background image

www.geologicacarpathica.com

GEOLOGICA CARPATHICA, AUGUST 2016, 67, 4, 329–345

doi: 10.1515/geoca-2016-0021

Shallow-water benthic foraminiferal assemblages and their 

response to the palaeoenvironmental changes — example 

from the Middle Miocene of Medvednica Mt.  

(Croatia, Central Paratethys)

ÐURÐICA PEZELJ, JASENKA SREMAC and VLADIMIR BERMANEC

Department of Geology and Paleontology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;

djurdjica.pezelj@geol.pmf.hr, jsremac@geol.pmf.hr, vberman@public.carnet.hr

(Manuscript received November 26, 2015; accepted in revised form June 7, 2016)

Abstract: During the Middle Miocene, the northern Croatian Medvednica Mt. was an island within the Pannonian 
Basin System, situated on the SW margin of the Central Paratethys Sea. Miocene sedimentary rocks (the Late Bade-
nian Bulimina–Bolivina Zone and Ammonia beccarii ecozone), from the SW slopes of Medvednica Mt. clearly re ect 
a transgressive-regressive cycle with emersion during the Badenian/Sarmatian boundary. After the initial phase of 
transgression, the pioneer Elphidium–Asterigerinata–Ammonia benthic foraminiferal assemblage is present in bioclas-
tic limestones, such as those at the Borovnjak locality. This marginal marine assemblage from a highly energetic, 
normally saline environment is characterized by poor preservation of foraminiferal tests, low diversity and strong 
domination. Advanced transgression is followed by establishment of the Elphidium–Asterigerinata assemblage, which 
is found in biocalcsiltites from the laterally deeper and more sheltered environment at Gornje Vrap e. This diverse 
assemblage is typical for inner/middle shelf environment with suf cient oxygen content. A general shallowing upward 
trend can be recognized at both localities, followed by visible interchange of different sedimentological and biotic 
features. Successive and oscillatory regression in the marginal marine environment was followed by salinity  uctua-
tions and  nal brackish conditions with AmmoniaElphidium assemblage. The laterally deeper environment reacted to 
regressive trends on  ner scale with almost regular changes of benthic foraminiferal assemblages in the laminae  
(Heterolepa–Bolivina assemblage/Bolivina–Cassidulina assemblage/Elphidium–Asterigerinata assemblage). It might 
re ect sea-level oscillations with periodically increased siliciclastic and nutrient input from land or in uence of sea-
sonality on benthic assemblages, which occurred in the advanced phase of the regression near the Badenian/Sarmatian 
boundary.

Key words: Middle Miocene, Late Badenian, Central Paratethys, palaeoecology, benthic foraminifera.

Introduction

The north-western part of Croatia during the Middle Mio-
cene belonged to the south-western margin of the Pannonian 
Basin System (Central Paratethys)  ooded by the Paratethys 
Sea (Fig. 1A, B). Flooding was a consequence of extensional 
processes between the Alpine-Carpathian and the Dinaride 
tectonic units (Paveli  2001; Vrsaljko et al. 2006;  ori  et al. 
2009). The upper part of the Middle Miocene is a particularly 
interesting period in the development of the Paratethys, 
because it represents the end of the fully marine regime in the 
basin, due to the global regression and sea-level fall 
 (Harzhauser & Piller 2007; Hohenegger et al. 2014). During 
the Late Badenian, equivalent of the lower part of the Middle 
Serravalian Mediterranean substage (Fig. 2), the Central 
Paratethys-Mediterranean corridor via Slovenia was proba-
bly closed (Rögl 1999; Ková  et al. 2007), although some 
authors believe that the marine connection was still open 
(Selmeczi et al. 2012; Bartol et al. 2014). The Badenian/Sar-
matian Paratethys substage boundary can be traced through 
emersion and unconformity at many localities, but the exact 

timing of this event and palaeoenvironmental conditions are 
still the subject of debate of many geologists (Ri nar et al. 
2002; Sopková et al. 2007; Radivojevi  et al. 2010; Gedl & 
Peryt 2011

;

 Hy n  et al. 2012; 

liwi ski et al. 2012

).

The Upper Badenian deposits are exposed along the SW 

slopes of the Medvednica Mt. and have been under research 
for many years (Kochansky 1944; Šiki  1967;  Pezelj & Sre-
mac 2007; Pezelj et al. 2014), but detailed quantitative ana-
lyses of foraminiferal assemblages were not yet published. 
These deposits represent transgressive-regressive trends, 
with pronounced discontinuity at the Badenian/Sarmatian 
boundary (Avani  et al. 2005; Vrsaljko et al. 2006). This 
paper offers detailed analyses of shallow-marine benthic 
fora miniferal assemblages, particularly sensitive to sea-level 
oscillations. Triggers of these changes can be of different ori-
gin, from eustatic changes, to global and regional tectonic 
transtension/transpression phases. Special attention was paid 
to the laminated marls in the upper part of the Gornje Vrap e 
section. Such occurrence was observed at several localities 
within the Central Paratethys (Mihajlovi  & Kne evi  1989;

 

 

Báldi 2006; Crihan & M run eanu 2006; Bartol 2009), but 

background image

PEZELJ, SREMAC and BERMANEC

330

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

laminae were sterile or poor in fossils, and their stratigraphic 
position is uncertain. Some authors regard laminated sections 
as lithological markers of the Badenian/Sarmatian boundary 
(Bartol 2009), while others assign them to the Sarmatian 
(Crihan & M run eanu 2006). Laminated deposits at Gornje 
Vrap e locality are extremely fossiliferous, with clear almost 
regular exchange of benthic foraminiferal assemblages, 
enabling both: stratigraphic and palaeoecological 
interpretation.

The aim of this paper is to apply the results of benthic fora-

miniferal assemblage analyses to reconstruct the Late Bade-
nian palaeoenvironments present on the south-western slopes 
of the Mt. Medvednica and explain events and environmental 
conditions at the Badenian/Sarmatian boundary. We will try 
to follow the respond of the Late Badenian benthic foramini-
feral assemblages to stressful regressive trends, recognize 
the timing of these changes and establish a model of the 
Bade nian/Sarmatian boundary, which could be applied to the 
wider Paratethys region.

Geological settings and description of sections

Medvednica Mt. is a prominent topographical unit in 

north-western Croatia occupying an area of ca. 300 km

2   

(Fig. 1A). Its core is predominantly composed of Palaeozoic 
and Mesozoic rocks of varied origin, surrounded by younger, 
Palaeogene, Neogene and Quaternary sedimentary rocks 
(Šiki  1995). The Middle Miocene shelf deposits represent 
an elongated ring-shaped belt around the recent Medved-
nica Mt., reflecting the shape of the depositionary area 
around the former Medvednica island within the Paratethys 
Sea (Fig. 1B). A specific development of the Late Badenian 
deposition in SW part of the Medvednica Mt. was recognized 
by Kochansky (1944) who described it as “Dolje sedimen-

tary type”. These deposits represent a transgressive-regres-
sive sequence, with final emersion at the Badenian/Sarmatian 
boundary (Fig. 3). Basal Upper Badenian deposits in this 
area are transgressive breccia and conglomerate deposited 
over the Mesozoic sedimentary rocks. Along the beaches 
clastic deposition continued in form of sandstones (biocal-
crudite and biocalcarenite) but in areas away from the terres-
trial input, coralgal biolithites (Lithothamnium limestone) 
are present. Bryozoans are often significant coproducers of 

Fig. 1. A — Geographical position of studied area in Croatia and simpli ed geological map of Medvednica Mt. with geographic range of 
the Middle Miocene (Badenian and Sarmatian) sediments (modi ed after Šiki  1995). Analyzed sections are marked with arrows.  
B — Paleogeographical setting showing position of Medvednica Mt. in the southern Pannonian Basin System of Central Paratethys during 
the Late Badenian (modi ed after Ková  et al. 2007).

Fig. 2. Miocene chronostratigraphic stages of Paratethys and Medi-
terranean (modi ed after Lourens et al. 2004; Strauss et al. 2006; 
Hilgen et al. 2009; Pezelj et al. 2013) with highlighted age of ana-
lysed sections.

background image

331

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

biolithites. Diverse benthic fauna, including bivalves Luci-
noma borealis
 (Linnè), Ostrea and pectinids lived on and 
within the coralgal buildups. Echinoids, corals and benthic 
foraminifera are also common, with taxa typical for the Late 
Badenian (Vrsaljko et al. 1995, 2006). One short episode of 
sediment coarsening is visible at the Borovnjak locality 
(Fig. 3), but a generally transgressive trend is typical for the 
greater part of the Late Badenian. At the locality Gornje 
Vrap e deposition of biocalcisiltites indicates further deepe-
ning of the sedimentary basin. Global sea level drop in the 
uppermost Badenian, (Fig. 2) can be recognized from shal-
lowing upward sequences and increase of siliciclastic input 
in the depositionary basin (Vrsaljko et al. 2006). At the loca-
lity Gornje Vrap e regression results with deposition of lami-
nated biocalcisiltites, and then biolithites. The sequence from 
the Borovnjak locality shows a different depositionary 

pattern, marked by biocalcirudites. The approximate thick-
ness of the Upper Badenian deposits is ca. 65 m at the Gornje 
Vrap e locality, and 25 m in the Borovnjak sequence. Some 
shallow marginal areas were finally emerged, and the Sarma-
tian beds transgressively overlay the Upper Badenian depo-
sits in SW part of the Medvednica Mt. (Fig. 3).

Borovnjak section

The Borovnjak section (Lat: 45°50’24.772” Lon: 15°54’ 

52.141”), (also known as Krvari ; Figs. 3, 4) is situated along 
the forest road Gornja Kustošija–Risnjak, above the Kus-
tošija creek. It was sedimentologically studied by Avani  et 
al. (1995) and discussed by Vrsaljko et al. (2006). The sec-
tion’s length is 28.5 m, and the following rock types can be 
recognized: conglomerates, biolithites, biocalcirudites, 

Fig. 3. A — Schematic geological column through the Middle Miocene rocks in SW part of the Medvednica Mt. with visible increase of 
siliciclastic input. B — Reconstructed palaeoenvironment of localities Gornje Vrap e (V) and Borovnjak (B). Total thickness of the Late 
Badenian sequence is estimated to be 65 metres at Gornje Vrap e (West) and 25 meters at Borovnjak (East).

background image

PEZELJ, SREMAC and BERMANEC

332

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

Fig. 4.

 Detailed sections at the localities Borovnjak (

A

) and Gornje 

V

rap

e (

B

) with position of samples, and graphic trends of dif

ferent palaeoecological proxies.

background image

333

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

biocalcarenites and biocalcisiltites within the Upper Bade-
nian part of the section, and sandy oolitic calcarenites within 
the Sarmatian part of the section. Biocalcrudites and biocal-
carenites are coarse-grained to fine-grained deposits, often 
weathered into sands with destroyed primary textures. Frag-
ments of molluscs, crinoids, corals, coralline algae and echi-
noids were collected at this locality. 

