posterior and the nomenclature 

used for cockroaches, RA + RP + MA would be R + RS in the 

system of Comstock & Needham (1898).

The total number of species is interpreted from the two 

collections, including (1) MSF, Fossils Worldwide, Annesuse 

Raquet-Schwickert Hebelstrasse 4 D-67734 Sulzbachtal, 

Germany, with 933 specimens, and (2) SMNS, Staatliches 

Naturkunde Museum Stuttgart, Germany, with 48 specimens 

that were used in the systematic analysis.

Results

Systematic palaeontology

Order: Blattaria Latreille, 1810

 = Blattodea Brunner von Wattenwil, 1882

Superfamily: Umenocoleoidea Chen et T’an, 1973 

Family: Umenocoleidae Chen et T’an, 1973

2007 Cratovitismidae syn.n. — Bechly, 239–249.;  syno nymization 

is based on the revision of the Cratovitisma below.

2014  Ponopterixidae  syn.n. = derived  as  Ponopterixiidae  —  Nel, 

Prokop et Kirejtshuk, 2014 (= Vitisminae Vršanský et Ansorge, 
2001 eventual jun. syn., in which case derived as Vitismidae 
Vršanský et Ansorge, 2001 according to ICZN principle of 
coordination for family-group names); syno nymization is 
based on the description of Umenopterix (see below) and its 
affinities to Umenocoleus.

Monophyletic beetle-like lineage with families Umeno-

coleidae and Alienopteridae Bai et al., 2016, stemming from 

Vitisminae. The representatives of this family are known 

since the earliest Cretaceous of Siberia (Vršanský 2003a).

Emended description (after Vršanský (2003a)): Small 

(mostly under 20 mm), beetle-like cockroaches with head 

Fig. 1. Location of the Crato Formation (7°19’00” S and 39°40’40” W).

background image

435

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

which can be derived and globular (eventually ortho-

gnathous); antenna with wide segments and very long setae 

in transversal rows; pronotum with paranota tending to 

reduce; with legs eventually short and strong. The most 

charac teristic are heavily sclerotized forewings with reduced 

venation and with the presence of cup-like cells. Hind wing 

venation generally of early polyphagoid form (that is simpli-

fied venation with CuA without tertiary branches, CuP  

simple, A1 curved, with short branches), but with reduced 

venation of R (with few branches — possibly with 

pterostigma), M branched. Cerci with numerous long hairs; 

females with short external ovipositor. Species are most 

probably diurnal with similar flight activity of both males 

and females because of the same body size, with sexual 

dimorphism not much pronounced.

Genus: Cratovitisma Bechly, 2007

Cratovitisma oldreadi Bechly, 2007 (Fig. 2)

Diagnosis (improved after Bechly 2007a): Body length  

of 6.9 mm, forewing length 5.3 mm. As in Vitisma, the fore-

wings are broader than in Ponopterix (max. 2 mm wide), 

strongly sclerotized. The vein CuP seems to be strongly 

curved and delimits a typical cockroach anal field in the fore-

wings. The hind wing venation is similar to that of Vitisma

thus more dense and round than in 

Ponopterix, and with 

pterostigma. The transverse head seems to place this new 

genus and species closer to standard Umenocoleidae than 

Vitisma (which is also now proved to belong to Umeno-

coleidae based on the amber record).

Emended description: The head is transverse as in Umeno-

coleidae (different from Vitisma type) and the antennae are 

also similar to Umenocoleidae, thus shorter than the body. 

The pronotum is flat and disk-like as in Jantaropterix 

Vršanský et Grimaldi in Vršanský (2003a), Vitisma and true 

cockroaches, very different from Ponopterix and Umeno­

coleus. Forewing, Sc bifurcated, Radius with eight branched, 

M with five to six branched, CuA similar with Genus 

Ponopterix  to have a single terminal fork, CuP strongly 

curved and delimits a typical cockroach’s anal field. Hind 

wing, Sc alone and less than half of whole wing length, RA 

with six branched, RS with a total of four branches and simi-

lar to Ponopterix axelrodi, MP alone and CuA with probably 

seven branched (or six CuA plus one CuP). The ovipositor 

from this single specimen is 0.6 mm long (about 7.89 % of 

body length), is tendentious shorter than that in Umeno-

coleoidae species in the Crato Formation, also clearly shorter 

than that in Elisama brevis (= E. americana) (Blattulidae).

Genus: Ponopterix Vršanský et Grimaldi in Vršanský 

(1999a)

Ponopterix axelrodi Vršanský et Grimaldi in Vršanský 

(1999a); 2003a (Fig. 3)

1999 Ponopterix axelrodi. — Vršanský et Grimaldi, 167–176.
2007 Ponopterix maxima. — Bechly, 239–249 syn. n.; synonymiza-

tion is based on the revision below.

Emended description: Body 5.0 to 8.0 mm long. Head 

spherical, 1.8 to 3.0 mm wide. Antenna about the same length 

with body, 7.1 to 8.3 mm long, the first three segments elon-

gate, the others very short. Forewing 4.9 to 9.1 mm, usually 

about 6.5 mm long, 1.7 to 2.8 mm wide. Radius rich (up to  

10 branches), M and Cu variable but usually with single ter-

minal fork. Anal veins numerous. Hind wing pterostigma 

present, 5.2 to 6.3 mm long, is almost the same length as the 

forewing. Sc alone, shorter than half of the whole wing 

length, RA with four branched, RS with two stem branches 

and that is two to four terminal branches totally, MP with two 

to three branched, CuA with six branched, CuP alone. Legs 

cursorial, heavily mounted with spurs. All tarsi 5-segmented. 

Female with external ovipositor at least 0.67 to 0.9 mm long, 

is approximately 10 % – 12.12 % of body length. Male with 

distinct styli and with phallomere of a primitive type. Cerci 

placed closer to each other than in the female. Cercus 0.7 to 

1.5mm long, with 11–13 segments.

Description of other specimens: SMNS 66326 (Fig. 3D) 

— Male. Hind wing well preserved. SMNS 66329 — Female. 

Ventral view. Compound eyes well preserved. Abdominal 

segments clearly. SMNS 66334 (Fig. 3K) — Probably male. 

Hind wing only partly visible. SMNS  66335 — Female.  

Ventral view. Abdomen swelled. SMNS 66336 (Fig. 3L) — 

Male. Forewing venation visible, varies between right and 

left sides. Hind wing RA with four-branched and RS with 

two stem-branches. SMNS  66338 (Fig. 3N) — Female.  

Fig. 2.  Cratovitisma oldreadi Bechly, 2007, holotype; SMNS 

66000-127.  A — Habitus. B — Hind wing. C — Right and left 

forewings.

background image

436

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Fig. 3.  Ponopterix axelrodi Vršanský et Grimaldi, 1999 (= Ponopterix maxima Bechly, 2007). A — SMNS 66323. B — 66324.  

C — 66325. D — 66326. E — 66327. F — 66328. G — 66329. H — 66331. I — 66332. J — 66337. K — 66334. L — 66336. M — 67574. 

N — 66338.

background image

437

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Hind wing preserved completely. Cerci and ovipositor clearly 

visible.

Remarks:  Ponopterix axelrodi differs from Ponopterix 

maxima Bechly, 2007 by the smaller body size and by hind 

wing with slightly different RP pattern (in P. maxima RP with 

sequential branches one after another and in P. axelrodi RP 

with two stem-branches and each one may have more termi-

nal branches (although this variability is not significant 

because it can also be found in the same species). However, 

on the basis of the similarity of fore- and hind wings and on 

the basis of a gradual transition in body size between  

P. axelrodi and P. maxima, (Table 1), I conclude that these 

two species belong to a single species.

