background image

www.geologicacarpathica.com

GEOLOGICA CARPATHICA, AUGUST 2016, 67, 4, 371–389

doi: 10.1515/geoca-2016-0023

Pleistocene volcaniclastic units from North-Eastern  

Sicily (Italy): new evidence for calc-alkaline explosive 

volcanism in the Southern Tyrrhenian Sea

MARCELLA DI BELLA

1

, FRANCESCO ITALIANO

2

, GIUSEPPE SABATINO

1

, ALESSANDRO 

TRIPODO

1

, ANGELA BALDANZA

3

, SERGIO CASELLA

1

, PAOLO PINO

1

,  

RICCARDO RASA’

1

 and SELMA RUSSO

1

 

1

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina,  

Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; mdibella@unime.it

2

Istituto Nazionale di Geo sica e Vulcanologia, Palermo, Italy

3

Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia, Italy

(Manuscript received June 30, 2015; accepted in revised form June 7, 2016)

Abstract: A well-preserved volcaniclastic sequence crops out in Pleistocene marine sediments along the Tyrrhenian 
coastline of the Calabrian-Peloritani arc (Sicily, Italy), testifying the occurrence of Lower-Middle Pleistocene volcanic 
activity in Southern Tyrrhenian Sea. The presence of dominant highly vesicular and minor blocky glassy particles 
indicates that the volcanic clasts were originated by explosive events related to the ascent and violent emission of 
volatile-rich magmas accompanied by and/or alternated with hydromagmatic fragmentation due to magma-sea water 
interaction. Field investigations and sedimentological features of the studied volcaniclastic units suggest a deposition 
from sediment-water density  ows. The chemical classi cation of the pumice clasts indicates prevalent rhyolitic and 
dacitic compositions with calc-alkaline to high-K calc-alkaline af nity. The geochemical features of immobile trace 
elements together with the presence of orthopyroxene are indicative of a provenance from an arc-type environment. 
The age (from 980-910 to 589 ka), the chemical composition and the evidence of subaerial explosive volcanic activity 
constrain the origin nature and temporal evolution of the arc-type volcanism in the Southern Tyrrhenian domain. 
Finally, the new information here provided contribute to a better understanding of the temporal geodynamic evolution 
of this sector of the Mediterranean domain. 

Key words: volcaniclastic deposits, Pleistocene volcanism, N-E Sicily, stratigraphy, explosive volcanic activity, Arc 
volcanism.

Introduction

The southern Tyrrhenian Sea is dotted with active volcanoes 
and seamounts generated by the subduction of the Ionian 
oceanic crust beneath the Calabrian-Peloritani Arc (e.g., Bar-
beri et al. 1974; Beccaluva et al. 1982, 1985). All of the struc-
tures were deeply studied during the past decades from the 
geophysical (Barberi et al. 1973; Ventura et al. 1999; Marani 
& Gamberi 2004), petrological (Selli et al. 1977; Savelli 
1984; Trua et al. 2002), and geochemical (Caracausi et al. 
2005; Heinicke et al. 2009, Lupton et al. 2011; Italiano et al. 
2014) points of view. Despite the studies carried out so far, 
the geodynamic setting and the evolution of the Mediterra-
nean basin is still a debated matter (e.g. Carminati et al. 2012, 
and references therein). 

The SE Tyrrhenian Sea is bordered to the East by the Cala-

brian-Peloritani Arc, which is laterally segmented by major 
WNW-trending shear zones that have accommodated the 
rotational movements (Malinverno & Ryan 1986; Knott & 
Turco 1991) from the late Miocene (Van Dijk & Scheepers 
1995) up to recent (Tansi

 

et al. 2007). The Calabrian-Pelori-

tani Arc has been affected by a rapid regional uplift since the 
Quaternary (Westaway 1993; Cucci 2004; Ferranti et al. 

2006), accommodated by a tectonic extensional regime 
(Monaco & Tortorici 2000; Catalano et al. 2003) also con-
firmed by GPS measurements (Serpelloni et al. 2013). The 
volcanic activity is located along the main regional faults and 
apart from the volcanism of the Aeolian Islands no other 
recent active volcanic centres were known. Loreto et al. 
(2015) confirmed the existence of a buried volcano offshore 
Capo Vaticano (Calabrian Arc). That seamount, which is still 
venting volcanic volatiles, coincides with the volcanic edi-
fice responsible for the nearby Pleistocene volcaniclastic 
units occurring inside the half-graben depressions of the 
Mesima-Gioia Tauro and Reggio Calabria basins (De Rosa et 
al. 2001, 2008). 

A further well-exposed and well-preserved volcaniclastic 

sequence included in marine sediments, crops out along the 
Tyrrhenian coastline of the Calabrian-Peloritani Arc (Pelori-
tani Mountains), referred to the Lower-Middle Pleistocene 
(Kézirian 1992a,b; Toussaint et al. 1999) and represents the 
most complete outcrop of the area although other minor scat-
tered occurrences are reported nearby (Kézirian 1992a,b). 
Within the Strait of Messina area, similar sequences are also 
exposed along the Calabrian coast (Kézirian 1992a,b; 
 Calanchi 1988; Leyrit et al. 1998, 1999; Toussaint et al. 

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

372

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

1999) and in several sites of the Ionian and peri-Tyrrhenian 
Calabria (Cello et al. 1983; Toussaint et al. 1999; De Rosa et 
al. 2001, 2002; Bigazzi & Carobene 2004; Carobene et al. 
2006; De Rosa et al. 2008). Since the Late Tortonian, exten-
sive explosive volcanic activity took place in the Mediterra-
nean area, with dispersion of pyroclastic products over 
a large portion of the basin and of continental Europe 
(Keller et al. 1978; Paterne et al. 1988; Pyle et al. 1998; 
Narcisi & Vezzoli 1999; Pouclet et al. 1999; Schmidt et  
al. 2002). 

In the last years, some studies (De Rosa et al. 2008; Trua et 

al. 2010) have been focused on volcaniclastic layers inter-
bedded in marine successions along the Italian peninsula.  
In contrast, no information exists on the volcaniclastic hori-
zons cropping out over the north-eastern Sicilian coast, 
located in front of the Aeolian Islands. 

This paper accounts for the results of a multidisciplinary 

study of the volcaniclastic deposits cropping out in the 
north-eastern Sicilian coast (Fig. 1) and includes field inves-
tigations, stratigraphic, sedimentology, SEM-EDS and geo-
chemical analyses. The results help to constrain the type of 
eruption, the deposition and transport mechanisms, and the 
petrochemical features. The temporal range of the volcanic 
events has been constrained by age data (Lentini et al. 2000, 
2008; Pino et al. 2007a,b; Carbone et al. 2008) from 

micro-fossil assemblages of the sedimentary clay succession 
in which the volcaniclastic units are interbedded. The results 
provide new information about the less studied Sicilian vol-
caniclastic deposits. Their identification and correlation are 
adopted as tools for the reconstruction of the sedimentary 
sequence and of the volcanic history in the area. 

Geological setting 

The investigated area is located along the Sicilian sector of 

the Calabrian-Peloritani arc close to the Tyrrhenian coastline, 
about 25 km south of the Aeolian Arc (Fig. 1). It is characte-
rized by a prevalent homogeneous and continuous lithologi-
cal sequence of poorly fossiliferous marly clays, with 
inter-layered volcaniclastic units. 

This clayey sequence, reported as “Argille di Spadafora 

Auctt.” (Lentini et al. 2008; Carbone et al. 2008), was origi-
nally assigned to the Pleistocene on the basis of foraminifera 
content (Lombardo 1980; Violanti 1989; Kézirian 1992a,b). 
The calcareous nannofossil associations with Pseudoemi-
liania lacunosa, Gephyrocapsa oceanica 
and Gephyrocapsa 
sp.3 (MNN19f biozone sensu Rio et al. 1990) allowed us to 
ascribe the clayey formation to the Middle Pleistocene (Di 
Stefano & Lentini, 1995; Lentini et al. 2000, 2008;  Pino et 

Fig. 1. Bathymetric map of the Southern Tyrrhenian Sea (following Kamenov et al. 2009, modi ed) on the left and geological sketch map 
of the study area showing the main outcropping formations and the volcaniclastic units (right). Black star — hypothetic volcanic edi ce 
(Kezirian 1992a,b); black triangle — hypothesized volcanic edi ce of Capo Vaticano (Loreto et al., 2015); 1 — beach deposits (Holocene); 
2 — alluvial deposits (Holocene); 3 — gray-blue marly clay (Middle Pleistocene); 4 — volcaniclastic units; 5 — pre-Pleistocene substra-
tum; 6 — traces of the stratigraphic sections; 7 — faults.

background image

373

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

al. 2007a,b; Di Stefano in Carbone et al. 2008). The emplace-
ment age of the marly-clayey sequence is constrained by the 
distribution of Gephyrocapsa sp.3 (sensu Rio et al. 1990; 
Pino et al. 2007a,b; Di Stefano in Carbone et al. 2008) that, 
in the Mediterranean Sea, covers a time interval from 

 

980–910 to 589 ka (Castradori 1993; Sprovieri et al. 1998; 
Cita et al. 1998;  Pino et al. 2007a,b). Based on published 
magnetostratigraphic data (criterion guide of  Matuyama/
Brunhes boun dary: 0.78 Ma), the studied sequence has been 
attributed to the uppermost part of the Lower Pleistocene 
(Calabrian stage), corresponding to the top of the Jamarillo 
magnetic event, up to the lower part of the Middle Pleisto-
cene (ex-Ionian stage sensu Cita et al. 2006). The estimated 
age fits that obtained by Cornette et al. (1987; from 1 to 
0.72 Ma) for similar volcaniclastic units cropping out in the 
Reggio Calabria basin.

During this time interval, the deposition of deep-sea pelites 

in the deeper circalittoral to upper epi-bathyal zone (Kèzirian 
1992a,b; Leyrit et al. 1998; Toussaint et al. 1999), up to 
 500–700 m below sea level, is testified by the foraminiferal 
benthonic assemblages recognized in similar clay marls 
cropping out in neighbouring localities (Violanti et al. 1987; 
Violanti 1988, 1989). These sedimentary deposits are pre-
served within a structural depression in areas adjacent to the 
present coastline. The substrate shows a siliciclastic (con-
glomeratic-arenaceous-clay) sequence (Gargano 1994; 
Lentini et al. 1995, 1997), Serravallian–Lower Messinian in 
age (Lentini et al. 2000), which was covered during Messi-
nian times by discontinuous evaporitic carbonates (Gargano 
1994; Lentini et al. 2000). Lower Pliocene marls and marly 
limestones (Trubi Formation) follow in the sequence. They 
are covered by limestone, sandy marls, organogenic sands 
and deep-water coral facies limestones attributed to the upper 
part of the Lower Pliocene up to Upper Pliocene (Gaetani & 
Saccà 1984; Barrier et al. 1987; Violanti et al. 1987; Violanti 
1988; Di Stefano & Lentini 1995; Lentini et al. 2000; Pino et 
al. 2007a,b). The persistent tectonic activity caused, before 
clay sedimentation, a general uplift of the area up to the 
emersion and marine terrace formation (Lentini et al. 1996, 
Catalano & Cinque 1995).