Probe analyses emphasized the potentially interesting cen-

tral and upper part of the section, while the basal and lower 
parts of the section were almost sterile. Therefore a more 
detailed sampling was performed within the upper 15 metres 
of the section (Figs. 3, 4), dominated by biocalcarenites. The 
first sample, (B1), was taken within the biocalcrudite, directly 
above the conglomerate and strongly weathered coralgal bio-
lithite, and the last sample, (B14), was taken in the topmost 
part of the section, directly below the emersion. Intercala-
tions of biocalcsiltite are also present in the central and upper 
part of the section. 

Section with grey fine-grained clastic deposits in Gornje 

Vrap e (Lat: 45°50’21.12” Lon: 15°54’2.514”) was first 
described by Gorjanovi -Kramberger (1882) as “Spongite 
marl”, due to the high content of sponge spicules (from 
Kochansky 1944). Section is subvertical, ca. 13 10 m  large 
(Figs. 3, 4). Vrsaljko et al. (1995, 2006) proposed the deposi-
tion from suspended material in the basal part of the section, 
and suggested climatic changes as the main trigger for lami-
nation in the upper part of the section. Besides the abundant 
microfossils (Šiki  1967), numerous macrofossils (molluscs, 
echinoids, crabs, coralline algae and other fossils) can be 
found within these siltites (Kochansky 1944).

Greyish-brown siltites in the lower part of the section are 

variably consolidated, with no visible textures (sample V1). 
The upper part of the section exhibits clear cyclic alteration 
of three types of thin laminae (average thickness from 0.5 to 
1 cm, some of them are up to 2 cm). Grey-coloured 
 calcitic-siltose laminae (Type A) are sampled as V2, V5 and 
V8; brownish argillaceous-siltose laminae (Type B) are sam-
pled as V3, V6 and V9, and greyish-brown siltose laminae 
(Type C) are sampled as V4 and V7 (Fig. 4). In order to 
reveal the succession of environmental change, laminae are 
separated into three groups. The first group was collected 
directly above the basal massive siltite, with no visible tex-
tures (samples V2 and V3). The second group (samples V4, 
V5 and V6) was taken in the central part of the profile, and 
the third group (samples V7, V8 and V9) was collected from 
the upper part of the section (Fig. 4).

Methods

All together twenty-three samples were micropalaeonto-

logically analysed and their foraminiferal and ostracod con-
tent was studied. For each sample, 300 g of sediment was 

soaked, treated with hydrogen peroxide and washed over 
0.063 mm sieve. The dried material was repeatedly split by 
Retsch microsplitter, until standard samples with 300 ran-
domly chosen foraminiferal specimens were obtained. After 
that, the plankton/benthos (P/B) ratio was calculated for  
each sample. Benthic foraminifera species were identified 
according to Papp et al. (1978), Papp & Schmid (1985), 
Loeb lich & Tappan (1987a,b) and Cicha et al. (1998), while 
palaeoecological proxies were co-opted from Kaiho (1994, 
1999); Den Dulk et al. (2000), Hohenegger (2005), Van 
Hinsbergen et al. (2005), Báldi (2006), Pezelj et al. (2007),  
Holcová & Zágoršek (2008), Pippèrr & Reichenbacher 
(2010), De & Gupta (2010), Grunert et al. (2012), Pérez-Asen-
sio et al. (2012) and Pezelj et al. (2013). Each standardized 
sample was carefully checked (the presence of size-sorting, 
fragmentation, abrasion, corrosion, and the incongruence of 
stratigraphic ranges and palaeoecological preferences), in 
order to exclude redeposited and transported specimens of 
benthic foraminifera from statistical analysis (Murray 1991; 
Holcová 1999). The number of species (N) was defined and 
relative abundance of benthic species within the assemblage 
was estimated according to Murray (1991). In order to quan-
tify the species diversity of benthic foraminifera, Fisher  -in-
dex ( ), Shannon-Wiener index (H), and Dominance (D) 
were determined by means of PAST (PALaeontology STatis-
tic) Program (Hammer et al. 2001). Epifaunal/infaunal ratio 
and environmental stress markers (Van Hinsbergen et al. 
2005) were also calculated. In order to illustrate variations of 
oxygen content on the sea bottom during the deposition we 
calculated the Benthic Foraminiferal Oxygen Index (BFOI) 
for each sample (Kaiho 1999), and determined oxic, suboxic 
and disoxic indicators (Kaiho 1994). The number of benthic 
foraminifera in 1 g of dried sediment (Foraminiferal number 
— NBF) was also determined for each sample. The depth of 
the depositional basin was estimated through three indepen-
dent methods: the plankton/benthos ratio (P/B) (Murray 
1991); modified plankton/benthos ratio (D1; Van Der Zwaan 
et al. 1990, 1999), and gradient analysis (D2; Hohenegger 
2005; Báldi & Hohenegger 2008). 

The Cluster Analysis (Ward’s method) and Non-metric 

Multidimensional Scaling (Bray-Curtis Similarity Index) 
were conducted by means of PAST (PALaeontology STatis-
tic) Program (Hammer et al. 2001). They were applied to all 
identified species of benthic foraminifera to determine the 
differences between benthic foraminiferal assemblages and 
their distribution in different samples. Such analyses group 
the samples with homogenous foraminiferal assemblages 
typical for different palaeoenvironments. 

Additionally, the number of ostracod species and their rela-

tive abundance within each standardized sample were deter-
mined. Ostracod/foraminifera ratio (O/F ratio — number of 
ostracod specimens/number of foraminifera specimens in 1g 
of dried sediment) was also calculated. Whole carapaces were 
calculated as two valves (Danielopol et al. 2002). Ostracoda 
were determined according to Brestenská & Ji í ek (1978), 
Gross (2006) and Hajek-Tadesse & Prtoljan (2011).

background image

PEZELJ, SREMAC and BERMANEC

334

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

Two different methods of measuring carbonate content 

were applied to samples V1, V2 and V3 from three lithologi-
cally different horizons in the Gornje Vrap e section.  Deter-
mination of carbonate content in soil by volumetric measu-
ring by Scheibler calcimeter, standard method: HRN ISO: 
10693:2004 and Complexometric determination of Calcium 
and Magnesium. These analyses were done in the Chemical 
laboratory, Department of Mineralogy and Petrology, Uni-
versity of Zagreb.

Palaeontological samples are stored in the collection of the 

Department of Geology and Palaeontology (Faculty of 
 Science, University of Zagreb).

Results

Borovnjak locality

At the Borovnjak locality eight analysed rock samples 

were palaeontologically sterile or did not contain enough 
specimens of benthic foraminifera for further statistical ana-
lysis. Microfossil assemblages are generally poorly pre-
served. Foraminiferal tests are often broken into particles, 
encrusted with calcite crystals and/or abraded or partly dis-
solved. Diagenetic overprint complicates the process of 
determination. Besides foraminifera and ostracoda, bryozoan 
fragments and echinoid spines are present in these samples 
(Fig 5. A–G). Foraminifera are rather scarce and show low 
species diversity. The best preserved specimens were 
recorded in the central part of the section. Planktonic and 
agglutinated foraminifera were not recorded. A total of 

 

10  genera and 14 species of benthic foraminifera (Table 1) 
were determined. Benthic foraminifera with perforated tests 
dominate in all samples, while imperforated foraminifera are 
slightly more common in the lower part of the profile. 

Cluster I unites the samples from the Borovnjak section 

(Fig. 6). The most important environmental features are high 
oxygen values at the bottom (BFOI 100), small depth varia-
bility (D1 36 m;  D2 11–12 m) and total lack of planktonic 
foraminifera, disoxic and stress indicators (Table 2). Clus-
ter I is subdivided into two subclusters Ia and Ib. 
Subcluster Ia. Elphidium–Asterigerinata–Ammonia assem-
blage: 
This subcluster includes samples from the lower and 
the middle part of the Borovnjak section (samples B2, B6 
and B9) taken from biocalcarenite. Dominant species are 
Elphidium crispum
 (23.3–27.6 %), Asterigerinata planorbis 
(20.9–28.6 %),  Ammonia vienennsis (16.3–20.3 %)  and 
Elphidium macellum (11.9–15.6 %). This is a low biodiver-
sity assemblage (N 10; 

2.07; H 1.97) with highly 

expressed domination (D 0.17). Within the assemblage the 
most prominent features are oxic indicators (98.5 %) and epi-
faunal taxa (97.4 %). The average number of benthic fora-
minifera individuals (BFN) within the 1 g of sediment is 77. 
Subcluster Ib. Ammonia–Elphidium assemblage: This 
subcluster includes the samples from the middle (B7, B8) 
and the upper part of the Borovnjak section (B11), collected 

from biocalcsiltites. It is characterized by pronounced domi-
nation of the species Ammonia vienennsis (30.2–37.0 %). 
Other dominant species are Elphidium crispum (13.8–25.9 %) 
and  Asterigerinata planorbis (10.8–21.0 %). The medium 
represented species is Elphidium macellum (2.6–11.0 %). 
Compared with Subcluster Ia this subcluster shows a higher 
number of taxa and biodiversity (N 11; 

2.20; H 1.83), 

and particularly an increase of the number of individuals 
BFN 221. Slight increase of suboxic indicators (4.6 %) and 
infaunal taxa (5.8 %) within the benthic assemblage are also 
visible, while the domination (D 0.22) is more prominent 
than in the previous subcluster.

A total of 7 species of ostracoda were determined at the 

Borovnjak locality. Ostracoda/foraminifera ratio varies from 
5.6 % (sample B2) to 12.7 % (sample B7) (Table 1). In the 
lower part of the section a few specimens of Aurila sp., Loxo-
concha hastata 
(Reuss), Costa edwardsi (Roemer

)

Xestole-

beris glabresans (Brady) and Cytheridea pernota Oertly & 
Key were recorded. Within the central and the upper part of 
the section the ostracod role in the assemblage becomes more 
important. Dominant taxa are Phlyctenophora farkasi 
(Zalány), L. hastata, Neocyprideis  (Miocyprideis) sp. and 
Aurila
 sp. The species C. pernota and X. glabresans are also 
common. A significant number of specimens was found with 
closed complete valves (almost 50 %), and adult individuals 
and the last larval stages prevail within the assemblage.