Emended description of specimens categorized to 

Ponopterix maxima Bechly, 2007: Body 7.5 to 12.5 mm 

long. Antenna at least 6 mm long and about half of body 

length. Head broader than in P. axelrodi, especially between 

the compound eyes; pronotum comparatively larger and 

broader and saddle-shaped. Forewing 6.4 to 10.5 mm long 

and 1.9 to 2.7 mm wide, Sc alone, Radius with four to eight 

branched, usually four to six (seven- and eight branched only 

by one specimen), M and Cu variable but usually with single 

terminal fork, anal veins numerous, generally all venations 

more or less straight. Hind wing about the same length as the 

forewing, Sc alone and less than half of the whole wing 

length, RA with two to four branched, RP with three to five 

branched, MP with two branched, CuA with five branched 

and CuP alone. Leg has five-segments tarsi with claws,  

first segment elongated, 2

nd

,

 

3

rd

 and 5

th 

segments about the 

same length and the 4

th

 segment extremely short. Female 

with external ovipositor at least 0.8–1.3 mm long, about 

7.84 % –12.26 % of body length. Cercus in roach form, 12 to 

16 segments.

Description of other specimens: SMNS 66323 (Fig. 3A) 

— Male. Length of the antenna is about ½ of the body length. 

Large compound eyes. Hind wing only partly visible. SMNS 

66324 (Fig. 3B) — Lateral side. Femur of three legs well 

preserved. SMNS 66325 (Fig. 3C) — Male. Venation of both 

forewings clearly preserved. Hind wing with pterostigma and 

large part of venation identifiable. SMNS 66327 (Fig. 3E) 

—  Female. Legs well preserved, tarsus with five segments, 

first segment elongated, 2

nd

, 3

rd

 and 5

th

 segment about the 

same length, 4

th

 segment extremely short. Abdomen swelled. 

SMNS  66328 (Fig. 3F) — Female. The venations of both 

forewings clearly visible. Ovipositor and cercus well pre-

served. SMNS 66330 — Female, ventral side. Legs well pre-

served especially in femur and coxa part. SMNS  66331  

(Fig. 3H) — Female. Forewing heavily sclerotized, venation 

reduced. Hind wing partly preserved. SMNS

 66332 (Fig. 3I) 

—  holotype. Compound eyes well preserved. The venations 

of forewings clearly visible. SMNS 66333 — Female. Head 

broader than the other specimens. Fore and hind wings only 

partly preserved. SMNS 66337 (Fig. 3J) — Male. Venation of 

forewings clearly visible. Hind leg well preserved, including 

coxa part. 66562 — Female. Forewing clearly. Abdomen 

swelled. Cercus and ovipositor well preserved. SMNS 67574 

(Fig. 3M) — Probably male, lateral side. Mouthpart well 

 preserved, maxillary palps and labia palps visible.

GenusUmenopterix gen. n.

Type species:  Ponopterix  burkhardi  Nel, Prokop et 

 Kirejtshuk,  2014

Diagnosis: The pronotum fully developed, standard, trans-

versal with fully developed paranotalia. CuP strongly sig-

moidally curved.

Description: as for species (see Nel et al. 2014).

Derivation of name: Named after family Umenocoleidae 

and Genus: Ponopterix.

Remarks: The genus apparently represents an early off-

shoot of the family, descending from taxa close to the type 

genus Umenocoleus, which also has unique sigmoid curvation 

of the clavus (including U. nervosus, see Zhang 1997). This 

character was the sole argument against the categorization of 

Umenocoleus within cockroaches, but the present genus fully 

valid categorization (of the whole family) within Blattaria.  

The above inference is also supported by the “standard” mor-

phology of round, transversal pronotum, with fully developed 

paranotalia — a character lost in all “Petropterix” lineages, but 

retained in the second lineage represented by Vitisma and to 

some extent by Jantaropterix. Therefore, the present species 

must be placed in a new genus, whilst any relation with 

Ponopterix is unlikely, but these characters unequivocally sup-

port the assignment of this species (and also Umenocoleus as 

the type of the Umenocoleidae) within cockroaches.

Superfamily: Corydioidea Saussure, 1864  

(Brues & Malander, 1932)

(= Polyphagoidea Walker, 1868) (Princis, 1960)

Family: Blattulidae Vishniakova, 1982

= Araripeblattidae Mendes, 2000 syn.n. (synonymization based on 
the paragraph below)

Type genus: Elisama Giebel, 1856.

Remarks: The family originated in the Late Triassic.   

It represents a dominant cockroach family at many sites 

ranging from the Early Jurassic to the Early Cretaceous for 

more than 100-million years (Wang et al. 2007a, b).

Genus: Elisama Giebel, 1856

Ctenoblattina Scudder, 1886 (Vršanský 2005a–c)
Araripeblatta Mendes, 2000 syn.n.

Type speciesBlattidium molossus Westwood, 1854

Elisama brevis Mendes, 2000 comb.n. (Fig. 4)

2000 Araripeblatta brevis — Mendes, 23–35.
2000 Blattopteris beckeri — Mendes = Araripeblatta beckeri Mar-

tins-Neto et al., 2010

2010 

Araripeblatta cesae — Martins-Neto et al., 2010

2002 Elisama americana — Vršanský, 1–16.

background image

438

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Emended discussion (after Martins-Neto et al. 2010): the 

family Araripeblattidae differs from Blattulidae Vischnia-

kova, 1982, the closest family, by contact points of first  

RA branch with the anterior wing border (RA1-ending), 

MA2-origin, and contact of CuP with the posterior wing 

border (CuP-ending) are arranged in one line slightly trans-

verse to the wing long axis. In Blattulidae, the point of 

MA2-origin is situated slightly backward of the line 

RA1-ending and CuP-ending (see also Martins-Neto et al. 

2005). However, this main difference does not apply to this 

study. Apart from the lines from RA1-ending, MA2-origin 

and CuP-ending of Araripeblatta brevis variant, both intra-

specific (even between right and left forewings in the same 

specimen) and inter specific (Fig. 5A–K), there are no signi-

ficant differences between Araripeblatta brevis Mendes, 

2000 and Blattulidae, that is, Elisama tsaganica Vršanský, 

2002, E. parallela Vršanský, 2003, E. extenuata Ren, 1995, 

E. cuboides Wang, Ren et Liang, 2007 and Habroblattula 

drepanoides Wang, Liang et Ren, 2007 (Fig. 5L–O). Araripe­

blatta is here consi dered a junior synonym of Elisama and 

belongs to family Blattulidae. Indeed this RA1-MA2-CuP 

lines are clearly different but between Blattulidae and  

Piniblattella limai (=Mesoblattina limai)  (Ectobiidae)  

(Fig. 5P–S).

Differential description: Elisama brevis differs from Pini­

blattella limai by smaller body size. It is similar to genus 

Ocelloblattula  Anisyutkin et Gorochov,  2008 (Blattulidae) 

and other primary Upper Jurassic family Caloblattinidae 

Vršanský et Ansorge, 2001 by head with three ocelli residing 

in the forehead between the compound eyes (Anisyutkin & 

Gorochov 2008; Vršanský 2008a). The ovipositor of E. brevis 

(about 10.13–16.67 % of body length) is tendentious con-

vexer than that in Umenocoleoideas both species in the Crato 

Formation (by 

P. axelrodi: 10 –12.12 % and by P. maxima

7.84 –12.26 %),  and  still  clearly  longer  than  that  in  Crato­

vistima sp. (SMNS 66000-127 by 7.89 %).

Emended diagnosis and description: Small-sized 

roaches. Antenna about the same length as body. Body length 

between 7.9–9.5 mm. Head wide and clearly longer than the 

fore margin of pronotum. Pronotum is about 1.5 times wide 

as the head, approximately of round shape, except in the pos-

terior part where it is sharp gradually. Forewing 8.0–10.2 mm 

long and 2.4–3 mm wide. Sometimes slightly sclerotized.  

It is possible that coloured band pattern reduced accompanies 

with the degree of sclerotization. Wing fore margin arcuate 

basally, almost straight further. Costa area as wide as sub-

costa area. Sc very short, not reaching the apical third of 

a wing. RA+RS with total of 13–16 branches, instead of ten. 