During these latest phases, the marly clays pass into an 

alternating clay and sand sequence of circalittoral environ-
ment s.l. (Kézirian 1992a,b), and later to a 3

rd

 and 4

rd

 order of 

fluvial and marine terraces (altitude of  90–220 m a.s.l.). 
They are related to the uppermost part of the Middle Pleisto-
cene (isotopic stage 7) (Catalano & Cinque 1995, Catalano & 
Di Stefano 1997) and to the Tyrrhenian (isotopic stage 5) 
(Bonfiglio & Violanti 1984).

Multidisciplinary approach and analytical techniques

Field work 

Eight volcaniclastic units (hereafter referred to as VU) 

were identified by field investigations. Thirteen stratigraphic 

sections have been reconstructed and correlated each other 
using the most widespread unit VU7 as a marker horizon 
(Fig. 2). Despite the fact that the volcaniclastic units are not 
exposed in all the sections, it was possible to establish cor-
relations based on their lithological characteristics and strati-
graphic position. A suite of fifty samples of volcanic sedi-
ments were collected and among all the pumice-rich units, 
the least altered samples were selected for laboratory work. 

Detailed information on each volcaniclastic unit (VU) is 

reported in the result section. 

Laboratory work

In the laboratory, the grain-size characteristics were deter-

mined by dry sieving at ½   intervals, in the –5< <4 size 
range. Sieving was carried out by hand to avoid excessive 
breakage of juvenile vesicular fragments. Statistical parame-
ters, such as median diameter (Md ), mean (M ), graphical 
standard deviation (

) and first-order skewness (

), have 

been obtained by construction of cumulative curves as pro-
posed by Inmann (1952). 

In order to constrain the provenance and the processes 

involved in the fragmentation and alteration mechanisms, 
morphological investigations and mineral chemistry of the 
main representative phases and pumice particles (size ran-
ging from 250 to 1100 μm) were performed by SEM-EDS 
(Sheridan & Wohletz 1983) focussed on the characterization 
of surface and vesicle structures. After selection, the pumice 
clasts were cleaned for a few seconds in ultrasonic bath and 
then mounted individually on a metal stub. Afterwards, 
a petrographic study was carried out to better define structure 
and composition of both pumice clasts and blackish lithics. 
Bulk rock analyses of twenty-one selected pumices were car-
ried out by X-Ray Fluorescence to obtain geochemical infor-
mation on the parental magma of the volcaniclastic sequence. 

Analytical techniques

The chemical composition of minerals in selected pumice 

clasts was determined at the Physics and Earth Sciences 
SEM-EDS Laboratory of the Messina University.  Analyses 
of Si, Al, Ti, Mn, Mg, Fe, Ca, Na, K, Cr and P contents were 
carried out using a LEO-S420 Electron Microscope coupled 
to an Oxford link ISIS series 3000 EDX spectrometer and 
Si(Li) detector with resolution of 156 eV at MnK . Working 
distance 19mm at acceleration voltage of 20 kV and 550 pA 
(PROBE). The spectral data were acquired at 1500 to 2000 
counts/s with dead time below 25 %, using the ZAF correction. 

The chemical analyses of pumice clasts were carried out at 

the Earth Sciences XRF laboratory at Perugia University. 
The samples were crushed in a steel jaw crusher and reduced 
to a fine powder in agate mortars. The concentrations of 
SiO

2

, TiO

2

, Al

2

O

3

, Fe

2

O

3

, MnO, CaO, K

2

O, P

2

O

5

, Nb, Zr, Y, 

Sr, Rb, Ba, Cr, V, and Ni were measured by X-ray fluores-
cence on powder pellets using a wavelength-dispersive auto-
mated Philips PW1400 spectrometer. MgO and Na

2

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

374

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

Fig. 2.

 Key stratigraphic sections of Middle Pleistocene clayey sequence with volcaniclastic deposits located in the geological map of

 Figure 1. 

Inset:

 generalized stratigraphic log showing 

 

the position of the studied volcaniclastic units.

background image

375

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

concentrations were respectively determined by atomic 
absorption spectrophotometry and flame emission on sample 
solution after perchloric and hydrofluoric acid attack. FeO 
was determined by titration after rapid HF-H

2

SO

4

 attack.  

LOI (Loss on Ignition) is the weight loss after heating  
at 950 

°C. Precision is better than 10 

% for all trace 

elements.

Results

Detailed information on the volcaniclastic units

VU1, VU2 and VU3 crop out in the Scarano Locality 

 (section L of Fig. 2) and nearby Venetico Village (section B 
of Fig. 2), where the lowest portion of the entire sequence is 
exposed. VU4VU5, VU6 crop out in the Venetico Marina 
quarries (sections B and C of Fig. 1), east of the Torregrotta 
cemetery (Section E of Fig. 2) and between Acquasanta  
and Scarano localities (sections I and L of Fig. 2). Further-
more, VU5 also occurs on the eastern side of the hill, where 
the Tracoccìa Village is located (section D of Fig. 2). 

 

VU6 is also exposed in the northern boundary of the studied 
area (section A of Fig. 2), near the margin of the Venetico 
Marina coastal plain. VU7 is the most widespread among the 
analysed layers and is found throughout the investigated 
area, with the exception of Scarano Locality (section L of 
Fig. 2), where the uppermost portion of the series is truncated 
by erosion and subsequent deposition of a Tyrrhenian 
 Terrace.  VU8  is at the top of the sequence, and crops out 
sparsely in the northern (sections B, C, E of Fig. 2), central 
and southern (sections H and I of Fig. 2) sector zones of the 
investi   gated  area. 

The field characteristics, such as thickness, lateral varia-

tions, juvenile and lithic component fractions, of the volcani-
clastic units are briefly described below, from bottom to top 
of the stratigraphic sequence. The standard granulometric 
classification scheme of Fisher (1961, 1966) for pyroclastic 
rocks associated with explosive and non-explosive fragmen-
tation processes is used in this study. The term “volcaniclas-
tic” was defined by Fisher (1961, 1966) to denominate all 
clastic sediments and rocks, regardless of depositional pro-
cess, composed of particles predominantly of volcanic 
origin.

VU1 (Fig. 3a and b) is lentiform, variably thick (3÷10 cm) 

and discontinuously outcrops. The basal contact with clays is 
sharp, from planar to gently undulated. The upper contact is 
less defined, variously corrugated and sometimes marked by 
an orange alteration aureole. The textural features allow us to 
recognize two lithofacies (VU1-1 and VU1-2). The lower 
one (VU1-1; 1÷2 cm thick; Fig. 3b) is characterized by 
mm-sized laminae of coarse ash black lithic clasts with  
massive structure. Some interfingered plane-parallel lami-
nated layers of poorly cemented, well sorted and rounded 
grey lapilli pumices, are also observed. This lithofacies is 
characterized by lateral pinch-out closures showing sharp 

contacts with the upper lithofacies VU1-2. This last lithofa-
cies ( 

VU1-2; Fig. 3b) is composed of clast-supported 

 

normal graded slightly cemented grey, mainly sub-rounded 
pumice lapilli clasts (up to 2–3 cm in diameter), sometimes 
altered. 

VU2 (Fig. 3c and d) shows variable thickness (2.5÷6 cm) 

with spatial extent up to twenty metres in length, strongly 
discontinuous and with pocket-like geometry. Generally, it 
occurs as boudins laterally tapered due to load pressure. Its 
basal and upper contacts are sharp and irregular and marked 
by a yellow-orange alteration crust (2÷3 mm thick; Fig. 3d). 
Evident fluidification structures are observed along the basal 
surface (Fig. 3d). Generally, this volcaniclastic unit is charac-
terized by a massive appearance (2.5÷4.5 cm thick) com-
posed of prevailing whitish well sorted rounded pumices 
with subordinate black lithic fragments (1÷3 mm) (Fig. 3d). 
Locally, especially in the section L (Fig. 1), this volcaniclas-
tic unit is overlain by a layer of clast-supported fine 
 lapilli-sized rounded pumices (2-3 cm thick), through a sharp 
and gently undulated contact (Fig. 3c).

VU3 is strongly discontinuous, up to 3 cm in thickness, 

with laminated structure composed of a loose grey fine to 
medium ash mixed with abundant fine terrigenous sand 
(mica and quartz), foraminiferal microfauna and minute bio-
clasts. The basal contact is sharp and slightly undulated; the 
upper contact is erosive and irregular.

VU4 (Fig. 3e and f) is 5÷18 cm thick and shows a lateral 

continuity at the scale of outcrop (about 40 m) with general 
lenticular geometry. Its basal contact with clays is erosive 
and rather wavy ( 25 cm wavelength), the upper contact is 
sharp, from planar to slightly wavy sometimes showing load 
structures (Fig. 3e). This volcaniclastic unit is well exposed 
in sections L and B (Fig. 1), where two lithofacies have been 
recognized (VU4-1 and VU4-2; Fig. 3f). The lower VU4-1 
subunit is massive, up to 5.5 cm in thickness (section L) and 
composed of sub-angular and sub-rounded loose black lapilli 
scoria (2÷3 mm in diameter), sometimes altered and charac-
terized by pinch-out closures (Fig. 3e). The upper subunit 
(VU4-2) consists of medium-coarse grained ashes, up to 
8÷10 cm thick, with distinctive plane-parallel or slightly 
undulated lamination structures, a few mm in thickness. 
These structures are marked by alternating light non-volca-
nic fraction (terrigenous clasts, foraminiferal microfauna and 
minute bio-clasts) and dark scoria fragments. It is to be 
emphasized that in the north (Section B) the VU4-1 lithofa-
cies is poorly represented.

