background image

www.geologicacarpathica.com

GEOLOGICA CARPATHICA

, JUNE 2016, 67, 3, 257–271

doi: 10.1515/geoca-2016-0017

Age and provenance of mica-schist pebbles from the Eocene  

conglomerates of the Tylicz and Krynica Zone           

(Magura Nappe, Outer Flysch Carpathians)

NESTOR OSZCZYPKO

1

, DOROTA SALATA

and PATRIK KONEČNÝ

2

1

Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland;                      

nestor.oszczypko@uj.edu.pl; dorota.salata@uj.edu.pl

2

State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava, Slovakia; patrik.konecny@geology.sk

(Manuscript received December 24, 2014; accepted in revised form March 10, 2016)

Abstract: During the Late Cretaceous to Palaeogene, the Magura Basin was supplied by clastic material from source  

areas situated on the northern and southern margins of the basin, which do not outcrop on the surface at present. 

The northern source area is traditionally connected with the Silesian Ridge, whereas the position of the southern one 

is still under discussion. A source area situated SE of the Magura Basin supplied the Eocene pebbly para-conglomerates 

containing partly exotic material. The studied clastic material contains fragments of crystalline rocks, and frequent 

clasts of Mesozoic to Palaeogene deep and shallow-water limestones. Numerous mica schists, scarce volcanites and 

granitoids as well as gneisses, quartzites and cataclasites were found in the group of crystalline exotic pebbles. Mona-

  zite ages of “exotic” mica-schist pebbles from the Tylicz, Zarzecze and Piwniczna-Mniszek sections document  

the Variscan 310±10 Ma age of metamorphic processes. The provenance of these exotic rocks could be connected with 

a remote source area located SE of the Magura Basin, which could be the NW part of the Dacia Mega Unit. The idea is 

strongly supported by palaeotransport directions from the SE, the absence of material derived from the Pieniny Klippen 

Belt, the presence of shallow water limestones, typical facies of the Median Dacides belt and metamorphic age distri-

bution proved by monazite dating.

Key words: Magura Basin, palaeogeography, source areas, monazite age, mica-schist pebbles.

Introduction

The Outer Carpathian flysch basins were supplied with clas-

tic material derived both from external as well as internal 

source  areas,  so-called  “cordilleras”  (Książkiewicz  1962; 

Unrug 1968). Our palaeogeographical reconstructions of the 

source areas are based on the investigations of “exotic” peb-

bles that were transported into sedimentary basins by subma-

rine  gravity  flows  (see  Książkiewicz  1962).  The  Eocene/

Oligocene deposits of the Tylicz and Krynica facies zone of 

the Magura Basin contain fragments of sedimentary, igneous 

and metamorphic rocks, derived from a continental type of 

crust. The location of the source area in the present-day tec-

tonic configuration is unknown. Mišík et al. (1991) suggested 

that carbonate material was derived from “the basement of 

the Magura Basin”, that was exhumed during the Early/Mid-

dle Eocene. This material is fundamentally different from the 

carbonates of the Czorsztyn/Oravicum of the Pieniny Klip-

pen Belt (PKB) which are currently located along the southern 

boundary of the Magura Nappe. Alternatively, this clastic 

material may have been derived from a Central Carpathian 

source area type, located on the SE margin of the basin (e.g., 

tip of the ALCAPA Block, see Plašienka 2000). The aim of 

this paper is to present results of the monazite dating of 

 metamorphic pebbles from the Tylicz, Mniszek-Piwniczna 

and Zarzecze sections of the Krynica subunit of the Magura 

Nappe and to identify possible sources for the pebbles.

Outline of geology and stratigraphy

Previous studies on the exotic pebbles 

The “exotic” conglomerates in the Tylicz and Krynica zones 

of  the  Magura  Nappe  (Fig.  1),  have  been  studied  for  many 

years (Jaksa-Bykowski 1925; Mochnacka & Węcławik 1967; 

Wieser 1970; Oszczypko 1975; Oszczypko et al. 2006, Olszew-

ska  &  Oszczypko  2010).  The  first  detailed  description  of 

exotic pebbles from the Eocene deposits of the Beskid Sądecki 

Range (Krynica zone) was given by Oszczypko (1975). This 

author described granitoids, gneisses, phyllites and quartzites, 

with a relatively small amount of basic volcanic rocks and 

Mesozoic carbonates. The exotic carbonate material of the 

Strihovce Sandstone, an equivalent of the Piwniczna Sand-

stone Member of the Magura Formation in Poland, has been 

studied by Mišík et al. (1991). Recently Olszewska and Osz-

czypko (2010) studied the carbonate pebble population of the 

Tylicz Conglomerate, which is dominated by deep-water Ju-

rassic–Lower Cretaceous sediments as well as fragments of 

shallow-water limestones of Triassic, Upper Jurassic, Lower 

and Upper Cretaceous, Palaeocene and Lutetian age.