Fine-grained laminated siltites from the section Gornje 

Vrap e contain rich, diverse and well preserved microfossil 
assemblage (Fig 5. H–N). This habitat was characterized by 
an extremely rich assemblage of siliceous sponges. At least 
eight morphotypes of spicules can be clearly recognized  
(Fig 5. N1, N2), and deserve further attention. Planktonic 
foraminifera are scarce, while benthic foraminifera are 
extremely rich and diverse. A total of 31 genera with 44 spe-
cies of benthic foraminifera were determined (Table 1). Ben-
thic foraminifera with perforated tests dominate in all sam-
ples from this locality. Imperforated foraminifera are less 
common, while the percentage of agglutinated foraminifera 
is almost negligible. There are no signs of transportation or 
redeposition of benthic foraminifera.

Cluster II  groups the samples from the locality Gornje 

Vrap e. Subclusters can be clearly recognized, considering 
the dominant benthic foraminifera and palaeoecological indi-
cators (Fig. 6; Table 2). 
Subcluster IIa. Elphidium-Asterigerinata assemblage: 
Sample V1 collected from the massive siltite in the base of 
the section is grouped with siltose laminae (Type C) from the 
central (V4) and the upper part of the section (V7). The 
domi nant species are Elphidium crispum (11.6–19.5%) and 
Asterigerinata planorbis (13.5–17.6%). Medium represented 
species are Heterolepa dutemplei,  Cibicidoides ungerianus 
and  E. macellum. Planktonic foraminifera are present in 
small numbers (P 6.24 %), and the estimated depth of the 

background image

335

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

Fig. 5. Typical microfossils from Borovnjak (A-G) and Gornje Vrap e section (H-N). A — Asterigerinata planorbis (d Orbigny), sample 
B6; A1, spiral side, A2, umbilical side. B — Borelis melo (Fichtel & Moll), sample B6; apertural view. C — Ammonia viennensis  (d Orbigny), 
sample B11; C1, spiral side, C2, umbilical side. D — Elphidium crispum Linne, sample B2; side view.  E — Bryozoa, sample B2.   
F — Echinoid radiola, sample B6.  G — Neocyprideis sp., sample B11; left valve, external Lateral view. H — Asterigerinata planorbis 
(d Orbigny), sample V1; H1, spiral side, H2, umbilical side. I — Elphidium crispum Linne, sample V4; side view. J — Cassidulina 
 laevigata d Orbigny, sample V3; apertural side. K — Pappina neudorfensis (Toula), sample V2; side view. L — Bolivina dilatata Reuss, 
sample V6; side view. M — Heterolepa dutemplei d Orbigny, sample V5; spiral side. N1–N2 — Spicule, sample V1.

background image

PEZELJ, SREMAC and BERMANEC

336

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

Table 1. A — List of determined species of benthic foraminifera from the localities Gornje Vrap e and Borovnjak, their absolute number in 
samples and ecological/palaeoecological requirements. Bolded taxa were represented with more than 5 % in at least one sample. Lower part 
of the table: Percentage of planktonic taxa, estimated depths of sedimentary basin, number of species and number of individuals (BFN) of 
benthic foraminifera, diversity indices, BFOI, oxic, suboxic and disoxic indicators, epifauna/infauna ratio, stress markers and ostracoda/
foraminifera ratio. B — List of determined species of ostracoda from the localities Gornje Vrap e and Borovnjak.

A. BENTHIC FORAMINIFERA

Oxic 

pr

efer

ence

Mode 

of life

Str

ess 

marker

V1

V2

V3

V4

V5 V6

V7

V8

V9

B2

B6

B7

B8

B9

B1

1

Te

xtularia

 gramen 

d

O

rb

ig

ny

S

E

/S

I

1

0

1

2

0

000

10000

0

0

Quinqueloculina akneriana

d

O

rb

ig

ny

O

E

4

10

2

1

7

117

00000

0

0

Quinqueloculina 

sp

.

O

E

1

7

1

0

8

020

20000

0

0

Tr

iloculina 

sp

.

O

E

1

3

0

1

0

000

0

14

1445

12

7

Bor

elis melo

 (Fichtell & Moll)

O

E

0

0

0

0

0

0

0

0

0

9

12

2

0

3

0

Lenticulina inornata 

(d

Orbigny)

O

E

/SI

0

0

0

0

0

0

0

0

10000

0

0

Globulina gibba

d

O

rb

ig

ny

O

S

I

0

0

3

0

0

000

00006

10

5

Fissurina 

sp

.

S

E

/S

I

00

0

5

8

120

20000

0

0

Bolivina dilatata 

Reuss

DI

x

11

30

37

4

35

55

8

29

51

0000

0

0

Bolivina plicatella 

(Cushman)

D

I

2

0

4

0

0

0

0

0

00000

0

0

Bolivina pokorny 

C

ic

ha

 &

 Z

ap

le

ta

lo

va

D

I

x

2

0

7

0

0

010

20000

0

0

Cassidulina laevigata 

d'Orbigny

SI

5

29

53

21

19

49

6

18

31

0000

0

0

Globocassidulina oblonga 

(Reuss)

OI

1

20

13

0

16

15

13

50000

0

0

Bulimina elongata 

d'Orbigny

DI

x

7

24

28

14

16

25

21

27

100000

0

0

Bulimina gutsulica 

L

iv

en

ta

l

D

I

x

00

0

0

0

100

70000

0

0

Bulimina insignis 

L

uc

zk

ow

sk

a

D

I

x

00

0

0

0

004

00000

0

0

Praeglobobulimina pyrula 

(d'Orbigny)

D

I

x

2

816

77

10

8

28

0000

0

0

Pappina neudorfensis 

(T

ou

la

)

S

I

2

14

11

8

0

1597

110000

0

0

Uvigerina bellicostata

 L

uc

zk

ow

sk

a

D

I

x

00

0

0

0

200

30000

0

0

Uvigerina brunnensis

Karrer

D

I

x

00

0

0

0

004

00000

0

0

Uvigerina semiornata 

d

O

rb

ig

ny

D

I

00

0

0

0

200

00000

0

0

Reusella spinulosa 

(R

eu

ss

)

O

E

40

0

8

0

200

00000

0

0

Fursenkoina acuta 

(d

Orbigny)

D

I

x

0

14

9

0

9

1

8

5

10000

0

0

Cancris auriculus 

(Fichtell & Moll)

O

S

I

4

0

1

1

6

1

1

0

00000

0

0

Va

lvulineria complanata 

(d

Orbigny)

D

I

x

9

5

12

5

0

4

2

9

40000

0

0

Neoconorbina ter

quemi 

(Rzehak)

 

O

E

70

4

0

0

000

00000

0

0

Rosalina obtusa 

d

O

rb

ig

ny

O

E

69

5

1

0

650

00000

0

0

Cibicidoides ungerianus 

(d'Orbigny)

OE

/S

I

15

0

10

30

32

26

10

18

23

0000

0

0

Cibicidoides 

sp

.

O

E

/S

I

11

0

3

2

0

230

00000

0

0

Cibicides 

sp

.

O

E

3

0

0

0

0

000

000

12

0

0

0

Lobatula lobatula 

(W

alker & Jacob)

O

E

13

13

11

8

14

5

7

11

8

0

8

15

4

6

10

Asterigerinata planorbis 

(d'Orbigny)

OE

53

31

12

45

14

3

39

16

16

75

84

42

32

64

54

Nonion commune 

(d

Orbigny)

S

I

0

0

13

0

0

1

4

14

8

0

0

15

11

14

13

Melonis pompilioides 

(F

ic

ht

el

l &

 M

ol

l)

S

I

10

0

0

21

6

1426

60000

0

0

Pullenia bulloides 

(d'Orbigny)

S

I

20

0

156

30

17

21

0000

0

0

Heterolepa dutemplei 

d'Orbigny

OE

3

42

17

27

69

18

29

42

16

0000

0

0

Hanzawaia boueana 

(d

Orbigny)

O

E

3

0

12

8

8

5

5

9

4001

10

9

0

Ammonia viennensis 

(d'Orbigny)

O

E

/S

I

1

011

62

2

0

0

51

42

93

11

0

50

117

Por

osononion granosum 

(d

Orbigny)

O

S

I

0

0

0

0

0

1

7

0

00000

0

0

Elphidium aculeatum 

(d

Orbigny)

O

E/SI

8

0

7

6

0

0

3

5

00000

0

0

Elphidium crispum 

(Linné)

OE

/S

I

59

16

22

35

14

29

45

12

17

70

81

49

41

77

79

(d

Orbigny)

O

E

/SI

12

8

8

14

8

6

13

7

9

13

10

10

8

13

0

(d

Orbigny)

O

E/SI

10

5

4

0

0

0

10

0

0

15

8

14

9

7

0

Elphidium macellum 

(Fichtell & Moll)

O

E/SI

25

10

16

93

3

19

41

3

47

35

34

27

44

8

Elphidium rugosum 

(d

Orbigny)

O

E/SI

5

0

2

0

0

0

0

0

10000

0

0

Elphidium 

sp.

 

O

E

/S

I

0

0

0

0

0

000

0

1190

11

0

0

302

298

318

301

295

306

289

292

301

305

303

291

274

309

293

background image

337

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

Table 1 (continuation): A. List of determined species of benthic foraminifera from the localities Gornje Vrap e and Borovnjak, their abso-
lute number in samples and ecological/palaeoecological requirements. Bolded taxa were represented with more than 5 % in at least one 
sample. Lower part of the table: Percentage of planktonic taxa, estimated depths of sedimentary basin, number of species and number of 
individuals (BFN) of benthic foraminifera, diversity indices, BFOI, oxic, suboxic and disoxic indicators, epifauna/infauna ratio, stress 
markers and ostracoda/foraminifera ratio. B. List of determined species of ostracoda from the localities Gornje Vrap e and Borovnjak.

V1

V2

V3

V4

V5 V6

V7

V8

V9

B2

B6

B7

B8

B9

B1

1

P/B ratio (%)

5.22

1.34

2.72

4.38

2.03

3.14

9.12

5.43

6.6

50000

0

0

D

1 (

m

)

453

9

41

434

0

425

34

7

513

63

63

63

6

36

36

D

2 (

m

)

173

3

33

284

0

492

34

1

43

111

21

21

2

12

11

BFN

7392

214

9896

6733

192

8007

502

246

1128

53

121

352

269

57

42

Number of species

33

19

31

27

20

30

29

23

27

9

10

12

12

12

8

Fisher 

 index 

9.44

4.52

8.5

7.18

4.85

8.24

8.03

5.85

7.18

1.74

1.99

2.52

2.57

2.48

1.52

Shannon-W

iener index

2.87

2.73

2.95

2.83

2.64

2.71

2.9

2.91

2.85

1.92

1.91

2.01

1.94

2.07

1.54

Dominance

0.09

0.08

0.07

0.08

0.1

0.09

0.08

0.07

0.08

0.17

0.19

0.18

0.22

0.16

0.27

BFOI

88.3

68.3

59.2

87.3

73.8

56.5

81.2

62.6

52

100

100

100

100

100

100

Oxic (%)

82.5

58.4

44.7

66.5

64.1

41.2

74.7

49.3

38.2

100

100

94.8

95.9

95.5

95.6

Suboxic (%)

6.6

14.4

24.5

23.9

13.2

27.1

7.9

21.2

26.6

0

0

5.2

4.1

4.5

4.4

Disoxic (%)

10.9

27.2

30.8

9.6

22.7

31.7

17.3

29.5

35.