VU5 (Fig. 3g) is generally continuous, variably thick 

(3÷20 cm in the different sections), and shows evident lenti-
cular and pocket-like geometry, on the metre scale (sec-
tion E). The basal contact with clays is erosive and sharp, 
showing from slightly to densely wavy channel-like struc-
tures, whereas the upper contact is irregular with small steps. 
Both contacts are often highlighted by an about 1 cm thick 
orange alteration level (Fig. 3g). The volcaniclastic unit is 
generally characterized by cm-thick layers (up to three) of 
structureless to normally graded whitish fine lapilli pumices 

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

376

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

Fig. 3. Outcrop and/or detail photographs of the most representative studied volcaniclastic units: a, b — VU1, section B; c, d — VU2, 
section L; e, f — VU4, section B; g — VU5, section E; h — VU6, section I. The white continuous lines indicate the entire volcaniclastic 
units, the white dashed lines indicate the subunits. See text for details of descriptions.

background image

377

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

(up to 1 cm) with rare dark lithic fragments, separated by thin 
(few mm to 1 cm) intercalations (usually two) of fine grained 
greyish ash showing erosive contacts (Fig. 3g). The pumice 
lapilli layers are well sorted and consist of sub-angular and 
sub-rounded frequently altered clasts. The lowest pumice 
layer is the coarsest with low matrix fraction and grainy 
appearance. This layered sequence sometimes starts with 
lenses (up to 1 cm thick) consisting of prevalent structureless 
coarse ash (1–2 mm) to whitish pumiceous lapilli.

VU6 (Fig. 3h) shows variable thickness with an average 

value of 25÷30 cm ( 5 cm in section L,  40 cm in section I) 
and is laterally continuous with ribbon-like geometry (Hor-
nung et al. 2002). The contact with marly clays is clear and 
defined by narrow undulations, barely defined at the base and 
more prominent at the top. In general, the volcaniclastic unit 
is characterized by an abundant non-volcaniclastic fraction 
consisting of terrigenous component, Foraminifera (Orbuli-
nidae) and minute bio-clastic fragments mixed with the vol-
canic fraction mainly consisting of scoria (2÷5 mm). The two 
fractions are organized in structureless cm-thick layers some-
times with slightly undulated plane-parallel and subordinate 
low-angle cross lamination. In section L the two layers are 
distinctively separated by a sharp surface, planar to gently 
undulated. The latter is composed of terrigenous sediments 
plus minor scoriae whereas the upper layer is mainly com-
posed of altered yellowish-white pumices (2÷7 mm) with 
subordinate scoriae (Fig. 3h). 

VU7 is the most widely occurring volcaniclastic unit. It is 

continuous and shows a thickness from a few dm (sections D, 
E and H) to over 2 m ( 2.30 m in section G). Its geometrics 
generally range from ribbon-like, to channel-shape or gently 
bell-shaped on the outcrop scale.

 

In Section O thickness 

varia tions with reduction up to pinch-out closures have been 
observed. The basal contact with clays is sharp and slightly 
wavy to planar; the upper contact is also sharp (Fig. 4a and b). 
Abruptly truncated erosive lateral closures are observed 
between sections E and G. In the most complete sequence 
(sections A, G and N) the VU7 unit shows peculiar lithologi-
cal and sedimentological features that clearly allow us to 
define three lithofacies (section G). The lowest lithofacies 
(VU7-1, Fig. 4c) is informally called the “lithic rich lithofa-
cies” (from 2÷4 cm to >10 cm thick in sections N, A;  30 cm 
in section G). It contains abundant black angular lithic clasts 
(up to 5 cm) mixed with sub-angular/sub-rounded pumices 
(0.5 cm up to 6 cm), lithified, clast-supported massive struc-
ture which locally shows lateral transitions to reverse grading 
of coarser lapilli (up to 6 cm in section G) (Fig. 4c) with lami-
nated lithic-rich beds (up to 1 cm in section A). Near sec-
tion E, at the contact surface with the marl-clay substrate, 
flute-cast structures (N200W–N20E preferential direction) 
have been identified. The VU7-2 is a planar to cross bedded 
ash-lapilli tuff lithofacies showing a thickness of  10÷15 cm 
reaching 35 cm in section G. Two sub-lithofacies have been 
recognized (Fig. 4c). Both are well sorted. The lower VU7-2a 
is more continuous (over 30–50 m) showing prevalent struc-
tureless plane-parallel laminae sometimes slightly wavy, 

with generally regular contacts; the upper sub-lithofacies 
(VU7-2b) is characterized by mm to cm thick gently wavy 
with low- to medium-angle cross beds, variously interfin-
gered with very fine-grained whitish pumices and dark 
 lithics. Only in section N, along strata interfaces, the pre-
sence of several flute casts with ESE–WNW preferential 
 orientation (N285E) from East-Southeastern to West-North-
western, marked by orange aureoles (Fig. 4d), was observed. 
“Tool marks” have also been found. The chromatic variabi-
lity led us to informally call this sub-lithofacies “Zebra layer” 
(Fig. 4c). 

The third lithofacies (VU7-3, 25–30 cm thick; Fig. 4e) is 

characterized by the presence of abundant sub-angular to 
sub-rounded white lapilli pumices, with subordinate ran-
domly dispersed coarse angular lithics (1–2 cm up to 10 cm; 
Fig. 4f). This lithofacies, informally called “White lapilli 
pumices”, crops out in all the recognized sections represen-
ting 60–100 % of the whole VU7. The common presence of 
at least three erosive contacts, usually marked by cm-thick 
beds (2–3 cm thick) enriched in mm-sized angular lithics, 
allow subdivision of the VU7-3 into four sub-lithofacies 
(Fig. 4e). The lowermost one (VU7-3a) is incised into the 
underlying VU7-2 with sharp and wavy erosive contact. It is 
characterized by medium to coarse lapilli with rare dark ran-
dom lithics, showing the coarser fraction (1–2 cm in size) 
concentrated in the median portion. VU7-3b (15–100 cm 
thick), VU7-3c (15–40 cm thick) and VU7-3d (dm–cm thick) 
show similar compositions to the previous sub-lithofacies 
but different structures. In particular, VU7-3b is massive 
(e.g. in section M) with some plane parallel lamination (e.g. 
in section N, Fig. 4e); VU7-3c is massive and composed of 
very coarse lapilli (3–6 cm sized) and randomly dispersed 
sub-rounded to rounded pumiceous clasts (8–12 cm-sized); 
VU7-3d is normally graded with pumice lapilli (mm-sized) 
grading upward to whitish fine ash beds (1–8 cm thick) which 
sometimes display convoluted structures (Fig. 4e). 

The sequence described above is frequently incomplete 

showing stratigraphic gaps and lateral variations, which are 
continuous on metre-scale but discontinuous over 10’s of m 
(20–30 m). For these reasons, in Fig. 5 a synthetic lithologi-
cal column is reported relative to the complete sequence of 
VU7. 

The average thickness of VU8 ranges between 10÷15 cm, 

with a maximum thickness of  40 cm in section C, and it  
is widely distributed. Sideways, it is rather continuous with 
plane-concave lentiform geometry and pinch-out closures. 
Its basal contact with clays is slightly undulated, the upper 
erosive contact is markedly undulated and articulated, with 
small steps. Both contacts are sharp and frequently marked 
by an orange alteration level (up to 1 cm in size). The unit 
shows abundant pumices mainly fine-grained (<1 cm  in 
size), loose and sub-rounded and rarely coarse-grained 
(3–5 cm in size), which are arranged in cm-thick laminae 
(1–3 cm). The latter are plane-parallel and marked by grey to 
yellow-orange chromatic variations. Rare dispersed dark 
lithics have also been found. The pumiceous beds are 

 

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

378

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

Fig. 4. Representative pictures of structures and detailed features of the VU7 unit: a, b — outcrop views, section G; c — basal portion, 
section G; d —  ngerprints of  ute casts with orientation, section N; e — middle part, section G; f — detail with a sub-angular lithic clast. 
The white continuous lines indicate the entire volcaniclastic units, the white dashed lines indicate the subunits. See text for  
details of descriptions.

VU6 and VU8 are well-sorted, VU2, VU3 and VU4 are dis-
tinctively uni-modal and better sorted, whereas only VU7-1 
and VU7-3 are poorly sorted and show low Md  typical of 
pyroclastic flow deposits (Table 1).

Representative SEM images of clast morphologies are 

 displayed in Fig. 6. The studied juvenile material shows two 
main morphologies (Table 2). Some pumice clasts have 
a  fluidal texture with thin, commonly tubular, frequently 
coalescing vesicles, related to high energy magmatic erup-
tions (Fig. 6A, C, F, G, H). Other fragments are blocky 

  

usually interbedded with mm-sized light grey fine- 
ashes, which are characterized by slightly wavy erosional 
surfaces. 

Grain size distribution and morphological features of 
 volcanic  clasts

The parameters of grain size distribution and summary of 

volcaniclastic component sorting (Cas and Wright, 1987) are 
reported in Table 1. The results highlight that VU1, VU5, 

background image

379

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

and dense poorly vesiculated to massive glassy with con-
choidal fracture (Fig. 6D) In both cases, the clasts frequently 
show surfaces coated with adhering particles 

 

(Fig. 6A, C, D, G, H). 

Petrography and mineral chemistry

The studied volcaniclastic units are composed of predomi-

nant pumices (vesiculated juvenile materials) associated with 
rare volcanogenic minerals (loose pyroxene and plagioclase 
crystals) and a basaltic lithic fraction. The results of 

petrographic and mineral chemistry investigations indicate 
homogeneous features of the pumice clasts among the 
 various volcaniclastic units in terms of both texture and com-
position. In general, the various units are characterized by 
different amounts of non-volcanic extra-basinal and intra- 
basinal clastic components. Commonly, the extra-basinal 
fraction, derived from inland, is represented by non-volcanic 
mineral clasts of quartz, feldspar, chlorite, mica flakes 
 (biotite, muscovite), and fragments of metamorphic, intru-
sive and sedimentary rocks. The intra-basinal component is 
 represented by clay containing fossils and diffuse pyrite 
grains. 

Juvenile volcanic clasts in all units consist of predomi-

nantly white and minor brown pumices, marked by fluidal, 
spongy and minor blocky texture. The lithic volcanic fraction 
is mainly represented by rock fragments. Some mafic lithics 
contain phenocrysts of plagioclase and pyroxene in a ground-
mass consisting of the same phases plus magnetite and brown 
glass. Under the microscope most of the lithic clasts show the 
same mineral assemblage occurring as phenocrysts in pumi-
ces, suggesting that they should be consi dered genetically 
related to pumices, at least for those contained in the VU7.

