background image


doi: 10.1515/geoca-2016-0025

The Ankara Mélange: an indicator of Tethyan  

evolution of Anatolia 





Hacettepe University Geological Engineering Department, Ankara-Turkey;


Yüzüncü Y l University, Geological Engineering Department, Van-Turkey

(Manuscript received December 31, 2015; accepted in revised form June 7, 2016)

Abstract: The Ankara Mélange is a complex formed by imbricated slices of limestone block mélanges (Karakaya and 
Hisarl kaya Formations), Neotethyan ophiolites (Eldivan, Ahlat and Edige ophiolites), post-ophiolitic cover units 
(Mart and Kavak formations) and Tectonic Mélange Unit (Hisarköy Formation or Dereköy Mélange). The Karakaya 
and Hisarl kaya formations are roughly similar and consist mainly of limestone block mélange. Nevertheless, they 
represent some important geological differences indicating different geological evolution. Consequently, the Karakaya 
and Hisarl kaya formations are interpreted as Eurasian and Gondwanian marginal units formed by fragmentation of the 
Gondwanian carbonate platform during the continental rifting of the Neotethys in the Middle Triassic time. During the 
latest Triassic, Neotethyan lithosphere began to subduct beneath the Eurasian continent and caused intense deforma-
tion of the marginal units. The Eldivan, Ahlat and Edige ophiolites represent different fragments of the Neotethyan 
oceanic lithosphere emplaced onto the Gondwanian margin during the Albian–Aptian, middle Turonian and middle 
Campanian, respectively. The Eldivan Ophiolite is a NE–SW trending and a nearly complete assemblage composed, 
from bottom to top, of a volcanic-sedimentary unit, a metamorphic unit, peridotite tectonites, cumulates and sheeted 
dykes. The Eldivan Ophiolite is unconformably covered by Cenomanian–Lower Turonian sedimentary unit.  
The Eldivan Ophiolite is overthrust by the Ahlat Ophiolite in the north and Edige Ophiolite in the west. The Ahlat 
ophiolite is an east–west oriented assemblage comprised of volcanic-sedimentary unit, metamorphic unit, peridotite 
tectonites and cumulates. The Edige Ophiolite consists of a volcanic-sedimentary unit, peridotite tectonites, dunite, 
wherlite, pyro xenite and gabbro cumulates. The Tectonic Mélange Unit is a chaotic formation of various blocks 
derived from ophio lites, from the Karakaya and Hisarl kaya formations and from post-ophiolitic sedimentary units. It was 
formed during the collision between Anatolian Promontory and Eurasian Continent in the middle Campanian time. 

Keywords: Ankara Mélange, Neotethys, geodynamic evolution, Anatolia, Turkey.


Anatolia is an east–west oriented peninsula principally 
formed by the collision of the Gondwanian and Eurasian 
continents (Fig. 1). During Mesozoic times, the Tethyan 
Ocean formed a gulf towards the west between the two con-
tinents. Various hypotheses have been suggested on the shape 
and the evolution of the Tethyan embayment including single 
or multi-branched Tethys; opening and closure times of the 
Neotethyan Ocean; as well as the time and the polarity of the 
Tethyan subduction (Ricou et al. 1975; Bijou-Duval et al. 
1977;  engör & Y lmaz 1981; Knipper et al. 1986; Okay & 
Tüysüz 1999; Stamp i 2000; Okay et al. 2002; Robertson 
2002; Çak r 2009). 

The suggestion of various hypotheses and models are 

probably due to the choice of unsuitable formations as geo-
dynamical indicators. Consequently, a synthesis from the 
appropriate formation is strongly needed. The Ankara 
Mélange composed of ophiolites and marginal formations is 
regarded as a key formation for interpreting the geological 
evolution of Anatolia. 

This study evaluates the actual geological data and reinter-

prets former ones (Norman 1972, 1973, 1985; Batman 1978, 
1981; Çapan et al. 1983; Akyürek et al. 1984, 1996; 

Hakyemez et al. 1986; Koçyi it 1987, 1991; Tankut 1990; 
Dilek & Thy 2006; Çelik et al. 2011, 2013; Rojay 2013; 
 Sar fak o lu et al. 2014) obtained from the Ankara Mélange 
and proposes a new synthetic model. 

Geological characteristics of the Ankara Mélange

The Ankara Mélange is situated in the central part of the 

zmir-Ankara-Erzincan suture zone, around Ankara and 

Çank r  cities, between Haymana and Korgun towns with 
160 km in length and 50 km in width (Fig. 2). 

It is a complex formed by imbricated slices of limestone 

block mélanges (Karakaya and Hisarl kaya Formations), 
Neotethyan ophiolites (Eldivan, Ahlat and Edige ophiolites), 
post-ophiolitic cover units (Mart and Kavak formations) and 
Tectonic Mélange Unit (Fig. 3). 

Therefore the Ankara Mélange includes eight different 

units represented by three chaotic complexes (Karakaya, 
Hisarl kaya and Hisarköy formations) according to the 
mélange definition of Festa et al. (2010, 2012), three ophio-
lites (Eldivan, Ahlat and Edige Ophiolites) and two 
post-ophiolitic sedimentary units (Mart and Kavak 

background image




, 2016, 67, 4, 403–414

Fig. 1.

 Position of the 

Ankara Mélange and 

Anatolian Ophiolites within the 


Anatolian and 

Arabian Promontories in a simpli

ed geological map of 


urkey (modi

ed from Çak

r, 2009). 

1 — Ophiolite; 

— Karakaya Formation;


 — Hisarl

kaya Formation; 

4 — Basement rocks belonging to Eurasian Continent during the Palaeotethyan and Neotethyan period; 

5 — Basement 

rocks belonging to Gondwanian Continent during the Palaeotethyan period and Eurasian Continent during the Neotethyan period; 

6 — Basement rocks belonging to Gondwanian Continent during 

the Palaeotethyan and Neotethyan period; 

7 — Palaeotethyan suture; 

8 — 



-Küre suture; 

9 — Neotethyan suture; 


 — Sutures between 

Aegean-Anatolian-Arabian promontories; 



 — Elaz

 and Hazar sutures; 


 — Maden suture; 



Thrust front; 


 — Fault.

background image




, 2016, 67, 4, 403–414

The Karakaya and Hisarl kaya formations are tectonosedi-

mentary chaotic complex situated on both sides of the ophio-
lites. They were formed during the rifting of the Neotethyan 
ocean in the Middle Triassic by fragmentation of 

a Gondwanian carbonate plat-
form and evolved differently. 