Geological setting

The studied area is located in the south-eastern part of the 

Magura Nappe, south of the boundary between the Bystrica 

background image

258                                                                                                   

OSZCZYPKO, SALATA

 

and KONEČNÝ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271

and Krynica subunits (Fig. 1). The Krynica facies-tectonic 

zone is composed of the Upper Cretaceous to Oligocene de-

posits (Birkenmajer & Oszczypko 1989; Oszczypko & Osz-

 czypko-Clowes 2010). The oldest deposits are known from 

the Muszyna-Złockie area, 5 km west of Krynica. They con-

sist of the Turonian-Maastrichtian, deep-water variegated 

shales (Malinowa Fm.) with sporadic intercalations of thin -

bedded sandstones (Oszczypko et al. 1990). That formation 

passes upwards into strongly tectonized, medium to thin -

bedded turbidites of the Maastrichtian/Palaeocene to Lower 

Eocene  (Ropianka  Fm.),  which  are  rich  in  calcite  veins. 

Higher up in the succession, thin-bedded turbidites occur 

(Zarzecze Fm.), with intercalations of thick-bedded Krynica 

sandstones and conglomerates of the Lower–Middle Eocene. 

The youngest deposits of the Krynica facies zone in the 

Krynica area belong to thick-bedded sandstones of the 

 Magura Fm. (Middle Eocene to Oligocene; see Oszczypko & 

Oszczypko-Clowes 2010) and the recently discovered Lower 

Miocene Kremna Fm. (Oszczypko et al. 2005; Oszczypko -

Clowes et al. 2013).

The stratigraphic thickness of the Magura Nappe reaches 

at least 2.6 km. During overthrust movements and tectonic 

repetitions, the total thickness of the flysch deposits in the 

Krynica subunit increased up to 5.5–7.5 km, as shown by 

magnetotelluric investigations (Oszczypko & Zuber 2002). 

The Bystrica and Krynica subunits contact along the sub-ver-

tical thrust fault, which dips to the NE. 

The Late Cretaceous to Oligocene flysch formations of the 

Krynica succession were deposited in a deep-water basin 

(Oszczypko 1992). Starting from the Early Eocene, the sedi-

mentary processes in the southern part of the Magura Basin 

were accompanied by growth of the accretionary wedge (Osz-

czypko  &  Oszczypko-Clowes  2009).  It  is  manifested  by 

shallowing of the basin and development of sub-marine 

coarse-clastic fan sedimentation of the Magura Sandstone 

Formation. At the turn of the Middle/Late Eocene this depo-

sition was followed by a short-lasting episode of the basin 

deepening (beneath the CCD level) and deposition of varie-

gated shales of the Mniszek Sh. Mb. (Sh.=Shale; 

 

Mb.=Member) (Oszczypko-Clowes 2001; Oszczypko &  Osz-

czypko-Clowes 2006). The Late Eocene gradual shallowing 

of the basin again enabled the coarse-clastic sedimentation of 

the  Poprad  Sandstone  Mb.  (Fig.  2). This  was  followed  by 

folding and uplifting of the basin after the Late Oligocene/

Early Miocene and prior to the Middle Miocene (Oszczypko 

et al. 2005; Oszczypko & Oszczypko-Clowes 2009). 

Bodies of exotic conglomerates in the Krynica zone are 

rare. Such conglomerates are related to thick-bedded turbi-

Fig. 1. Location of the studied area in: A — the Alpine-Carpathian Pannonian realm and B — within the Magura Nappe in Poland (based 

on Żytko et al. 1989).

background image

259

MICA-SCHIST PEBBLES FROM EOCENE CONGLOMERATES (OUTER CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271 

dites of the Zarzecze and Magura 

formations  (Oszczypko  1975;  Osz-

czypko et al. 2006). The exotic con-

glomerates  of  the  Jarmuta-Proč 

Formation of the Grajcarek Unit, 

occurring along the contact zone be-

tween the Magura Nappe and Pieniny 

Klippen Belt, occupy a separate po-

sition  (Birkenmajer  1977;  Birken-

majer & Wieser 1990).

Studied sections

Piwniczna-Mniszek section

The Piwniczna-Mniszek section 

belongs to the Krynica facies zone 

and is located on the left slope of the 

Dunajec Valley (Fig. 1). This profile 

belongs to the top part of the Pi-

wniczna Member of the Magura 

Formation. The Middle Eocene va-

riegated shales of the Mniszek Shale 

Member appear directly above 

(Fig. 2). 

The exotic rocks occur in the sub-

marine slump bed, up to 2 m thick, 

which developed at the top of the 

thick-bedded sandstones of the 

 Magura type. The slump layer is 

composed of folded exotic con-

glomerates with detached blocks of 

shales and armed claystones, as well 

as of sandstones, mudstones and 

claystones (Oszczypko et al. 2006). 