M with three–four branches. CuA with four–six branches, 

rarely seven (SMNS 67572 right side, Fig. 4J), CuP extremely 

curved and Anal veins reach the hind margin. Hind wing 

about the same length as the forewing and 8.5–9.8 mm long. 

Sometimes in anterior margin, that is RA area, slightly scle-

rotized, or that is pterostigma. Sc alone, reaching to a little 

less than ½ of the anterior margin of the whole wing length. 

RA with four–five branches, instead of three, RS with six–

seven branches. MP with three branches. CuA in principle 

with six branches, rarely seven (SMNS 67566 left side,  

Fig. 4F), CuP should be alone and probably reaching the end 

of the wing. Fore and hind wings show very low morpho-

logical differences (Tables 2, 3). Legs presented long and 

strong spines. Tarsus normally has all five segments. Abdomen 

in female is tendentious more rounded than in male, in male 

more elongate. Cerci in roaches form, 12–18 segments.  

Ovipositor convex and sharp, with sheath, 0.8–1.5 mm long 

(about 10.13–16.67 % of body length). Terminalia with 

unsegmented styles.

Description of other specimens: SMNS 66000-125  

(Fig. 4A) — Male. Eye big, place by the side of the head and 

area in-between is large. Pronotum is about 1.5 times as wide 

as head, nearly rounded, except in the hind part sharp gra-

dually. SMNS 67563 (Fig. 4C) — Female. Forewings sclero-

tized. Hind leg has long and strong spines. Ovipositor present. 

SMNS

  67564 (Fig. 4G) — Female. Large compound eyes 

well preserved. Fore and hind legs tibia with several long, 

thin spines. Terminalia with unsegmented styli. SMNS 67565 

(Fig. 4I) — Female. Pronotum sclerotized, nearly rounded 

and about 1.5 times long as head width. Forewing sclero-

tized. Abdomen rounded. Ovipositor short, well preserved. 

SMNS  67566 (Fig. 4F) — Female, with the complete and 

unfold fore and hind wings. SMNS 67567 (Fig. 4H) — Female. 

Hind wing in the anterior margin, that is RA area, sclerotized, 

or that is pterostigma. Abdomen rounded. Ovipositor sharp. 

SMNS 67568 (Fig. 4E) — Female. Antenna about the same 

length as the body. Mid and hind legs tibia with several long, 

strong spines. SMNS 67569 (Fig. 4D) — Female. Pronotum 

is about 1.5 times as wide as the head, nearly rounded, except 

in the hind point sharp. Mid leg femur with several short 

spines. SMNS 67570 (Fig. 4K) — Female. Abdomen swelled. 

Ovipositor and cerci well preserved. SMNS 67571 (Fig. 4B) 

— Female. Abdomen rounded. Cerci with numerous sensilla. 

SMNS 67572 (Fig. 4J) — Female, with the complete and 

unfold fore and hind wings. Full length mid leg is preserved, 

tarsus with five segments with pretarsus, the lengths are 

probably 0.9, 0.6, 0.2, 0.2 and 0.3 mm, five segments with 

total of 1.8 mm long.

Elisama hindwingnii sp. n. (Fig.6A)

Holotype: SMNS 67573.

Derivatio nominis: Name partially referring to well pre-

served hind wings.

Body size range (mm)

6.0–6.5

6.5–7.0

7.0–7.5

7.5–8.0

8.0–8.5

8.5–9.0

9.0–9.5

9.5–10.0 10.0–10.5 10.5–11.0 11.0–11.5

Specimen No.

1

2

1

1

2

2

0

1

2

3

2

Table 1: Body length Frequency distribution of two species, Ponopterix axelrodi: 6.4–8.0 mm long and Ponopterix maxima: 8.4–11.2 mm 

long. The body size distribution in the studied specimens of this genus is rather continuous and shows no sexual dimorphism.

background image

439

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Stratum typicum: Lower Cretaceous, Upper Aptian, 

Nova Olinda Member of Crato Formation.

Locus typicus: Chapada do Araripe, vicinity of Nova 

Olinda, southern Céara, North-East Brazil.

Differential diagnosis:  Forewing at least 12 mm long. 

Hind wing, except with probably slightly larger size 

otherwise very similar to E. parallela Vršanský, 2003 by 

venations (in E. parallela: Sc alone, R+RA four to seven, MP 

three to five, CuA six to eight branches); differs from  

E. tsaganica Vršanský, 1999b by hind wing larger size and 

similar in most parts of venations (in 

E. tsaganica hind wing 

8–9 mm long and Sc simple, RA three to seven, RS three to 

Fig. 4. Elisama brevis Mendes, 2000. A — SMNS 66000-125. B — 67571. C — 67563. D — 67569. E — 67568. F — 67566. G — 67564. 

H — 67567. I — 67565. J — 67572. K — 67570.

background image

440

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

seven, MP two to four, CuA four to seven, CuP simple and A1 

two to four branches). Later two morphological differences 

between E. parallela and E. tsaganica are not diagnostic, and 

can present sexual dimorphism (Vršanský 2003b).

Description:  Forewing 12 mm long and much close to  

E. parallela both in size and form. Forewing detail unknown 

and is not less than 12 mm long and 4.2 mm wide. Hind wing 

Sc alone, reaching less than ½ length of the anterior margin, 

Fig. 5. The line RA1-ending, MA2-origin and CuP-ending. A–K — Elisama brevis.  L — Elisama parallela.  M — E. extenuate.  

N — E. cuboidesO — Habroblattula drepanoidesL–O: After Vršanský 2003b; Wang et al. 2007a, b. redrawn here; P–S: Piniblattella 

limai (Pinto et Purper, 1986). Not to the same scale.

background image

441

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

RA with five branches, RS with seven branches, MP with 

three branches, CuA with eight branches, CuP alone and A1 

with about four (to five) branches. According to the wing 

characters and its large size, this specimen is a representative 

of the genus Elisama, but does not belong to E. brevis, very 

similar is also the hind wing of genus Kridla Vršanský, 2005.

Remarks: E. hindwingnii sp. n. is similar to E. parallela 

both in size and form. Generally the hind wing is larger than 

in other species of the genus. 

Differential description: It differs from Kridla stastia 

Vršanský, 2005 by hind wing clearly larger size (in K. stastia 

8.1 mm long) and wing venation (in K. stastia: Sc alone, RA 

seven, RS four, MP two, CuA six and CuP simple branches) 

(Vršanský 2005a). It differs from Elisama fragmentaria 

Vršanský, 2005 by larger size of hind wing (in E. fragmen

­

taria ca. 10–11 mm long) and with generally more branches 

(in E. fragmentaria Sc simple, RA five, RS two to three, MP 

two and CuA about six branches) (Vršanský 2005b,c). It dif-

fers from Elisama brevis Mendes, 2000 by larger size of hind 

wing (in 

E. brevis 8.5–10 mm long) and wing venations (in  

E. brevis Sc alone, RA four to five, RS six to seven, MP three 

and CuA six branches). It differs from Habroblattula dre­

panoides Wang, Liang et Ren, 2007 from Liaoning, China by 

hind wing of slightly larger size (in H. drepanoides 10 to 

11 mm long) and wing venation (in H. drepanoides Sc sim-

ple, RA five to six, RS nine to eleven, MP two to five and 

CuA six to nine branches) (Wang et al. 2007a). Elisama 

extenuata  Ren, 1995 by hind wing  7–8 mm long and Sc  

simple, RA four to six, RS four to seven, MP three to four  

and CuA five to six branches (Wang et al. 2007b). Elisama 

cuboides Wang, Ren et Liang, 2007 by hind wing  10 mm 

long and Sc simple, RA  six, RS seven, MP  six and CuA 

seven branches (Wang et al. 2007b). Macaroblattula  

ellipsoids Wang, Ren et Liang, 2007 by hind wing 10.5 mm 

long and Sc simple, RA four to five, RS six to eight, MP six 

and CuA six to eight branches (Wang et al. 2007b).