The Eldivan, Ahlat and 

Edige ophiolites represent 
three different fragments of 
the Neotethyan oceanic litho-
sphere emplaced onto the 
Anatolian Promontory of the 
Gondwanian continent during 
Albian–Aptian, Middle Turo-
nian and Middle Campanian 
times respectively. 

The Mart and Kavak for-

mations are post-ophiolitic 
series formed during Ceno-
manian–lower Turonian and 
Upper Turonian–Lower Cam-
panian times, respectively. 

The Tectonic Mélange Unit 

(Hisarköy Formation or Dere-
köy Mélange) is a tectonic 
chaotic complex which con-
tains the fragments of the 
Karakaya Formation, Hisar-
l kaya Formation, Lalelik for-
mation, ophiolites, Mart and 
Kavak formations. 

Consequently the main 

characteristic of the Ankara 
Mélange is the close relation-
ships between the ophiolites 
and the marginal formations 
represented mainly by lime-
stone block mélanges. The 
ophiolites and their covers are 
sandwiched between the two 
limestone block mélanges, 
Karakaya Formation at the 
top (Fig. 4) and Hisarl kaya 
Formation at the bottom 
(Fig. 5).

Karakaya Formation 

The Karakaya Formation 

consists of the limestone 
block mélange at the top and 
the metamorphic unit at the 

The metamorphic unit is 

composed of thinly foliated 
and strongly folded phyllites 

and schists. The mineralogical assemblage containing chlo-
rite, sericite, albite, quartz, calcite, epidote, actinolite, glau-
cophane and graphite indicates a low-temperature/high-pres-
sure metamorphism. The ophiolitic blocks observed 

Fig. 2. Geological map of the Ankara Mélange (synthesized from Batman 1978, 1981; Akyürek et al. 
1984; Koçyi it 1987, 1991, 2013; Gökalp1999; Üner,2010; Çak r & Üner 2014). GONDWANIAN 
UNITS: 1 — K r ehir Granitoides; (Late Cretaceous); 2 — Lalelik Formation (Upper Jurassic–Lower 
Cretaceous limestone-claystone cover unit of the Hisarl kaya Formation); 3 — Hisarl kaya Formation 
(Middle–Upper Triassic limestone block mélange); 4 — K r ehir metamorphites (Palaeozoic–Mesozoic 
basement unit). OPHIOLITIC UNITS: Edige Ophiolite: 5 — cumulates (Late Cretaceous); 6 — peri-
dotite tectonites (late Cretaceous); 7 — radiolaritic series (Late Triassic–Late Cretaceous); Ahlat  
 8 — tectonites (Late Cretaceous); 9 — radiolaritic series (Late Triassic–Early Turonian); 
Eldivan Ophiolite: 10 — sheeted dyke complex (Middle–Late Jurassic); 11 — cumulates (Middle–
Late Jurassic); 12 — tectonites (Middle–Late Jurassic); 13 — metamorphic unit (Middle Jurassic);  
14 — radiolaritic series (Late Triassic–Barremian). EURASIAN UNITS: 15 — Ankara Group (Lower 
Jurassic–lower Campanian cover unit of the Karakaya formation); 16 — limestone block mélange 
(Middle–Late Triassic); 17 — epimetamorphic unit (Lower Triassic); POST-OPHIOLITIC UNITS:  
18 — Memlik, Maltepe and Yuva formations (middle Campanian to recent); 19 — Kavak Formation 
(late Turonian–Maastrichtian cover unit of the Ahlat Ophiolite); 20 — Mart Formation (Cenomanian–
early Turonian cover unit of the Eldivan Ophiolite); TECTONIC MÉLANGE UNIT: 21 — Hisarköy 
or Dereköy formations (middle Campanian).

background image




, 2016, 67, 4, 403–414

northeast of the Hasano lan and Çubuk region were affected 
by a similar deformation style. The fossils found in the phyl-
lites (Meandrospira pusilla, Earlandia tintinniformis) indi-
cate the Early Triassic age (Akyürek et al. 1984). The meta-
morphic unit is cut by isolated diabase dykes. 

The limestone block mélange consists mainly of shallow 

marine limestones blocks surrounded by a matrix of grey-
wacke, siltstone and shale. Furthermore some blocks of grey-
wacke-shale alternation, radiolarite-chert-shale-limestone 
alternation and rare ophiolitic rocks are also observed (Nor-
man 1972, 1973; Koçyi it 1991). Limestone blocks have 
various sizes ranging from a few metres to hundreds of 
metres, and contain characteristic fossils of Carboniferous, 
Permian and Triassic ages (Bilgütay 1968; Koçyi it 1987, 
1991). Alkaline spilitic basalts occur at different parts of the 
limestone block mélange generally as pillow lavas alternat-
ing with limestones, shales and radiolarian cherts of Anisian 
age (Koçyi it 1987; Floyd 1993; Say t 2005) and also as thin 
veins surrounding and cutting the limestone blocks. The 
major part of the matrix represented by graywackes does not 
contain any fossils, but the matrix formed by the alternation 
of fine layered sandstones, siltstones and shales yield fossils 
indicating an Anisian age (Bilgütay 1968; Koçyi it 1987). 

The metamorphic unit passes into the limestone block 

mélange toward the top generally with the appearance of the 

limestone blocks within the matrix of siltstone, sandstone 
and conglomerate. This situation is well observed in the 
southern part of Ankara. The metamorphic unit also passes 
laterally towards the southeast, into limestone block mélange. 
Nevertheless, the metamorphic unit overthrusts the limestone 
block mélange around Kalecik and Hasano lan villages to 
the east of Ankara city. The overthrust of the metamorphic 
unit onto the limestone block mélange should have occurred 
in the Late Triassic as the metamorphic unit overlies the Mid-
dle Triassic (Anisian) levels of the limestone block mélange 
and both units were covered by the Lower Jurassic to Upper 
Cretaceous sedimentary formations (Ankara Group) with an 
angular unconformity. 

The Ankara Group is a thick sedimentary sequence 

( 2000 m) ranging from the Early Jurassic (Upper Hettang-
ian) to Upper Cretaceous (Lower Campanian). From bottom 
to top the Ankara Group is composed of conglomerates, shal-
low marine clastics with intercalation of Rosso Ammonitico 
facies carbonates, fine-grained clastics, sedimentary mélange 
and fine grained clastics (Koçyi it 1987). 

