background image

www.geologicacarpathica.com

GEOLOGICA CARPATHICA

, JUNE 2016, 67, 3, 273–288                                                                                                                           

doi: 10.1515/geoca-2016-0018

A seismic source zone model for the seismic hazard 

assessment of Slovakia

JOZEF HÓK

1

, RÓBERT KYSEL

2,3

, MICHAL KOVÁČ

1

, PETER MOCZO

2,3

, JOZEF KRISTEK

2,3

MIRIAM KRISTEKOVÁ

3,2

 and MARTIN ŠUJAN

4

1

Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská 

dolina G, 842 15 Bratislava, Slovakia; hok@fns.uniba.sk

2

Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovakia; 

Robert.Kysel@fmph.uniba.sk

3

Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia

4

EQUIS Ltd., Račianska 57, 831 02 Bratislava, Slovakia

(Manuscript received September 23, 2015; accepted in revised form March 10, 2016)

Abstract: We present a new seismic source zone model for the seismic hazard assessment of Slovakia based on a new 
seismotectonic model of the territory of Slovakia and adjacent areas. The seismotectonic model has been developed 
using a new Slovak earthquake catalogue (SLOVEC 2011), successive division of the large-scale geological structures 

into tectonic regions, seismogeological domains and seismogenic structures. The main criteria for definitions of regions, 
domains and structures are the age of the last tectonic consolidation of geological structures, thickness of lithosphere, 
thickness of crust, geothermal conditions, current tectonic regime and seismic activity. The seismic source zones are 
presented on a 1:1,000,000 scale map.

Key words: seismotectonic model, seismic hazard, Slovakia, Western Carpathians.

Introduction

The  definition  of  seismic  source  zones  and  the  derivation  
of the parameters characterizing seismic activity in each seis-
mic source zone are crucial for a seismic hazard assessment.  
A seismotectonic model of an investigated territory is a ne-

cessary basis for defining seismic source zones. The seismo-
tectonic model relevant for seismic hazard analysis for the 
Slovak territory has to include adjacent tectonic areas. This 
means that the eastern part of the Czech Republic, north- 
eastern part of Austria, northern part of Hungary and the 
southern part of Poland have to be included in a major area 
for the analysis. 

Probably the first seismotectonic map of Slovakia was pro­

duced by Hrašna (1997). The principles applied in this work 
do not correspond to present requirements. Šefara et al. 

(1998)  defined  seismogenic  zones  within  the  Alpine–
Carpathian–Pannonian region. The zones were represented 
by the Late Jurassic–Late Cretaceous intraplate and oceanic 
sutures which were reactivated as fault zones with various 
kinematics during the Late Tertiary and are still potentially 
capable of generating earthquakes. Hók et al. (2000) and 

Kováč et al. (2002) applied similar approaches also including 

neotectonic stress field and recent vertical movement tenden­

cies. Madarás et al. (2012) defined six seismic active regions 
on the Slovak territory. They characterized each region by its 
seismicity, recent vertical movement tendencies and poten-
tially active faults. 

Under the seismotectonic model we understand 

 

a structured set of available geological, geophysical and seis-

mological  data  relevant  for  definition  of  seismic  source 
zones covering the territory of Slovakia and adjacent 
regions.

In this article, we start with a general seismotectonic 

framework of the Slovak territory based on the geological 
evolution of the Western Carpathians and the lithosphere pa-

rameters.  We  explain  a  procedure  for  compiling,  homoge-
nizing, declustering and a time-completeness analysis of the 
new Slovak national earthquake catalogue (2011). We con-
tinue with principles of compilation of the seismotectonic 
model and division of the territory into tectonic regions, seis-
mogeological domains and seismic structures. We made use  

of  earthquake  data,  crustal  thickness,  heat  flow  and  other 
available geophysical data. We conclude with a new model 
of the seismic source zones covering the territory of Slovakia 
and adjacent areas.

Seismotectonic framework

Most of the territory of Slovakia belongs to the Western 

Carpathians. The present day structure of the Western Car-
pathians contains a number of different allochthonous tec-

tonic units (Biely et al. 1995), displaced during the Alpine 
orogeny (Fig. 1). 

Two decisive phases of the tectonic evolution connected with 

subduction and collision can be recognized. The Palaeoalpine 
phase is characterized by subduction, collision and stacking 
of the groups of nappes in the internal parts of the Western 
Carpathian arc (Internal Western Carpathians — IWC) 

background image

274                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

accompanied by spreading of oceanic realms in the external 

parts  (External  Western  Carpathians  —  EWC)  during  the 
Cretaceous. The IWC include three groups of nappes (Hók et 
al. 2014). The Upper group of nappes, represented by the 
Gemericum, Meliaticum, Turnaicum and Silicicum tectonic 
units, was tectonically separated during the Early Cretaceous 
(ca. 150 Ma). The Middle group of nappes comprises tec-
tonic units of the Veporicum, Fatricum and Hronicum. This 
group of nappes was structuralized during the lowermost 
Late Cretaceous (Cenomanian–Turonian i.e. ca. 100 Ma). 
The Lower group of nappes contains the Vahicum/ 

Penninicum (Plašienka 1995; Schmid et al. 2004, 2008) and 
Tatricum tectonic units formed during the Latest Creta-
ceous–Early Palaeogene (ca. 60 Ma).

The Neoalpine phase is characterized by oblique diachro-

nous subduction of the EWC basement along the periphery 

of the IWC (Kováč 2000). In the collision zone, the Flysch 
Belt rootless nappes were thrusted onto the European plat-

form  margin.  The  extension  connected  with  the  Neogene 
back-arc type volcanism and the Neogene basins opening 

and  infilling  operated  during  this  phase  in  the  IWC.  
The Neogene intramontane basins and the horst structures of 

the core mountains are the most expressive morphotectonic 
phenomena of the IWC. Oblique collision of the IWC with 
the European platform supported by the roll back effect 
caused a large counter clockwise rotation of the IWC during 

the Neogene (e.g., Márton & Fodor 2003). Simultaneously 

the  lateral  extrusion  of  the  Carpathians  from  the  Eastern 

Alpine area (Ratschbacher et al. 1991) and the escape of the 
Transdanubic and Bükkic terranes from the Southern Alpine 

and Dinaride realms and their accretion to the IWC occurred. 
It is assumed that the enigmatic tectonic units covered by the 
Neogene sediments in south-eastern Slovakia were also 
shifted together with the Transdanubic and Bükkic terranes 

(Haas et al. 2001; Márton & Fodor 2003). Recently the EWC 
have been under compression (Fig. 2) oriented generally per-

pendicular to the Carpathian arc course (Marsch et al. 1990; 

Jarosiński  1997,  1998,  2005;  Reinecker  &  Lenhardt  1999; 

Jarosiński et al. 2009; Olaiz et al. 2009; Ptáček et al. 2012), 

while  the  IWC  are  characterized  by  orogen­parallel  exten-

sion (Pešková & Hók 2008; Vojtko et al. 2008; Olaiz et al. 

2009; Hók et al. 2010; Králiková et al. 2010; Vojtko et al. 
2011) although some parameters of the focal mechanisms 
showed contradictory orientation in the western part of Slo-

vakia (Cipciar 2001; Fojtíková 2009; Fojtíková et al. 2010; 

Jechumtálová & Bulant 2014).

The thickness of the lithosphere reaches 120~160 km in 

the Western Carpathians, 160~240 km and 160~220 km in 
the Eastern Alps. The lithosphere thickening is generally ac-
companied by increasing of the crust thicknesses. The litho-
 

sphere thickness in the European platform area is 

100~140 km (Zeyen et al. 2002; Dérerová et al. 2006; Grinč 
et al. 2013; Bielik et al. 2014). 

The Earth crust thickness and the Moho-discontinuity 

morphology were studied especially by deep seismic sounding 

(Mayerová et al. 1985; Šefara et al. 1996). The more precise 
results were acquired within the CELEBRATION 2000, 
ALP 2002 and SUDETES 2003 projects (e.g., Brückl et al. 

2003;  Grad  et  al.  2008;  Janik  et  al.  2009;  Hrubcová  et  al. 
2010; Janik et al. 2011). The European platform, mainly the 

Fig. 1.

 Simplified tectonic evolution of the Western Carpathians during the last 150 Ma.

background image

275

A SEISMIC SOURCE ZONE MODEL: SEISMIC HAZARD ASSESSMENT OF SLOVAKIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Fig. 2.

 Simplified 

geological 

map 

of 

Slovakia 

with 

orientation 

of 

principal 

compression 

and 

extension 

during 

?Late 

Pleistocene–Holocene 

obtained 

from 

structural 

measurements 

and 

their 

in

terpretations. 

Black 

arrows 

indicate 

data 

from 

interpretation 

of 

the 

focal 

mechanisms 

(2) 

and 

extensometer 

(7). 