Igneous minerals, include plagioclase, clino- and orthopy-

roxene (Fig. 7A and B). They occur as loose crystals and as 
phenocrysts in pumices and in lithic clasts of all the volcani-
clastic units. Plagioclase appears as the dominant and ubiqui-
tous phenocryst phase as sub-euhedral slightly zoned crystals 

Volcaniclastic 

Units

Skewness

Sorting*

VU1

0.50

1.40

0.64

Well sorted

VU2

1.60

0.85

0.06

Very well sorted

VU4

-0.65

0.45

0.22

Very well sorted

VU5

1.50

1.55

-0.61

Well sorted

VU7-1

1.60

1.30

0.076

Well sorted

VU7-2

1.00

2.82

0.061

Poorly sorted

VU7-3.1

2.80

1.40

0.14

Well sorted

VU7-3.2

0.20

2.00

0.90

Poorly sorted

VU7-3.3

1.60

1.82

0.31

Well sorted

VU7-3.4

1.55

1.70

0.60

Well sorted

VU8

1.20

1.65

-0.090

Well sorted

(* from Cas & Wright 1987)

Table 1: Grain size distribution of representative volcanic compo-
nent of the studied volcaniclastic units.

Fig. 5. Reconstructed schematic depositional features of volcaniclastic unit VU7. See text for explanation of emplacement mechanisms.

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

380

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

Fig. 6. Secondary electron images of selected pumice grains: A —  uidal pumice shards of VU1; B — spiny shape of a pumice from VU2; 
C —  uidal and angular shape of a VU3 fragments; D — blocky glass grains from VU4; E — spiny shape of a VU5 pumice clast;  
F —  uidal pumice fragments from VU6; G and H —  uidal pumice shards from VU7 and VU8, respectively.

background image

381

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

with marked resorption phenomena and frequent inclusions 
of brown glass. The composition of the analysed plagio clase 
crystals ranges from andesite to labradorite from rim to  
core, with average values of An 38÷57 (Fig. 7A). Pyroxene  
is present as euhedral to subhedral colourless to light-green 
crystals in all the investigated pumices. Compositions 

 

are pigeonite-augite with an average composition of 

 

En

43

Fe

18

Wo

39

 (Fig. 

7B). The orthopyroxene is enstatite 

 

(Fig. 7B).

Bulk rock chemistry

Pumice clasts, mainly belonging to the most representa-

tive volcaniclastic unit (VU7), have been analysed for major 
and trace elements. The analytical results are reported in 
Table 3 (major elements) and Table 4 (trace elements). Most 
of the samples show high LOI values (> 2.5 %, Table 3), 
probably due either to primary water and alteration. As alte-
ration may have changed the pristine compositions, espe-
cially in terms of alkali contents, the discussion is mainly 
based on Zr, Y, Nb and Ti considered as immobile trace ele-
ments during secondary processes. 

The total alkali versus silica (TAS) diagram recalculated 

on a water-free basis (Le Bas et al. 1986; Fig. 8A) shows 
subalkaline dacitic and rhyolitic compositions (Fig. 8A) 
with two samples (VU7.4, VU8) characterized by 

 

a slight alkali enrichment, falling in the trachyte field  
(Fig. 8A). Fig. 8B shows how most of the samples plot  
in the high potassic calc-alkaline field (Peccerillo & 

 

Taylor 1976).

The incompatible trace-element abundances are displayed 

on the multi-element mantle-normalized diagram (Sun & 
McDonough 1989; Fig. 8C), in which 
the negative Nb ano maly and the posi-
tive Pb spike are evident. On the Ti-Zr-Y 
tectonic discrimination diagram (Pearce 
& Cann 1973)  all the samples fall in the 
field of volcanic arc products 

 

(Fig. 8D). 

Discussion

Emplacement mechanisms 

The eight volcaniclastic units besides 

other ten minor lens-shaped disconti-
nuous volcaniclastic horizons (up to 
3 cm thick) generally composed of ash to 
very-fine whitish pumiceous lapilli and 
ranging in age from 980–910 

ka to 

589  ka (Castradori 1993; Sprovieri et al. 
1998, Cita et al. 1998), provide compel-
ling evidence for an intense long-lasting 
volcanic activity with variable composi-
tion of the erupted products. Clasts have 

Fig. 7. Composition domains (grey) of plagioclase (A) and pyroxene (B) of the samples 
from the studied volcaniclastic units.

settled in a subaqueous environment to a depth of about 500–
700 metres, in an upper epi-bathyal zone, as suggested by the 
constant presence of a benthic fossil association (Violanti, 
1989). 

Field investigations suggest that all the studied volcani-

clastic units are well correlated for all the thirteen examined 
stratigraphic sections (Figs. 1 and 2) as indicated by the same 
mutual stratigraphic position, by the comparable thicknesses 

Samples

Clast morphologies

Description

VU1

Fluidal pumice 

Well vesiculated, surfaces coated with  ne 
adhering particles. 

VU2

Blocky 

Higly vesiculated, elongated to sub-
spherical bubbles, conchoidal surfaces 
coated with  ne adhering particles, trace of 
mechanical modi cations due to transport.

VU3

Fluidal angular shape 
pumice 

Strongly stretched vesicles, slight coated 
with  ne adhering particles.

VU4

Blocky 

Moderately vesiculated, sub-spherical and 
elongated vesicles with thick walls, trace 
of modi cations by mechanical abrasion.  

VU5

Blocky glass 

Highly vesiculated, sub-spherical to 
elongated vesicles with thin walls, surfaces 
coated with  ne adhering particles.

VU6

Fluidal pumice 

Spiny shaped with sub-spherical to 
elongated vesicles.

VU7

Fluidal pumice and 
blocky 

Fluidal shaped with tubular large and small 
vesicles, evidence of stretching effects 
- blocky shaped, pits due to chemical 
etching – on both types surfaces coated 
with  ne adhering particles and no signs 
of surface modi cations due to transport 
processes.

VU8

Fluidal pumice 

Parallel elongated vesicles with tiny 
walls, surfaces coated with  ne adhering 
particles.

Table 2: Morphologies of the analyzed juvenile clasts.

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

382

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

of the neighbouring clays, by the uniformity of their sedi-
mentological and petrographic features. Each volcaniclastic 
unit, correlated in various sites, belongs to the same deposi-
tional event and therefore to the same eruptive or post-erup-
tive phase.

In most cases the units are composed of whitish pumiceous 

lapilli with variable amounts of admixed lithic clasts, except 
for the VU4 which is composed of prevailing black lapilli to 
ash-sized scoriae. Among the units, VU7 is the most promi-
nent for its thickness of about 1 to 2.3 metres, the lateral 
extension and also for its occurrence over a wide area. 

Sedimentological features allow us to subdivide some volca-
niclastic units into distinct lithofacies. The VU3, VU4 and 
VU6 units contain abundant exotic terrigenous clasts, fora-
miniferal microfauna and minute bio-clasts mixed with vol-
caniclastic materials. Because of the presence of basal 
 scouring and their internal structures indicative of water-sup-
ported gravitational flows, these are interpreted as epiclastic 
units. They were generated by re-depositional processes and 
are defined as secondary volcaniclastic products related to 
post-eruptive processes. Contrastingly, the non-contaminated 
volcaniclastic units (VU1, VU2, VU5, VU7, VU8), 