The Hisarl kaya Formation consist mainly of limestone 

block mélange in the upper levels, conglomerate, sandstone 

Fig. 3. Geological sections and emplacements of the main Ankara Mélange units between the Albian–Aptian and Middle Campanian times. 
1 — Cover unit of the Karakaya Formation (Ankara group); 2 — Cover units of the Eldivan and Ahlat Ophiolites (Mart and Kavak forma-
tions);  3 — Cover unit of the Hisarl kaya Formation (Lalelik Formation); 4 — Limestone block mélanges; 5 — Lower unit of the Hisarl -
kaya Formation (conglomerate, sandstone and shale); — Lower unit of the Karakaya Formation (phyllites and schists); 7 — Isolated 
diabase dykes; 8 — Sheeted diabase dykes; 9 — Cumulates (dunite, wherlite, pyroxenite, gabbro, diorite, plagio granite); 10 — Peridotite 
tectonites (harzburgite, dunite); 11 — Ophiolitic metamorphic rocks; 12 — Radio laritic series.

background image




, 2016, 67, 4, 403–414

and shale alternations at middle levels and dark grey shales at 
lower levels (Fig. 3). It crops out well in the vicinity of Dere-
köy and Develi villages at the north of the Haymana town. 
No fossils are observed in shales and sandstones. Limestone 
blocks have metric and decametric sizes and contain some 

fossils of the Carboniferous, 
Permian and Triassic ages (Erol 
1956; Batman 1978). Mafic dykes 
occur at different levels. 

The Hisarl kaya Formation is 

unconformably covered by the 
Lalelik Formation which is 
formed from bottom to top by 
layered micritic limestones 
(>220 m) with chert intercala-
tions and by red or grey coloured 
and well laminated claystone 
(>91 m) with limestone and chert 
intercalations (Batman 1978). 
Fossil data indicates the Late 
Jurassic age (Tithonian) at lower 
levels. Consequently, the top lev-
els were estimated as Lower Cre-
taceous (Batman 1978). 

In the Northeast of Haymana 

town, around Dereköy and Deveci 
villages, the Lalelik Formation is 
overthrust by the Tectonic 
Mélange Unit (Dereköy Mélange) 
(Fig. 5). 


Ophiolites of the Ankara 

Mélange are represented by three 
different fragments of the Neo-
tethyan oceanic lithosphere. 
These are the Eldivan, Ahlat and 
Edige ophiolites obducted onto 
the Anatolian promontory of the 
Gondwanian continent in the 
Albian–Aptian, Middle Turonian 
and Middle Campa 

nian times, 


Eldivan Ophiolite 

The Eldivan Ophiolite is 

a nearly complete assemblage 
composed of volcanic-sedimen-
tary unit (radiolaritic series), 
meta morphic unit, peridotite tec-
tonites (harzburgites, dunites), 
cumulates (duni 

tes, wherlites, 

pyroxenites, gabbros, diorites, 
plagiogranites) and sheeted 


dykes (Fig. 3). 

The volcanic-sedimentary unit outcrops largely under the 

peridotite tectonites (Akyürek 1981; Üner 2010; Üner & 
Çak r 2011; Üner et al. 2014). It is composed of thin layered 
sedimentary rocks such as red coloured radiolarian cherts, 

Fig. 4. View of the limestone block mélange (Karakaya Formation) overthrusting the radio laritic 
series. The contact with the Edige Ophiolite is covered by young sediments. Southwest of  
Karacahasan village.

Fig. 5. View of Dereköy Mélange (tectonic mélange) overthrusting the Lalelik Formation. West of  
Develi village.

background image




, 2016, 67, 4, 403–414

red or green coloured shales, pelagic limestones and alkali 
basalts. The lower levels contain pink coloured limestone 
blocks with chert interbeds, surrounded and cut by basaltic 
lavas and veins (Fig. 6A). Halobia and Ammonite fossils 
indicate probable Late Triassic age (Fig. 6B). The upper 
 levels were dated as Berriasian-Barremian from radiolarian 
fossils (Üner 2010). 

Metamorphic rocks occur between the peridotite tectonites 

and volcanic-sedimentary unit as thin ( 50 m) and discontin-
uous tectonic slices (Üner 2010; Üner & Çak r 2011). They 
consist of amphibolites, calcschists, quartzites, micaschists 
and epidosites. Microtectonic analysis indicates at least three 
deformation phases. Temperature and pressure conditions 
were calculated from hornblende and plagioclase composi-
tion to 501–683 °C and 3.5–5 kbar respectively. Ar





ages from amphibole were  estimated to 
166.9 1.1 

Ma and 177.08 0.96 Ma 

which indicate an intra-oceanic subduc-
tion in Middle Jurassic time (Çelik et al. 

Peridotite tectonites are mainly com-

posed of harzburgites which include 

lar dunite and pyroxenite bands, 

irregular dunite zones and chromitite 
bodies. Harzburgite and dunite tectonites 
have plastic deformation traces repre-
sented by foliation, linea tion and folds. 
They are cut by gabbro and pyroxenite 
veins generally parallel to the foliation 
planes and by isolated diabase dikes with 
chilled margins.

The cumulates consist of undeformed 

dunites, wherlites, pyroxenites, gabbros, 
diorites and plagiogranites from bottom 
to top. They overlie the peridotite tec-
tonites by a  dunite-wherlite-pyroxenite 
alternation. The layering in the cumu-
lates is parallel to the tectonite-cumulate 
contact and foliation planes in the tec-
tonites. Toward the top, the gabbros, dio-
rites and plagiogranites become the dom-
inant litho logies (Üner et al. 2014). Pla-
giogranites crop out largely at the top of 
the cumulates as massive bodies and 
dykes. The zircon age of the plagiogran-
ite dyke was estimated to 179

(Dilek & Thy 2006) and gabbro cumu-
lates yielded the 




Ar amphi-

bole-plateau age of 150 Ma (Çelik et al. 

Isolated diabase dykes cut all the units 

except the volcanic-sedimentary unit. 

Sheeted dykes occur at the top of the 

cumulates and cut the gabbros, diorites 
and plagiogranites with high angles to 
the layering (Fig. 7). They have gener-

ally E–W orientation and a steep dip angle. Sheeted dykes 
have the ophitic texture formed mainly of plagioclase and 

The Eldivan Ophiolite is uncon formably covered by a sedi-

mentary series composed of conglomerate, sandstone, mud-
stone, radiolarian chert and pelagic limestone (Mart Forma-
tion). Fossil data from the pelagic limestones provided the 
Cenomanian–Turonian age (Akyürek et al. 1984). Therefore 
the  Eldivan Ophiolite could have been emplaced onto the 
Gondwanian margin between the Barremian (the youngest 
level of the underlying radio laritic series) and the Cenomanian 
(the oldest unit of the cover). 