20000

0

0

Epifauna (%)

81.1

51.7

43.4

67.4

64.8

35.6

67.5

44.9

37.5

100

100

94.8

93.9

92.2

93.8

Infauna (%)

18.9

48.3

56.6

32.6

35.2

64.4

32.5

55.1

62.5

0

0

5.2

6.1

7.8

6.2

Stress markers (%)

11.6

27.2

29.9

10

24.8

31.4

17.7

29.5

35.

20000

0

0

O/F ratio (%)

2.6

0

1.9

3.7

0.7

1.3

2.1

0

0.7

5.6

4.6

12.7

9.5

2.9

6.8

B. OSTRACODA

Phlyctenophora farkasi 

(Zalány)

×

×

×

×

×

Callistocyther

e canaliculata

 (Reuss)

×

×

×

×

Cnestocyther

e lamellicostata

 T

riebel

×

×

×

×

×

×

Aurila haueri 

(Reuss)

×

×

×

×

×

×

Aurila

 sp.

××××

Carinocyther

eis carinata 

(Roemer)

××

×

Costa edwar

dsi 

(Roemer)

××

Cytheridea pernota 

Oertly & Key

××

Neocyprideis

 (

Miocyprideis

) sp.

××

×

Semicytherura 

cf. 

acuticostata 

Sars

×

×

×

×

Hemicytherura 

sp.

×

Loxoconcha hastata 

(Reuss)

×××

Loxoconcha punctanella

 (Reuss)

×

×

×

Xestoleberis glabr

esans

 (Brady)

××

×

×

×

background image

PEZELJ, SREMAC and BERMANEC

338

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

sedimentary basin ranges from D1 47 m to D2 23 m. Within 
this assemblage the highest oxygen amount at Gornje Vrap e 
locality is calculated (BFOI 85.6), the highest number of 
species (N 30), highest biodiversity (

8.22; H 2.87), and 

average domination (D 0.08). Within the assemblage oxic 
indicators prevail (74.6 %) as well as epifaunal taxa (72.0 %), 
while the amounts of suboxic and disoxic indicators are equal 
(around 13 %). The amount of stress markers is small (13.1 %), 
and number of individuals of benthic foraminifera (BFN)  
is 4876. 
Subcluster IIb. Heterolepa-Bolivina assemblage: This sub-
cluster groups the samples taken from the solid grey calcsil-
tite laminae (Type A; V2, V5 and V8) laying directly above 
the base, and above the siltose laminae (Subcluster IIa). The 
dominant species are Heterolepa dutemplei (14.1–23.4 %) 
and Bolivina dilatata (9.9–11.9 %). Medium represented spe-
cies are Bulimina elongata,  Cassidulina laevigata,  Asteri-
gerinata planorbis
 and Cibicidoides ungerianus. Within this 
subcluster, an abrupt decrease in number of species can be 
observed (N 21) as well as a decrease of the number of indi-
viduals (BFN 217). Indices re ect the decrease in diversity 
of benthic foraminifera (

5.07; H 2.76). Domination is 

still unchanged and the amount of planktonic foraminifera 
slightly decreases (P 2.93 %). Compared to Subcluster IIa 
infaunal taxa increase in number (46.2 %), as well as suboxic 
(16.3 %) and particularly disoxic (26.5 %) indicators. The 
amount of stress markers is doubled (27.2 %). Indices re ect 
the decrease of oxygenation at the bottom (BFOI 68.2), 
while the estimated depth of the sedimentary basin remains 
the same as in the previous subcluster (D1 42m) or slightly 
increases (D2 38 m). 
Subcluster IIc. Bolivina-Cassidulina assemblage: Samples 
V3, V6 and V9 collected within the argillaceous-siltose 
 laminae (Type B), directly above the grey marly laminae are 

grouped within this subcluster. The dominant species are 
Bolivina dilatata (11.6–18.0 %) and Cassidulina laevigata 
(10.3–16.7 %), while the medium represented species are 
Elphidium crispumBolivina elongataCibicides ungerianus 
and Heterolepa dutemplei. Within this assemblage extreme 
increase of number of individuals is present (BFN 6344), 
there is restoration of diversity (N 29; 

7.94; H 2.84), 

while the domination remained unchanged. Decrease of oxy-
genation of the sea bottom is still in progress (BFOI 55.9) 
and amount of planktonic foraminifera is increasing 
(P 4.17 %). Estimation of depth is almost the same as in the 
previous subcluster (D1 45 m;  D2 42 m).  Within  this 
assemblage infaunal taxa are dominant (61.2 %). The amount 
of suboxic (26.0 %), disoxic (32.6 %) and stress markers 
(32.2 %) is still increasing.

The number of ostracods (Table 1) within the microfossil 

assemblages varies from 0 % (samples V2, V8) to maximally 
3.7 % (sample V4). A total of 8 species were recognized, 
including the most common species Aurila haueri (Reuss), 
Cnestocythere lamellicostata Triebel, Callistocythere cana-
liculata
 (Reuss) and Semicytherura  cf.  acuticostata  Sars. 
Ostracod species Carinocythereis carinata (Roemer), Phlyc-
tenophora farkasi 
(Zalány), Loxoconcha punctanella (Reuss) 
and Hemicytherura sp. occur with small numbers of indivi-
duals. The number of complete ostracod carapaces is very 
low (around 2 %), and assemblage comprises adult, as well as 
larval stages.

Three lithologically different samples from the Gornje 

Vrap e section were analysed by calcimetric and complexo-
metric methods. The results are very similar (Table 3) and 
clearly exhibit excursions of calcite content. The calcite con-
tent in sample V1 from the basal massive marl is 56.60 % 
(56.38 %). Carbonate component increases in the first over-
lying lamina (Type A) up to 75.00 % (73.89 %) and again 

Fig. 6. Results of Cluster Analysis (Ward’s method, Bray-Curtis Similarity Index) and Non-metric-Multidimensional Scaling analyses  
(Bray-Curtis Similarity Index) of the Middle Miocene foraminiferal benthic communities from localities Borovnjak and Gornje Vrap e  
in SW Medvednica Mt.

background image

339

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

decreases in the next overlying lamina (Type B) to 41.98 % 
(41.54 %). Such oscillations are probably present up to the 
top of the laminated portion of the section. Three-valent 
metal (probably iron) also exhibits variations (R

2

O

3

, Table 3).

Biostratigraphy

Biostratigraphic analysis of the studied sections is based 

upon standard biozonations for Central Paratethys (Papp et 
al. 1978; Papp & Schmid 1985; Cicha et al. 1998). Two Late 
Badenian zones BuliminaBolivina  Zone (biozone)  and 
Ammonia beccarii Zone (ecozone) can be recognized on the 
basis of detailed microfossil study. 

Samples from the locality Borovnjak belong to the Ammo-

nia beccarii ecozone. Benthic foraminiferal assemblage 
shows low diversity, with a dominant role for Ammonia  
(A. viennensis),  Elphidium  (E. crispum,  E. macellum) and 
rather common occurrence of miliolids (Borelis meloTrilo-
culina inflata
). The Elphidium–Ammonia assemblage was 
observed at several localities within the Central Paratethys in 
different Miocene stratigraphic horizons (Bakra  et al. 2010; 
Pippèrr 2011; Nehyba et al. 2016), and similar shallow-water 
environments at the Late Badenian/Early Sarmatian boun-
dary were described from Slovakia (Hy n  et al. 2012). The 
Late Badenian age was proven by ostracods Phlyctenophora 
farkasi
 (Zalány) and Neocyprideis (Miocyprideis) sp., which 
are typical for the uppermost part of the Badenian (Bres-
tenská & Ji í ek 1978; Ji í ek 1983). Another criterion is 
superposition — after the short emersion, the Sarmatian clas-
tic sediments were deposited in this area. 

Samples from the locality Gornje Vrap e belong to the 

Late Badenian Bulimina–Bolivina Zone. Age is presumed on 
the basis of benthic foraminifera Pappina neudorfensis 
(Toula), Bulimina insignis Luczkowska and Uvigerina belli-
costata
 Luczkowska (indicative for the Late Badenian) and 
Bulimina gutsulica Livental and Uvigerina brunnensis 
 
Karrer (Middle to Late Badenian), (Cicha et al. 1998). Addi-
tional proofs are the presence of marine ostracod Carino-
cythereis carinata 
(Roemer), typically present in the Late 
Badenian of the Paratethys and the Badenian ostracod taxa 
Cnestocythere lamellicostata Triebel, Aurila haueri (Reuss) 
and Loxoconcha punctanella (Reuss) (Brestenská & Ji í ek 
1978; Nascimento & Riha 1996; Hajek-Tadesse & Prtoljan 
2011).

Discussion

Miocene rocks in both investigated sections reflect three 

different phases of deposition within TB 2.5 global 3

rd

 order 

sequence (Hilgen et al. 2009; Fig. 2): initial Late Badenian 
transgression and establishment of shallow marine environ-
ments, start of regression and environmental stress in the 
uppermost Late Badenian and final regression and emersion 
at the Badenian/Sarmatian boundary. During wet periods 
marginal shelf deposits of the Paratethys are characterized by 
coarse clastics, while the carbonate-siliciclastic complexes 
are known only in some intervals which were dry (Moissette 
et al. 2007; Holcová et al. 2015).  Marginal facies are present 
at the Borovnjak locality and they are assigned to the 
 Ammonia beccarii ecozone. Along with transgression, more 

Table 2: Mean values of paleoecological indices for 

 

different benthic foraminiferal assemblages at analysed sections 
Borovnjak and Gornje Vrap e.