SAMPLES

SiO

2

TiO

2

Al

2

O

3

Fe

2

O

3

FeO

MnO

MgO

CaO

Na

2

O

K

2

O

P

2

O

5

LOI

                                                weight %

VU1

white pumice

62.11

0.85

13.96

3.29

3.48

0.16

1.25

3.47

3.78

2.73

0.18

4.72

VU2

white pumice

67.36

0.57

12.36

1.96

2.53

0.13

0.53

1.82

4.06

3.29

0.06

5.33

VU4-1

dark pumice

58.19

1.09

13.97

5.19

5.46

0.18

2.52

5.48

3.31

2.13

0.19

2.29

VU4-2

dark pumice

58.26

1.15

14.13

4.46

5.98

0.18

2.55

5.65

3.31

2.22

0.18

1.92

VU5-1

white pumice

65.29

0.58

12.35

3.41

2.90

0.16

0.65

2.53

3.85

3.51

0.12

4.65

VU5-2

white pumice

63.84

0.54

13.37

4.69

1.96

0.14

0.69

2.39

3.84

3.07

0.10

5.38

VU7-1

white pumice

68.39

0.67

14.48

2.70

1.79

0.15

0.94

2.72

4.47

2.98

0.14

0.55

VU7-2

white pumice

66.42

0.69

13.77

2.26

1.82

0.15

0.90

2.63

4.12

3.15

0.12

3.98

VU7-3

dark pumice

62.05

0.92

13.95

4.10

3.95

0.18

1.78

4.71

3.86

2.42

0.21

1.87

VU7-4

white pumice

61.11

1.25

9.70

7.14

2.07

0.30

0.83

4.42

3.97

4.62

0.14

4.44

VU7-5

white pumice

66.30

0.71

13.73

1.99

2.31

0.15

0.88

2.32

3.96

2.70

0.10

4.86

VU7-6

white pumice

68.96

0.81

12.10

2.80

2.38

0.16

0.90

2.88

4.25

3.05

0.09

1.61

VU7-7

white pumice

66.80

0.69

13.38

1.75

2.48

0.15

0.83

2.42

4.00

2.91

0.11

4.48

VU7-8

white pumice

65.89

0.69

13.32

1.88

2.30

0.14

1.07

2.53

3.98

2.93

0.11

5.18

VU7-9

white pumice

66.28

0.72

13.46

2.30

2.19

0.17

0.79

2.29

3.92

2.97

0.11

4.80

VU7-10

dark pumice

67.17

0.70

13.38

1.74

2.26

0.14

0.82

2.38

3.93

3.16

0.11

4.21

VU7-11

white pumice

67.83

0.74

14.44

2.59

2.12

0.16

0.88

2.79

4.33

3.02

0.15

0.97

VU7-12

white pumice

67.62

0.67

13.24

1.67

2.26

0.14

0.83

2.23

3.80

2.85

0.10

4.60

VU7-13

white pumice

68.23

0.67

12.66

2.10

1.86

0.13

0.90

2.34

3.79

2.74

0.11

4.47

VU7-14

white pumice

64.11

0.74

13.54

4.42

1.93

0.13

1.03

3.41

3.61

2.38

0.14

4.57

VU8-1

white pumice

63.21

0.97

9.81

5.79

2.11

0.23

0.69

3.55

3.88

4.39

0.10

5.28

SAMPLES

V

Cr

Co

Ni

Cu

Zn

Ga

Rb

Sr

Y

Zr

Nb

Ba

La

Pb

Ce

Th

                                       ppm

VU1

white pumice

44

7

9

6

10

99

22

80

384

36

170

10

572

32

21

73

9

VU2

white pumice

13

7

1

10

9

76

20

97

280

36

197

11

670

31

24

62

17

VU4-1

dark pumice

272

20

24

19

42

107

24

71

429

29

146

12

473

27

19

65

8

VU4-2

dark pumice

322

24

22

11

39

100

24

70

447

31

150

11

494

29

14

47

6

VU5-1

white pumice

6

7

3

11

13

101

32

106

293

33

198

10

644

40

41

86

27

VU5-2

white pumice

10

3

1

15

17

90

20

96

315

38

189

11

624

33

20

131

19

VU7-1

white pumice

24

7

5

12

7

79

19

88

383

31

186

13

660

42

17

66

10

VU7-2

white pumice

21

6

5

11

7

81

17

92

361

31

184

12

646

42

17

70

10

VU7-3

dark pumice

125

16

8

12

16

96

22

73

466

27

154

11

521

38

17

104

6

VU7-4

white pumice

15

7

5

11

26

127

41

114

447

46

226

14

606

40

52

70

37

VU7-5

white pumice

15

4

6

8

11

95

20

85

364

32

182

11

718

36

27

69

16

VU7-6

white pumice

24

6

4

13

11

97

23

92

379

35

181

10

610

33

25

58

22

VU7-7

white pumice

19

5

3

10

10

79

17

83

350

37

182

11

635

40

22

60

16

VU7-8

white pumice

18

5

3

8

8

79

17

82

362

36

183

11

634

37

21

69

15

VU7-9

white pumice

15

3

4

10

12

86

24

90

332

35

178

10

623

35

31

68

24

VU7-10

dark pumice

15

6

2

10

10

85

21

89

346

33

173

10

641

36

25

64

25

VU7-11

white pumice

21

6

3

12

10

85

20

90

379

33

183

11

662

39

20

61

15

VU7-12

white pumice

16

5

1

9

8

83

17

81

347

36

182

11

662

38

23

71

14

VU7-13

white pumice

24

9

1

6

9

83

24

80

341

34

163

9

633

40

33

65

21

VU7-14

white pumice

52

6

9

17

14

74

23

74

320

27

161

9

519

21

26

90

15

VU8-1

white pumice

16

6

7

18

348

100

34

116

371

36

217

12

593

37

41

87

23

Table 3: XRF major elements data of the analyzed pumice clasts from the volcaniclastic units.

Table 4: XRF trace elements data of the analyzed pumice clasts from the volcaniclastic units.

background image

383

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

consis ting entirely of fresh volcanic fragments, are regarded 
as primary deposits originated by subaqueous concentrated 
density flows (Mulder and Alexander, 2001).

Density currents bearing unmodified eruption-formed 

fragments originate either directly from volcanic eruptions 
(pyroclastic flows) or indirectly by remobilization and rede-
position of material initially emplaced by a different process 
(Fisher & Schmincke 1984; Cas & Wright 1987; McPhie et 
al. 1993). For submarine settings, even deposits formed by 
pyroclastic fragmentation followed by uninterrupted trans-
port through the ambient water column have been commonly 
termed as reworked or redeposited (Cas & Wright 1987; 
McPhie et al. 1993). Consequently, remobilized unconsoli-
dated pyroclastic debris transported downstream via density 
current processes in a submarine setting with preserved pyro-
clastic components may be referred to as pyroclastic in ori-
gin. Pumice shreds, vitric shards, broken or euhedral crystals, 
and vesicular to non-vesicular, angular lithic fragments 
(Fisher & Schmincke 1984; Stix 1991) are consistent 

 

with a pyroclastic origin as a direct result of volcanic 
activity.

The compositional homogeneity of the volcanic products 

and the absence of interbedded clayey layers suggest that 

deposition occurred almost contemporary with the eruption 
phases, quickly enough to inhibit the resumption of normal 
marine sedimentation before volcanic activity ceased. There-
fore, the VU1÷VU8 volcaniclastic units are considered cold 
mass flow deposits as the direct result of an eruption, with 
transport and deposition mechanism controlled by aqueous 
processes. VU7 best illustrates the primary pyroclastic origin 
of these deposits. The flute casts in the plane-parallel lami-
nated facies (VU7-2b), channel scours bedforms, chan-
nel-shape geometry of deposits outcrops (Fig. 4) and dip 
directions of slumpings of VU7 indicates a remobilization of 
primary pyroclastic material in a near-shore environment, 
probably outer muddy continental shelf, located to the 
south-southeast, during or immediately after their primary 
submarine deposition. 

The interaction between volcanism and sedimentation, and 

the development of concurrent facies are largely governed by 
two factors: 1) the active volcanism producing abundant 
material which is rapidly delivered to the deposition sites, 
and 2) the lateral changes which are the result of flow trans-
formations. During eruptions large volumes of pyroclastic 
materials are released far more rapidly than any production 
process of epiclastic particles. 

Fig. 8. Major and trace elements composition diagrams of the analyzed pumice clasts [VU7 has also lithic clasts, not only pumice!] from 
the studied volcaniclastic units. A — TAS classi cation diagram of Le Bas et al. (1986); B — SiO

2

 vs K

2

O classi cation diagram of 

 Peccerillo & Taylor (1976); C — Spider diagram of incompatible elements normalized to primordial mantle  composition (McDonough et 
al. 1992); D — Tectonic classi cation diagram based on HFS elements (after Pearce & Cann 1973).

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

384

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

Type of eruptions

The investigated submarine volcaniclastic deposits are 

diagnostic of different types of eruption. The analysis of the 
morphological features of juvenile clasts is a valid tool for 
reconstructing the modalities of magma vesiculation and 
fragmentation during explosive eruptions (Heiken & Wohletz 
1985). In particular, morphological analyses have been per-
formed to infer the style of fragmentation and especially the 
active involvement of external fluids (phreatic or surface 
water, steam) in the eruption dynamics (Wohletz 1983; 
 Dellino & La Volpe 1996). Volcanic ash particles from diffe-
rent fragmentation mechanisms have different surface tex-
tures and morphologies. The particles forming the analysed 
volcaniclastic units show mainly pyroclasts with fluidal tex-
tures. The predominance of fluidal and highly vesicular frag-
ments over the blocky, dense clasts in the lapilli layers is 
evidence of pure magmatic fragmentation. The blocky type 
clasts, are dense fragments frequently marked by conchoidal 
external surfaces with the presence of adhering particles 
(Heiken & Wohletz 1985). This is a typical morphology of 
hydroclastic tephra formation from a system associated with 
shallow-water phreatomagmatic explosions, in which the 
explosive vaporization of external water results in the frag-
mentation and quenching of magma (Heiken & Wohletz 
1985, 1991; Wholetz 1987; Houghton & Wilson 1989; 
 Buttner et al. 1999). The angular blocky glassy shards, the 
presence of glass alteration and the presence of adhering par-
ticles on the external surface of the clasts, indicate 

 

the important role of magma-water  

inte raction  (Wohletz 

1983; Sheridan & Wohletz 1983; Kokelaar 1986; 

 

Wohletz 1987). 

Abundant angular lithic fragments and sub-angular to 

rounded pumices, both coarser in size, low vesicular to high 
vesicular pumices, suggest depositional mechanisms as 
a result of either fallout and pyroclastic flows during mode-
rate Vulcanian to large magnitude Plinian subaerial and/or 
shallow-water phreatomagmatic eruptions. 

The presence of (rare) lithic fragments combined with the 

estimated volume of VU7 unit exceeding 2 10

6

 m

3

 ( assuming 

a conservative average thickness of 0.5 m over the whole dis-
tribution area) are consistent with partial volcanic conduit 
collapse and/or vent clearing events during the volcanic 
eruption. 

Provenance of the volcaniclastic deposits

The analysed volcaniclastic-sequence represents the pro-

duct of explosive volcanic events from one or more volcanic 
centres located in the Southern Tyrrhenian area. The mineral 
assemblage, including orthopyroxene phenocrysts, and the 
geochemical data (especially high ratios of LILE/HFSE) 
highlight that the studied tephra originated in a volcanic arc 
environment. 

The volcanic centres in the Southern Tyrrhenian Sea cha-

racterized by arc signature are the seven subaerial volcanic 

edifices of the Aeolian islands and the seamounts roughly 
distributed around the Marsili Basin (Romagnoli 2013; 
Romagnoli et al. 2013) (Fig. 1). The age of the subaerial Aeo-
lian volcanism ranges from 219 ka (Filicudi) to Present 
(Stromboli) (De Astis et al. 2003; De Rosa et al. 2003, Pec-
cerillo 2005), younger than the studied volcaniclastic depo-
sits (Lucchi et al. 2013). The oldest documented volcanic 
activity is represented by the 1.3 Ma age of dredged samples 
coming from the Sisifo seamount (in the western submarine 
portion of the arc). 

Structural and magmatic variations recognized along the 

arc depending on the variable composition of the subducted 
slab (oceanic in the west and oceanic plus sediments in the 
east), as well as on the local structural setting (e.g. Peccerillo 
& Frezzotti 2015). On the basis of geochemical and isotopic 
features, three distinct sectors have been identified in the arc 
(Calanchi et al. 2002; Peccerillo 2005): 1) the western sector 
includes the Alicudi and Filicudi islands and consists of 
calc-alkaline basalt to andesite and minor dacites, characte-
rized by typical island arc signature; 2) the central sector, 
including Salina, Vulcano, Lipari and Panarea islands, which 
consists of calc-alkaline to shoshonitic mafic to silicic rocks, 
with abundant rhyolites mainly erupted during the latest vol-
canic phases; 3) the eastern sector formed by the Island of 
Stromboli characterized by calc-alkaline to potassic-alkaline 
mafic-intermediate rocks showing isotopic incompatible 
trace element ratios and radiogenic isotope signatures diffe-
rent from those of the western and central islands (Peccerillo 
et al. 2013). 

From the geochemical point of view, the studied volcani-

clastic sequence is characterized by arc signature, mostly fel-
sic with subordinate mafic compositions represented by two 
andesites samples from VU4. Most of the pumices show 
mainly dacitic and rhyolitic compositions, characterized by 
CA and HKCA affinity (Fig. 8B), without significant varia-
bility inside each unit and among the different units. The vol-
canic arc signature is indicated by negative anomalies of Nb 
and Zr and by the positive spike of Pb (Fig. 8C). Trace ele-
ments ratios of the most evolved pumices, such as Zr/Nb 
(17÷21), Rb/Nb (5÷8) and Ba/Rb (5÷8) are slightly 
variable. 