A palaeomagnetic study was carried out on the radiolarian 

cherts and pillow lavas which occur within sandstone, marls 
and pelagic limestones in the lower levels of the cover unit 

Fig. 6. A — Pink coloured limestone blocks in the lower levels of the radiolaritic series. 
Eldivan Ophiolite at the southeast of the Akçal  village. The limestone blocks are surroun-
ded and cut by alkali basaltic lavas. B — An Ammonite fossil with diameter of 4cm in the 
limestone block. The limestone block also contains several Halobia (not visible on the 

background image




, 2016, 67, 4, 403–414

(Çapan et al. 1983). According to 
Çapan et al. (1983), the Eldivan 
ophiolite was situated at 11°N 
during the Cenomanian time 

Ma). Its actual situation 

( 40°N) shows that the Eldivan 
Ophiolite has been moved at least 
3200 km towards the north as 
a part of the Gondwanian conti-
nent after its emplacement. 

The Eldivan ophiolite and Mart 

formation were overthrusted by 
the Ahlat ophio lite. The contact is 
well observed to the Northeast of 
Korgun town where the brec-
ciated and serpentinized peridot-
ite tectonites overthrust the lower 
Turonian level of the Mart For-
mation (Fig. 8).

Ahlat Ophiolite 

The Ahlat ophiolite is an east–

west orien ted assemblage formed 
of a volcanic-sedimentary unit, 
metamorphic unit, peridotite tec-
tonites and cumulates. 

The volcanic-sedimentary unit 

(radiolaritic series) crops out 
largely at the base of the peridot-
ite tectonites. It is composed of 
red coloured radiolarian cherts, 
shales, pelagic limestones and 
basic volcanic rocks. Palaeonto-
logical data from the middle and 
upper levels of the volcanic-sedi-
mentary unit indicate Mid-
dle-Late Jurassic (Üner 2010) 
and Turonian ages (Hakyemez et 
al. 1986). 

Fig. 7. View of sheeted dykes cutting the roof of the cumulates (diorites and plagiogranites). Dykes are oriented E–W/60S. Their thickness 
changes between 20–60 cm. North of  abanözü village.

Fig. 8. View of the thrust contact between the Ahlat Ophiolite and the Mart Formation. North of  
Korgun village.

Fig. 9. View of isolated diabase dyke cutting the serpentinized peridotite tectonites of the Edige 
Ophiolite. Edige Village. The dyke has a thickness of 5 m and an orientation of N75NW25.

background image




, 2016, 67, 4, 403–414

The metamorphic unit occurs as thin tectonic slices 

between peridotite tectonites and volcanic-sedimentary unit. 
It consists of amphibolite, tremolite-actinolite schist and epi-
dote-garnet schist. The mineral paragenesis points to green-
schist facies metamorphic conditions. 

The peridotite tectonites consist mainly of serpentinized 

harzburgites, rare dunites, and chromitite bodies. The harz-
burgite and dunite tectonites exhibit traces of plastic defor-
mation such as foliation, lineation and folds. They are cut by 
pegmatoid gabbro and pyroxenite veins generally parallel to 
the foliation planes. 

The cumulates occur as several hectometric sized pockets 

within the upper part of the harzburgite tectonites. They are 
mainly composed of gabbros. 

Isolated diabase dykes cut the tectonites and cumulates. 
The Ahlat ophiolite is overlain by a detritic sedimentary 

unit of Late Turonian to Maastrichtian age (Kavak forma-
tion). Therefore the Ahlat ophiolite should have been 
obducted during middle Turonian time as it overthrust the 
Lower Turonian level of the Mart formation (Fig. 8). 

Edige Ophiolite 

The Edige ophiolite occurs as several tectonic slices within 

the tectonic mélange zone. The most important slice crops 
out around the village of Edige with a length of 10 km and 
width of 0.6 to 2.6 km (Fig. 2). It is composed of volca-
nic-sedimentary unit (radiolaritic series), peridotite tec-
tonites, peridotite, pyroxenite and gabbros cumulates (Tan-
kut & Say n 1990). Peridotite tectonites and cumulates are 
cut by isolated diabase dykes oriented generally NE–SW 
(Fig. 9) 

Another important fragment of the Edige ophiolite occurs 

on the Beynam Hill in the vicinity of Karaali village (Fig. 2). 
It consists of imbricated slices of harzburgite tectonites, 
cumulate gabbros, radiolarian cherts and basaltic volcanics 
with Cyprus type massif sulphide deposits. Peridotite tec-
tonites and cumulates are cut by isolated diabase dykes. In 
this region, the Edige ophiolite overthrust the Ceno-
manian-Campanian clastics with Liassic limestone blocks 
(Akyürek et al. 1996; Imer 2006) within the tectonic mélange 
unit. Therefore Edige ophiolite should have been emplaced 
during the Middle Campanian as it is overlain by the Late 
Campanian–Eocene detritic sedimentary series. 

Tectonic Mélange Unit

The Tectonic Mélange Unit is a chaotic formation com-

posed of various blocks derived from ophiolites (peridotites, 
pyroxenites, gabbros, basaltic volcanic rocks, radiolarian 
cherts), from the Karakaya and Hisarl kaya formations 
(Palaeozoic and Mesozoic limestones, detritic sedimentary 
rocks), from the Lalelik formation (Jurassic limestones) and 
from post-ophiolitic cover units (Cenomanian–early Campa-
nian sedimentary rocks, basic volcanic rocks). It is known as 

the Ophiolitic block mélange (Norman 1973, 1985), Dereköy 
formation (Batman 1978; 1981), Hisarköy formation 
(Akyürek et al. 1984), Ophiolite mélange (Tankut 1990), 
Anatolian complex (Koçyi it 1991) and Cretaceous mélange 
with ophiolitic blocks (Rojay 2013). It outcrops between 
Çand r and Haymana towns within the large thrust fault 
zones. To the north of Haymana town, around Dereköy and 
Deveci villages, the Tectonic Mélange Unit is sandwiched 
between the Karakaya Formation at the top and the 
 Hisarl kaya Formation at the bottom. The Tectonic Mélange 
Unit is covered unconformably by a post-tectonic sedimen-
tary series of middle Campanian–middle Eocene age indica-
ting that it was formed during Early–Middle Campanian.