Arrows 

in 

External 

W

estern 

Carpathians 

(16) 

indicate 

SH

max

 mean direction 

o

f  

the

 autochthonous basement (black arrows) and the Carpathian nappes (grey arrows). Reference: 

1

 — Briestenský et al. 201

1; 

2 

— 

Fojtíková 

et 

al. 

2010; 

Jechumtálová 

Bulant 

2014; 

               

3

 — 

V

ojtko et al. 2008; 

4

 — Hók et al. 2007; 

5 

— 

Čepek 

1938; 

6 

— 

Králiková 

et 

al. 

2010; 

7

 — Mentes 2008; 

8 

— 

Pulišová 

2013; 

9

 — 

V

ojtko et al. 201

1; 

10

 — 

V

ojtko et al. 2010a; 

                   

11

 — Pešková & Hók 2008; 

12

 — Litva et al. 2015; 

13

 — 

V

ojtko et al. 2010b; 

14

 — Hók et al. 201

1; 

15

 — 

V

ojtko et al. 2012 

16

 — Jarosiński 1998, 2005.

background image

276                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Bohemian Massif is characterized by crust thicknesses of 
around 34 km. The crust thickness in the Eastern Alps ranges 
in the interval of 38~44 km, and around 40 km over most of 

the territory. It is the eastern continuation of the significant 
Alpine Moho-depression, which reaches even 50 km depths 
in its central part. The morphology of the Moho varies from 
44 km depth in the north of the Western Carpathians area to 
26~28 km at the southern contact with the Pannonian basin 
system. The most distinctive inhomogeneity is a local de-

pression of the Moho course, and significant crust thickening 
in the northeastern portion of the Slovakia territory. The de-
pression is oriented in a NE–SW direction and runs oblique 
to the contact of the EWC and IWC (Fig. 3). Its location does 

not  correlate  with  the  most  exposed  surface  topography. 
The minimum crust thickness of around 30~26 km is found 
in the Pannonian backarc area. The minimal crust thickness-
es follow the deepest Neogene depocentres of the Pannonian 
Basin system.

Geothermal conditions point to significant differences be-

tween the geothermal activity in the Alpine–Carpathian sys-
tem, Pannonian Basin and European platform (Fig. 4). The 
temperatures 250 °C and 550 °C were used as decisive in 
terms of the brittle ductile transitions for limestone (250 °C), 
granite or feldspar and quartz-rich rocks (550 °C). The tem-
peratures of 350 °C for the quartz-rich (granitic) upper crustal 
rocks and 450 °C for the quartz-poor (dioritic) rocks were 

given by Burkhard & Grünthal (2009).

The  mechanical  strength  of  the  lithosphere  is  extremely 

low in the marginal parts of the Dinarides, Eastern Alps, 
Western Carpathians and adjacent Pannonian Basin area, 
therefore it is susceptible to deformations, structural reacti-

vation and stress concentration (Bus et al. 2009). The pre-
vailing deformation style from compression through 
transpression up to transtension (Bada et al. 2001; Olaiz et 

al. 2009) gradually changes generally from south to north — 
from the compression zone in the Dinarides towards the Pan-
nonian  Basin.  The  earthquake  hypocentres  in  the  wider  terri       t ory 
of Slovakia are located in the upper 20 km of the Earth 

 

crust. The hypocentral depths between 6~15 km are stated 
for the marginal parts of the Eastern Alps–Western Car-
pathians and Pannonian Basin (Tóth et al. 2014). These data 
correspond to the rheological model of the Pannonian Basin 
(Lenkey et al. 2002), where only the upper part of the crust 
(10–14 km thick) can be considered brittle. The lower level 
of seismicity of the northern and eastern part of the Pannonian 

Basin  confirms  that  most  of  the  energy  coming  from  the 
movement of the Adria plate is absorbed by the Dinarides 
and southwestern part of the Pannonian Basin.

A homogenous earthquake catalogue

A new Slovak earthquake catalogue (SLOVEC 2011) has 

been developed for the purpose of creating a seismotectonic 

Fig. 3.

  Map  of  the  Earth’s  crust/mantle  boundary  (lower  lithosphere)  in  the  wider  area  of  Slovakia  (modified  after    Horváth  1993; 

Lenkey 1999; Grad et al. 2009; Csicsay 2010; Hrubcová & Środa 2015).

background image

277

A SEISMIC SOURCE ZONE MODEL: SEISMIC HAZARD ASSESSMENT OF SLOVAKIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Fig. 4. Maps of the characteristic depths of 250 °C and 550 °C isotherms (original data). 

background image

278                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

model of the Slovak territory. The catalogue geographically 
covers the whole territory of Slovakia and the adjacent area. 
For the compilation of the catalogue, the following earth-
quake catalogues and databases were used:

(1) previous version of the Slovak national earthquake 

catalogue (Labák 1998)

(2) CENEC catalogue (Grünthal et al. 2009)
(3) the earthquake catalogue of the local networks of seis-

mic stations situated around NPP Jaslovské Bohunice and 
NPP Mochovce (Progseis 2010)

(4) the earthquake databases of the Geophysical Institute, 

Slovak Academy of Sciences.

The earthquake catalogue by Labák (1998) comprises data 

on historical earthquakes, instrumentally recorded earth-
quakes and macroseismic observations of earthquakes on the 
territory of Slovakia and neighbouring parts of Hungary, 

Austria, the Czech Republic and Poland for the period 1259 

to 1997.

The CENEC catalogue (Grünthal et al. 2009) is the unified 

catalogue of earthquakes in the central, northern and north- 
western parts of Europe for the period 1000 to 2004 and 
magnitudes  M

W

≥3.50. The catalogue was compiled from 

more than 30 national and regional earthquake catalogues, 
ISC (International Seismological Centre) and NEIC (National 
Information Earthquake Center) bulletins, and many special 
studies.

The earthquake catalogue by Progseis (2010) is based on 

monitoring of microseismic activity in the vicinity of the 
NPP Jaslovské Bohunice and Mochovce by the local net-

work of seismic stations from 1987 to 2009.

Two earthquake databases of the Geophysical Institute, 

Slovak Academy of Sciences, provide earthquake solutions 
from the Slovak National Network of Seismic Stations and 
macroseismic data for the territory of Slovakia based on 
evaluation of the macroseismic questionnaires. Both data-

bases cover the period from 1998 to 2009.

The standard procedure was applied for compiling the 

SLOVEC (2011) catalogue. In the first step, all earthquake 
catalogues and databases were merged. Subsequently, prima-
ry entries were selected and duplicate entries were removed. 
For earthquakes with epicentres located inside the local seis-
mic networks of Nuclear Power Plant (NPP) Jaslovské Bo-
hunice and NPP Mochovce we considered data on time, 
location and earthquake size in terms of local magnitude or 
epicentral intensity from the Progseis catalogue as primary 
and data from the other sources as subsidiary.

The SLOVEC (2011) catalogue includes data on 1648 

events  in  the  period  from  1259  to  2009  (882  earthquakes 

were  instrumentally  recorded,  609  earthquakes  were  mac­
roseismically observed, for 104 earthquakes both macroseis-
mic and instrumental data are available, and for 53 
earthquakes there is no information on magnitude or epicen-
tral intensity). For each earthquake, the uncertainty in the epi-

central  location  was  expertly  estimated  depending  on  the 
time of observation (e.g., uncertainty up to 50 km for histori-
cal earthquakes from the late medieval period).

The entire set of earthquakes in the catalogue had to be 

characterized by the moment magnitude M

W

. For the territo-

ry of Slovakia, there are no earthquakes with both the mo-

ment magnitude M

W

 and local magnitude M

L

 determined. 

Similarly, there are no earthquakes with both the moment 
magnitude  M

W

 and epicentral intensity I

0

 determined. In-

stead of an attempt to find conversion relation between the 
moment magnitude and local magnitude or between the mo-

ment  magnitude  and  epicentral  intensity,  we  identified  48 
earthquakes in the SLOVEC (2011) catalogue for which both 
the local magnitude M

L

 and epicentral intensity I

0

 were 

available. Using the least-square method we derived the fol-
lowing conversion relation between the epicentral intensity 
I

0

, local magnitude M

L

 and hypocentral depth h:

I

0

=1.545(± 0.125)M

L

– 0.338(± 0.304)log h+ 0.206(± 0.472)

The relation is valid for M

L

 in the range 2.0~4.7.

We converted the epicentral intensity I

0

 to the magnitude 

using the Kárník et al. (1957) formulas:

M

Io

= 0.55I

0

+ 0.95 and M

Io

=0.55 I

0

+ 0.93 log h+ 0.14

where  M

Io

 is the so called macroseismic intensity magni-

tude.