The age of the volcaniclastic sequence and the chemical 

composition of the studied products suggest that they could 
be related to the oldest phases of the Aeolian Arc volcanism, 
effectively excluding an origin from the younger volcanic 
systems currently exposed above sea-level (De Rosa et al. 
2003; Dolfi et al. 2007). Affinity with dacites found within 
the oldest part of the Panarea volcanic complex dated 800 Ky 
(Savelli 2002; Lucchi et al. 2013 and references therein) can 
be considered. 

The geochemical data we recorded are compared with 

those of subaerial volcanic rocks from the Aeolian archi-
pelago (Peccerillo 2005) as well as with the coeval volcani-
clastic deposits outcropping along the Calabrian coast 

 

(De Rosa et al. 2008). The comparison does not highlight any 
clear correlation with the CA and HKCA rocks from the 

background image

385

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

Aeolian islands (Fig. 9) especially regarding the trace ele-
ments and their ratios. In contrast, the comparison with data 
of the coeval Pleistocene tephra outcropping along the Cala-
brian coast reveals similar Zr/Nb and Ba/Rb ratios. Accor-
ding to De Rosa et al. (2008) it could represent the product of 
explosive activity from one or more volcanic centres active 
in the Southern Tyrrhenian domain during the last one mil-
lion years. Such an eruption centre has been identified in the 
seamount located 6 miles off the western coast of the  Calabria 
region (Loreto et al. 2015), (Fig. 9).

Combining all the recovered information, it seems very 

unlikely that the Aeolian Islands are the origin of the studied 
deposits (VU7, in particular), and difficult to explain the 
presence of the deposits over the northern Sicilian coast 
 taking into account their distance (> 30 km) and their coarse 
grain size. The seamount located offshore from the Capo 
 Vaticano promontory (Loreto et al. 2015) looks to be very far 
away, (about 80 km to the North although compatible in age 
and chemistry (De Rosa et al. 2008; De Ritis et al. 2010) with 
the top located at shallow depth (about 70 m b.s.l.). The grain 
size characteristics of the pyroclastic material of VU7 and 
also of VU1, VU2, VU5, VU8 indicate a primary emplace-
ment at a distance of less than 5 km from the vent, on a deep 
shore environment of the Sicilian continental margin, 

 

and subsequently remobilization and final redeposition 

 

away towards the northwest and north by means of sea 
currents. 

The existence of a subaerial or shallow-water volcanic edi-

fice located somewhere between the northern coast of Sicily, 
the western coast of Calabria and the Aeolian Islands 

 

(Fig. 10) would also be able to explain the abundance of 
coarse angular lithic and pumiceous clasts (both up to 
10–12 cm). This possibility cannot be rejected.

Conclusions

The results of this study highlight for the first time that 

volcaniclastic deposits outcropping along the Tyrrhenian 
coastline of the Peloritani Mountains (Sicily) are related to 
recent (Lower-Middle Pleistocene) explosive activity in the 
Southern Tyrrhenian sea. The results match those of similar 
deposits spread over the Mesima-Gioia Tauro and Reggio 
Calabria basins (De Rosa et al. 2008) for which a possible 
explosive centre has been identified offshore from the Capo 
Vaticano promontory (Loreto et al. 2015) while there is no 
clear correlation with rocks from the subaerial portion of the 
Aeolian archipelago. 

The field investigations besides the sedimentological fea-

tures of the widespread volcaniclastic deposits suggest that 
they underwent reworking by sea currents after the primary 
emplacement. The volcaniclastic units can be identified as 
the results of deposition of pyroclastic fall and/or flow related 
to Vulcanian to Plinian type eruptions. Clasts underwent 

Fig. 9. Rb, Zr/Nb, Ba/Rb and Rb/Nb versus Zr diagrams of analyzed pumice clasts compared with literature data of Aeolian Islands  
(Peccerillo 2005) and Calabrian volcanic products of similar in age (De Rosa et al. 2008). Symbols are the same as in Fig. 8.

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

386

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

syn- to post-eruptive remobilization onto the seafloor by den-
sity currents. Alternatively, they may represent the extension 
of subaerial pyroclastic flows entering into the sea and trig-
gering subaqueous dense currents.

The volcaniclastic units probably derive from a common 

source as testified by a single trend of magmatic differentia-
tion. The presence of the volcaniclastic deposits included in 
deep water marine clayey sediments allow us to conclude 
that intense and prolonged explosive mafic to felsic calc- 
alkaline and high-K calc-alkaline activity occurred at a vol-
canic centre or centres located in the Southern Tyrrhenian Sea. 

Acknowledgements: This paper is dedicated to the memory 
of our friend, Prof. Riccardo Rasà. The authors are grateful to 
the 2 anonymous reviewers for their constructive reviews 
that improved the quality of the paper. They also thank Mauro 
Coltelli (INGV Catania) for his useful suggestions. The XRF 

Laboratory of the University of Modena and Reggio Emilia 
is acknowledged for the technical support during the chemi-
cal analyses.

References

Barberi F., Gasparini P., Innocenti F. & Villari L. 1973: Volcanism 

of the southern Tyrrhenian Sea and its geodynamic implica-
tions. J. Geophys. Res. 78, 23, 5221–5232.

Barberi F., Civetta L., Gasparini P., Innocenti F., Scandone R. & 

Villari L. 1974: Evolution of a section of the Africa-Europe 
plate boundary; paleomagnetic and volcanological evidence 
from Sicily. Earth Planet. Sci. Lett. 22, 2, 123–132. 

Barrier P., Cravatte J., Decis R., Lanzafame G. & Ott D’estevou 

P. 1987: Mise au point stratigraphique sur les relations entre la 
“couverture calabridemiocene” et les “terrains postorogéniques” 
dans la region du Detroit de Messine. IGAL 11, 43–53.

Beccaluva L., Rossi P.L. & Serri G. 1982: Neogene to Recent volca-

nism of the Southern Tyrrhenian-Sicilian area: Implications for 
the geodynamic evolution of the Calabrian Arc. Earth Evol. 
Sci.
 3, 222–238.

Beccaluva L., Gabbianelli G., Lucchini F., Rossi P.L. & Savelli C. 

1985: Petrology and K/Ar ages of volcanic dredged from the 
Eolian seamounts: Implications for geodynamic evolution of 
the Southern Tyhrrenian basin. Earth Planet. Sci. Lett. 74, 
187–208.

Bigazzi G. & Carobene L. 2004: Dating an ash layer of the Middle 

Pleistocene: relations to sedimentation, uplift and marine ter-
race in Crosia-Calopezzati, Calabria (Italy). Il Quaternario 17, 
2, 151–163. (in Italian with English abstract)

Bon glio L. & Violanti D. 1984: First record of Tyrrhenian age and 

Pleistocenic evolution of Capo Peloro (North-Eastern Sicily). 
Geogr. Fis. Dinam. Quater. 6, 3–15. (in Italian)

Buttner R., Dellino P. & Zimanowsky B. 1999: Identifying mag-

ma-water interaction from the surface features of ash particles. 
Nature 401, 6754, 688–690. 

Calanchi N. 1988: Quaternary pyroclastic layers in cores from SE 

sector of the Tyrrhenian Sea: geochemical characters and ori-
gins. Boll. Soc. Geol. It. 107, 2, 373–382. (in Italian with Eng-
lish abstract).

Calanchi N., Peccerillo A., Tranne C., Lucchini F., Rossi P.M., 

Kempton P., Barbieri M. & Wu T.W. 2002: Petrology and geo-
chemistry of the island of Panarea: implication for mantle evo-
lution beneath the Aeolian island arc (Southern Tyrrenian Sea, 
Italy). J. Volcanol. Geotherm. Res. 115, 367–395.

Caracausi A., Favara R., Italiano F., Nuccio P.M., Paonita A. & 

Rizzo A. 2005: Active geodynamics of the central Mediterra-
nean Sea: Tensional tectonic evidences in western Sicily from 
mantle-derived helium. Geophys. Res. Lett. 32, L04312. 

Carbone S., Messina A. & Lentini F. 2008: The Geological Map of 

Italy (Scale 1:50.000) — Sheet 601 Messina–Reggio di 
 

Calabria, APAT, Dipartimento Difesa del Suolo. Servizio 
 Geologia  d’Italia
, 1–179.

Carminati E., Lustrino M. & Doglioni C. 2012: Geodynamic evolu-

tion of the central and western Mediterranean: Tectonics vs. 
igneous petrology constraints. Tectonophysics 579, 173–192.

Carobene L., Cirrincione R., De Rosa R., Gueli A., Marino S. & 

Troja O. 2006: Thermal (TL) and optical stimulated lumines-
cence (OSL) techniques for dating Quaternary colluvialvolca-
niclastic sediments: an example from the Crati. Quaternary 
Internat.
 148, 1, 149–164.

Cas R.A.F. & Wright J.V. 1987: Volcanic Successions: Modern and 

Ancient. Unwin Hyman, London, 1–528.

Castradori D. 1993: Calcareous nannofossil biostratigraphy and 

Fig. 10. Structural scheme (above) and summary of available age 
data showing evolution of volcanism (below) in the Aeolian area 
(following De Astis et al. 2003, modi ed).

background image

387

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

biochronology in eastern Mediterranean deep-sea cores.  Rivista 

 99, 107–126.

Catalano S. & Cinque A. 1995: Neotectonic evolution of the nor-

thern Peloritani Mountains (NE Sicily): the contribution of 
a preliminary geomorphological analysis. Studi Geol. Camerti 
2, 113–123. (in Italian)

Catalano S. & Di Stefano A. 1997: Pleistocene tectonic uplift along 

the Tyrrhenian margin of the Peloritani Mountains: integration 
of geomorphological, structural and biostratigraphic data. Il 
Quaternario
 10, 2, 337–342. (in Italian with English 
summary).

Catalano S., De Guidi G., Monaco C., Tortorici G. & Tortorici L. 

2003: Long-term behaviour of the late Quaternary normal 
faults in the Straits of Messina area (Calabrian arc): structural 
and morphological constraints. Quaternary Internat. 101, 
81–91.

Cello G., Spadea P., Tortorici L. & Turco E. 1983: Plio-Pleistocene 

volcanoclastic deposits of southern Calabria. Boll. Soc. Geol. 
It.
 102, 87–93.