Character of preservation: Only one pair complete and 

nearly unfolded hind wing preserved.

Genus: Ocelloblattula Anisyutkin et Gorochov, 2008

Type species:  Ocelloblattula. ponomarenkoi Anisyutkin 

et Gorochov, 2008.

Stratigraphic range: Hauterivian – Aptian.

Geographic range: Gondwana.

Ocelloblattula santanensis sp. n.

Holotype: SMNS 66558

Derivatio nominis: Named after the city of Santana 

do Cariri near the type locality.

Stratum typicum: Lower Cretaceous, Upper Aptian, 

Nova Olinda Member of Crato Formation.

Locus typicus: Chapada do Araripe, vicinity of Nova 

Olinda, southern Céara, North-East Brazil.

Diagnosis: This species is very similar to Elisama brevis 

both in size and form, it differs from the forewing preserved 

with a distinctly band colour pattern (Figs. 6, 7), these 

 discontinuous markings suggest membership of the genus 

Ocelloblattula  Anisyutkin et Gorochov,  2008 (family 

 Blattulidae). Head with very large and globular compound 

eyes, probably three ocelli (SMNS 66558, Fig. 6C) reside in 

the forehead between the compound eyes.

Description: Small size roaches. Antenna about the same 

length as body. Body length between 7.9–8.2 mm. Head wide 

and clearly longer than the fore margin of pronotum. Pronotum 

is about 1.5 times wide as the head, approximately of round 

shape, except in the posterior part where it is sharp gradually. 

Forewing is morphologically very similar to Elisama brevis 

(Table 4), 8.0–8.9 mm long and 2.4–2.7 mm wide and 

 

shows rust red colour. Foreleg tibia is about the same length  

as tarsus.

Superfamily: Blattoidea Latreille, 1810

Family: Ectobiidae Brunner von Wattenwyl, 1865 

(=Blattellidae Karny, 1908)

Genus: Piniblattella Vršanský, 1997

Type species: Mesoblattina vitimica Vishniakova, 1964

Composition:  Piniblattella sharingolensis, Vršanský, 

2005; P. minuta Vršanský, 1997. 

Stratigraphic range: (probably Berriasian) Hauterivian 

– Albian.

Geographic range: Cosmopolitan.

Piniblattella limai (Pinto et Purper, 1986) (Fig. 8)

1986 Mesoblattina limai. — Pinto et Purper, 6–10.

Elisama brevis

Forewing

(Right/Left)

SMNS

SC

RA+RP

M

CuA CuP

A

Total

66000-125

1/1

13/12

3/3

4/6

1/1

7/6

29/29

67564

1

15

4

6

1

6

33

67565

1

14

3

4

1

6

29

67566

1/1

13/14

3/3

5/6

1/1

7/8

30/33

67567

1/1

14/14

4/3

6/5

1/1

5/5

31/29

67572

1

16

3

6

1

6

33

Elisama brevis

Hind wing

(Right/Left)

SMNS

SC

RA

RS

MP

CuA

Total

66000-125

1/1

4/4

6/6

3/3

6/6

20/20

67564

1

5

7

3

6

22

67565

1/1

4/4

6/6

3/3

6/6

20/20

67566

1/1

6/5

6/6

3/3

6/7

22/22

67567

1/1

5/4

7/7

3/3

6/6

22/21

67571

1

5

6

3

6

21

67572

1

4

7

3

6

21

Table 2: Forewing venation variability of Elisama brevis Mendes, 

2000.

Table 3: Hind wing venation variability of Elisama brevis Mendes, 

2000.

background image

442

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Diagnosis (improved after Pinto & Purper (1986), Bechly 

(2007a)): Body length 11–14 mm; antenna about as long as 

body; pronotum subcircular, very broad (about 2–2.33 times 

of head width) with very broad lateral lobes; forewing vena-

tion typically ectobiid with costa area short, Sc bifurcated,  

R 8–11 branches (some of them bifurcated), MA 4–6 

branches (some of them bifurcated), CuA generally bifur-

cated, several anal veins simple and ending on CuP, inter-

calary veins and crossveins present (not as few as mentioned 

in the original description). It differs from Piniblattella 

magna sp. n., by significantly smaller size, forewing CuA 

with fewer branches (in P. magna sp. n. three to five) and 

A-veins not fused. It differs from P. vitimica by generally 

smaller size (forewing, 13.5 to 15.5 mm long and 4 to 4.9 mm 

wide; hind wing 15.2 mm long); by forewing M with fewer 

branches than P. vitimica (2–5 dichotomizing branches  

and 12–22 veinlets) and CuA with only two main branches 

(P. vitimica one to seven veinlets). Compared to the 

 

other species of genus Piniblattella  differs by less 

veins-venations. 

It differs from P. sharingolensis Vršanský, 2005 by fore-

wing without intercalaries. Hind wing unknown.

Description: Pronotum subcircular, hind margin rela-

tively straight, about twice the width of the head, fore  

Fig. 6. A — Elisama hindwingnii sp. n.; SMNS 67573. 1. Fore- & hind wings. 2. Hind wings. B–D: Ocelloblattula santanensis sp. n.  

B — SMNS 66558. C — Forehead having probably three ocelli. D — 66316.

background image

443

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

margin of pronotum reaches nearly the same length as  

the top of head. Head with two large compound eyes, with 

two ocelli in the forehead. Thorax with coxa in roaches 

form, mid-and hind leg tarsus about 4/5 length of tibia,  

tarsus with five segments. Forewing: 10.3–13.0 

mm 

 

long and 3.5–4.2 mm wide, Sc typically blattellid with  

bifurcated, RA+Rs with a total of 15–23 branches, M with 

six–nine branches in total (except SMNS 66315 left side 

with five, Fig. 8C), CuA with two branches (except SMNS 

66315 left side with four). Forewings show very low  

morphological differences (Table 5). Hind wing: about 

12–13 mm  long,  detail still unknown. Cerci in typical 

roaches form and about 14 segments. Terminalia with unseg-

mented styli.

Description of other specimens: SMNS 66312 (Fig. 8A): 

Ventral side. Head with two well preserved compound eyes, 

near the scape and in the fore head side exist two ocelli, 

mouthparts well preserved. Pronotum about twice the width 

of the head. Thorax with coxa in roaches form. Terminalia 

near cerci with one pair styli, unsegmented. SMNS  66314 

(Fig. 8B): Antenna shorter than body length. Mid- and hind 

leg tarsus long and well preserved. SMNS 66315 (Fig. 8C): 

The venation between left and right forewings clearly diffe-

rent, especially in M and CuA. In the right side, CuA with 

Fig. 7. Ocelloblattula santanensis sp. n. Uncatalogued specimens from diverse private collections.

F

B

G

K

C

H

D

I

E

J

A

background image

444

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

O. santanensis

Forewing

(Right/Left)

SMNS

SC

RA+RP

M

CuA CuP

A

Total

66316

1/1

14/14

3/3

4/4

1/1

7/8

30/31

66558

1/1

15/15

3/3

5/5

1/1

6/6

31/31

Fig.7A

1/1

15/13

3/3

5/5

1/1

6/7

31/30

Fig.7B

1/1

13/14

4/4

5/4

1/1

8/7

32/31

Fig.7C

1/1

13/15

3/4

5/4

1/1

8/7

31/32

Fig.7D

1/1

14/14

3/3

4/3

1/1

6/6

29/28

Fig.7E

1/1

16/–

3/–

4/4

1/1

7/7

32/–

Fig.7F

1/1

15/13

4/4

4/4

1/1

6/6

31/29

Fig.7G

1/–

15/–

Fig.7H

1/1

15/13

4/5

5/5

1/1

7/7

33/32

Fig.7I

1/–

13/–

4/–

5/–

1/–

7/–

31/–

Fig.7J

–/1

–/13

–/5

–/4

–/1

–/6

–/30

Fig.7K

1/1

16/15

3/3

4/5

1/1

7/7

32/32

two- and M with a total of nine branches, that is more in 

“normal” form. On the left side, the CuA with four- and M 

with “only” five branches, is rather unusual. Left side is also 

a little smaller (9 mm long, 3 mm wide) than the right side 

(10.3 mm long, 3.5 mm wide) and the “normal” size. It is pos-

sible, that the left side is still in nymph phase, but the sclero-

tization in both sides is quite equal. SMNS 66319 (Fig. 8E): 

Pronotum about double width of head. Its fore margin is 

almost the same length as the head. SMNS 66322 (Fig. 8D): 

Hind leg tibia with several spines. Terminalia with one pair 

well preserved cerci, 14 segments.