Discussion and geodynamical evolution 

The main characteristic of the Ankara Mélange is the close 

relationships between limestone block mélanges (Karakaya 
and Hisarl kaya formations) and Neotethyan ophiolites. The 
Karakaya and Hisarl kaya Formations are located on both 
sides of the ophiolites, the Karakaya Formation at the top and 
the Hisarl kaya Formation at the bottom. The Karakaya and 
Hisarl kaya Formations are roughly similar and comprise 
Carboniferous, Permian and Triassic limestone blocks 
cemented by Middle Triassic clastics. Consequently the 
Karakaya and Hisarl kaya formations are incorrectly consi-
dered as different slices of the same unit and interpreted 
either as the fragments of the Triassic Karakaya Ocean 
( engör & Y lmaz 1981; Koçyi it 1987; Genç & Y lmaz 
1995; Göncüo lu et al. 2000) or as a subduction-accretion 
complex related to the northward subduction of the Palaeo-
tethyan oceanic lithosphere (Tekeli 1981; Picket & Robert-
son 1996; Okay 2000; Okay & Göncüo lu 2004). 

Nevertheless the lower unit and the cover series of the 

Karakaya and Hisarl kaya formations have important geo-
logical differences. The lower unit of the Karakaya Forma-
tion is composed of metamorphic rocks such as phyllites and 
schists while the lower unit of the Hisarl kaya Formation is 
formed from clastics such as conglomerate, sandstone and 
dark grey shales. The unconformable cover series of the 
Karakaya Formation (Ankara group) are represented by the 
Lower Jurassic–Upper Cretaceous (upper Hettangian–lower 
Campanian) sedimentary sequence composed of conglome-
rates, shallow marine clastics with intercalation of Rosso 
Ammonitico facies carbonates, fine-grained clastics and 
 sedimentary mélange (Koçyi it 1987), while the cover unit 
of the Hisarl kaya Formation is composed of the Upper 
Jurassic-Lower Cretaceous layered micritic limestones and 
claystone (Batman 1978). 

Therefore we interpret the Karakaya and Hisarl kaya for-

mations as the marginal units formed during rifting of the 
Neotethys by the fragmentation of Gondwanian carbonate 
platform in Middle Triassic times (Fig. 10A). Before rifting 
of the Neotethys, the northern part of Gondwana should have 
been represented by a single carbonate platform, because the 

background image




, 2016, 67, 4, 403–414

Fig. 10. Schematic interpretation of the geodyna-
mical evolution of Anatolia from Late Permian to 
Recent (modi ed from Çak r 2009). Cross-sec-
tions represent the indicated part of the maps with 
larger scale in the N-S direction. 1 — Gondwa-
nian continent during Palaeozoic and Mesozoic;  
2 — Gondwanian continent during Palaeozoic and 
Eurasian continent during Mesozoic; 3 — Eura-
sian continent during Palaeozoic and Mesozoic;  
4 — Ophiolite; 5 — Radiolaritic series; 


6 — Limestone block mélanges; 7 — Magmatic 
arc; 8 — Subduction; 9 — Overthrusting.
A — Late Permian-Late Triassic: rifting and 
opening of the Neotethyan Ocean following the 
closure of the Paleotethys in Late Permian-Lower 
Triassic time.
B — Late Upper Triassic-Middle Jurassic: begin-
ning of the northward subduction of the Neo-
tethyan Oceanic lithosphere (late Upper Triassic). 
Beginning of Pontid arc magmatism (Liassic). 
Opening of the Vardar-Küre-Artvin marginal 
 basins  (Liassic).
C — Late Middle Jurassic-Early Upper Creta-
: emplacement of the Küre-Cangalda - 
Elekda  ophiolites (Late Middle Jurassic). 
Emplacement of the Vardar Ophiolites (Late 
Jurassic-Lower Cretaceous). Closure of the 

Vardar-Küre-Artvin marginal basins (Late 

Jurassic-Early Cretaceous) Emplacement of 
Dinaro-Hellenic Ophiolites (Late Upper 
 Jurassic-Early Cretaceous). Closure of the western 
part of the Neotethyan Ocean (Early Cretaceous). 
Emplacement of the Eldivan Ophiolite (Aptian- 
Albian). Opening of the Black-Sea (Albian).
D — Early  Upper Cretaceous-late Cretaceous
emplacement of Ahlat Ophiolite onto the northern 
margin of the Anatolian Promontory (Turonian). 
Beginning of the southern subduction of the 
eastern part of the Neotethyan oceanic litho-
sphere. Baskil-Yüksekova arc magmatism (Turo-
nian) and opening of Elaz  and Hazar back-arc 
basins in the early Campanian and Maastrichtian, 
E — late Upper Cretaceous-Eocene-Emplace-
ment of Edige ophiolite onto the cover of the Eldi-
van Ophiolite (Middle Campanian). Emplacement 
of Guleman and  spendere-Kömürhan-Karada  
Ophiolites (late Campanian). Closure of the 
Elaz  Back-Arc Basin (Late Campanian) and 
opening of Hazar basin (Maastrichtian). Emplace-
ment of the major parts of Anatolian Ophiolites 
and closure of the central part of the Neotethyan 
Ocean (Late Maastrichtian-Paleocene). Opening 
of the Maden marginal basin within the Arabian 
promontory (middle Eocene). Closure of the 
Maden Basin and emplacement of the Maden 
complex. (late Eocene).
F — Oligocene-Recent: Opening of the Eastern 
Mediterranean basin (Oligo-Miocene). Reover-
thrusting of some Neotethyan ophiolites  (late 
PTS — Palaeotethyan suture; PTO — Palaeotethyan Ophiolite; NR — Neotethyan rifting; KB — Küre back-arc basin; KF — Karakaya 
formation; VS — Volcanic and sedimentary unit (Radiolaritic series). HF — Hisarl kaya Formation; BSR — Black-Sea rifting; KCEO 
— Küre-Cangalda -Elekda  Ophiolite; EO — Eldivan Ophiolite; LF — Lalelik Formation; AO — Ahlat Ophiolite; EO — Edige Ophio-
lite; EHB — Elaz  and Hazar Basins; MB — Maden Basin; KM — K r ehir Massif; TrO — Troodos Ophiolite; Kr — Kyrenia range; 
Med. Sea — Mediteranean Sea.

background image




, 2016, 67, 4, 403–414

Permian carbonate blocks in the Karakaya Formation have 
similar palaeontological and biofacies characteristics as 
 various Upper Permian platform margin deposits of the Tau-
rides (Alt ner et al. 2000). 