Cluster

Ia

Ib

IIa

IIb

IIc

Community

Elphidium–Asterigerinata–

Ammonia

Ammonia–Elphidium

E

lphidium–Asterigerinata

Heterolepa–Bolivina

Bolivina–Cassidulina

range

m

ean

range

mean

range

m

ean

range

mean

range

m

ean

P (%)

0

0

0

0

4.38–9.12

6.24

1.34–5.43

2.93

2.72–6.65

4.17

D1 (m)

36–36

36

36–36

36

43–53

47

39–47

42

41–51

45

D2 (m)

42715

11.5

42715

11.5

17–28

23

33–41

38

33–49

42

BFOI

100

100

100

100

81.2–88.3

85.6

62.6–73.8

68.2

52.0–59.2

55.9

Number of species (N)

42713

10

42712

11

27–33

30

19–23

21

27–31

29

BFN

53–121

77

42–352

221

502–7392

4876

192–246

217

1128–9896

6344

Fisher 

 index (

)

1.74–2.48

2.07

1.52–2.57

2.2

7.18–9.44

8.22

4.52–5.85

5.07

7.18–8.50

7.94

Shannon– 

W

iener index (H)

1.91–2.07

1.97

1.54–2.01

1.83

2.83–2.90

2.87

2.64–2.91

2.76

2.71–2.95

2.84

Dominance (D)

0.16–0.19

0.17

0.18–0.27

0.22

0.08–0.09

0.08

0.07–0.10

0.08

0.07–0.09

0.08

Oxic (%)

95.5–100

98.5

94.8–95.9

95.4

66.5–82.5

74.6

49.3–64.1

57.2

38.2–44.7

41.4

Suboxic (%)

0–4.5

1.5

4.1–5.2

4.6

6.6–23.9

12.8

13.2–21.2

16.3

24.5–27.1

26

Disoxic (%)

0

0

0

0

9.6–13.3

12.6

22.7–29.5

26.5

30.8–35.2

32.6

Epifauna (%)

92.2–100

97.4

93.8–94.8

94.2

67.4–81.1

72

44.9–64.8

53.8

35.6–43.4

38.8

Infauna (%)

0–7.8

2.6

5.2–6.2

5.8

18.9–32.6

28

35.2–55.1

46.2

56.6–64.4

61.2

Stress markers (%)

0

0

0

0

10.0–17.7

13.1

24.8–29.5

27.2

29.9–35.2

32.2

O/F ratio (%)

2.9–5.6

4.4

6.8–12.7

9.7

2.1–3.7

2.8

0–0.7

0.2

0.7–1.9

1.3

background image

PEZELJ, SREMAC and BERMANEC

340

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

specialized taxa appear, indicative for Bulimina–Bolivina 
Zone such as those present at the Gornje Vrap e locality.

The Late Badenian transgression

The initial transgression along the SW slopes of Medved-

nica Mt. took place over the pronounced palaeorelief develo-
ped in the Mesozoic carbonate basement (Fig. 3). Encrusting 
coralline algae were the first sessile inhabitants of clastic 
shelf, stabilizing the substrate and enabling colonization by 
other benthic biota. The first additional frame-building meta-
zoans were bryozoa, producing compound reef buildups — 
suitable habitats for diverse benthic assemblage of thick-
shelled taxa (e.g. ostreids, echinoids, corals) (Gorka et al. 
2012). Reef buildups, in most cases patch-reefs composed of 
coralline algae and/or corals, are common in the Badenian 
deposits of Paratethys (Pisera, 1996; Reuter et al. 2012). 
Small reef buildups at the locality Borovnjak were produced 
in shallow, relatively warm, agitated, normally saline envi-
ronments. Corals and vermetids were not collected during 
this study, but scarce findings were reported by previous 
authors in Croatia (Avani  et al., 1995; Vrsaljko et. al. 2006).

Laterally, bioherms are replaced with coarse-grained bio-

clastic limestones (calcrudite/calcarenite) with typical mar-
ginal marine Elphidium-Asterigerinata-Ammonia  assem-
blage (Subcluster Ia). The depth of this facies estimated by 
two methods ranges between 11 and 36 metres. Laboratory 
experiments have shown that foraminifera from Elphi dium–
Ammonia
 assemblage are active colonizers of sterile sub-
strates, and are in many cases the pioneer biota in marginal 
marine environments during the initial transgression 
(Debenay et al. 2009).

 

Poor preservation of specimens with 

visible traces of destruction, abrasion and corrosion, suggest 
highly energetic environments. The analysed  assemblages 
exhibit low number of species, low diversity and pronounced 
domination (Fig. 4, Table 2), which is typical for stress envi-
ronments, sometimes with brackish or hypersaline water, but 
also for normal marine habitats with high domination of one 
or several species (Murray 1991). Lack of planktonic fora-
minifera, highly oxic conditions (BFOI 100), with domi-
nance of oxic proxies and epifaunal taxa definitely indicate 
a typical shallow-marine habitat. Such conditions are also 
favourable for organic carbonate growth, particularly of reef 
structures and reef-building biota. Typical marine species of 
Elphidium  (E. crispum,  E.  macellum  and  E. fichtelianum
represent more than 45 % of the basal Borovnjak assem-
blages. Recent keeled elphidia are in most cases herbivorous, 
epifaunal, preferring sandy substrates and often attached to 
rhizomes of sea-grasses (Murray 1991, 2006). Together with 

other epiphytic foraminifera (Asterigerinata,  Triloculina
Borelis) they point to the environment with algal/sea-grass 
meadows in the Late Badenian of Borovnjak. A particularly 
indicative genus is Borelis (present up to 4 %), recently com-
mon in the Red Sea and Gulf of Aquaba, with fossil species 
B. schlumbergeri typical for fore-reef assemblages (Parker et 
al. 2012). It is a shallow-marine genus (up to 40 metres 
depth), typical for warm seas. The tolerance of benthic fora-
minifera to clastic influx is variable and it seems that Borelis 
at the Borovnjak locality could tolerate such temporary epi-
sodes. Ostracod assemblages comprise scarce stenohaline 
marine taxa Aurila sp., Loxoconcha hastataCosta edwardsi
Xestoleberis cf. glabresans and Cytheridea pernata (Table 1, 
2) which are typical for littoral and epineritic environment 
(Smith & Horne 2002). Their carapaces are in most cases 
strongly calcified and with coarse ornamentation, except the 
smooth-surfaced epiphytic Xestoleberis  (

Triantaphyllou et 

al. 2010

). A significant amount of carapaces were preserved 

complete, with closed valves, which is a consequence of 
selective sorting due to the high-energy conditions. Adult 
specimens and last larval stadia predominate, which is also 
typical for agitated shallow marine environments. Minute 
carapaces in such environments can be disturbed by turbu-
lences and later transported by currents (Danielopol et al. 
2002).

The open section at the locality Gornje Vrap e begins with 

similar marginal marine stressed facies (Fig. 3). Advancing 
transgression results with a deeper inner shelf, more stable 
environment and very rich (44 species) and diverse Elphi-
dium-Asterigerinata
 assemblage (Subcluster IIa) and 
increase of siltose and argillaceous component in marls. 
Planktonic foraminifera are scarce (<10 %), as is typical for 
the inner shelf (Murray 1991). The values of the Fisher  

 index (Table 1) additionally point to the normal salinity 

shelf environment or marine lagoon. The estimated depth of 
the basin according to Van der Zwann (1999) (39–53 m), and 
gradient analysis (17–49 m) confirm the shallow inner/mid-
dle shelf environment. Within the assemblage oxic and epi-
faunal indicators prevail, with dominant shallow water spe-
cies  Elphidium crispum,  Asterigerinata planorbis and 
Elphidium macellum. Compared to the precursor Elphi dium–
Asterigerinata–Ammonia 
assemblage, this assemblage with 
average domination lived in a significantly more stable envi-
ronment with abundant oxygen (BFOI 85.6). The accompa-
nying ostracod taxa Aurila haueri,  Cnestocythere lamelli-
costata
 and Semicytherura acuticostata are typical for a shal-
low marine environment (Smith & Horne 2002). The shel-
tered habitat of Gornje Vrap e was also inhabited with an 
extremely abundant and diverse siliceous sponge 

CALCIMETRY

COMPLEXOMETRY

Sample

CaCO

3

  [%]

CaO [%]

CaCO

3

[%]

R

2

O

[%]

R

2

O

3

 recalculated to carbonate [%]

Undissolved residue  [%]

Total [%]

V-1

56.60

31.25

56.38

1.68

3.08

40.00

99.46

V-2

75.00

41.51

73.89

1.41

2.61

23.92

100.42

V-3

41.98

23.34

41.54

3.49

6.38

51.91

99.84

Table 3: Results of calcimetric and complexometric analyses of three different samples from Gornje Vrap e section.

background image

341

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

assemblage. Loose spicules are so numerous that geologists 
named these deposits “Spongite marls” or “Spongite siltites”. 
Findings of the Miocene sponges in Paratethys deposits are 
extremely scarce. A nice sponge assemblage from basinal 
Karpatian deposits of the Vienna Basin (Pisera & Hladilova 
2003;  ukowiak et al. 2014) contain a significant number of 
transported shallow-marine spicules. Most of the collected 
spicules from Gornje Vrap e are monaxone, or simple 
trienes, probably belonging to demosponges, but it is very 
hard to determine them in detail. Some of the collected 
amphitrianes spicules, short-shafted dichotriaenes can be 
well compared with Karpatian samples. Rich and well pre-
served spicules deserve further attention.

Shallowing upward trend and environmental stress 

The Borovnjak locality is a good example of a stressed 

marginal marine environment, particularly in the middle part 
of the section, which is characterized by cyclic alteration of 
foraminiferal assemblages (Subcluster Ia and Subcluster Ib) 
and final establishment of AmmoniaElphidium assemblage 
(Subcluster Ib) in the upper part of the column. The benthic 
foraminifera  Ammonia  and  Elphidium  frequently dominate 
recent foraminiferal assemblages in the lower reaches of 
estuaries, and in normal marine lagoons and bays (Leckie & 
Olson 2003). Compared to the previous Elphidium–Asteri-
gerinata–Ammonia
 assemblage, decrease in abundance of 
stenohaline elphidiids and species Asterigerinata planorbis
and pronounced domination of the species A. viennensis 
(more than 30 

%) can indicate temporary fresh-water 

 influence in the sedimentary basin and seasonal oscillation 
between normal and decreased salinity. The genus Ammonia 
is common in both, brackish (Amarossi et al. 2013; Reymond 
et al. 2013) and marine assemblages, as it can quickly adapt 
to variable salinity, oxygen and temperature oscillations 
(Donnici & Serandreo Barbero 2002). They are also common 
in deposits with highly variable organic component (TOC) 
and they can become facultative anaerobes (Murray 2006). 
Reduction in abundance of imperforate foraminifera and 
complete lack of Borelis in the upper part of the section sup-
ports the theory of fresh-water input. These foraminifera 
diminish in brackish lagoons and estuaries and completely 
vanish in brackish marshes (Murray 1991). A higher number 
of specimens, slightly higher amount of infaunal taxa and 
suboxic proxies (Table 2), and somewhat better preservation, 
indicate the environment with increased mud support. At the 
same time, the number of ostracods increases (average rate 
9.7 %) within the microfossil assemblage and brackish genus 
Neocyprideis  (Miocyprideis) sp. appears (Brestenská and 
Ji í ek 1978; Olteanu 1997). Common taxa are Cytheridea 
pernata
 and Xestoleberis glabresans. Some species within 
the genera CytherideaXestoleberis and Loxoconcha can be 
well adapted to low-salinity habitats (Ruiz et al. 2000; 

Pipík 

2007

). We can presume that AmmoniaElphidium assem-

blage reflects a phase of increased siliciclastic and nutrient 
input from land, which can be caused by local regression. On 

the other hand, seasonal or periodical fresh-water influx 
could cause the oscillations of salinity in the habitat. 