Piniblattella magna sp. n. (Fig. 9)

2007 Unnamed new genus and species A— Bechly, 248–249.

Holotype: SMNS 66000-116.

Paratypes: SMNS 66310; 66313; 66317; 66318; 66320.

Derivatio nominis: Named after the large size.

Stratum typicum: Lower Cretaceous, Upper Aptian, 

Nova Olinda Member of Crato Formation.

Locus typicus: Chapada do Araripe, vicinity of Nova 

Olinda, southern Céara, North-East Brazil.

Differential diagnosis (improved after Bechly 2007a): 

The species is categorized within Piniblattella, which differs 

from  Mesoblattina  by forewing with less M branches and 

A with less numerous reticulations. Pronotum shield-like, 

forewing with M strongly branched and CuA with just two 

major branches. Large size roaches. Body length 

 17.8–25.0 mm; antennae distinctly longer than body (31 mm 

in a specimen with 25 mm body length); pronotum very large 

with 2.15–2.33 times of head width and with very broad 

 lateral lobes; pronotum broadest in the middle of the poste-

rior half; forewing generally less than body in length, vena-

tion typically blattellid. It differs from P.

 limai by its dis-

tinctly larger size and in having forewing CuA three–five 

branches (in 

P. limai the CuA is with two branches), and the 

A-veins fused often especially in the base part. It differs from 

P. vitimica by generally larger size and forewing M with 

fewer branches (by P.

 vitimica with 2 to 5 dichotomizing 

branches and 12 to 22 veinlets). Larger compared with other 

Piniblattella spp.

Description: Antenna shorter than double the body length 

(2 ×17.8–27.0 mm). The top of head slightly protrudes from 

the fore margin of pronotum. Pronotum broad, approximately 

oval shape, posterior half much wider and hind margin rela-

tively straight. Forewing: 16–21 mm long and 4.8–6.2 mm 

wide, Sc with two major branches, each one sometimes has 

several  (two–four)  terminal  branches,  RA+RS  with  18–20 

branches, M with 8–12 major branches, some branches with 

more terminal branches, CuA with three–five branches, 

A-veins fused often especially in the base part. Forewings 

show very few morphological differences (Table 6). Hind 

wing is about the same length as forewing and is 16–19.5 mm 

long. Hind leg tarsus is about ¾ of the length of the tibia and 

with five or four (SMNS 66000-116, 66317; see Fig. 9A–B) 

segments, the first segment is longest and about half of the 

length of the whole tarsus. Segments continue to be shorter 

from the second to the fourth tarsal segment, the fifth seg-

ment is elongated again, with two claws and pretarsus. Cerci 

with 17–20 segments. 

Description of other specimens: SMNS  66000-116  

(Fig. 9A): Body size (17.8 mm) relatively smaller than in the 

other specimens of this species. Pronotum broad and well 

preserved. The male external genitalia presented with hook-

like structure. Unusual hind leg tarsus, left side with five but 

right side with four segments. The right side tarsus (totally 

4.7 mm) is shorter than the left side tarsus (totally 5.1 mm). 

On the basis of the length of each segment, the “third” seg-

ment should be lost by right side. This “four segments  

tarsus-” (Vršanský 2002 reported it from a Cretaceous  

mantodean Jantarimantis zherikhini), which reflects incom-

plete regeneration  (Bohn 2003), is not rare, in specimen 

SMNS 66317 both sides of hind leg tarsus with only four 

segments. SMNS

 66310 (Fig. 9C): Body size relatively large. 

Antenna (41 mm long) is about shorter than double of body 

length (25 mm). Cerci well preserved, about 20 segments. 

SMNS 66313 (Fig. 9F): Mid and hind leg tarsus with five 

segments. SMNS 66317 (Fig. 9B): Hind leg tarsus with four 

segments. SMNS 66318 (Fig. 9E): Forewing Sc with several 

branches. Abdomen swelled. SMNS 66320 (Fig. 9D): Fore-

wing Sc with two major branches, the Sc2 has further termi-

nal branches. Hind wing is only partly preserved.

Family: Mesoblattinidae Handlirsh, 1906

Genus: 

Perlucipecta Wei et Ren, 2013

Perlucipecta santanensis sp. n. (Fig. 10)

2007 Unnamed genus and species B— Bechly, 249.

Holotype: SMNS 66308.

Paratypes: SMNS 66309; 66311; 66321.

Derivatio nominis: Named after the city of Santana 

do Cariri near the type locality.

Table 4: Forewing venation variability of Ocelloblattula  

santanensis sp. n.

background image

445

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Stratum: Lower Cretaceous, Upper Aptian, Nova Olinda 

Member of Crato Formation.

Locality: Chapada do Araripe, vicinity of Nova Olinda, 

southern Céara, North-East Brazil.

Diagnosis: Small-sized roaches. Body about 8.7–11.9 mm 

length; shape of body longish oval; antennae about as long as 

body; pronotum much broader than head (width 3.0–3.7 mm, 

thus 1.8–2 times head width), posteriorly broader than ante-

riorly, but with narrower lateral lobes than blattellid 

 

species mentioned above; forewing thin, venation with 

a broad costal margin.

Description: First time reported by Bechly (2007a). 

Antenna a little longer than body length. Body about  

8.7–11.9 mm long. The top of head slightly protrudes from 

the fore margin of pronotum. The hind margin of pronotum is 

relative straight. Forewing, costal margin broad, Sc probably 

bifurcated, Sc1 extra short and except the base part not very 

distinct. Hind wing Mp at least three branches, CuA at least 

five branches. Fore-, mid-, and hind legs show similar pat-

terns, that is, tibia always slightly longer than femur, tarsus 

with five segments and all together about 70–86% of tibia 

length, the first segment is longest, about a half of the whole 

tarsal length, the second segment is the second longest, third 

and forth segment shorter, the fifth segment elongated again 

and with claws and pretarsus. Cerci in roaches form, 13–14 

segments. Treminalia with unsegmented styli.

Fig. 8. Piniblattella limai; A — SMNS 66312. B — 66314. C — 66315, 

variations different between right- & left forewings from the same individual. 

D — 66322. E — 66319.

background image

446

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Description of other specimens: SMNS 66308 (Fig. 10A): 

Antenna slightly longer than the body length. Fore- and hind 

wings overlap and only partly identifiable, those are: fore-

wing Sc with two branches, CuA at least two branches, hind 

wing Mp at least three branches, CuA at least five branches. 

Foreleg tarsus well preserved. Cerci in typical roaches form, 

14 segments. SMNS 66309 (Fig. 10B): Forewing probably 

thinner, only the base part slightly sclerotized. Hind leg well 

preserved. SMNS 66311 (Fig. 10C): Hind leg well preserved. 

Terminalia with unsegmented styli. SMNS 66321 (Fig. 10D): 

Ventral side. Head with a pair of large compound eyes. 

Mouth parts, including labrum, maxillary- and labial palps 

partly visible. In thorax, the coxal and the trochanters were 

well preserved.