Consequently, we suggest that in the Anatolian region, 

Neotethys opened as a single ocean and formed three gulfs 
towards the south (Çak r 2009). Following the rifting, 


the Karakaya and Hisarl kaya formations should be evalua-
ted differently at opposite sides of the Neotethys; 


the Karakaya formation in the north and the Hisarl kaya  
formation in the south. After the collision of Gondwana  
and Eurasia, in the middle Campanian time, the Neotethyan 
Ophiolites were sandwiched between the Karakaya For-
mation at the top and the Hisarl kaya Formation at the 

During the latest Triassic, Neotethyan oceanic lithosphere 

began to subduct towards the north, under the Eurasian con-
tinent (Fig. 10B), causing deformation and imbrication of the 
marginal formations (Karakaya Formation and radiolaritic 
series). The high pressure metamorphism of some Neo-
tethyan ophiolites along the  zmir–Ankara–Erzincan suture 
zone supports this suggestion. The oldest radiometric ages 
from the high pressure metamorphic rocks associated with 
the Neotethyan ophiolite to the north of Eski ehir town range 
between 204 and 215 Ma, (Okay et al. 2002). The average 
ages (204–205 Ma) indicate that the subduction of the Neo-
tethyan oceanic lithosphere began 30–40My after the rifting 
of the Neotethyan Ocean.

During the latest Triassic and Liassic times, probably due 

to the subduction of the Neotethyan oceanic lithosphere, the 
Küre marginal basin opened and the Pontide arc magmatism 
was initiated (Çak r et al. 2006). 

During the Middle Jurassic the intraoceanic subduction of 

the Neotethyan oceanic lithosphere took place. 

During the uppermost Early Cretaceous (Aptian–Albian), 

following the intraoceanic subduction along the fracture 
zone, the Eldivan Ophiolite was emplaced onto the north-
western margin of the Central Anatolian promontory 
(Fig. 10C) and moved to the north as a part of the Gondwa-
nian continent. At that time the Eldivan Ophiolite was situ-
ated 3200 km to the south of its present day location. 

In the Turonian, during the northward movement of Gond-

wana, the Ahlat Ophiolite was obducted onto the northern 
margin of the Anatolian Promontory, overthrusting partially 
the Eldivan Ophiolite and its cover (Mart Formation) 

During the Turonian, while the general northward subduc-

tion was going on, the eastern part of the Neotethyan oceanic 
lithosphere was subducted southward under the northern 
margin of the Arabian Promontory ( engör & Y lmaz 1981; 
Michard et al. 1984) and also partially under the Anatolian 
promontory (Fig. 10D). Therefore, we suggest that during 
the Turonian–Campanian period (90–76 Ma), calc-alkaline 
magmatism (Baskil-Yüksekova magmatic complex) took 
place and the Elaz , Hazar and Maden basins were opened 
successively in Campanian, Maastrichtian and Eocene times 
respectively (Fig. 10D–E). 

The initial collision between the Eurasian and Gondwanian 

continents occurred in the early–middle Campanian. There-
fore the Eurasian active continental marginal units (Karakaya 
Formation and radiolaritic series) and the remnant oceanic 
lithospheric fragments (Edige Ophiolites) were overthrust 
onto the Gondwanian passive marginal units with the earlier 
emplaced ophiolites and their post-emplacement cover 
(Fig. 10E–F). 


Geological data from the North Central Anatolian region 

indicate that the Ankara Mélange consists of several units 
formed from the rifting to the partial closure of the Neo-
tethyan Ocean. These units represented by the marginal 
 formations (Karakaya and Hisarl kaya formations), ophio-
lites (Eldivan, Ahlat and Edige ophiolites), post-ophiolitic 
cover unit (Mart and Kavak formations) and Tectonic 
Mélange Unit were imbricated during the first collision 
between the Gondwanian and Eurasian continents. Conse-
quently the Ankara Mélange is regarded as a key formation 
for understanding the geodynamic history of Anatolia. 

Based on the critical review of various ophiolite belts in 

the Anatolian Peninsula and our own research in the Ankara 
Mélange we have shown that in the Anatolian region the 
Neotethys was opened as a single ocean during Middle–Late 
Triassic times. At that time the Karakaya and Hisarl kaya for-
mations, the main units of the Ankara Mélange, were formed 
by the fragmentation of the Gondwanian carbonate platform. 
Consequently the Karakaya and Hisarl kaya formations 
re present the Mesozoic marginal units of the Eurasian and 
Gondwanian continents, respectively. During the oceanic 
period of the Neotethys, the northern margin of Gondwana 
had a indented shape represented by Arabian, Anatolian, 
Aegean and Adriatic promontories from east to west. The 
fossil ridge axis was nearly oriented N70–90E.

Neotethyan oceanic lithosphere has been subducted toward 

the north under Eurasian continent since latest Triassic time 
and caused the intense deformation and high pressure meta-
morphism of the Eurasian marginal units (volcanic-sedimen-
tary unit and Karakaya Formation). The opening of the Küre 
marginal basin and the beginning of the Pontid arc magma-
tism occurred in Liassic time within the Eurasian continent 
onto the suprasubduction position. 

While the general northward subduction was going on, the 

eastern part of the Neotethyan oceanic lithosphere was sub-
ducted southward under the Arabian promontory from the 
Turonian. This event caused the Baskil-Yüksekova arc mag-
matism during the Turonian-Campanian and successive 
opening of the Elaz , Hazar and Maden back-arc basins 
during the Campanian, Maastrichtian and Eocene times 

The geological data indicate that the ophiolites of the 

Ankara mélange represent three different fragments of the 
Neotethyan oceanic lithosphere obducted at different times. 

background image




, 2016, 67, 4, 403–414

The Eldivan Ophiolite is a NE–SW oriented and almost 

complete assemblage emplaced onto the northwestern mar-
gin of the Anatolian promontory during Albian–Aptian. The 
Ahlat Ophiolite is an E–W oriented and incomplete asssem-
blage emplaced onto the northern margin of the Anatolian 
Promontory during the Middle Turonian. The Edige ophiolite 
represented by several tectonic slices was emplaced in the 
Middle Campanian just before the first collision between 
Gondwana and Eurasia. 

The Tectonic Mélange Unit is a chaotic formation com-

posed of various blocks derived from ophiolites, from the 
Karakaya and Hisarl kaya formations, from the Lalelik for-
mation and from Cenomanian–Early Campanian post-ophi-
olitic cover units. 

The first collision between the Anatolian Promontory of 

the Gondwanian continent and the southern margin of the 
Eurasian Continent occurred in the Middle Campanian as the 
Ankara Mélange is covered unconformably by the post-tec-
tonic sedimentary series of middle Campanian–middle 
Eocene age. 

Acknowledgements:  The authors are grateful to Prof. 


D. Plašienka and Prof. F. Neubauer for their extensive 
reviews and constructive comments on the manuscript and to 
Dr. M. Kohút for editorial help. Caner Diker for her great 
effort for digitalize the  gures.