Following Kárník (1968), it was assumed that the surface 

wave magnitude M

S

 is equivalent to the intensity magnitude 

M

Io

.  According  to  Grünthal  &  Wahlström  (2003)  M

S

 is 

equivalent to the moment magnitude M

W

. Consequently, 

the homogenization procedure applied to the SLOVEC 
(2011) catalogue can be characterized by the following 
scheme:

M

Io

I

0

M

L

  

≈  

M

S 

≈  

M

W

The map of epicentres from the unified and homogenized 

SLOVEC (2011) catalogue is shown in Figure 5. The Time- 
Magnitude distribution for the catalogue is shown in 
Figure 6. A remarkable increase in the number of documented 
earthquakes for magnitudes smaller than M

W

=1.5 after the 

year 2004 is due to the modernization of the Slovak national 

network of seismic stations which was finished that year. For 
declustering (i.e., identifying of foreshocks, mainshocks and 
aftershocks in the catalogue) we used the window method. 
The parameters of the time and distance windows were taken 

from  the  PEGASOS  project  (Burkhard  &  Grünthal  2009). 
Earthquakes in the catalogue were regrouped according to 
their moment magnitudes. In the case that some earthquake 
occurred within the time and distance windows of an earth-
quake with larger moment magnitude, the earthquake was 
marked as a foreshock or aftershock depending on the time 

of the two events. Using this approach, 993 earthquakes were 

classified as mainshocks, 149 earthquakes as foreshocks and 
506 earthquakes as aftershocks.

The time-completeness analysis of the SLOVEC (2011) 

catalogue was investigated based on the plots displaying the 
cumulative number of events versus time, for a given magni-
tude interval (Fig. 7). The most recent linear segment, indi-
cating a stable seismic rate with time, provides the lower 
bound of the completeness time interval. The results of the 
time-completeness analysis of the SLOVEC (2011) cata-
logue are shown in Table 1.

background image

279

A SEISMIC SOURCE ZONE MODEL: SEISMIC HAZARD ASSESSMENT OF SLOVAKIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Fig. 5.

 Map of earthquake epicentres according to the unified and homog

enized SLOVEC (201

1) catalogue.

background image

280                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Principles of compilation of the seismotectonic 

model

The construction of the seismotectonic model was based 

on hierarchical regionalization of geological structures with 
earthquake occurrence into the tectonic regions, seismogeo-
logical domains, seismogenic structure and seismic source 
zones in the territory of Slovakia and adjacent areas. 

The evaluated area has been divided into the stable conti-

nental region and the active shallow crustal region (sensu 
Delavaud et al. 2012). The stable continental region (SCR) 
represents the Caledonian and Hercynian consolidated Euro-
pean platform. The active shallow crustal region (ASCR) 
region includes the Alpine-Carpathian orogenic system and 
the pre-Cenozoic basement of the Pannonian Basin system. 
The SCR and ASCR are separated by a tectonic boundary of 

the first order, namely the contact of the European platform 
with the Alpine–Carpathian orogeny.

A  seismogeologic domain (“the large scale zones”) is 

a spatially defined segment of the Earth’s crust with quasi­
homogeneous geodynamic characteristics. The uniform age 

of the last extensive consolidation of the geological and tec-
tonic structure is the main criterion for its allocation. Besides 

this,  there  are  domains  defined  by  the  thickness  of  litho­
 sphere, thickness of crust and thermal conditions at different 
depths, neotectonic deformation and seismicity (data from 
catalogue). Selected seismogeological domains are integral 
elements of the ASCR (Fig. 8).

(1) The Flysch Belt Domain represents the accretionary 

prism of the Neoalpine nappes of the Alpine–Carpathian 
orogeny (ASCR) thrusted over the European platform 
(SCR). The domain forms the northern margin of Slovakia 
(Figs. 1, 8).

Its basic geophysical characteristics are similar to those of 

the SCR. The lithosphere thickness is 100~140 km; the crust 
thickness 30~40 km; thermal conditions at the depth levels 
of 50 km 600~700 °C, 20 km 350~400 °C, 10 km 
200~250 °C and at the depth of 5 km 100~140 °C. Normal 
faults oriented in the longitudinal and transverse direction 
with respect to the orogene arc predominate. The last thrusting 
of the nappes took place in the Middle Miocene, namely 

17–11  Ma  (Jiříček  1979).  This  domain  has  the  lowest 
seismic activity in the territory of Slovakia. 

(2) The Eastern Alps and Western Carpathian Domain 

is formed by the tectonic units of the Northern Calcareous 

Alps,  Central  Alps  and  IWC.  The  rock  complexes  of  the 
crystalline and sedimentary rocks participate in the Palaeoal-
pine nappe structures. The Neogene sediments and volcano- 
sedimentary formations, together with the Palaeogene and 
partially with the Late Cretaceous sediments represent the 
post-nappe cover in the IWC. The essential geophysical 
characteristics of this domain are the lithosphere thickness 
200~140 km; the crust thickness 30~44 km; thermal condi-
tions at the depth levels of 50 km 600~1000 °C, 20 km 
350~400 °C, 10 km 220~250 °C and at the depth of 5 km 
120~160 °C. The normal and strike-slip faults are the 

Fig. 6. The cumulative number of events versus time for different magnitude intervals, based on the declustered SLOVEC (2011) cata-
logue. The increment between the magnitude classes is M

W

=0.5.

background image

281

A SEISMIC SOURCE ZONE MODEL: SEISMIC HAZARD ASSESSMENT OF SLOVAKIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

deep basement occurred during the Upper Miocene, before 

ca. 9 Ma.

The  domain  area  extends  into  Slovak  territory  at  its 

southern periphery. It is defined by the course of the Rába 

and  the  Hurbanovo–Diósjenő  lineament  (HDL).  The  most 
marked seismic activity is connected with the zone along the 
northern margin of the Transdanubicum and Bükk (Haas et 

al. 2001; Haas & Budai 2014), south of the (HDL). The do-
main is important especially in terms of increased seismic 

activity in the Komárno area.

Seismogenic structures represent faults, fault systems or 

fault zones associated with the occurrence of earthquakes. 
The following seismogenic structures are principal for the 
seismotectonic model in the wider surroundings of Slovakia.

(1) Mur–Mürz & Vienna Basin Transfer Fault. The 

Mur–Mürz fault system disturb the Northern Calcareous 
Alps in SW–NE direction up to the Vienna Basin area, where 
it continues by the Vienna Basin Transfer Fault (VBTF) or 

Vienna  Basin  fault  (VBF)  according  to  Hinsch  &  Decker 

(2003) or Beindinger & Decker (2011). The termination of 

the  VBTF  is  identified  gravimetrically  as  well  as  in  deep 

seismic profiles at the northwestern margin of the Malé Kar-

paty Mts., horst (Bielik et al. 2002; Kováč et al. 2002).

(2)

 Hurbanovo–Diósjenő Lineament (HDL). The HDL 

is considered to be a projection of the flat­lying boundary of 
the North Pannonian Domain and Eastern Alpine–Western 
Carpathian Domain or Transdanubicum/Pelso and IWC 

(Nemesi et al. 1997; Kovács et al., 2000; Kováč et al. 2002). 

The  tectonic  boundary  is  also  referred  to  as  the  Rába–

Hurbanovo–Diósjenő lineament (Balla 1994; Kovács et al. 
2000). The HDL is a structure, which limits occurrences of 
earthquakes towards the north.

A seismic source zone 

is  a  defined  distinct  part  of  the 

 seismogeological domain with characteristic arrangement of 
geological structures, tectonic regime and with typical fea-
tures in its seismic activity. The seismic source zones covering 

the territory of Slovakia were defined according to the pro-

posed  seismotectonic  model,  while  the  existing  zones  re-
sulting from the SESAME project (Jiménez et al. 2003) were 

accepted  with  certain  modifications  for  the  delimitation  of 
the zones near the border area. The seismic source zones are 

in principle defined into four groups (see Fig. 9). Zones of 
the Eastern Alps and Western Carpathian Domain — the 
Western Carpathian sector — are the zones in the territory of 

Fig. 7. 

Time–Magnitude distribution for the unified and homoge-

nized SLOVEC (2011) catalogue.

prevalent phenomena in the tectonic deformation. Termina-
tion of the last decisive tectonic events took place in the Early 

and Middle Miocene, namely 21–9 Ma. This is the most im­
portant domain in terms of determining the seismic hazard 
for Slovakia.

(3) The Northern Pannonian Domain is constituted by 

the Transdanubicum and Bükkicum, namely the Palaeoal-

pine  consolidated  lithosphere  with  affinity  to  the  Southern 

Alps and Dinarides. The rock complexes of the crystalline 
and sedimentary, principally Mesozoic carbonate sequences 
participate in the domain’s nappe structure. The lithosphere 
thickness in the North Pannonian Domain is 100~80 km; the 
crust thickness is 24~30 km; thermal conditions at the depth 
levels of 50 km 1000~1100 °C, 20 km 400~500 °C, 10 km ca 
300 °C and at the depth of 5 km 160~200 °C. The domain is 
disturbed mainly by normal faults and strike slip faults. Ter-

mination  of  the  last  significant  tectonic  movements  took 
place before 15~13 Ma. 