Almost regular exchange of three different types of lami-

nae in the upper part of the profile from the laterally deeper 
and more sheltered environment at Gornje Vrap e also indi-
cates temporary instabilities. Laminae differ in colour and 
are characterized by almost regular interchanges of benthic 
foraminiferal assemblages, carbonate content, and high- 
valent metal content. Evident increase of environmental 
stress can be recognized at the beginning of the upper part of 
the section (Type A lamina) with abruptly decreased diversity 
and number of specimens of benthic foraminifera, while 
amount of stress markers is doubled (Table 1, 2). The amount 
of oxygen in bottom waters decreases (BFOI 68.2) and the 
Heterolepa–Bolivina assemblage (Subcluster IIb) is typical 
for this lamina. Oxygen depletion in bottom waters generally 
influences the quantity and quality of available food for ben-
thic foraminifera, and is usually followed by increase of 
organic particles within the substrate (Duijnstee et al. 2004). 
At the Gornje Vrap e locality this leads to the diminishing of 
oxic and epifaunal taxa, while suboxic, disoxic and infaunal 
taxa flourish, additionally supported by ample food supply. 
Environmental needs of the abundant species Heterolepa 
dutemplei
 dominantly depend on the food supply, and this 
foraminifera preferably lives on organic-rich substrates 
(Debenay & Redois 1997). The opportunistic species 
 Bolivina dilatata also positively responds to the increased 
input of fresh phytodetritus and is extremely tolerant to oxy-
gen depleted environments (Bartels-Jonsdotir 2006; Diz & 
Francès 2008). A further trend of oxygen depletion in bottom 
waters (BFOI 55.9) can be observed in an argillaceous 
lami na (Type B) with Bolivina–Cassidulina assemblage 
(Subcluster IIc). Infaunal biota predominate, and suboxic, 
disoxic and stress proxies further increased in number. Com-
pared to the previous Heterolepa–Bolivina assemblage, the 
number of species and diversity increase, while the domi-
nance remains unchanged. Some opportunistic species (espe-
cially  Cassidulina laevigata and Bolivina dilatata) very 
quickly adapted to the new conditions and increased their 
number of specimens more than 29 times, due to their rapid 
reproduction. The genus Cassidulina is well adapted to oxy-
gen depletion (suboxic proxy) and abundance of the species 
Cassidulina laevigata is strongly dependent on high nutrient 
influx (De Stigter et al. 1999). Amount of high-valent metal 
(probably iron) is twice as high in this type of lamina than in 
types A and C, which points to the available source of metal 
(possible bacterial activity). The overlying siltite lamina 
(Type C) with Elphidium–Asterigerinata assemblage repeats 
environmental conditions from the basal part of the section 
and indicates reoxidization of bottom waters. Alteration of 
all three types of laminae and associated benthic foramini-
feral assemblages occurs regularly up to the top of the lami-
nated sequence. Similar values of domination in all three 
types of laminae point to abrupt changes of environmental 
conditions, and particular taxa did not have enough time to 
take the dominant role within the benthic assemblage. 

background image

PEZELJ, SREMAC and BERMANEC

342

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

Ostracods are very scarce in the laminated section of the 
Gornje Vrap e profile (average rate 1.3 %). Slightly more 
abundant are the taxa Cnestocythere lamellicostata,  Aurila 
haueriHemicytherura sp. and Callistocythere canalliculata
Like the Borovnjak locality, the analysed section at Gornje 
Vrap e fits into the generally proven regressive trend. In 
newly established nearshore environments the influence of 
sea level oscillations can be much better observed. In the 
same time periodical (seasonal) input of detritus and nu trients 
from land strongly influences the biota and mode of deposi-
tion. In most inner and middle shelf environments (enclosed 
systems), seasonal hypoxia (decrease in oxygen content in 
bottom water) during the summer season is very common 
(Jorissen 1999;  osovi  et al. 2002). If bottom water oxygen 
concentration fluctuates on a shorter seasonal or interannual 
timescale, the composition of the benthic foraminiferal 
assemblage may be highly variable depending on the dura-
tion and intensity of successive oxygen minima and maxima, 
and reproductive rate of certain foraminiferal groups under 
the variable environmental conditions (Den Dulk et al. 2000). 
Although microfossil assemblages of Gornje Vrap e show 
similarities with seasonally controlled recent assemblages, 
direct comparisons are not fully possible. We must take into 
consideration taphonomic processes and known fact that fos-
sil assemblage only partly reflects the composition of ancient 
biocoenosis. Nevertheless, the Heterolepa–Bolivina assem-
blage (Subcluster IIb) can be assigned to the period spring–
early summer, with pronounced freshwater discharge, which 
influences the start of the spring phytoplankton bloom, and, 
consequently, oxygen depletion at sea-bottom. Opportunistic 
foraminiferal taxa increase in number responding to the 
newly available nutrients. The Bolivina–Cassidulina assem-
blage (Subcluster IIc) can be assigned to the summer–early 
autumn period. The summer phytoplankton bloom, increased 
temperature, high organic matter degradation and maximal 
stratification of the water-column cause the disoxic/anoxic 
conditions at the sea-bottom. The Elphidium–Asterigerinata 
assemblage (Subcluster IIa) reflects the late autumn–early 
spring period. Re-established vertical water circulation again 
supplies the bottom waters and benthic assemblage with 
oxygen.

 

End-Badenian regression and emersion

Sedimentary features, deposition of massive biocalcrudites 

with visible coarsening-upwards in the upper part of the 
 Borovnjak locality, undoubtedly indicate a regressive trend. 
These deposits, unfortunately, do not comprise microfossils 
and therefore we cannot reach any conclusions on eventually 
full freshwater conditions before the final emersion. During 
the emersion the Upper Badenian biocalcrudites were inten-
sively weathered and karstified, producing a pronounced 
palaeorelief as the base for the Sarmatian transgression 
(Vrsaljko et al. 2006).

The End-Badenian regression is also evident in the upper 

part of the Gornje Vrap e section. The laminated portion of 

the section is overlain by biolithites, and, finally, emersion 
occurs before the deposition of the Sarmatian clastic sedi-
mentary rocks. 

Conclusions 

The Upper Badenian shallow marine sediments on the 

SW slopes of the Medvednica Mt. were transgressively 
deposited over the Mesozoic carbonate basement. The mar-
ginal marine highly oxygenated environment of normal 
salinity is represented by the pioneer Elphidium–Asterigeri-
nata–Ammonia
 benthic foraminiferal assemblage, with low 
diversity and strong domination. The relatively rich and 
diverse Elphi dium–Asterigerinata assemblage appears with 
an advanced transgression, visible in the Gornje Vrap e 
section. This assemblage is typical for high-oxygenated 
inner/middle shelf environments. Shallowing upward 
sequences with increase of siliciclastic and nutrient input in 
a depositional basin are present in the middle and upper part 
of the studied sections. In the marginal shoal area (Borov-
njak locality) fluctuations in salinity appear, finishing with 
brackish conditions and an Ammonia–Elphidium assem-
blage. The deeper and more sheltered inner/middle shelf 
environment (locality Gornje Vrap e) bears evidence of 
environmental changes in lamination. Laminae differ in 
colour, calcium content and benthic foraminiferal assem-
blages. The dominant controlling factors in this part of the 
section were fluctuations in bottom oxygen content and 
changes in quantity and quality of food supply. In the 
 Heterolepa–Bolivina assemblage opportunistic taxa in crease 
in number responding to the newly available nutrients and 
oxygen depletion. The Bolivina–Cassidulina assemblage is 
typical for periods of minimal oxygen concentrations, while 
the  Elphidium–Asterigerinata assemblage reflects the 
period of recovery of vertical water circulation and oxyge-
nation of bottom waters. Similar almost regular changes 
and distribution of foraminiferal assemblages is known 
from modern seasonally controlled shelf environments. The 
uppermost part of both sections is represented by massive 
biocalcrudite or coralgal biolitite, and, finally, emersion 
between the Upper Badenian and the Sarmatian depo sits. 
Ostracod assemblages generally comprise scarce taxa 
which are typical for shallow marine environments while in 
the middle and upper part of Borovnjak section, amount of 
ostracods increases within the microfossil assemblage. The 
occurrence of the brackish ostracod Neocyprideis (Miocy-
prideis
) sp. indicates fresh water inflows into a marine 
environment.

Acknowledgements: Our thanks go to reviewers Katarina 
Holcová and Stjepan  ori  for critical suggestions that 
helped to improve the manuscript. Financial support for this 
study was provided by scienti c project (119-1951293-
1162) of the Croatian Ministry of Science, Education and 
Sports.

background image

343

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

References 

Amorosi A., Rossi V. & Vella C. 2013: Stepwise post-glacial trans-

gression in the Rhône Delta area as revealed by high-resolution 
core data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 
314–326.

Avani  R., Brki  M., Mikni  M., Šimuni  A. & Paveli  D. 1995: 

Late Badenian and Sarmatian deposits of Gornja Kustošija 
locality. In: Šiki  K. (Ed.): Medvednica Mt. Geological Field 
Guide. 

 Zagreb, 71–73 (in Croatian).

Bakra  K., Hajek-Tadesse V., Mikni  M., Grizelj A., He imovi  I. & 

Kova i  M. 2010: Evidence for Badenian local sea level 
changes in the proximal area of the North Croatian Basin. Geol. 
Croatica
 63, 3, 259–269.

Báldi K. 2006: Paleoceanography and climate of the Badenian 

(Middle Miocene, 16.4–13.0 Ma) in the Central Paratethys 
based on foraminifera and stable isotope (

18

O and 

13

C) evi-

dence. Int. J. Earth Sci. 95, 119–142. 

Báldi K. & Hohenegger J. 2008: Paleoecology of benthic foramini-

fera of the Baden–Sooss section (Badenian, Middle Miocene, 
Vienna Basin, Austria). Geol. Carpath. 59, 5, 411–424.

Bartels-Jónsdóttir H.B., Knudsen K.L., Abrantes F., Lebreiro S. & 

Eiríksson J. 2006: Climate variability during the last 2000 
years in the Targus Prodelta, western Iberian Margin: Benthic 
foraminifera and stable isotopes. Mar. Micropaleontol. 59, 
83–103.

Bartol M. 2009: Middle Miocene calcareous nannoplankton of NE 

Slovenia (western Central Paratethys). 

, Lju-

bljana, 1–136.