Genus: Raptoblatta Dittmann, Hörnig,  

Haug et Haug, 2015

Remarks: Predator regarded as a relative of praying man-

todeans, with venation with characteristic reticulations visible 

on the apical parts of both left and right forewings as well as 

hind wings. This taxon is difficult to discriminate from the 

dominant Laurasian as well as Gondwanan Archi mesoblatta, 

and is very closely related to Gondwanan Gondwablatta, 

with identical forelegs (spines were not preserved), but with 

a different pronotum. Pronotum of Raptoblatta is apparently 

misinterpreted and has a standard, vaulted, small and trans-

versal shape. Nevertheless, it is different from Gondwa­

blatta. The carnivorous mode of life might explain the lack 

of other predatory lineages of cockroaches in nume rous 

localities with occurrence of Archimesoblatta. Nevertheless, 

categorization within Mesoblattinidae excludes the manto-

dean relation.

 

Raptoblatta waddingtonae Dittmann, Hörnig,  

Haug et Haug, 2015

Material: Monotypic, holotype only. Axelrod Institute, 

University of Guelph, Canada: AI 514

Diagnosis: Medium-sized, roach-like, winged insect with 

wide abdominal segments and cockroach-type cerci; most 

prominent structure is the foreleg with the row of femural 

and tibial spines; the median side of the distal region of the 

femur is concave - this region is equipped with small spines; 

and has nearly the same length as the tibia.

Discussion

The ecologically-dominant family of the order Blattaria in 

the Crato Formation is represented by the family Ectobiidae, 

with about 83 % of the cockroach specimens. This result is 

similar to that of Vršanský (2004) who also reported that this 

family accounts for 60 % of the cockroaches in the Crato For-

mation based on the American Museum of Natural History 

(AMNH, New York) collection. Blattulidae represent about 

13 % of the cockroaches. This study shows a surpri singly low 

abundance of the family Umenocoleidae (only 4 %) com-

pared to the AMNH collection, which shows that the Umeno-

coleidae are represented by up to 15 % of all roaches 

(Vršanský 2004). Although the Cretaceous cockroach assem-

blages differ from the Jurassic cockroach assemblages (this 

transition was characterized by the temporal change in the 

dominance of particular families), Blattulidae remain domi-

nant during the Cretaceous, together with the Ectobiidae 

(Vršanský 2002). Blattulidae are also dominant in the Yixian 

formation (Late Jurassic/Early Cretaceous) of northern China 

(Wang et al. 2007b). The Crato dictyopterans (see also Lee 

2014) show similarities with those at the Cretaceous localities 

of Mongolia (e.g., Vršanský 2003b, 2008b) and Chernovskie 

Kopi in Russia (Barna 2014), namely Chaeteessidae, Ecto-

biidae, Blattulidae and Umenocoleidae. The Upper Jurassic 

assemblage from Shar-Teg (Mongolia) shows a more even 

cockroach assemblage with Blattulidae (38 %), Mesoblatti-

nidae (25 %), Liberiblattinidae (13 %) and Caloblattinidae 

(25%)  (Vršanský  2005 b, c;  Barna  2014).  The  cockroach 

assemblage of the Lower Cretaceous in Montsec (Spain) is 

dominated by blattulids and meso   blattinids (Vršanský and 

Ansorge 2001). The lack of the family Fuziidae (Vršanský et 

al. 2009) in the Crato Formation supports an endemic status 

of the family in Inner Mongolia (China, Daohugou).

Palaeogeographical distribution of genera reveals interes-

ting patterns. Only Ocelloblattulla is limited to Gondwana, 

while  Perlucipecta, Piniblattella, Elisama and possibly 

 

Petropterix (“P.” maxima) were also present in Laurasia. 

Cratovitisma, Ponopterix, Raptoblatta (possibly  Archi  meso­

blatta) and the new genus Umenopterix are endemic. 

 

It follows that the primitive taxa are shared with Laurasia, 

while the more advanced cockroaches are either indigenous 

or restricted to Laurasia (while progressive Raphidiommidae 

as well as rather primitive Caloblattinidae were missing).  

On the other hand, phylogenetically-advanced Laurasian 

taxa such as 

Praeblattella (although recorded in the 

 

New Jersey amber), T

arakanula, Elytropterix and Petro­

pterix do not occur in the Crato Formation.

Piniblattella limai

(Right/Left)

SMNS

SC

RA+RP

M

CuA CuP

A

Total

66312

2/2

21/22

9/6

2/2

1/1

7/6

42/39

66314

2/2

19/18

6/8

2/2

1/1

6/6

36/37

66315

2/2

16/14

9/5

2/4

1/1

5/5

35/31

66319

2

23

7

2

1

5

40

66322

2

18

7

2

1

6

36

Piniblattella magna

(Right/Left)

SMNS

SC

RA+RP

M

CuA CuP

A

Total

66000-116

2/2

19/20

7/13

2/2

1/1

8/6

39/44

66317

2/2

19/19

8/11

4/3

1/1

8/9

42/45

66318

3/4

19/19

8/9

3/5

1/1 10/10

44/48

Table 5: Forewing venation variability of Piniblattella limai.

Table 6: Forewing venation variability of Piniblattella magna sp. n.

background image

447

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

Phylogenetic context is congruent with the Aptian datings 

of the locality. While it is impossible to delimit the phylo-

genetic status for Elisama spp., and Piniblattella spp. because 

they do not possess phylogenetically important characters, 

Perlucipecta can be regarded as somewhat more advanced 

than its Yixian congener Ponopterix and Ocelloblattulla are 

assumed to be extremely advanced taxa in spite of some 

primitive characters, the latter genus furthermore also occurs 

in earlier Lebanon amber (without Plesiomorphies). On the 

other hand, Cratovitisma and Umenopterix are extremely 

primitive compared to all (including the stratigraphically 

basalmost ones) Cretaceous localities because they possess 

Fig. 9.  Piniblattella magna sp. n. A  —  holotype  habitus;  SMNS  66000-116,  right  &  left  hind  legs  tarsus  with  four—five  segments.  

B — SMNS 66317. C — 66310. D — 66320. E — 66318. — 66313.

background image

448

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

characters such as standard pronotum with fully developed 

paranotalia. 

Acknowledgements: I am thankful to Dr. Günter  Bechly 

(Stuttgart) and Prof. Dr. James Nebelsick (Tübingen) for the 

patient instruction and general help. I thank Dr. Karin 

Wolf-Schwenninger (Stuttgart) for technical support. I am 

most grateful to Dr. Peter Vršanský (Bratislava, Moscow) for 

his help and critical comments. I thank Mrs. Annesuse 

Raquet-Schwickert and Mr. Michael  Schwickert 

Fig. 10. Perlucipecta santanensis. sp. n. A — holotype habitus: SMNS 66308. B — 66309. C — 66311. D — paratype habitus: 66321.

background image

449

APTIAN COCKROACH (INSECTA) ASSEMBLAGES, CRATO FORMATION, NE BRAZIL

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

(Sulzbach tal) for their friendly support and providing gene-

rous access to the fossil material of their collection (Fossils 

Worldwide, Sulzbachtal, Germany). I thank Mrs. Sabine 

Petri, Mrs. Angelika Schäfer, Mr. Detlef Stark and Mr. Walter 

Siegl for the assistance with the routine work in the library 

and museum. This work was financial supported by Ministry 

of Education, Taiwan. Finally I want to thank the Staatliches 

Museum für Naturkunde, Stuttgart, Germany for generously 

providing a working space and allowing for me to access the 

studied material.

References

Anisyutkin L.N. & Gorochov A.V. 2008: A new genus and species 

of the cockroach family Blattulidae from Lebanese Amber 

(Dictyoptera, Blattina). Paleont. J. 42, 1, 43–46.

Bai M., Beutel R.G., Klass K.-D., Zhang W., Yang X. & Wipfler B. 

2016: † Alienoptera — A new insect order in the roach- 

mantodean twilight zone. Gondwana Res., doi: 10.1016/j.

gr.2016.02.002.

Barling N., Martill D.M., Heads S.W. & Gallien F. 2015: High fidelity 

preservation of fossil insects from the Crato Formation (Lower 

Cretaceous) of Brazil. Cretaceous Res. 52, 605–622.