Termination  of  the  last  extensive  tectonic  movements  in 

the form of large listric fault activity in the Danube Basin’s 

Table 1: The completeness time windows for the declustered 
SLOVEC (2011) catalogue.

magnitude interval

time  period                 

of completeness

number of events

2.25 – 2.75

1999

98

2.75 – 3.25

1996

33

3.25 – 3.75

1992

19

3.75 – 4.25

1958

12

4.25 – 4.75

1901

17

4.75 – 5.25

1806

11

5.25 – 5.75

1613

7

5.75 – 6.25

1443

1

≥ 2.25

198

background image

282                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Slovakia partially covering eastern Austria and 

 

northern Hungary marked as SK1 to SK7. This part of the 
territory is entirely covered by the catalogue. Zones of the 
Eastern Alps and Western Carpathian Domain — the Eastern 
Alps sector marked as A1, A5 and A7, which cover the terri-
tory of eastern and south-eastern Austria. Zones correspon-
ding to the North Pannonian Domain, marked as H1 to H8 
covering the territory of Hungary. Zones corresponding to 
the Domain of the European platform (P1 to P3) mostly cover 
the adjacent territory of the Czech Republic and Poland.

Seismic  activity  in  the  defined  zones  was  the  subject  of 

mutual comparison on the basis of the parameters derived 

from the SLOVEC (2011) catalogue and spatial identifica-

tion of a specific zone. The amount of seismic wave energy 
per unit area has proved to be the most appropriate compari-
son parameter. The energy was determined on the basis of 
the moment magnitudes of earthquakes according to the rela-
tionship sensu

 Kanamori (1977). The areal distribution of the 

emitted energy in the wider territory of Slovakia is docu-
mented by a map, constructed by means of the energy sum-
mation in clusters of 5×5 km and transfer to GJkm

-2 

(Fig. 10). The amount of seismic wave energy was further 
normalized to the time through the observation period in an 
individual zone (subzone) in MJkm

-2

 per year, within the 

zone’s evaluation. As there are considerably different obser-
vation periods in the individual parts of the studied territory, 
intervals resulting from a time-completeness analysis of the 

SLOVEC (2011) catalogue for individual magnitude classes 
were used as the time denominator.

Despite the given limitation, the amount of seismic wave 

energy can be an appropriate parameter in the first approxi-
mation, when assessing differences in the seismic activity of 

defined  zones.  The  density  of  documented  events  per  unit 

area  was  used  as  a  further  auxiliary  criterion.  Descriptive 
statistics based on the catalogue data, namely moment 
magnitudes, the earthquakes’ hypocentral depths and their 
distribution in classes, were further used to describe the 
zones. 

Seismic source zones in the territory of Slovakia

SK1 zone (Dobrá Voda): SK1 zone together with the H2 

(Komárno) zone is the most significant zone in terms of seis-
mic hazard of Slovakia, with the highest level of seismic ac-
tivity. Totally 271 earthquakes with M

W

 from 2.0 up to 5.7 

are documented. The hypocentral depths vary in the range 
4~18 km with the median value 11 km. The strongest docu-

mented  event  is  the  1906  Dobrá  Voda  earthquake  with 
M

W

=5.7. The documented seismic activity is associated with 

the prevailing strike slip regime of faults (Fojtíková 2009; 

Fojtíková et al. 2010; Jechumtálová & Bulant 2014).

The thickness of the Earth’s crust is 30 km and a gravity 

field  with  relatively  distinct  gradients  coincides  with  mar-

Fig. 8.

 The Stable Continental Region (SCR), the Active Shallow Crustal Region (ASCR) and Seismogeological Domains (simplified geo-

logical background compiled after Hók et al. 2014; Haas & Budai 2014).

background image

283

A SEISMIC SOURCE ZONE MODEL: SEISMIC HAZARD ASSESSMENT OF SLOVAKIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Fig. 9. Division of the territory of Slovakia into seismic source zones.

Fig. 10. Map of seismic wave energy according to the SLOVEC (2011) catalogue.

gins of the horst structures of the core mountains. There is a 

conspicuous positive anomaly most probably reflecting the 
masses of carbonates (dolomite) of the Hronicum tectonic 

unit. The heat flow at depth 10 km is 220~250°C, at depth 

20 km 380~450°C. The steep horizontal gradient of the 
Earth’s crust temperatures can form thermoelastic stresses 
and contribute to the seismicity initialization. The Palaeoal-
pine units of the Tatricum, Fatricum, Hronicum, as well as 

background image

284                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

the Klippen Belt are present. The sediments of Late Creta-
ceous, Palaeogene and towards the Danube Basin also the 
Neogene sediments participate in its structure. The assumed 
contact of the IWC with the Bohemian Massif (SCR) is 

a specific feature in the deep structure of the zone.

SK2 zone (Northern Slovakia): The SK2 zone is formed 

by the Neoalpine consolidated block, extending to both the 
IWC and EWC. The Palaeoalpine as well as Neoalpine tec-
tonic units participate in its geological structure. The Neo-
gene sediments occur less frequently in the zone’s territory. 
The zone is characterized by the most distinct morphological 
differentiation. The thermochronological data (ZFT and AFT 

data) and derived ages of the crystalline exhumation yielded 

a range from 9 to 13 Ma (e.g. Králiková et al. 2014a,b).

Seismicity in the Neoalpine consolidated parts of the EWC 

is low. A total of 196 events with the moment magnitude of 
M

W

≥2.0 are documented within the zone. The biggest group 

of documented events reaches small depths of hypocentres 
up to 5 km, the second largest group of earthquakes reaches 
the depth 10~15 km, with the median depth of 12 km. Two 
historical earthquakes in 1613 and 1858 with the magnitudes 
5.6 and 5.2, respectively, are the most important events lo-

cated in the vicinity of Žilina town as well as the 1443 Cen-
tral Slovakia earthquake with the magnitude 5.7 located in 
Kremnica town. A moderate increase of the seismic activity 

is documented in the southern part (the Banská Bystrica area). 

The Carpathian gravity low and gravity depressions of the 

IWC and EWC dominate in the gravity field image, while 

the field is balanced, without anomalous elements. The terri-
tory is characterized by the considerable thickness of the 
Earth’s crust, which increases from 30 km in the southern 
part to over 40 km in the northeast of the zone. The tempera-
tures reach at the depth 10 km 200~250 °C, at the depth 

20 km up to 400 °C. The Banská Štiavnica volcanic field in 
the southern part of the zone is manifested as a positive geo-
thermal anomaly. 

SK3  zone  (Malé  Karpaty): The SK3 zone covers the 

southwestern part of the Malé Karpaty Mts., and marginal 
parts of the Vienna and Danube Basin. 61 events with the 
moment magnitude M

W

≥2.0 and the strongest earthquake 

with the value of M

W

=5.1 are documented. The distribution 

of the hypocentral depths is similar to the SK1 zone with the 
median 12 km.

The thickness of the Earth’s crust and geothermal condi-

tions are similarly to those in the SK1 zone, including a con-

siderable horizontal temperature gradient. The gravity field 
is differentiated, however with less distinct gradients, which 

define the body of the core mountains. The units of the Tatri-

cum, Fatricum, Hronicum and the Neogene basin infill par-
ticipate in its structure from the tectonic point of view. 

A specific feature of the zone is the presence of the VBTF, 
which is terminated on the western margin of the Malé Kar-
paty Mts. 

SK4 zone (Danube Basin): The seismic activity is very 

low and so it is comparable to the zones of the stable European 
platform. A total of 16 earthquakes with the moment magni-
tude M

W

≥2.0 and highest value M

W

=4.3 are documented in 

this zone. The largest group of earthquakes reaches small 
depths of hypocentres up to 5 km, another group of earth-

quakes reaches the hypocentral depth 10~15 km, but the value 
of the median depth of events in the whole zone is only 

2.5 km. The seismic activity in the SK4 zone can be expected 
especially at its southern border. The SK4 zone is characteri-
zed by thickness of the Earth’s crust, which decreases below 

28 km in the centre. The gravity field image is aligned with 

the prevailing lows, except the significantly limited positive 

anomaly of the Tribeč core mountains. 

Geothermal temperatures reach at the depth 10 km 

250~320 °C, at the depth 20 km 500~550 °C without signifi-
cant horizontal gradients. The Palaeoalpine tectonic units are 
present in the deep geological structure. The considerable 
thicknesses of the Neogene sediments above 7 km in 

 

the central depression (Kilényi & Šefara 1989) are an impor­
tant aspect.