Bartol M., Miku  V. & Horvat A. 2014: Palaeontological evidence 

of communication between the Central Paratethys and the 
Mediterranean in the Late Badenian/Early Serravalian. Palaeo-
geogr. Palaeoclimatol. Palaeoecol.
 394, 144–157.

Brestenská E. & Ji í ek R. 1978: Badenian ostracoda of the Central 

Paratethys. In: Papp A., Cicha I., Seneš J. & Steininger F. 
(Eds.): Chronostratigraphie und Neostratotypen Miozän der 
Zentralen Parathetys. Badenian. Verlag der Slowak. Akad. der 
Wissen
., Bratislava, 405–439.

Cicha I., Rögl F., Rupp C. &  tyroká J. 1998: Oligocene–Miocene 

foraminifera of the Central Paratethys. Abh. Senckenberg. 
Naturforsch. Gessell.
 549, 1–325.

Crihan I.M. & M run eanu M. 2006: The Badenian–Sarmatian tran-

sition in the Melicesti Syncyline (Subcarpathians of Muntenia, 
Romania). In: Sudar M., Ercegovac M. & Grubi  A. (Eds.): 
Proceeding of the XVIIIth Congress of the Carpathian–Bal-
kans Geological Association, Special Volume, September 3–9. 
Serbian Geol. Soc., Belgrade, 83–86.

ori  S., Paveli  D., Rögl F., Mandic O., Vrabac S., Avani  R., Jer-

kovi  L. & Vranjkovi  A. 2009: Revised Middle Miocene 
datum for initial marine  ooding of North Croatian Basins 
(Pannonian Basin System, Central Paratethys). Geol. Croatica 
62, 1, 31–43.

osovi  V., Jura i  M., Bajraktarevi  Z. & Vani ek V. 2002: Ben-

thic foraminifers of the Mljet Lakes (Croatia)-potential for 
(paleo)environmental interpretation. Mem. Soc. Geol. It. 57, 
533–541.

Danielopol D.L., Ito E., Wansard G., Kamya T., Cronin T.M. & Bal-

tanas A. 2002: Techniques for collection and study of 
Ostracoda. In: Holmes J.A. & Chivas A.R. (Eds.): Ostracoda. 
Applications in Quaternary research. The Geophysical Mono-
graph 131. American Geoph. Union, Washington, DC, 65–98.

De S. & Gupta A.K. 2010: Deep-sea faunal provinces and their 

inferred environments in the Indian Ocean based on distribu-
tion of recent benthic foraminifera. Palaeogeogr. Palaeoclima-
tol. Palaeoecol.
 291, 3–4, 429–442.

De Stigter H.C., Van der Zwaan G.J. & Langone L. 1999: Differen-

tial rates of benthic foraminiferal test production in the surface 
and subsurface sediment habitats in the southern Adriatic Sea

Palaeogeogr. Palaeoclimatol. Palaeoecol. 

149, 67–88.

Debenay J. P. & Redois F. 1997: Distribution of the twenty seven 

dominant species of shelf benthic foraminifers on the continen-
tal shelf, north of Dakar (Senegal). Mar. Micropaleontol. 29, 3, 
237–255.

Debenay J. P., Della Patrona L. & Goguenheim H. 2009: Coloniza-

tion of coastal environments by foraminifera: insight from 
shrimp ponds in New Caledonia (SW Paci c). J. Foram. Res. 
39, 4, 249–266.

Den Dulk M., Reichart G.J., Van Heyst S., Zahariasse W.J. & Van 

der Zwaan G.J. 2000: Benthic foraminifera as proxies of 
organic matter  ux and bottom water oxygenation? A case his-
tory from the northern Arabian sea.

 Palaeogeogr. Palaeoclima-

tol. Palaeoecol. 

161, 337–359.

Diz P. & Francés G. 2008: Distribution of live benthic foraminifera 

in the Ría de Vigo (NW Spain). Mar. Micropaleontol. 66, 3, 
165–191.

Donnici S. & Serandreo Barbero R. S. 2002: The benthic foramini-

feral communities of the northern Adriatic continental shelf. 
Mar. Micropaleontol.
 44, 93–123.

Duijnstee I.A.P., De Lugt I., Vonk Noordegraaf H. & Van der Zwaan 

B. 2004: Temporal variability of foraminiferal densities in the 
northern Adriatic Sea. Mar. Micropaleontol. 50, 125–148.

Gedl P. & Peryt D. 2011: Dino agellate cyst, palynofacies and fora-

miniferal records of environmental changes related to the Late 
Badenian (Middle Miocene) transgression at Kudryntsi (wes-
tern Ukraine). Ann. Soc. Geol. Pol. 81, 331–349.

Gorjanovi -Kramberger D. 1882: The Lower Tertiary  sh fauna 

from Croatia. Part I. Beitrg. Pal. Österr. Ungar. Or. 2, 1–26 (in 
German).

Górka M., Studencka B., Jasionowski M., Hara U., Wysocka A. & 

Poberezhskyy A. 2012: The Medobory Hills (Ukraine). Middle 
Miocene reef systems in the Paratethys: Their biological diver-
sity and litofacies.

 449, 147–174.

Gross M. 2006: Mittelmiozäne Ostracoden aus dem Wiener Becken 

(Badenium/Sarmatium, Österreich). Verlag der Österr. Akad. 
der Wissen.
, Wien, 1–224.

Grunert P., Soliman A.,  ori  S., Roetzel R., Harzhauser M. & Piller 

W.E. 2012: Facies development along the tide-in uenced shelf 
of the Burdigalian Seaway: An example from the Ottnangian 
stratotype (Early Miocene, middle Burdigalian). Mar. Micro-
paleontol.
 84, 85, 14–36.

Hajek-Tadesse V. & Prtoljan B. 2011: Badenian Ostracoda from the 

Pokupsko area (Banovina, Croatia). Geol. Carpath. 62, 5, 
447–461.

Hammer O., Harper D.A.T. & Ryan P.D. 2001: PAST: paleonto-

logical statistics software package for education and data ana-
lysis. Paleont. Electronica 4, 1, 1–9.

Harzhauser M. & Piller W.E. 2007: Benchmark data of a changing 

sea — palaeogeography, palaeobiogeography and events in the 
Central Paratethys during the Miocene.

 Palaeogeogr. Palaeo-

climatol. Palaeoecol. 

253, 8–31.

Hilgen F.J., Abels H.A., Iaccarino S., Krijgsman W., Raf  I., 

Sprovieri R., Turco E. & Zachariasse W.J. 2009: The Global 
Stratotype Section and Point (GSSP) of the Serravallian Stage 
(Middle Miocene). Episodes 32, 3, 152–166.

Hohenegger J. 2005: Estimation of environmental paleogradient 

values based on presence/absence data: a case study using ben-
thic foraminifera for paleodepth estimation

.  Palaeogeogr. 

 Palaeoclimatol.  Palaeoecol.

 217, 115–130. 

Hohenegger J.,  ori  S. & Wagreich M., 2014: Timing of the Mid-

dle Miocene Badenian Stage of the Central Paratethys. Geol. 

background image

PEZELJ, SREMAC and BERMANEC

344

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

Carpath. 65, 1, 55–66.

Holcová K. 1999: Postmortem transport and resedimentation of 

foraminiferal tests: relations to cyclical changes of foraminife-
ral assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 
145, 1–3, 157–182.

Holcová K. & Zágoršek K. 2008: Bryozoa, foraminifera and calca-

reous nannoplankton as environmental proxies of the “bryo-
zoan event” in the Middle Miocene of the Central Paratethys 
(Czech Republic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 
267, 216–234.

Holcová K., Hrabovsk  J., Nehyba S., Hladilová Š., Doláková N. & 

Demény A. 2015: The Langhian (Middle Badenian) carbonate 
production event in the Moravian part of the Carpathian Fore-
deep (Central Paratethys): a multiproxy record. Facies 61, 1, 
1–26.

Hy n  M., Hudá ková N., Biskupi  R., Rybár S., Fuksi T., Halásová 

E. & Ledvák P. 2012: Devínska Kobyla — a window into the 
Middle Miocene shallow-water marine environments of the 
Central Paratethys (Vienna Basin, Slovakia). Acta Geol. 
Slovaca
 4, 2, 95–111.

Ji í ek R. 1983: Rede nition of the Oligocene and Neogene ostra-

cod zonation of the Paratethys. Knihov. Zem. Plyn Nafta 4, 
195–236.

Jorissen F.J. 1999: Benthic foraminiferal successions across Late 

Quaternary Mediterranean sapropels. Mar. Geol. 153, 91–101.

Kaiho K. 1994: Benthic foraminiferal dissolved-oxygen index and 

dissolved-oxygen levels in the modern ocean. Geology 22, 
719–722. 

Kaiho K. 1999: Effect of organic carbon  ux and dissolved oxygen 

on the benthic foraminiferal oxygen index (BFOI). Mar. 
Micropaleontol.
 37, 67–76.

Kochansky V. 1944: Miocene marine fauna of the south part of 

Medvednica Mt. (Zagreba ka gora Mt.). 

 2–3, 171–280 (in Croatian).

Ková  M., Andreyeva-Grigorovich A., Bajraktarevi  Z., Brzobo-

hat  R., Filipescu S., Fodor L., Harzhauser M., Nagymarosy 
A., Oszczypko N., Paveli  D., Rögl F., Safti  B., Sliva L. & 
Studencka B. 2007: Badenian evolution of the Central Para-
tethys Sea: paleogeography, climate and eustatic sea-level 
changes. Geol. Carpath. 58, 6, 579–606.

Leckie R.M. & Olson H.C. 2003: Foraminifera as peroxies of sea-

level change on siliciclastic margins. In: Olson H.C. & Leckie 
R.M. (Eds.): Micropaleontologic Proxies of Sea-Level Change 
and Stratigraphic Discontinues. Special Publication 75. Society 
for Sedimentary Geology
, Tulsa, 5–19.

Loeblich A.R. & Tappan H. 1987a: Foraminiferal genera and their 

classi cation. Van Nostrand Reinhold, New York, 1–970.

Loeblich A.R. & Tappan H. 1987b: Foraminiferal genera and their 

classi cation. Plates. Van Nostrand Reinhold, New York, 
1–1059.

Lourens L., Hilgen F., Shackleton N.J., Laskar J. & Wilson D. 2004: 

The Neogene Period. In: Gradstein F.M., Ogg J.G. & Smith 
A.G. (Eds.): A Geologic Time Scale 2004. Cambridge Univer-
sity Press
, Cambridge, 409–440.

ukowiak M., Pisera A. & Schlögl J. 2014: Bathyal sponges from 

the Late Early Miocene of the Vienna Basin (central Parate-
thys, Slovakia). Paläont. Z. 88, 3, 263–277.

Mihajlovi   . & Kne evi  S. 1989: Calcareous nannoplankton from 

Badenian and Sarmatian deposits at Višnjica and Karaburma in 
Belgrade. Geol. An. Balk. Poluos. 53, 343–366. 