Cita M.B., Racchetti S., Brambilla R., Bertarini L., Colombaroli D., 

Morelli L., Negri M., Ritter M., Rovina E., Sala P. & Sanvito S. 
1998: Evolution of the deep basins of the Mediterranean 
recorded by changes in sedimentation rate in the Plio-Pleisto-
cene. Rend. Fis. Acc. Lincei 9, 83–100. (in Italian with English 
abstract).

Cita M.B., Capraro L., Ciaran  N., Di Stefano E., Marino M., Rio 

D., Sprovieri R. & Vai G.B. 2006: Calabrian and Ionian: A pro-
posal for the de nition of Mediterranean stages for the Lower 
and Middle Pleistocene. Episodes 29, 2, 107–114.

Cornette Y., Gillot P.Y., Barrier P. & Jehenne F. 1987: Donnèsradio-

metriquès preliminaries (Potassium-Argon) sur des 
cinèritesplio–plèistocènes du Dètroit de Messine. Doc. et Trav. 
IGAL, 11, 97–99.

Cucci L. 2004: Raised marine terraces in the Northern Calabrian arc 

(Southern Italy): a 600 kyr-long geological record of regional 
uplift. Annals of Geophysics 47, 4, 1391–1406.

De Astis G., Ventura G. & Vilardo G. 2003: Geodynamic signi -

cance of the Aeolian volcanism (Southern Tyrrhenian Sea, 
Italy) in light of structural, seismological and geochemical 
data. Tectonics 22, 4, 1040–1057.

Dellino P. & La Volpe L. 1996: Image processing analyses in recon-

structing fragmentation and transportation mechanism of pyro-
clastic deposits. The case of monte Pilato-Rocche Rosse 
Eruptions, Lipari (Aeolian Island, Italy). J. Volcanol. Geo-
therm. Res.
 71, 13–29.

De Ritis R., Dominici R., Ventura G., Nicolosi I., Chiappini M., 

Speranza F., De Rosa R., Donato P. & Sonnino M. 2010:  
A buried volcano in the Calabrian Arc (Italy) revealed by high 
resolution aeromagnetic data. J. Geophys. Res. 115, 1–18. 

De Rosa R., Dominici R. & Sonnino M. 2001: Syn-sedimentary vol-

canism evidences in the Pleistocenic succession of the Mesima 
Graben (central-northern Calabria). Il Quaternario 14, 2, 
81–91. (in Italian with English abstract),

De Rosa R., Dominici R. & Sonnino M. 2002: Stratigraphy and ori-

gin of volcaniclastic Plio-Pleistocene deposits from south-
western Calabria. Plinius, Suppl. it. Eur. J Mineral. 28, 
141–142. (in Italian with English abstract).

De Rosa R., Guillou H., Mazzuoli R. & Ventura G. 2003: New 

unspiked K-Ar ages of volcanic rocks of the central and 
 western sector of the Aeolian Islands: reconstruction of volca-
nic stages. J. Volcanol. Geotherm. Res. 120, 161–178. 

De Rosa R., Dominici R., Donato P. & Barca D. 2008: Widespread 

syn-eruptive volcaniclastic deposits in the Pleistocene basins 
of South-Western Calabria. J. Volcanol. Geotherm. Res. 177, 
155–169.

Di Stefano A. & Lentini F. 1995: Stratigraphic reconstruction and 

paleotectonic signi cance of Plio-Pleistocene deposits from 
the Tyrrhenian margin between Villafranca Tirrena and Faro 
villages (NE Sicily). Studi Geologici Camerti 2, 219–237. (in 
Italian with English abstract)

Dol  D., De Rita D., Cimarelli C., Mollo S., Soligo M. & Fabbri M. 

2007: Dome growth rates, eruption frequency and assessment 
of volcanic hazard: Insights from new U/Th dating of the 
Panarea and Basiluzzo dome lavas and pyroclastics, Aeolian 
Islands, Italy. Quaternary Internat. 162, 182–194. 

Ferranti L., Antonioli F., Mauz B., Amorosi A., Dai Pra G., Mastro-

nuzzi G. & Verrubbi V. 2006: Markers of the last interglacial 
sea-level high stand along the coast of Italy: tectonic implica-
tions. Quaternary Internat. 145, 30–54.

Fisher R.V. 1961: Proposed classi cation of volcaniclastic sedi-

ments and rocks. Geol. Soc. Am. Bull. 72, 1409–1414.

Fisher R.V. 1966: Rocks composed of volcanic fragments. Earth 

Sci. Rev. 1, 287–298.

Fisher R.V. & Schmincke H.U. 1984: Pyroclastic Rocks. 

 Springer-Verlag, New York, 1–472.

Gaetani M. & Sacca’ D. 1984: Bathyal brachiopods of Sicily and 

Calabria in the Pliocene and Pleistocene. Rivista Italiana di 

 90, 3, 407–458. (in Italian).

Gargano C. 1994: Geological map of Messina and NE sector of the 

Peloritani Mountains (NE Sicily), scale 1:25.000. S.El.Ca., 
Florence. (in Italian).

Heinicke J., Italiano F., Maugeri R., Merkel B., Pohl T. & Schipeck 

M. 2009: Evidence of tectonic control on active arc volcanism: 
The Panarea-Stromboli tectonic link inferred by submarine 
hydrothermal vents monitoring (Aeolian arc, Italy). Geophys. 
Res. Lett
. 1–36.

Heiken G.H. &Wohletz K.H. 1985: Volcanic Ash. University of 

Cali fornia  Press, Berkeley, 1–246.

Heiken G.H. &Wohletz K.H. 1991: Fragmentation processes in 

explosive volcanic eruptions. In: Fisher R.V. & Smith G. 
(Eds.): Sedimentation in Volcanic Settings. Society of Sedimen-
tary Geology
, 45, 19–26.

Houghton B.F. & Wilson C.J.N. 1989: A vesicularity index for pyro-

clastic deposits. Bull. Volcanol. 51, 451–462.

Hornung J. & Aigner T. 2002: Reservoir architecture in a terminal 

alluvial plain: an outcrop analogue study (upper Triassic, 
southern Germany) part ii: cyclicity, controls and models.  
J. Petrol. Geol. 25, 2, 151–178.

Inmann D.L. 1952: Measures for describing the size distribution of 

sediments. J. Sed. Res. 22, 3, 125–145.

Italiano F., De Santis A., Favali P., Rainone M.L., Rusi S. & 

 Signanini P. 2014: The Marsili Volcanic Seamount (Southern 
Tyrrhenian Sea):a potential offshore geothermal resource. 
Energies 7, 4068–4086.

Kamenov G.D., Dekov V.M., Willingham A.L, Savelli C. & Belluci 

L.G. 2009: Anthropogenic Pb in recent hydrothermal sedi-
ments from the Tyrrhenian Sea: implications for seawater Pb 
control on low-temperature hydrothermal systems. Geology 
37, 111–114.

Keller J., Ryan W.B.F., Ninkovich D. & Altherr R. 1978: Explosive 

volcanic activity in the Mediterranean over the past 200.000 yr 
as recorded in deep sea sediments. Geol. Soc. Amer. Bull. 89, 
591–604. 

Kézirian F. 1992a: Evolution tectono-sedimentarie post nappes des 

MontsPeloritains (Sicile, NE). Mém. De Geol. IGAL 49, 1–260.

Kézirian F. 1992b: Evolution tectono-sedimentarie des series Oligo-

cènes et Pléistocènes des Monts Peloritains (Sicile septentrio-
nale). Mém. Géol. IGAL 49, 1–259.

Knott S. D. & Turco E. 1991: Late Cenozoic kinematics of the 

 Calabrian arc, southern Italy. Tectonics 10, 6, 1164–1172.

Kokelaar P. 1986: Magma-water interactions in subaqueous and 

emergent basaltic volcanism. Bull. Volcanol. 48, 275–289.

background image

DI BELLA, ITALIANO, SABATINO, TRIPODO, BALDANZA, CASELLA, PINO, RASA’ and RUSSO

388

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

Le Bas M.J., Le Maitre R.W., Streckeisen A. & Zanettin B. 1986: 

A chemical classi cation of volcanic rocks based on the 
total-alkali-silica diagram. J. Petrol. 27, 745–750.

Lentini F., Carbone S., Catalano S., Di Stefano A. Gargano C., 

Romeo M., Strazzulla S. & Vinci G. 1995: Sedimentary evolu-
tion in basins in mobile belts: Examples from Tertiary terrige-
nous sequences of the Peloritani Mts. Terra Nova 161–170. 

Lentini F., Carbone S., Catalano S. & Grasso M. 1996: Elements for 

structural reconstruction of Eastern Sicily. Mem. Soc. Geol. It. 
51, 179–195. (in Italian with English abstract).

Lentini F., Di Stefano A. & Strazzulla S. 1997: The Middle-Late 

Miocene terrigenous deposits of the Peloritani Mounts. In: 
Interim Colloquium R.C.M.N.S.: Neogene Basins of the Medi-
terranean Region — Controls and Correlation in Space and 
Time. Catania, 14–18.

Lentini F., Catalano S. & Carbone S. 2000: Geological Map of the 

Messina Province, scale 1:50.000. Provincia Regionale di Mes-
sina, Assessorato Servizio Territorio. Servizio Geologico 

 

d’Italia. (in Italian).

Leyrit H., Pompilio M., Berrier P., Lanzafame G. & Toussaint T. 

1998: Sur l’origine eolienne des volcanoclastites pleistocenes 
du nord-est de la Sicile. RST98 — Reunion des Sciences de la 
Terre Congrès
, Brest 31 mars–3 avril, 149.

Lombardo G. 1980: Stratigraphy of the Pleistocene deposits from 

NE Sicily. Acc. Gioenia Sc. Nat. Catania 12, 84–113 

 

(in Italian).

Loreto M.F., Italiano F., Deponte D., Facchin L. & Zgur F. 2015: 

Mantle degassing at the top of an unknown submarine volcano 
in the SE Tyrrhenian Sea. Terra Nova 27, 195–205.

Lucchi F., Keller J. & Tranne C. A. 2013: Regional stratigraphic 

correlations across the Aeolian archipelago (southern Italy).  
In: Lucchi F., Keller J. & Tranne C.A. (Eds.): The Aeolian 
Islands Volcanoes. Geological Society 37, 55–81. 

Lupton J., de Ronde C., Sprovieri M., Baker E. T., Bruno P. P., 

 Italiano F. & Greene R. 2011: Active hydrothermal discharge 
on the submarine Aeolian Arc. J. Geophys. Res.: Solid Earth 
116, 1978–2012.