Barna P. 2014: Low diversity cockroach assemblage from Cher-

novskie Kopi in Russia confirms wing deformities in insects at 

the Jurassic/Cretaceous boundary. Biologia 69, 5, 651–675.

Bechly G. 1998: New fossil dragonflies from the Lower Cretaceous 

Crato Formation of north-east Brazil (Insecta: Odonata). 

 Stuttgarter Beiträge zur Naturkunde, Serie B 264, 1–66.

Bechly G. 2007a: “Blattaria”: cockroaches and roachoids. 

 

In: Martill D.M., Bechly G. & Loveridge R.F. (Eds.): The Crato 

fossil beds of Brazil.

 Window into an ancient world.  Cambridge 

University Press, Cambridge, 239–249.

Bechly G. 2007b: Introduction, Chapter 11 Insects of the Crato 

 Formation. In: Martill D.M., Bechly G. & Loveridge R.F. 

(Eds.): The Crato fossil beds of Brazil. Window into an ancient 

world. Cambridge University Press, Cambridge, 142–149.

Bechly

 G. 2007c: Isoptera: termites, pp. 

In: Martill D.M., Bechly G. 

& Loveridge R.F. (Eds.): The Crato fossil beds of Brazil. 

 Window into an ancient world. Cambridge University Press

Cambridge, 

249

262.

Bohn H. 2003: Ordnung Blattoptera, Schaben. In: Dathe H.H. (Ed.): 

Lehrbuch der Speziellen Zoologie, Band 1, Teil 5 (Insecta). 

Spektrum, Heidelberg, 197–223.

Carpenter F.M. 1992: Superclass Hexapoda. In: Kaesler R.L. (Ed.): 

Treatise on Invertebrate Paleontology, Part R, Arthropoda 4, 

3/4. Geological Society of America and University of Kansas, 

Boulder and Lawrence, 134–137.

Chen S. & T’an C.C. 1973: A new family of Coleoptera from the 

lower Cretaceous of Kansu. Acta Entomologica Sinica 16, 

169–178.

Comstock J.H. & Needham J.G. 1898: The Wings of Insects. 

 

Chapter III. The Specialization of Wings by Reduction. 

 

The American Naturalist 32, 376, 231–257.

Dittmann I-L., Hörnig M-L., Haug J-T. & Haug C. 2015: Rapto­

blatta waddingtonae n. gen. et n. sp. — a roach-like insect from 

the Lower Cretaceous with a mantodean-type raptorial foreleg. 

Paleodiversity 8, 103–111.

Djernaes M., Klass K.D., Picker M.D. & Damgaard J. 2012: 

 Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), 

with placement of aberrant taxa and exploration of out group 

sampling. Systematic Entomology 37, 1, 65–83.

Djernaes M., Klass K.D. & Eggleton P. 2015: Identifying possible 

sister groups of Cryptocercidae+ Isoptera: A combined mole-

cular and morphological phylogeny of Dictyoptera. Molecular 

phylogenetics and evolution 84, 284–303.

Grimaldi D.A. 2007: Mantodea-praying mantises. In: Martill D.M., 

Bechly G. & Loveridge R.F. (Eds.): The Crato fossil beds of 

Brazil. Window into an ancient world. Cambridge University 

Press, Cambridge, 234–238.

Grimaldi D.A. & Engel M.S. 2005: Evolution of the Insects. 

 Cambridge University Press, 1–772.

Heads S.W. & Leuzinger L. 2011: On the placement of the 

 Cretaceous  orthopteran  Brauckmannia groeningae from Bra-

zil, with notes on the relationships of Schizodactylidae 

 (Orthoptera,  Ensifera).  ZooKeys 77, 17–30.

Hennig W. 1981: Insect phylogeny. John Wiley and Sons Ltd., 

i–xxii + 1–514.

Hörnig

 M.K., 

Haug

 J.T. & 

Haug

 C. 2013: New details of Santan-

mantis axelrodi and the evolution of the mantodean morpho-

type. Palaeodiversity 6, 157

168.

Kukalová-Peck J. 1991: Fossil history and the evolution of hexapod 

structures. In: CSIRO (Ed.): The Insects of Australia, 2nd ed. 

Cornell University Press, Ithaca, NY, 141–179.

Lee S.W. 2014: New Lower Cretaceous basal mantodean (Insecta) 

from the Crato Formation (NE Brazil). Geol. Carpath. 65, 4, 

285–292.

Martill D.M. 2007: The geology of the Crato Formation. In: Martill 

D.M., Bechly G. & Loveridge R.F. (Eds.): The Crato fossil 

beds of Brazil.  Window into an ancient world. Cambridge 

 University  Press, Cambridge, 8–24.

Martill D.M. & Bechly G. 2007: Introduction to the Crato  Formation. 

In: Martill D.M., Bechly G. & Loveridge R.F. (Eds.): The Crato 

fossil beds of Brazil. Window into an ancient world.  

Cambridge 

University Press, Cambridge, 3–7.

Martill, D.M. & Heimhofer U. 2007: Stratigraphy of the Crato 

 Formation. In: Martill D.M., Bechly G. & Loveridge R.F. 

(Eds.): The Crato fossil beds of Brazil. Window into an ancient 

world. Cambridge University Press, Cambridge, 25–43.

Martins-Neto, R. G. 2006: Fossil insects as bioindicators in sedi-

mentary deposit: a case study for Cretaceous of Bacia do Ara-

ripe (Brazil). Revista Brasileira de Zoociências 8, 2, 155–183 

(in Portuguese with English abstract).

Martins-Neto R.G. & Gallego O.F. 2006: “Death Behaviour”— 

Thanatoethology, new term and concept: A Taphonomic 

 Analysis providing possible paleoethologic inferences. Special 

cases from Arthropods of the Santana Formation (Lower 

 Cretaceous, Northeast Brazil). Geociências 25, 2, 241–254.

Martins-Neto R.G. & Tassi L.V. 2009: The Orthoptera (Ensifera) 

from the Santana formation (Early Cretaceous, Northeast 

 

Brazil): A statistical and paleoecological approach, with 

description of new taxa. Zootaxa 2080, 21–37.

Martins-Neto R.G., Mancuso A.C. & Gallego O.F. 2005: The Triassic 

Insect Fauna from Argentina. Blattoptera from Los Rastros 

Formation (Bermejo Basin), La Rioja Province. Ameghiniana 

42, 4, 705–723.

Martins-Neto R.G., Assis C.O. & Tassi L.V. 2010: New Blattoptera 

from Early Cretaceous of Santana Formation (Araripe Basin, 

NE Brazil) and a review of Arariplebatta  Mendes, 2000.  

J. Geosci. 6, 1, 9–13.

Menon F. & Martill D.M. 2007: Taphonomy and preservation of 

Crato Formation arthropods. In: Martill D.M., Bechly G. & 

Loveridge R.F. (Eds.): The Crato fossil beds of Brazil. Window 

into an ancient world. Cambridge University Press,  

Cambridge, 79–96.

Nel  A.,  Prokop  J.,  Grandcolas  P.,  Garrouste  R.,  Lapeyrie  J.,  

Legendre  F.,  Anisyutkin  L.N.  &  Kirejtshuk  A.G.  2014:  

background image

450

LEE

GEOLOGICA CARPATHICA

, 2016, 67, 5, 433 – 450

The beetle-like Palaeozoic and Mesozoic roachoids of the 

so-called “umenocoleoid” lineage (Dictyoptera: Ponopterixidae 

fam. nov.). Comptes Rendus Palevol 13, 7, 545–554.

Pinto I.D. 1989: A second new blattoid from the Cretaceous of 

 Brazil.  Resumo das Comunicações do Congresso Brasileiro de 

Paleontologia 11, 295–300.

Pinto I.D. & Purper I. 1986: A new blattoid from the Cretaceous of 

Brazil.  Pesquisas Instituto de Geociências Universidad 

 Federal do Rio Grande do Sul 18, 5–10.