The majority of investigated faults are sealed by the 

 Pliocene sediments. Faultless stress release due to the ther-

mal influence of asthenosphere upwelling is assumed in the 

Danube Basin area. Similar processes are also expected in 

the central parts of the Pannonian Basin (Bus et al. 2009).

SK5  zone  (Southern  Slovakia): The seismic activity is 

slightly below the average of the evaluated regions. The cat-
alogue comprises a total of 37 earthquakes with the moment 
magnitude M

W

≥2.0 and the highest value M

W

=4.5. The hy-

pocentres are cumulating around 5 km depths and from the 
range of 10 to 15 km. The Palaeoalpine tectonic units partici-
pate in the geological structure. Most of the territory is 

covered by volcanic products of the Banská Štiavnica strato-
volcano and Cenozoic sediments. The Earth’s crust thickness 

is  28~30  km.  The  gravity  field  is  differentiated,  while  the 
positive anomalies corresponding to the Southern Slovakian 
gravity elevation predominate. Geothermal temperatures 
reach at the depth 10 km 350 °C, at the depth 20 km around 
500~600 °C. The geothermal anomaly related to the presence 

of the Banská Štiavnica stratovolcano is manifested by sig-

nificant horizontal gradients in the thermal field at the north-
west part of the zone. 

SK6 zone (Eastern Slovakia): The seismicity in the zone 

of the Palaeoalpine consolidated part of the IWC is lower 
than the average of the SK zones territory. The catalogue of 
earthquakes comprises 40 events with the moment magni-
tudes above 2.0 and the highest value of M

W

=5.4. The hypo-

centres of the largest group of earthquakes are situated at the 
depth up to 5 km. A smaller group reached the depth up to 
20 km with the median value 6 km.

The  Neogene  sediment  accumulations  are  insignificant. 

The Earth’s crust thickness is 28~32 km and the linear eleva-
tion with the value 31 km in the SW–NE direction is indi-

cated.  The  gravity  field  image  reaches  predominantly 
negative anomalies, belonging to the SE margin of the IWC 
gravity depression. The positive anomalies, belonging to the 
South Slovakia gravity elevation are more frequent in the di-
rection of the Pannonian Basin. Temperatures reach at 
the depth 10 km from 250 °C in the northwest up to 350 °C 
in the southeast and at the depth 20 km 400~600 °C. 

SK7 zone (Eastern Slovakia/Trebišov Basin): The zone 

covers predominantly the Trebišov Basin with its continuation 
into the Transcarpathian depression. The seismic activity is 
medium and slightly below average. A total of 104 earth-

background image

285

A SEISMIC SOURCE ZONE MODEL: SEISMIC HAZARD ASSESSMENT OF SLOVAKIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

quakes with M

W

2.0  and  maximum  value  of  M

W

=5.3 are 

documented in the catalogue. The earthquake hypocentres 
are cumulated around the depths 5 km, the depths of the 
smaller number of events are localized from 10 to 20 km. 

A significant subzone with increased seismic activity occurs 
in the NE of the zone with a continuation to the southeast 
outside Slovak territory. 

The deep structure comprises tectonic units of uncertain 

tectonic  affiliation  (Iňačovce  and  Kričevo  units,  Zemplini-
cum). Palaeoalpine tectonic units are present along the 

northern margin. The basin infill comprises Neogene volca-
nite bodies as well as Neogene sediments. The positive gravity 
anomalies are located on the northern and southern bounda -
ries. Both anomalies continue in the southwestern direction 
into the Transcarpathian depression. The zone is characte-
rized by increased geothermal activity. The temperatures at 
the depth 10 km are from 250 °C in the northwest up to 
350 °C in the basin’s centre and at the depth 20 km in the 
500~650 °C interval.

Seismic source zones on the borders of Slovak 

territory (A, H and P zones).

The southern part of the territory of Slovakia is situated on 

the contact with the Pannonian Basin system, and with the 

Eastern Alps,  where  the A  and  H  zones  extend  partly  into 
Slovak territory. 

A1, A5, A7 zones (Eastern Alps): The A1 

zone covers the eastern salient of the Northern Calcareous 
Alps, molasse foredeep and a part of the Vienna Basin. Seis-
mic activity within the zone is weak. The earthquake (Neu-

lengbach 1590; ACORN (2004) catalogue, also referred as 

the Ried am Riederberg 1590 earthquake) with the M

W

 6.0 

represents a specific exception. The A5 zone is important in 

terms  of  seismogenic  potential,  even  if  it  does  not  extend 
into the evaluated Slovak territory. The SLOVEC (2011) cata-
logue covers a part of the zone in the vicinity of the Vienna 
Basin and contains 36 earthquakes with the magnitudes from 
2.0 to 4.8 with characteristic hypocentral depths around 8 to 
12 km. The strongest earthquake was registered at Ebreichs-
dorf (2000) with the magnitude 4.8 and hypocentral depth 
around 10 km (Meurers et al. 2004). The Carnuntum earth-

quake (350 A.D., Kandler 1989; Decker et al. 2006) with es-

timated local intensity of 9° EMS­98 is critically discussed 
by Hammerl et al. (2014). The Carnuntum earthquake was 
not included in the SLOVEC (2011) catalogue. The south 
Bohemian basement spur as a major tectonic structure with 
a high rheological contrast to surrounding units has a strong 

influence on the stress field and exhibits the highest seismicity 

at its tip due to stress concentration in this area (Reinecker & 

Lenhardt 1999). The A7 East Styrian zone is characterized 
by low seismic activity. 

The seismic source zones of the North Pannonian Do-

main (H6, H2) are localized on the southern margin of Slo-
vakia. The H6 zone is situated on the boundary between the 
Eastern Alps and North Pannonian domains. The seismic ac-

tivity concentrated in the zone coincides with the Rába line 
at its connection with the Hurbanovo part of the HDL. A to-
tal of 32 events with moment magnitudes above 2.0 and with 

the highest value of M

W

=4.7 are documented. Hypocentral 

depths are distributed evenly up to 22 km. The H2 zone on 
the southern margin of southwest Slovakia is particularly im-

portant for the seismic hazard of Slovakia. The most signifi-
cant seismic activity is bounded to the zone along the 
northern margin of the Transdanubicum, south from the 
HDL seismogenic structure. The zone comprises the Ko-

márno  area  including  the  most  important  Komárno  1763 
earthquake with the moment magnitude M

W

=5.6 (depth of 

hypocentre 7 km). Seismic activity is comparable to the SK1 

Dobrá  Voda  source  zone.  Within  the  zone  248  events  are 
documented with moment magnitudes above 2.0. The hypo-
central depths vary predominantly in the intervals around 
5 to 10 km and 20 to 25 km. Observed macroseismic effects 

of significant historical earthquakes are with high probability 
affected by site effects because a large part of the zone’s area 
is characterized by the presence of unconsolidated Quaternary 
(even Holocene) sediments.

P1, P2, P3 zones (Platform and Flysch Belt): The seis-

mic activity in the P1 and P3 zones can be characterized as 

diffuse  (Burkhard  &  Grünthal  2009)  and  only  the  P2  (Su­

detes–Labe) zone is manifested as seismogenic (e.g., Špaček 
et al. 2006). The contribution of the European platform 
source zone to the seismic hazard of Slovakia is negligible.

Conclusions

The presented seismotectonic model of the Slovak territory 

and adjacent area includes the eastern parts of the Czech Re-
public, the northeastern parts of Austria, the northern parts of 
Hungary and the southern parts of Poland. The seismotectonic 
model is based on analysis of the geological, geophysical 
and seismological data and hierarchical regionalization of 
the investigated territory into the stable continental region 
and active shallow crustal region (Delavaud et al. 2012), 
seismogeological domains, seismogenic structures and seis-
mic source zones.

The stable continental region (SCR) includes the European 

platform tectonically consolidated during the Hercynian 
orogeny. The active shallow crustal region (ASCR) includes 
the Alpine consolidated lithosphere of the pre-Cainozoic 
units of the Internal Western Carpathians and Eastern Alps, 
the basement of the Pannonian Basin System and the Neoal-
pine (during the Neogene) consolidated accretionary prism 

of  the  External  Western  Carpathians  and  Rhenodanubian 
Flysch Zone. 

The uniform age of the last extensive consolidation of the 

geological and tectonic structures with the quasi-homoge-
neous geological and geodynamic characteristics was the 
main criterion for subdividing the seismogeological domains 
into the Flysch Belt Domain, Eastern Alps–Western Car-
pathians Domain and Northern Pannonian Domain.