Malinverno A. & Ryan W. B. 1986: Extension in the Tyrrhenian Sea 

and shortening in the Apennines as result of arc migration 
driven by sinking of the lithosphere. Tectonics 5, 2, 227–245.

Marani M.P. & Gamberi F. 2004: Distribution and nature of subma-

rine volcanic landforms in the Tyrrhenian Sea: the arc vs the 
backarc. Mem. Descr. Carta Geol. d’It. 64, 109–126. 

McDonough W.F., Sun S., Ringwood A.E., Jagoutz E. & Hofmann 

A.W. 1992: K, Rb and Cs in the earth and moon and the evolu-
tion of the earth’s mantle. Geochim. Cosmochim. Acta 56, 
1001–1012.

McPhie J., Doyle M. & Allen R. 1993: Volcanic textures. A guide to 

the interpretation of the tectures in volcanic rocks. Centre for 
Ore Deposit and Exploration Studies, CODES Key Centre,
 
University of Tasmania, Hobart, 1–196.

Monaco C. & Tortorici L. 2000: Active faulting in the Calabrian arc 

and eastern Sicily. J. Geodyn. 29, 3, 407–424.

Mulder T. & Alexander J. 2001: The physical character of sub-

aqueous sedimentary density  ows and their deposits. 
 Sedimentology 48, 269–299.

Narcisi B. & Vezzoli L. 1999: Quaternary stratigraphy of distal 

tephra layers in the Mediterranean - an overview. Glob. Planet. 
Change
 21, 31–50. 

Paterne M., Guichard F. & Labeyrie J. 1988: Explosive activity of 

the South Italian volcanoes during the past 80,000 years as 
determined by marine tephrochronology. J. Volcanol. 
 Geotherm.  Res.
 34, 153–172.

Pearce J.A. &Cann J.R. 1973: Tectonic setting of basic volcanic 

rocks determined using trace element analyses. Earth Planet. 
Sci. Lett.
 19, 290–300.

Peccerillo A. & Taylor S.R. 1976: Geochemistry of Eocene calc- 

alkaline volcanic rocks from the kastamonu Area, Northern 
Turkey. Contrib. Mineral. Petrol. 30, 227–256.

Peccerillo A. 2005: Plio-Quaternary Volcanism in Italy: Petrology, 

Geochemistry, Geodynamics. Springer, Heidelberg, 1–365.

Peccerillo A., De Astis G., Faraone D., Forni F. & Frezzotti M.L. 

2013: Compositional variations of magmas in the Aeolian arc: 
implications for petrogenesis and geodynamics. In: Lucchi F., 
Keller J. & Tranne C.A. (Eds.): The Aeolian Islands Volcanoes. 
Geol. Soc., London, Memoirs 37, 491–510. 

Peccerillo A. & Frezzotti M.L. 2015: Magmatism, mantle evolution 

and geodynamics at the converging plate margins of Italy.  
J. Geol. Soc. London 172, 407–427.

Pino P., Baldanza A., Bel ore C., Di Bella M., Sabatino G., Triscari 

M. 2007a: Pleistocene clay formations in the Messina country 
(N.E. Sicily): a stratigraphic review. FIST 2007, Rimini, 
 Epitome 2, 401.

Pino P., Bel ore C., Casella S., Di Bella M., Rasa’ R., Sabatino G., 

Tripodo A. & Triscari M. 2007b: Interbedded ash levels in 
pleistocenic clay formations of the Thyrrenian coast of Sicily: 
possible archaeometric implications. Geoitalia 2007, Epitome 
2, 343–344.

Pouclet A., Horvath E., Gabris G. & Juvigné E. 1999: The Bag 

tephra, a widespread tephrochronological marker in Middle 
Europe: chemical and mineralogical investigations. Bull. 
 Volcanol
. 60, 265–272.

Pyle D.M., Van Andel T.H., Paschos P. & Van Den Bogaard P. 1998: 

An exceptionally thick middle Pleistocene tephra layer from 
Epirus, Greece. Quat. Res. 49, 280–286. 

Rio D., Raf  I. & Villa G. 1990: Pliocene–Pleistocene calcareous 

nannofossil distribution patterns in the Western Mediterranean. 
In: Kastens K.A., Mascle J., et al. (Eds.): Proceedings of the 

, 107, 513–532. 

Romagnoli C. 2013: Characteristics and morphological evolution of 

the Aeolian volcanoes from the study of submarine portion. In: 
Lucchi F., Keller J. & Tranne C.A. (Eds.): The Aeolian Islands 
Volcanoes. Geological Society, 37, 13–26. 

Romagnoli C., Casalbore D., Bortoluzzi G., Bosman A., Chiocci 

F.L., D’Oriano F., Gamberi F., Ligi M. & Marani M. 2013: 
Bathy-morphological setting of the Aeolian Island. In: Lucchi 
F., Keller J. & Tranne C.A. (Eds.): The Aeolian Islands 
 Volcanoes.  Geological Society, 37; 27–36. 

Savelli C. 2002: Time–space distribution of magmatic activity in the 

western Mediterranean and peripheral orogens during the past 
30 Ma (a stimulus to geodynamic considerations). J. Geody-
namics
 34, 99–126.

Savelli C. 1984: Evolution of cenozoic volcanism (from 29 My to 

present) in the Tyrrhenian Sea and in the surroundig areas: geo-
chronological hypothesis on oceanic spreading phases. 
Mem. Soc. Geolog. It. 27, 111–119. (in Italian with English 
abstract).

Selli R., Lucchini F., Rossi P.L., Savelli C. & Del Monte M. 1977: 

Geological, petrochemical and radiometric data on 
 central-Tyrrhenian  volcanoes.  Giornale di Geologia 412, 

 

221–246. (in Italian).

Serpelloni E., Faccenna C., Spada G., Dong D. & Williams S. D. 

2013: Vertical GPS ground motion rates in the Euro Mediterra-
nean region: New evidence of velocity gradients at different 
spatial scales along the Nubia Eurasia plate boundary. J. Geo-
phys.
 Res.: Solid Earth 118, 11, 6003–6024.

Schmidt R., Van Den Bogaard C., Merkt J. & Muller J. 2002: A new 

Late glacial chronostratigraphic tephra marker for the 
south-eastern Alps: The Neapolitan Yellow Tuff (NYT) in 
Langsee (Austria) in the context of a regional biostratigraphy 
and palaeoclimate. Quater. Int. 88, 45–46. 

Sheridan M.F. & Wohletz K.H. 1983: Hydro-volcanism: basic con-

background image

389

PLEISTOCENE CALC-ALKALINE VOLCANICLASTICS, S TYRRHENIAN SEA, NE SICILY (ITALY)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 371–389

siderations and review. J. Volcanol. Geotherm. Res. 17, 1–29.

Sprovieri R., Di Stefano E., Howell M., Sakamoto T., Di Stefano A. 

& Marino M. 1998: Integrated calcareous plankton biostratig-
raphy and cyclostratigraphy at Site 964. In: Robertson A.H.F., 
Emeis K.C., Richter C. & Camerlenghi A. (Eds.): Proceedings 
of the Ocean Drilling ProgramSci. Results, 160, 155–165. 

Stix J. 1991: Subaqueous, intermediate to silicic composition 

 explosive volcanism: a review. Earth Sci. Rev. 31, 21–53.

Sun S. & McDonough H.W.F. 1989: Chemical and isotopic 

 systematics of oceanic basalts: implications for mantle compo-
sition and processes. In: Saunders A.D. & Norry M.J. (Eds.): 
Magmatism in ocean basins. Geol. Soc. London Spec. Publ. 42, 
313–345.

Tansi C., Muto F., Critelli S. & Iovine G. 2007: Neogene-Quater-

nary strike-slip tectonics in the central Calabrian Arc (southern 
Italy). J. Geodyn. 43, 3, 393–414.

Toussaint T., Leyrit H. & Barrier P. 1999: Les depots volcano-

clastiques Pléistocenes de Calabre et de Sicile: origine, 
dynamique et mode de depot. 7éme Congrès Français de Sédi-
mentologie — Livre des résumés. Publ. ASF, Paris, 33, 
301–302.

Trua T., Serri G., Marani M., Renzulli A. & Gamberi F. 2002: 

 Volcanological and petrological evolution of Marsili Seamount 
(southern Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 114, 3, 
441–464.

Trua T., Manzi V., Roveri M., Artoni A. 2010: The Messinian volca-

niclastic layers of the Northern Apennines: evidence for the 
initial phases of the Southern Tyrrhenian spreading? Ital. J. 

Geosci. 129, 2, 269–279.

Van Dijk J.P. & Scheepers, P.J.J. 1995: Neotectonic rotations in the 

Calabrian Arc; implications for a Pliocene-Recent geodynamic 
scenario for the Central Mediterranean. Earth Sci. Rev. 39, 3, 
207–246.

Ventura G., Vilardo G., Milano G. & Pino N.A 1999: Relationships 

among crustal structure, volcanism and strike-slip tectonics in 
the Lipari-Vulcano volcanic complex (Aeolian Islands, Southern 
Tyrrhenian Sea, Italy). Phys. Earth Planet. Int. 116, 31–52.

Violanti D., Bon glio L. & Sacca’ D. 1987: Pleistocene forami-

nifera and paleoenvironmental interpretations in an outcrop of 
NE Sicily (Rometta, Messina). Riv. It. Paleont. Strat. 93, 2, 
251–286. (in Italian).

Violanti D. 1988: The Plio-Pleistocene foraminifera of Capo 

 Milazzo.  Boll. Mus. Reg. Sci. Nat. Torino, 6, 2, 359–392  
(in Italian).

Violanti D. 1989: Plio-Pleistocene foraminifera from northern side of 

Peloritani Mountains: biostratigraphic and paleoenvironmental 
analysis. Riv. It. Paleont. Strat. 95, 2, 173–216. (in Italian).

Westaway R. 1993: Quaternary uplift of southern Italy. J. Geophys. 

Res. 98, 21741–21772.

Wohletz K.H. 1983: Mechanism of hydro-volcanic pyroclastic for-

mation: grain-size, scanning electronic microscopy, and experi-
mental data. J. Volcanol. Geotherm. Res. 17, 31–36.

Wohletz K.H. 1987: Chemical and textural surface features of pyro-

clasts from hydro-volcanic eruption sequences. In: Marshall 
J.R. (Ed.): Clastic Particles. Van Nostrand Reinhold, New 
York, N.Y., 79–98.