Schneider J. 1977: Zur Variabilität der Flügel paläozoischer Blatto-

dea (Insecta), Teil I. Freiberger Forschungshefte C 326, 87–105.

Schneider J. 1978a: Zur Variabilität der Flügel paläozoischer 

 Blattodea (Insecta), Teil II. Freiberger Forschungshefte C 334, 

21–39.

Schneider J. 1978b: Revision der Poroblattinidae (Insecta, Blattodea) 

des europäischen und nordamerikanischen Oberkarbon und 

Perm. Freiberger Forschungshefte C 342, 55–66.

Schneider J. 1980a: Zur Entomofauna des Jungpaläozoikums der 

Boskovicer  Furche  (ČSSR),  Teil  I:  Mylacridae  (Insecta, 

 Blattodea).  Freiberger Forschungshefte C 357, 43–55.

Schneider J. 1980b: Zur Taxonomie der jungpaläozoischen Neorthro-

blattinidae (Insecta, Blattodea). Freiberger 

 Forschungs   hefte  

348, 31–39.

Schneider J. 1983: Die Blattodea (Insecta) des Paläozoikums, Teil 1: 

Systematik, Ökologie und Biostratigraphie. Freiberger For

­

schungshefte C 382, 107–146.

Schneider J. 1984: Die Blattodea (Insecta) des Paläozoikums, Teil 2: 

Morphogenese der Flügelstrukturen und Phylogenie. 

Freiberger Forschungshefte C 391, 5–34. 

Schneider J. & Werneburg R. 1993: Neue Spiloblattinidae (Insecta, 

Blattodea) aus dem Oberkarbon und Unterperm von Mittel-

europa sowie die Biostratigraphie des Rotliegend. Veröffentli

­

chungen des Naturhistorischen Museums Schleusingen 7, 8, 

31–52.

Vishniakova V.N. 1973: New cockroaches (Insecta: Blattodea) from 

the Upper Jurassic sediments of Karatau. Problems of the 

Insect Palaeontology, Lectures on the XXIV Annual Readings 

in Memory of NA Kholodkovsky (1–2 April, 1971). Nauka

Leningrad, 64–77 (in Russian).

Vishniakova V.N. 1982: Jurassic cockroaches of the new family 

Blattulidae from Siberia. Paleontological Journal 2, 67—77.

Vršanský P. 1997: Piniblattella  gen. nov. — the most ancient  

genus of the family Blattellidae (Blattodea) from the 

 

Lower  Cretaceous of Siberia. Entomological Problems 28, 1, 

67–79.

Vršanský P. 1999a: Lower Cretaceous Blattaria. In: Vršanský 

P. (Ed.): Proceedings of the First Palaeoentomological 

 Conference Moscow 1998. Bratislava: AMBA Projects Inter

­

national, 167–176.

Vršanský P. 1999b: Two new species of Blattaria (Insecta) from the 

Lower Cretaceous of Asia, with comments on the origin and 

phylogenetic position of the families Polyphagidae and Blattu-

lidae. Entomological Problems 30, 2, 85–91.

Vršanský P. 2002: Origin and evolution of mantises. AMBA Projekty 

6, 1, 1–16.

Vršanský P. 2003a: Umenocoleoidea — an amazing lineage of 

 aberrant insects (Insecta, Blattaria). AMBA Projekty 7, 1, 1–32.

Vršanský P. 2003b: Unique assemblage of Dictyoptera (Insecta — 

Blattaria, Mantodea, Isoptera) from the Lower Cretaceous of 

Bon Tsagaan Nuur in Mongolia. Entomological Problems 33, 

1–2, 119–151.

Vršanský P. 2004: Cretaceous Gondwanian Cockroaches (Insecta: 

Blattaria). Entomological Problems 34, 1–2, 49–54.

Vršanský P. 2005a: A fossil insect in a drilling core sample — 

 cockroach  Kridla stastia gen. et sp. nov. (Blattulidae) from the 

Cretaceous of the Verkhne-Bureinskaya Depression in Eastern 

Russia. Entomological Problems 35, 2, 115–116.

Vršanský P. 2005b: Lower Cretaceous cockroaches and mantids 

(Insecta: Blattaria, Mantodea) from the Sharin-Gol in Mongolia. 

Entomological Problems 35, 2, 163–167.

Vršanský

 P. 2005c: 

Mass mutations of insects at the Jurassic/ 

Cretaceous boundary. Geol. Carpath. 56, 6, 473–781.

Vršanský P. 2008a: Central ocellus of extinct cockroaches (Blattida: 

Caloblattinidae). Zootaxa 1958, 41–50.

Vršanský P. 2008b: New blattarians and a review of dictyopteran 

assemblages from the Lower Cretaceous of Mongolia. Acta 

Palaeontol. Pol, 53, 1, 129–136.

Vršanský P. & Ansorge J. 2001: New Lower Cretaceous polyphagid 

cockroaches from Spain (Blattaria, Polyphagidae, Vitisminae 

subfam.nov.). Cretaceous Res. 22, 157–162.

Vršanský P. & Aristov D. 2014: Termites (Isoptera) from the 

 Jurassic/Cretaceous boundary: Evidence for the longevity of 

their earliest genera. Eur. J. Entomology 111, 1, 137–141.

Vršanský P. & Bechly G. 2015: New predatory cockroaches (Insecta: 

Blattaria: Manipulatoridae fam. n.) from the Upper Cretaceous 

Myanmar amber. Geol. Carpath. 66, 2, 133–138.

Vršanský P., Liang J.-H. & Ren D. 2009: Advanced morphology and 

behaviour of extinct earwig-like cockroaches (Blattida: 

 Fuziidae).  Geol. Carpath. 60, 6, 449–462.

Vršanský

 P., 

van

 

de

 

Kamp

 T., 

Azar

 D., 

Prokin

 A., 

Vidlička

 L. & 

Vagovič

 P. 2013: Cockroaches Probably Cleaned Up after 

Dinosaurs. PloS one 8, 12, e80560.

Vršanský P., Oružinský R., Barna P., Vidlička Ľ. & Labandeira C.C. 

2014: Native Ectobius (Blattaria: Ectobiidae) From the Early 

Eocene Green River Formation of Colorado and its Reintro-

duction to North America 49 Million Years Later’. Annals of 

the Entomological Society of America 107, 28–36.

Wang

 C. & 

Ren

 D. 2013: Nuurcala obesa sp. n. (Blattida, Calo-

blattinidae) from the Lower Cretaceous Yixian Formation in 

Liaoning Province, China. ZooKeys 318, 35–46.

Wang  T.-T., Liang J.-H. & Ren D. 2007a: Variability of Habro­

blattula drepanoides gen. et. sp. nov. (Insecta: Blattaria: 

 Blattulidae) from the Yixian Formation in Liaoning, China. 

Zootaxa 1443, 17–27.

Wang T.-T., Ren D., Liang J.-H. & Shih C. 2007b: New Mesozoic 

Cockroaches (Blattaria: Blattulidae) from Jehol Biota of western 

Liaoning in China. Annales Zoologici (Warszawa) 57, 3, 

483–495.

Wei

 D. & 

Ren

 D. 2013: Completely preserved cockroaches of the 

family Mesoblattinidae from the Upper Jurassic-Lower 

 Cretaceous Yixian Formation (Liaoning Province, NE China). 

Geol. Carpath. 64, 4, 291

304.

Zhang H.C 1997: Early Cretaceous insects from the Dalazi Forma-

tion of the Zhixin Basin, Jilin Province, China. Palaeoworld 7, 

75–103.

Zhang

 Z., 

Schneider

 J.W.& 

Hong

 Y. 2012: The most ancient roach 

(Blattodea): a new genus and species from the earliest Late 

Carboniferous (Namurian) of China, with a discussion of the 

phylomorphogeny of early blattids. Journal of Systematic 

Palaeontology 11, 1, 27

40.

Zherikhin

 V.V. 1993: History of tropical rain-forest biome. Zhurnal 

Obshchei Biologii 54, 6, 659

666.