The  seismological  domains  were  identified  as  spatially 

limited  segments  with  defined  thickness  of  lithosphere, 
thickness of crust, thermal conditions in various depths, neo-
tectonic deformation and seismicity. The seismogenic struc-

tures  are  specific  elements  of  seismogeological  domains 

with spatially limited significant seismic activity. The  identified 

background image

286                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

seismogenic structures are the Mur–Mürz–Vienna Basin 

transfer fault and the Hurbanovo–Diósjenő Line. 

The seismic source zones were defined as distinct parts of 

the seismogeological domain with characteristic arrange-
ment of geological structures, tectonic regime and with typi-

cal features of the seismic activity. In defining the zones we 
took into account data from the SLOVEC (2011) catalogue 
for events with the moment magnitude M

W

≥2.0. 

Four groups of seismic source zones were identified:
(1) Zones corresponding to the SCR and Flysch Belt Do-

main which cover approximately the adjacent territory of the 

Czech Republic and Poland — P1, P2, P3 zones situated ex-
ternally from the deep-seated contact of the Carpathian oro-
geny with the stable European platform.

(2) Zones of the Eastern Alps–Western Carpathians Do-

main — Western Carpathians sector — SK1 (Dobrá Voda), 
SK2 (Northern Slovakia), SK3 (Malé Karpaty), SK4 

 

(Danube Basin), SK5 (Southern Slovakia), SK6 (Eastern 
Slovakia), SK7 (Trebišov Basin) situated in Slovakia and 
partially covering the eastern part of Austria and northern 
part of Hungary.

(3) Zones of the Eastern Alps–Western Carpathians Do-

main — the Eastern Alps sector, cover eastern and south- 
eastern Austria — A1, A5, A7. 

(4) Zones corresponding to the North Pannonian Domain 

— H6 and H2 approximately covering the territory of northern 
Hungary. 

The seismic source zone model formed the input for calcu-

lation of seismic hazard of the Slovak territory in terms of 
peak ground acceleration (PGA) for the return period of 

475 years, that is, 10 % probability of being exceeded within 
50 years, (Kysel 2014; Kysel et al. under preparation).

Acknowledgement: 

The work was financially supported by 

the Slovak Research and Development Agency under the 

contracts Nos. APPV­0099­11, APVV SK­GR­0032­11 and 
Slovak Foundation Grant VEGA-2/0188/15. Constructive re-

views by Jozef Vozár, Miroslav Bielik and an anonymous re-
viewer are greatly appreciated.

References

ACORN 2004: Catalogue of Earthquakes in the Region of the Alps–

Western Carpathians–Bohemian Massif for the period from 
1267 to 2004. Computer File, Vienna (Central Institute for Me-
teorology and Geodynamics, Department of Geophysics)–Brno 
(Institute of Physics of the Earth, University Brno).

Bada G., Horváth F., Cloetingh S., Coblentz D.D. & Tóth T. 2001: 

The role of topography induced gravitational stresses in basin 
inversion: the case study of the Pannonian basin. Tectonics 20, 
343–363.

Balla Z. 1994: Basement tectonics of the Danube Lowlands. Geol. 

Carpath. 45, 5, 271–281.

Beidinger A. & Decker K. 2011: 3D geometry and kinematics of 

the Lassee flower structure: Implications for segmentation and 
seismotectonics of the Vienna Basin strike-slip fault, Austria. 
Tectonophysics

 499, 22–40.

Bielik M., Kováč M., Kučera I., Michalík P., Šujan M. & Hók J. 

2002: Neo-Alpine density boundaries (faults) detected by 
gravimetry. Geol. Carpath. 53, 4, 235–244.

Bielik M., Alasonati­Tašárová Z., Vozár J., Zeyen H., Gutterch A., 

Grad M., Janik T., Wybraniec S., Götze H.J. Grinč M. & Dére­

rová J. 2014: Gravity and seismic modeling in the  Carpathian­ 
Pannonian Region. In: Variscan and Alpine terranes of the 

 

Circum­Pannonian  Region.  Significantly  modified  and  ex-
panded second edition. Slovak Academy of Sciences, Geologi-
cal Institute, Comenius University, Faculty of Natural 
Sciences
, Bratislava, 205–244.

Biely A., Bezák V., Elečko M., Kaličiak M., Konečný V., Lexa J., 

Mello J., Nemčok J., Potfaj M., Rakús M., Vass D., Vozár J. & 

Vozárová A.  1995:  Geological  map  of  Slovakia,  1:500  000. 

[Geologická  mapa  Slovenskej  republiky].  Ministerstvo  život-

ného  prostredia,  Geologická  služba  Slovenskej  republiky
Bratislava (in Slovak).

Briestenský M., Stemberk J., Michalík J., Bella P. & Rowberry M. 

2011: The use of a karstic cave system in a study of active tec-
tonics: fault movements recorded at Driny Cave, Malé Karpaty 
Mts (Slovakia). J. Cave Karst Studies 73, 2, 114–123.

Brückl E., Bodoky T., Gosar A., Grad M., Guterch A., Hajnal Z., 

Hegedüs E., Hrubcová P., Keller G.R., Špičák A., Šumanovac 

F.,  Thybo  H.,  Weber  F.  & ALP  2002  Working  Group  2003: 

ALP  2002  seismic  experiments.  Stud. Geoph. Geod. 47, 

671–679.

Burkhard M. & Grünthal G. 2009 : Seismic source zone characteriza-

tion for the seismic hazard assessment project PEGASOS by 

the Expert Group 2 (EG1b). Swiss J. Geosci. 102, 149–188.

Bus Z., Grenerczy Gy., Tóth L. & Mónus P. 2009: Active crustal 

deformation in two seismogenic zones of the Pannonian region 
— GPS versus seismological observations. Tectonophysics 
474, 343–352.

Cipciar A. 2001: Earthquake data analysis within seismic source 

zone  Dobrá  Voda.  PhD. Thesis, Department of Geophysics, 
MFF UK
, Bratislava, 1–37 (in Slovak).

Csicsay K. 2010: Two-dimensional and three-dimensional integrated 

interpretation  of  field  of  attraction  within  the  international 
framework CELEBRATION 2000. PhD. Thesis,  FNS UK
Bratislava, 1–155 (in Slovak).

Čepek L. 1938: Tectonics of the Komárno block and the evolution 

of  the  Danube  longitudinal  profile.  Sborník SGÚ, Praha, Sv. 
XII., 1–61 (in Czech).

Decker K., Gangl G. & Kandler M. 2006: The earthquake of Car-

nuntum in the fourth century A.D. —  archaeological results, 
seismologic scenario and seismotectonic implications for the 
Vienna Basin fault, Austria. J Seismol

. 10, 479–495.

Delavaud E., Cotton F., Akkar S., Scherbaum F., Danciu L., Beauval 

C., Drouet S., Douglas J., Basili R., Sandikkaya M.A., Segou 

M., Faccioli E. & Theodoulidis N. 2012: Toward a ground­mo-
tion logic tree for probabilistic seismic hazard assessment in 
Europe. J. Seismol. 16, 3, 451–473.

Dérerová J., Zeyen H., Bielik M. & Salman K. 2006: Application of 

integrated geophysical modeling for determination of the con-
tinental lithospheric thermal structure in the Eastern Car-
pathians. Tectonics

 25, TC3009, doi:10.1029/2005TC001883.

Fojtíková  L.  2009:  Moment  tensor  of  earthquakes  and  tectonic 

stress in the seismic source of Malé Karpaty Mts. PhD. Thesis, 
Institute of Geophysics, Slovak Academy of Sciences
,  Bratisla-
va, 1–107 (in Slovak).

Fojtíková  L., Vavryčuk V.,  Cipciar A.  &  Madarás  J.  2010:  Focal 

mechanisms of micro­earthquakes in the Dobrá Voda seismo-
active area in the Malé Karpaty Mts. (Little Carpathians), Slo-
vakia. Tectonophysics

 492, 213–229.

Grad M., Guterch A., Mazur S., Keller G.R., Špičák A., Hrubcová 

P. & Geissler W.H. 2008: Lithospheric structure of the Bohe-
mian Massif and adjacent Variscan belt in central Europe 

based  on  profile  S01  from  the  SUDETES  2003  experiment. 
J. Geophys. Res. 113

B10304, doi:10.1029/2007JB005497.

background image

287

A SEISMIC SOURCE ZONE MODEL: SEISMIC HAZARD ASSESSMENT OF SLOVAKIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

Grad M., Tiira T. & ESC Working Group 2009: The Moho depth 

map of the European Plate. Geophys. J. Int.

 176, 279–292.

Grinč M., Zeyen H., Bielik M. & Plašienka D. 2013: Lithospheric 

structure in Central Europe: Integrated geophysical modeling. 
J. Geodynamics 66, 13–24.

Grünthal G. & Wahlström R. 2003: An M

W

 based earthquake cata-

logue for central, northern and northwestern Europe using 
a hierarchy of magnitude conversions. J. Seismol. 7,4, 507–531.