Akyürek B. 1981: Basic geological characteristics of the northern 

portion of the Ankara mélange [Ankara melanj n n Kuzey 
Bölümünün Temel Jeolojik Özellikleri]. Geology of Central 
Anatolia. Geol. Bull. Turkey Spec. Edit. 41–45 (in Turkish with 
English abstract). 

Akyürek B., Bilginer E., Akta  B., Hep en N., Pehlivan S., Sunu O., 

Soysal Y., Da er Z., Çatal E., Sözeri B., Y ld r m H. & Hakye-
mez H. 1984: The geology of the Ankara-Elmada -Kalecik 
region. Bull. Geol. EngineeringTurkey 20, 31–46 (in Turkish 
with English abstract). 

Akyürek B., Duru M., Sütçü Y.F., Papak  .,  aro lu F., Pehlivan N., 

Gönenç O., Granit S. & Ya ar T. 1996: Project of environmen-
tal geology and natural sources of Ankara. (documents of geo-
logical team of 1994) [Ankara ilinin çevre jeolojisi ve do al 
kaynaklar projesi (1994 y l  Jeoloji Grubu çal malar )]. MTA 
 No: 9961, Ankara, (in Turkish, unpublished). 

Alt ner D., Özcan-Alt ner S. & Koçyi it A. 2000: Late permian for-

aminiferal biofacies belts in Turkey: palaeogeographic and tec-
tonic implications. In: Bozkurt E., Winchester J.A. & Piper 
J.D.A. (Eds.): Tectonics and Magmatism in Turkey and the 
Surrounding Area. Geological Society, London, Spec. Publ. 
173, 83–96.

Batman B. 1978: Geological evolution of northern part of Haymana 

region and study of the mélange in the area-I: stratigraphic 
units. Bull. Earth Sci. Hacettepe University 4, 95–124 (in Turk-
ish with English abstract). 

Batman B. 1981: Study of the ophiolitic mélange (Dereköy forma-

tion) in the northern area of Haymana (SW Ankara). Bull. 
Earth Sci. Hacettepe University
 8, 61–70 (in Turkish with 
English abstract).  

Biju-Duval B., Dercourt J. & Le Pichon X. 1977: From the Tethys 

ocean to the Mediterranean seas: a plate-tectonic model of the 
evolution of the western Alpine system, In: Bijou-Duval B. & 
Montadert L. (Eds.): Structural History of the Mediterranean 
Basins. Paris, 143–164.

Bilgütay U. 1968: Geology of the southern part of the Hasano lan 

region [Hasano lan güney bölgesinin jeolojisi]. PhD Thesis
Ankara University, 1–229 (in Turkish).

Çak r Ü. 2009: Structural and geochronological relationships of 

metamorphic soles of eastern Mediterranean ophiolites to sur-
rounding units: indicators of intra-oceanic subduction and 
emplacement. Inter. Geol. Rev. 51, 3, 189–215.

Çak r Ü., Genç Y. & Paktunç D. 2006: Intrusive lherzolites within 

the basalts of Küre ophiolite (Turkey): an occurence in the 
Tethyan suprasubduction marginal basin. Geol. J. 41, 

Çak r Ü. & Üner T. 2014: Ophiolites of the Ankara Mélange. In: 

Kaan Say t (Ed): Abstracts Book of 67


 Geological Congress 

of Turkey. Chamber of Geological Engineers, Ankara, 6465. 

Çapan U., Lauer J.P. & Whitechurch H. 1983: The Ankara mélange 

(Central Anatolia): an important element for recconstruction of 
tethyan closure. Bull. Earth Sci. Hacettepe University 14, 269–
293 (in Turkish with English abstract). 

Çelik Ö.F., Marzoli A., Chiaradia M., Neubauer F. & Öz  . 2011: 

Early-Middle Jurassic intra-oceanic subduction in the 

zmir-Ankara-Erzincan ocean, northern Turkey. Tectonophys-

ics 509, 120–134.

Çelik Ö.F., Massimo C., Marzoli A., Billor Z. & Marschic R. 2013: 

The Eldivan ophiolite and volcanic rocks in the  zmir–Ankara–
Erzincan suture zone, northern Turkey: geochronology, whole-
rock geochemical and Nd–Sr–Pb isotope characteristics. Lithos 
172–173, 31–46.

Dilek Y. & Thy P. 2006: Age and petrogenesis of plagiogranite intru-

sions in the Ankara mélange central Turkey. Island Arc 15, 

Erol O. 1956: A study on the geology and geomorphology of  

Elmada  and surrounding regions at the southeast of the 
Ankara [Ankara güneydo usundaki Elmada  ve çevresinin 
jeoloji ve jeomorfolojisi üzerinde bir ara t rma].  MTA Bull. 
Spec. Publ. Turkey
 D, 9 (in Turkish with English abstract).

Festa A., Pini G.A., Dilek Y. & Codegone G. 2010: Mélanges and 

mélange-forming processes: a historical overview and new 
concepts. Int. Geol. Rev. 52, 10–12, 1040–1105.

 Festa A., Dilek Y., Pini G.A., Codegone G. & Ogata K. 2012: 

Mechanisms and processes of stratal disruption and mixing in 
the development of mélanges and broken formations: Rede n-
ing and classifying mélange. Tectonophysics 568–569, 7–24.

Floyd P.A. 1993: Geochemical discrimation and petrogenesis of 

alcalic basalt sequences in part of the Ankara melange, central 
Turkey. J. Geol. Soc. London 150, 542–550.

Genç C. & Y lmaz Y. 1995: Evolution of the Triassic continental 

margin of NW Anatolia. Tectonophysics 243, 155–171. 

Gökalp G. 1999: Geological characteristics of  the southwestern part 

of the Eldivan (Çank r ) ophiolite [Eldivan (Çank r ) o yoliti-
nin (Güneybat  Bölümü) Jeolojik özellikleri]. M.S. Thesis, 
Hacettepe University, Ankara, 1–144 (in Turkish with English 

Göncüo lu M.C., Turhan N.,  entürk K., Özcan A., Uysal S. & 

Yal n z M.K. 2000: A geotraverse across northwestern Turkey: 
tectonic units of the central Sakarya region and their tectonic 
evolution. In: Bozkurt E., Winchester J.A & Piper J.D. (Eds.): 
Tectonics and magmatism in Turkey and the surrounding area. 
Geol. Soc. London, Spec. Publ. 173, 139–162.