Moissette P., Dulai A., Escarguel G., Kázmér M., Müller P. & Saint 

Martin J.P. 2007: Mosaic of environments recorded by bryo-
zoan faunas from the Middle Miocene of Hungary. Palaeo-
geogr. Palaeoclimatol. Palaeoecol. 

252, 3, 530–556.

Murray J.W. 1991: Ecology and paleoecology of benthic fora-

minifera. 

, Harlow, 

 

Essex, 1–397.

Murray J.W. 2006: Ecology and applications of benthic forami-

nifera. Cambridge University Press, Cambridge, 1–438.

Nascimento A. & Riha J. 1996: Ostracod species common to the 

Neogene of Portugal and Central Paratethys. In: Keen M.C. 
(Ed.): P

roceedings of the 2

nd

 European Ostracodologists 

 Meeting,  Glasgow.  Brit. Micropal. Soc.,

 London, 107–112.

Nehyba S., Holcová K., Gedl P. & Doláková N. 2016: The Lower 

Badenian transgressive-regressive cycles — a case study from 
Oslavany (Carpathian Foredeep, Czech Republic). Neu Jb. 
Geol. Paläont. Abh.
 279, 2, 209–238.

Olteanu R. 1997: The hinge changes within Cytherideinae group 

taxonomic and systematic signi cances.  Acta Pal. Rom., 1, 
211–217.

Papp A. & Schmid M.E. 1985: The fossil foraminifera of the Ter-

tiary basin of Vienna. (Die fossilen foraminiferen des Tertiaren 
Bekens von Wien). Abh. Geol. Bundesanst. 37, 1–311.

Papp A., Cicha I. &  tyroká J. 1978: Foraminifera. In: Papp A., 

Cicha I., Seneš J. & Steininger F. (Eds.): Chronostratigraphie 
und Neostratotypen im Miozän der Zentralen Parathetys. 
 Badenian.  Verlag der Slowak. Akad. der Wissen., Bratislava, 
263–325.

Parker J.H., Gischler E. & Eisenhauer A. 2012: Biodiversity of fora-

minifera from Late Pleistocene to Holocene coral reefs, South 
Sinai, Egypt. Mar. Micropaleontol. 86, 59–75.

Paveli  D. 2001: Tectonostratigraphic model for the North Croatian 

and North Bosnian sector of the Miocene Pannonian Basin 
System. Basin Res. 13, 359–376.

Pèrez-Asensio J.N., Aguirre J., Schmiedl G. & Civis J. 2012: Mes-

sinian paleoenvironmental evolution in the lower Guadalquivir 
Basin (SW Spain) based on benthic foraminifera. Palaeogeogr. 
Palaeoclimatol. Palaeoecol. 
326, 135–151.

Pezelj  . & Sremac J. 2007: Badenian Marginal Marine environ-

ment in the Medvednica Mt. (Croatia). Joannea Geol. Paläon-
tol.
 9, 83–84.

Pezelj  ., Sremac J. & Soka  A. 2007: Palaeoecology of the Late 

Badenian foraminifera and ostracoda from the SW Central 
Paratethys (Medvednica Mt., Croatia). Geol. Croatica 60, 2, 
139–150.

Pezelj  ., Mandi  O. &  ori  S. 2013: Paleoenvironmental dyna-

mics in the southern Pannonian basin during initial middle 
Miocene marine  ooding. Geol. Carpath. 64, 1, 81–100.

Pezelj  ., Sremac J. & Bermanec V. 2014: Middle Miocene benthic 

foraminiferal communities and their response to shallo wing-
upward trends — example from Croatia. 

In: 

Marchant M. & 

Hromic T. (Eds.): Abstract Volume, International Symposium 
on Foraminifera FORAMS 2014, Chile. Grzybow. Found. 
Spec. Publ. 20
, 115–116.

Pipík R. 2007: Phylogeny, palaeoecology, and invasion of non-ma-

rine waters by the Late Miocene hemicytherid ostracod Tyrrhe-
nocythere from Lake Pannon. Acta Palaeontol. Pol. 52, 2, 
351–368.

Pippèrr M. 2011: Characterisation of Ottnangian (middle Burdigalian) 

palaeoenvironments in the North Alpine Foreland Basin using 
benthic foraminifera — a review of the Late Marine Molasse of 
southern Germany. Mar. Micropaleontol. 79, 3, 80–99.

Pippèrr M. & Reichenbacher B. 2010: Foraminifera from the bore-

hole Altdorf (SE Germany): Proxies for Ottnangian (early Mio-
cene) palaeoenvironments of the Central Paratethys. 
Palaeogeogr. Palaeoclimatol. Palaeoecol. 289, 1–4, 62–80.

Pisera A. 1996: Miocene reefs of the Paratethys: a review. SEPM 

Concepts Sedimentol. Paleontol. 5, 97–104.

Pisera A. & Hladilová

 S. 2003: Siliceous sponge spicules from the 

Karpatian of the Carpathian Foredeep in Moravia. In: Brzobo-
hat  R., Cicha I., Ková  M. & Rögl F. (Eds.): The Karpatian, 
a Lower Miocene stage of the Central Paratethys. 

Masaryk 

background image

345

MIDDLE MIOCENE SHALLOW-WATER BENTHIC FORAMINIFERS, MEDVEDNICA MT. (CROATIA)

GEOLOGICA CARPATHICA

, 2016, 67, 4, 329–345

University, Brno, 189–192.

Radivojevi  D., Rundi  L. & Kne evi  S. 2010: Geology of the 

oka structure in northern Banat (central Paratethys, Serbia). 

Geol. Carpath. 61, 4, 341–352.

Reuter M., Piller W.E. & Erhart C. 2012: A Middle Miocene carbo-

nate platform under silici-volcaniclastic sedimentation stress 
(Leitha Limestone, Styrian Basin, Austria) — depositional 
environments, sedimentary evolution and palaeoecology. 
Palaeogeogr. Palaeoclimatol. Palaeoecol. 350, 198–211.

Reymond C. E., Roff G., Chivas A. R., Zhao J. X. & Pandol  J.M. 

2013: Millennium-scale records of benthic foraminiferal com-
munities from the central Great Barrier Reef reveal spatial 
differences and temporal consistency. Palaeogeogr. Palaeocli-
matol. Palaeoecol.
 374, 52–61.

Ri nar I., Mileti  D., Verbi  T. & Horvat A. 2002: Middle Miocene 

sediments on the northern part of Gorjanci between  ate  and 
Kostanjevica (SE Slovenia). Geologija 45, 531–536.

Rögl F. 1999. Mediterranean and Paratethys. Facts and hypotheses 

of an Oligocene to Miocene paleogeography (short overview). 

Geol. Carpath.

 50, 4, 339–349.

Ruiz F., Gonzales-Regalado M.L., Baceta J.I. & Munoz J.M. 2000: 

Comparative ecological analysis of the ostracod faunas from 
low and high polluted southwestern Spanish estuaries: a multi-
variate approach. Mar. Micropaleontol. 40, 345–376.

Selmeczi I., Lantos M., Bohn-Havas M., Nagymarosy A. & Szeg   . 

2012: Correlation of bio-and magnetostratigraphy of Badenian 
sequences from western and northern Hungary. Geol. Carpath. 
63, 4, 219–232.

liwi ski M., B bel M., Nejbert K., Olszewska-Nejbert D., 

G siewicz A., Schreiber B.C., Benowitz J.A. & Layer P. 2012: 
Badenian–Sarmatian chronostratigraphy in the Polish Car-
pathian Foredeep. Palaeogeogr. Palaeoclimatol. Palaeoecol. 
326, 12–29.

Smith A.J. & Horne D.J. 2002: Ecology of marine, marginal marine 

and nonmarine ostracodaes. In: Holmes J.A. & Chivas A.R. 
(Eds.): Ostracoda. Applications in Quaternary research. The 
Geophysical Monograph 131. American Geoph. Union
 Washington, DC, 37–64.

Sopková B., Škulová A., Hlavatá J. & Ková  M. 2007: Sequence 

stratigraphy of the Late Badenian & Sarmatian (Serravallian) 
of the eastern part of the Vienna Basin — deltaic to tidal  ats 
environments.

 Joannea Geol. Paläontol. 

9, 101–103.

Strauss P., Harzhauser M., Hinsch R. & Wagreich 2006: Sequence 

stratigraphy in a classic pull-apart basin (Neogene, Vienna 
Basin). A 3D seismic based integrated approach. Geol.  Carpath. 
57, 185–197.

Šiki  L. 1967: Tortonian and Sarmatian foraminifera from south-

west part of the Medvednica Mt. Geol. vjesnik 20, 127–135 (in 
Croatian).

Šiki  K. 1995: Geological composition of the Medvednica Mt. In: 

Šiki  K. (Ed.): Medvednica Mt. Geological Field Guide. Inst. 

 Zagreb, 7–30 (in Croatian).

Triantaphyllou M.V., Kouli K., Tsourou T., Koukousioura O., Pav-

lopoulos K. & Dermitzakis M.D. 2010: Paleoenvironmental 
changes since 3000 BC in the coastal marsh of Vravron (Attica, 
SE Greece). Quat. Int. 216, 14–22.

Van Hinsbergen D.J.J., Kouwenhoven T.J. & Van der Zwaan G.J. 

2005: Paleobathymetry in the backstripping procedure: Correc-
tion for oxygenation effects on depth estimates

Palaeogeogr. 

Palaeoclimatol. Palaeoecol.

 221, 245–265. 

Van Der Zwaan G.J., Jorissen F.J. & De Stigter H.C. 1990: The 

depth dependency of planktonic/benthic foraminiferal ratios: 
constrains and applications. Mar. Geol. 95, 1–16.

Van der Zwaan G.J., Dujinstee I.A.P., Den Dulk M., Ernst S.R., Jan-

nink N.T. & Kouwenhoven T.J. 1999: Benthic foraminiferes: 
proxies or problems? A review of paleoecologicalconcepts. 
Earth Sci. Rev. 46, 213–236. 

Vrsaljko D., Šiki  K., Pikija M., Glovacki Jernej  . & Mikni  M. 

1995: Miocene deposits from locality Gornje Vrap e. In: Šiki  
K. (Ed.): Medvednica Mt. Geological Field Guide. Inst. geol. 

 Zagreb, 61–66 (in Croatian).

Vrsaljko D., Paveli  D., Mikni  M., Brki  M., Kova i  M., He i-

movi  I., Hajek-Tadesse V., Avani  R. & Kurtanjek N. 2006: 
Middle Miocene (Late Badenian/Sarmatian) palaeoecology 
and evolution of the environments in the area of Medvednica 
Mt. (North Croatia). 

Geol. Croatica 

59, 1, 51–63.