Grünthal G. & Wahlström R. 2012: The European–Mediterranean 

Earthquake Catalogue (EMEC) for the last millennium. 
J. Seismol. 16, 3, 535-570.

Grünthal G., Wahlström R. & Stromeyer D. 2009: The unified cata-

logue of earthquakes in central, northern, and northwestern 

Europe (CENEC) — updated and expanded to the last millen-
nium. J. Seismol. 13, 4, 517–541.

Haas J. & Budai T. (Eds). 2014: Geology of the pre­Cenozoic base-

ment of Hungary. Geological and Geophysical Institute of 
Hungary
, Budapest, 1–71.

Haas  J.,  Hámor  G.,  Jámbor  Á.,  Kovács  S.,  Nagymarosy  A.  & 

Szederkényi T. 2001: Geology of Hungary. Eötvös University 
Press
, Budapest, 1–317.

Hammerl  Ch.,  Loecker  K.,  Steffelbauer  I.  &  Totschnig  R.  2014: 

The Carnuntum case — an earthquake catastrophe around 350 

A.D.? Geophys. Res. Abstracts 16, EGU2014-12678.

Hinsch R. & Decker K. 2003: Do seismic slip deficits indicate an 

underestimated earthquake potential along the Vienna Basin 

Transfer Fault System? Terra Nova 15, 5, 343–349.

Hók J., Bielik M., Kováč P. & Šujan M. 2000: Neotectonic charac-

teristic  of  Slovakia.  [Neotektonický  charakter  Slovenska]. 
Miner. Slov.

 32, 459–470 (in Slovak).

Hók J., Marko F., Vojtko R. & Kováč M. 2007: Joints in granite 

rocks  of  the  Tribeč  Mts.  (Western  Carpathians).  [Pukliny  v 

granitoch pohoria Tribeč (Západné Karpaty)]. Miner. Slov. 39, 

4, 283–292 (in Slovak).

Hók J., Vojtko R., Pešková I., Králiková S., Hoffman M. & Sentpe-

tery M. 2010: Quaternary stress orientation in the western part 

of Slovakia obtained from the travitonics. Vikartovce fault & 

Muráň fault. Vernár, Slovakia, 15.–18. 10. 2009. Miner. Slov. 
— Geovestník
 42, 2, 258.

Hók  J.,  Vojtko  R.  &  Slaninka  I.  2011:  Vznik  a  vývoj  klenbovej 

štruktúry Cerovej vrchoviny. Genesis and evolution of eleva-
tion structure of the Cerova vrchovina Mts. Acta Geol. Slov. 3, 
2, 113–121.

Hók J., Šujan M. & Šipka F. 2014: Tectonic division of the Western 

Carpathians: an overview and a new approach.  Acta Geol. 
Slov.
 6, 2, 135–143.

Horváth F. 1993: Towards a mechanical model for the formation of 

the Pannonian basin. Tectonophysics 226, 333–357.

Hrašna M. 1997 : Seizmotectonic map of Slovakia. [Seizmotekton-

ická mapa Slovenska]. Miner. Slov. 29, 451–454 (in Slovak).

Hrubcová P. & Środa P. 2015: Complex local Moho topography in 

the Western Carpathians: Indication of the ALCAPA and the 
European Plate contact. Tectonophysics 638, 63–81.

Hrubcová P., Środa M. & Grad M. 2010: From the Variscan to the 

Alpine Orogeny: crustal structure of the Bohemian Massif and 
the Western Carpathians in the light of the SUDETES 2003 
seismic data. Geophys. J. Int., Geodynamics and tectonics 183, 
611–633.

Janik T., Grad M., Guterch A. & CELEBRATION 2000 Working 

Group 2009: Seismic structure of the lithosphere between the 
East European Craton and the Carpathians from the net of 

CELEBRATION 2000 profiles in SE Poland. Geol. Quarterly 
53, 1, 141–158.

Janik T., Grad M., Guterch A., Vozar J., Bielik M., Vozárová A., 

Hegedüs A., Kovacs C.A., Kovacs I., Keller R. & CELEBRA-
TION 2000 Working Group 2011: Crustal structure of the 

Western Carpathians and Pannonian Basin: Seismic models 
from CELEBRATION 2000 data and geological implications. 
J. Geodyn.

 52, 97–113.

Jarosiński M. 1997: Stratification of the contemporary stress field in 

the  western  part  of  the  Polish  external  Carpathians.  

[Rozwarstwienie  wsólczesnego  pola  naprezeń  w  zachodnej 

cześci  polskich  Karpat  zewnetrznych.]  Przegl. Geol. 45, 8, 
768–776.

Jarosiński M. 1998: Contemporary stress field distortion in the Pol-

ish part of the Western Outer Carpathians and their basement. 
Tectonophysics

 297, 91–119.

Jarosiński  M.  2005:  Ongoing  tectonics  reactivation  of  the  Outer 

Carpathians and its impact on the foreland: results of borehole 
break-out measurements in Poland. Tectonophysics 410, 

189–216.

Jarosiński M., Poprawa P. & Ziegler P.A. 2009: Cenozoic dynamic 

evolution of the Polish Platform. Geol. Quarterly 53, 1, 3–26.

Jechumtálová Z. & Bulant P. 2014: Effects of 1­D versus 3­D ve-

locity models on moment tensor inversion in the Dobrá Voda 
area in the Little Carpathians region, Slovakia. J. Seismol. 18, 
511–531.

Jiménez M.J., Giardini D. & Grünthal G. 2003: The ESC­SESAME 

unified hazard model for the European­Mediterranean region. 
EMSC/CSEM Newsletter

 19, 2–4.

Jiříček R. 1979: Tectogenetic evolution of the Carpathian arch during 

the Oligocene and Neogene. [Tektogenetický vývoj Kar-

patského oblouku během oligocenu a neogenu.] In: Maheľ M. 

(Ed.): Tektonické Profily Západných Karpát. GUDŠ, Bratisla-
va, 205–215.

Kanamori  H.  1977:  The  energy  release  in  great  earthquakes. 

J. Geoph. Res.

 82, 20, 2981–2876.

Kandler M. 1989: Eine Erdbebenkatastrophe in Carnuntum? Acta 

Arch. Acad. Scien. Hungaricae 41, 313–336.

Kárník V. 1968: Seismicity of the European area. Part 1. Academia

Praha, 1–364.

Kárník  V.,  Michal  E.  &  Molnár  A.  1957:  Erdbebenkatalog  der 

 Tschechoslowakei bis zum Jahre 1956. Travaux Géophysiques 

No. 69, Praha, 411–598.

Kilényi E. & Šefara J. (Eds.) 1989: Pre­Tertiary basement contour 

map of the Carpathian Basin beneath Austria, Czechoslovakia 
and Hungary. ELGI, Budapest.

Kovács S., Haas J., Czászár G., Szederkényi T., Buda T. & Nagy-

marosy A. 2000: Tectonostratigraphic terranes in the pre-Neo-
gene basement of the Hungarian part of the Pannonian area. 
Acta Geol. Hung. 43, 3, 225–328.

Kováč M. 2000: Geodynamic, paleogeographic and structural evo-

lution of the Carpatho-Panonian region during the Miocene: 
a new look on the Neogene Basins of Slovakia. [Geodynam-

ický,  paleogeografický  a  štruktúrny  vývoj  karpatsko­panón-

skeho  regiónu  v  miocéne:  Nový  pohľad  na  neogénne  panvy 

Slovenska.]  VEDA, Bratislava, 1–202 (in Slovak).

Kováč  M.,  Bielik  M.,  Hók  J.,  Kováč  P.,  Labák  P.,  Kronome  B., 

Plašienka D., Šefara J., Šujan M. & Moczo P. 2002: Seismic 
activity and neotectonic evolution of the Western Carpathians 
(Slovakia). In: Neotectonics and surface processes: the Pan-
nonian basin and Alpine/Carpathian system. EGU Stephan 
Mueller Spec. Publ. Ser.
 3, 167–184.

Králiková S., Hók J. & Vojtko R. 2010: Stress change inferred from 

the morphostructures and faulting of the Pliocene sediments in 
the Hronska pahorkatina highlands (Western Carpathians). 

[Reorientácia  napäťového  poľa  odvodená  z  morfoštruktúr  a 
zlomového porušenia pliocénnych sedimentov Hronskej pa-

horkatiny (Západné Karpaty).] Acta Geol. Slov. 2, 1, 17–22 (in 
Slovak).

Králiková S., Vojtko R., Andriesen P., Kováč M., Fügenschuh B., 

Hók J. & Minár J. 2014a: Late Cretaceous–Cenozoic thermal 

background image

288                                                                                                   

HÓK, KYSEL, KOVÁČ, MOCZO, KRISTEK, KRISTEKOVÁ and ŠUJAN

GEOLOGICA CARPATHICA

, 2016, 67, 3, 273–288 

evolution of the northern part of the Central Western Car-

pathians  (Slovakia):  revealed  by  zircon  and  apatite  fission 
track thermochronology. Tectonophysics 615–616, 142–153.