Hakyemez Y., Barkurt M.Y., Bilginer E., Pehlivan  ., Can B., De er 

Z. & Sözeri B. 1986: Geology of Yaprakl -Ilgaz-Çank r -
Çand r regions [Yaprakl -Ilgaz-Çank r -Çand r dolay n n jeolo-
jisi]. MTA report 7966, 1–114 (in Turkish).

background image




, 2016, 67, 4, 403–414

mer A. 2006: Genesis of the Karaali (Ankara,Turkey) Fe-Cu Sul-

de mineralization. M.S. Thesis,  Middle East Technical Uni-

versity, Ankara, 1–157.

Knipper A., Ricou L.E. & Dercourt J. 1986: Ophiolites as indicators 

of the geodynamic evolution of the Tethyan Ocean. Tectono-
 123, 213–240.

Koçyi it A. 1987: Tectono-stratigraphy of Hasano lan region: evo-

lution of the Karakaya orogen. Bull. Earth Sci. Hacettepe Uni-
versity Turkey
 14, 269–293 (in Turkish with English abstract).

Koçyi it A. 1991: First remarks on the geology of the Karakaya 

Basin: Karakaya orogen and pre-Jurassic nappes in eastern 
Pontides, Turkey. Geol. Romana 26, 3–11.

Koçyi it A. 2013: An example of an accretionary forearc basin from 

northern Central Anatolia and its implications for the history of 
subduction of Neo-Tethys in Turkey. Geol. Soc. Am. Bull. 103, 

Michard A., Whitechurch H., Ricou L.E., Montigny R. & Yazgan E. 

1984: Tauric subduction (Malatya-Elaz  provinces) and its 
bearing on tectonics of the Tethyan realm in Turkey. In: Dixon 
J.E. & Robertson A.H.F, (Eds.): The geological evolution of the 
eastern Mediterranean. Geol. Soc. London, Spec. Publ. 17, 

Norman T.N. 1972: Stratigraphy of Upper Cretaceous-Lower Ter-

tiary strata of Yah ihan area, east of Ankara. Bull. Geol. Soc. 
 XV, 2, 180–276 (in Turkish with English abstract). 

Norman T.N. 1973: On the structure of the Ankara mélange. In: 

Geological congress for 50


anniversary of the Republic of 

Turkey proceedings, 77–94. 

Norman T.N. 1985: The role of the Ankara Mélange in the develop-

pement of Anatolia, Turkey. In: Dixon J.E. & Robertson A.H. 
(Eds.): The Geological Evolution of the Eastern Mediterra-
nean. Geol. Soc. London, Spec.Publ. 17, 441–447.

Okay A.I. 2000: Was the Late Triassic orogeny in Turkey caused by 

the collision of an oceanic plateau? In: Bozkurt E., Winchester 
J.A. & Piper J.D.A. (Eds.): Tectonics and magmatism in Tur-
key and surrounding area. Geol. Soc. London, Spec. Publ. 173, 

Okay A.I. & Göncüo lu M.C. 2004: The Karakaya Complex: 

A review of data and concepts. Turkish J. Earth Sci. 13, 77–95.

Okay I.A. & Tüysüz O. 1999: Tethyan sutures of northern Turkey. 

Geol. Soc. London, Spec. Publ. 156, 475–515.

Okay A.I., Monod O. & Monié P. 2002: Triassic bleuschists and 

eclogites from northwest Turkey: vestiges of the Paleo-Tethyan 
subduction. Lithos 64, 155–178. 

Pickett E.A. & Robertson A.H.F. 1996: Formation of the Late 

Paleozoic-Early Mesozoic Karakaya complex and related ophi-
olites in northwestern Turkey by Palaeotethyan subducti-
on-accretion. J. Geol. Soc. London, 153, 995–1009.

Ricou L.E., Agyriadis I. & Marcoux J. 1975: l’Axe calcaire du Tau-

rus, un alignement de fenêtres arabo-africaines sous des nappes 
radiolaritiques, ophiolitiques et metamorphiques. Bull Soc 
Géol France
 7, 17, 1024–1044.

Robertson A.H.F. 2002: Overview of the genesis and emplacement 

of Mesozoic ophiolites in the Eastern Mediterranean Tethyan 
region. Lithos 65, 1–67.

Rojay B. 2013: Tectonic evolution of the Cretaceous Ankara 


litic Mélange during the Late Cretaceous to pre- 

Miocene interval in Central Anatolia, Turkey. J. Geodyna-
65, 66–81.

Sar fak o lu E., Dilek Y. & Sevin M. 2014: Jurassic–Paleogene 

intraoceanic magmatic evolution of the Ankara Mélange, 
nort-central Anatolia,Turkey. Solid Earth 5, 77–108.

Say t K. 2005: Geology and petrology of the ma c volcanic rocks 

within the Karakaya complex from central (Ankara) and NW 
(Geyve and Edremit), Anatolia. M.Sci. Thesis.  Geological 
Ingeneering Department, Middle East Technical University

Ankara, 1–173.

engör A.M.C. & Y lmaz Y. 1981: Tethyan evolution of Turkey. 

A plate tectonic approach. Tectonophysics 75, 181–241. 

Stamp i G.M. 2000: Tethyan oceans. In: Bozkurt E., Winchester 

J.A., Piper J.D. (Eds.): Tectonics and magmatism in Turkey and 
Surrounding Area. Geol Soc London, Spec. Publ. 173, 1–23.

Tankut A. 1990: Geochemical implications for tectonic setting of 

the ophiolitic rock from the ophiolite mélange belt of the 
Ankara Mélange. MTA Bull. Turkey 110, 17–28.

Tankut A. & Say n N.M. 1990: Mineral phases at the Edige ophio-

lite.  MTA Bull. Turkey 110, 97–111 (in Turkish with English 

Tekeli O. 1981: Subduction complex of pre-Jurassic age, northern 

Anatolia, Turkey. Geology 9, 68–72.

Üner T. 2010: Petrology of Eldivan and Ahlat Ophiolites. Phd the-

sisHacettepe University, Ankara, 1–185 (in Turkish with Eng-
lish abstract)

Üner T. & Çak r Ü. 2011: Mineralogical, Petrographical and Geoc-

hemical Characteristics of Eldivan Ophiolite (Çank r ) Harz-
burgitic Tectonites. MTA Bull. 143, 75–94 (in Turkish with 
English abstract). 

Üner T., Çak r Ü., Özdemir Y. & Arat  . 2014: Geochemistry and 

origin of plagiogranites from the Eldivan Ophiolite, Çank r  
(Central Anatolia,Turkey). Geol. Carpath. 65, 3, 195–205.