Králiková S., Vojtko R., Sliva Ľ., Minár J., Fügenschuh B., Kováč 

M. & Hók J. 2014b: Cretaceous–Quaternary tectonic evolution 
of the Tatra Mts. (Western Carpathians): constraints from 

structural,  sedimentary,  geomorphic,  and  fission  track  data. 
Geol. Carpath. 65, 4, 307–326.

Kysel R. 2014: Seismic hazard of Slovak territory. [Seizmické 

ohrozenie  územia  Slovenska.]  Rigorous Thesis, Faculty of 
Mathematics, Physics and Informatics, Comenius University

Bratislava, 1–106 (in Slovak).

Labák  P.  1998:  Slovakian  earthquake  catalogue  (version  1997). 

Data  file  of  the  Geophysical  Institute,  Slovak  Academy  of 
Sciences
, Bratislava, Slovakia.

Lenkey I. 1999: Geothermics of the Pannonian basin and its bearing 

on the tectonics of basin evolution. Netherlands Research 
School of Sedimentary geology

,  990112;  Vrije  Universiteit 

Amsterdam, 1–215.

Lenkey L., Dövényi P., Horváth F. & Cloetingh S. 2002: Geother-

mics of the Pannonian basin and its bearing on the neotectonics. 
EGU Stephan Mueller Spec. Pub. Ser.

 3, 29–40.

Littva J., Hók J. & Bella P. 2015: Cavitonics: Using caves in active 

tectonic studies (Western Carpathians, case study). J. Struct. 
Geol.
 80, 47–56.

Madarás J., Fojtíková L., Hrašna M., Petro Ľ., Ferianc D. & Bries­

tenský  M.  2012:  Definition  of  the  seismic  active  regions  in 
Slovakia based on historical earthquake records and current 
monitoring of tectonic and seismic activity. [Vymedzenie 

seizmicky aktívnych oblastí na Slovensku na základe záznamov 

historických zemetrasení a súčasného monitorovania tektonickej 

a seizmickej aktivity]. Miner. Slov. 44, 351–364 (in Slovak).

Marsch F., Wessely G. & Sackmaier W. 1990: Borehole­breakouts 

as geological indications of crustal tensions in the Vienna Basin. 
In: Rossmanith H.P. (Ed.): Mechanics of Jointed and Faulted 
Rocks. Balkema, Rotterdam, 113-120.

Márton  E.  &  Fodor  L.  2003:  Tertiary  paleomagnetic  results  and 

structural analysis from the Transdanubian Range (Hungary) : 
rotational disintegration of the ALCAPA unit. Tectonophysics 
363, 201–224.

Mayerová M., Nakládalová Z., Ibrmajer I. & Herrmann H. 1985: 

Planary distribution M-discontinuity in Czechoslovakia from 

the  results  of  DSS  profiling  measurements  and  technical  ex-

plosion. In: Sbor. Referátů 8. Celostát. Konference geofyziků, 

České  Budejovice,  Sekce  S1.  Manuscript, Geofyzika Brno, 
41–53.

Mentes G. 2008: Observation of recent tectonic movements by ex-

tensometers in the Pannonian Basin. J. Geodyn.

 45, 169–177.

Meurers R., Lenhardt W.A. Leichter B. & Fiegweil E. 2004: Mac-

roseismic Effects of the Ebreichsdorf Earthquake of July 11, 
2000 in Vienna. Austrian J. Earth Sci.

 95/96, 2002/03, 20–27.

Nemesi L., Šefara J., Varga G. & Kovácsvölgyi S. 1997 : Results of 

deep geophysical survey within the framework of the DAN-
REG project. Geophys. Transactions

 41, 143–159.

Olaiz A.J., Muñoz­Martín A., De Vicente G., Vegas R. & Cloething 

S.  2009:  European  continuous  active  tectonic  strain­stress 
map. Tectonophysics 474, 33–40.

Pešková  I.  &  Hók  J.  2008:  The  double­vergent  structures  of  the 

western part of the Pieniny Klippen Belt. Miner. Slov. — 

 

Geovestník 40, 3–4, 247.

Plašienka D. 1995: Passive and active margin history of the North-

ern Tatricum. (Western Carpathians, Slovakia). Geol. Rund-
schau
 84, 748–760.

Progseis 2010: Earthquake catalogue of the local network of seis-

mic stations. 

Data file of the Progseis Ltd., Trnava, Slovakia.

Ptáček J., Grygar R., Koníček P. & Waclawik P. 2012: The impact 

of Outer Western carpathians nappe tectonics on the recent 
stress-strain state in the Upper Silesian Coal Basin (Mora-
vosilesian Zone, Bohemian Massif). Geol. Carpath. 63, 1, 
3–11.

Pulišová  Z.  2013:  The  paleostress  analysis  of  the  rupture  of  the 

Žiarska kotlina Basin. Miner. Slov. — Geovestník 45, 4, 29.

Ratschbacher L., Frisch W., Linzer H.G. & Merle O. 1991: Lateral 

extrusion in the Eastern Alps, part 2 : structural analysis. Tec-
tonics
 10, 257–271.

Reinecker J. & Lenhardt W.A. 1999: Present­day stress field and 

deformation in Eastern Austria. Int. J. Earth Sci. 88, 532–550.

Schmid S.M., Bernouli D., Fügenchuh B., Matenco L., Schefer S., 

Schuster  R., Tischler  M.  &  Ustaszewski  K.  2008: The Alpine­ 
Carpathian-Dinaridic orogenic system: correlation and evolu-
tion of tectonic units. Swiss J. Geosci.

 101, 139–183.

Schmid S.M., Fügenschuh B., Kissling E. & Schuster R. 2004: Tec-

tonic map and overall architecture of the Alpine orogen. 

 

Eclogae Geol. Helv

. 97, 93–117.

SLOVEC 2011: Slovak earthquake catalogue (version 2011). Data 

file of the Geophysical Institute, Slovak Academy of Sciences
Bratislava, Slovakia.

Šefara J., Bielik M., Konečný P., Bezák V. & Hurai V. 1996: The 

latest stage of development of the lithosphere and its interac-
tion with the astenosphere (Western Carpathians). Geol. Car-
path.

 47, 339–347.

Šefara J., Kováč M., Plašienka D. & Šujan M. 1998: Seizmogenic 

zones in the eastern Alpine–Western Carpathian–Pannonian 
junction area. Geol. Carpath.

 49, 247–260.

Špaček  P.,  Sýkorová  Z.,  Pazdírková  J.,  Švancara  J.  &  Havíř  Z. 

2006: Present-day seismicity of the south-eastern Elbe Fault 
System (NE Bohemian Massif). Stud. Geophys. Geodaet. 50, 
2, 233–258.

Tóth L., Mónus P., Zsíros T., Kiszely M. & Czifra T. 2014: Hungar-

ian  Earthquake  Bulletin  1995–2013.  GeoRisk Ltd,. Budapest 
(online).

Vojtko R., Hók J., Kováč M., Sliva Ľ., Joniak P. & Šujan M. 2008: 

Pliocene to Quaternary stress field change in the western part 
of the Central Western Carpathians (Slovakia). Geol. Quarterly 

52, 1, 19–30.

Vojtko R., Šimonovičová Z. & Hók J. 2010a: Neotectonics of the 

western part of the Turiec Depression. International workshop 

on neotectonics. Vikartovce fault & Muráň fault. Vernár, Slo-

vakia, 15.–18. 10. 2009., Miner. Slov. — Geovestník 42, 2, 260.

Vojtko R., Tokárová E., Sliva Ľ. & Pešková I. 2010b: Reconstruc-

tion of Cenozoic paleostress fields and revised tectonic history 
in the northern part of the Central Western Carpathians (the 

Spišská Magura and Východné Tatry Mountains). Geol. Car-
path.
 61, 3, 211–225.

Vojtko R., Beták J., Hók J., Marko F., Gajdoš V., Rozimant K. & 

Mojzeš A. 2011: Pliocene to Quaternary tectonics in the Horná 
Nitra Depression (Western Carpathians). Geol. Carpath. 62, 4, 

381–393.

Vojtko R., Petro Ľ., Benová A. & Hók J. 2012: Neotectonic evolu-

tion of the northern Laborec drainage basin (northeastern part 
of Slovakia). Geomorphology

 138, 276–294.

Zeyen H., Dérerová J. & Bielik M. 2002: Determination of the con-

tinental lithosphere thermal structure in the Western Car-

pathians:  Integrated  modeling  of  surface  heat  flow,  gravity 
anomalies and topography. Phys. Earth Planet. Inter. 134, 

89–104.