The studied metamorphic pebbles 

usually reach 7 cm across, while 

sedimentary pebbles (sandstones 

and  limestones)  are  bigger,  up  to 

10 cm. The material of conglo- 

 

merates  (Oszczypko  et  al.  2006)  is 

represented by: vein-quartz of meta-

morphic  origin  (37  %),  sandstones 

(35 %),   igneous rocks (14 %), metamorphic rocks (11 %) 

and carbonates (3 %).

Zarzecze section

The Zarzecze section, located on the right slope of the 

 Dunajec River (Fig. 1B), belongs to the Tylicz transitional 

facies zone. The exotic beds are displayed at the top of a 170 

metres thick packet of thick-bedded turbidite sadstones and 

conglomerates of the Mniszek Shale Member of the Magura 

Formation (Fig. 2; Oszczypko 1975; Oszczypko et al. 2006; 

Oszczypko & Oszczypko-Clowes 2010). The exotic pebbles 

are  dominated  by  crystalline  rocks  (32  %),  vine  quartz  of 

metamorphic  origin  (26  %),  flysch  sandstones  (24  %)  and 

Mesozoic carbonate rocks (18 %). Among the exotics sedi-

mentary rocks representing the following microfacies were 

diagnosed (Oszczypko 1975; Oszczypko et al. 2006): the Ti-

thonian–Berriasian — organodetritc Calpionella limestones, 

Globocheta and charty limestones, Radiolarian-Nannoconus 

(Valanginian–Hauterivian) and Urgonian limestones (Barre-

mian–Aptian),  Spiculla  limestones  (Albian–Cenomanian), 

marls  (Maastrichtian–Palaeocene),  and  Lithotamnium 

Palaeocene sandstone (Oszczypko 1975).

Tylicz section

The exposures at Tylicz are situated in the transitional po-

sition (see Tylicz zone after Węcławik 1969; Figs. 1, 2) be-

tween the Bystrica and Krynica facies zones (Mochnacka & 

Węcławik 1967). The lower part of this succession is typical 

for the Bystrica zone, whereas the upper part belongs to the 

Krynica  type  of  facies  (Oszczypko  &  Oszczypko-Clowes 

Fig. 2. Lithology and stratigraphy of the sampled sections.

background image

260                                                                                                   

OSZCZYPKO, SALATA

 

and KONEČNÝ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271

2010).  The  Tylicz  exotic  conglomerates,  belonging  to  the 

Mniszek Shale Member of the Magura Formation (Fig. 2), 

are exposed on the left bank of the Muszynka River, partly 

in the bed rock of the river. The base and the top of the con-

glomerate boundaries are well exposed. The conglomerates 

are underlain and overlain by thin-bedded turbidites repre-

sented by grey and dark grey marly mudstone and marly 

shales (Fig. 2; see also Olszewska & Oszczypko 2010). The 

marly-shaly deposits are intercalated by thin- to medium -

bedded fine-grained sandstones with muddy/marly cement. 

The sandstones display the Bouma Tc and conv. divisions. 

The conglomerates and thick-bedded sandstones form two 

bodies of 150 m and 50 m thick, separated by a 50 m packet 

of thin-bedded flysch (Fig. 2). These conglomerates repre-

sent channel infill incised in thin-bedded turbidites. In general, 

these  coarse-clastic  deposits  display  a  fining  and  thinning -

upward sequence. The basal packet of the conglomerates be-

gins with 2 m thick layer of coarse conglomerates and 

boulders, which passes upwards into a 75 m thick layer of 

paraconglomerate packet, composed of pebbly mudstones. 

This part of the section was deposited by cohesive debris 

flow.  Higher  up  in  the  section  the  conglomerates  pass  up-

wards into a 75 m packet of thick-bedded coarse- to very 

coarse-grained sandstones, deposited by high-concentrated 

density  flow.  The  palaeocurrent  measurements  suggest 

 palaeotransport from the SE. The conglomerates are com-

posed of pebbles of 2 do 16 cm in diameter. The biggest peb-

bles are represented by sandstones and limestones. The 

material of conglomerates (Olszewska & Oszczypko 2010) 

is represented by: carbonates (44 %), igneous and metamor-

phic rocks (26 %), sandstones (26 %) and other (4 %). The 

biggest pebbles are spindle-shaped and ellipsoidal, while 

smaller ones are dominated by spheroidal and discoidal 

shapes. The carbonate pebble population contains fragments 

of shallow-water limestones of the Triassic (Anisian), Kim-

meridgian, deep water Upper Tithonian limestones, as well 

as  the  Lower  Cretaceous  (Urgonian),  Upper  Cretaceous, 

Lower and Upper Palaeocene, and Lower Lutetian (Olszew-

ska & Oszczypko 2010).

Analytical methods

The chemical composition of rock-forming minerals and 

monazites from the mica-schist pebbles was studied in 

polished carbon-coated thin sections. In total 243 monazite 

analyses in 4 samples were made (sample Tyl14-116 analy-

ses in 30 grains; sample Tyl2-48 analyses in 9 grains; sample 

Mn1-63 analyses in 23 grains; sample Zar 3-16 analyses in 

8 grains). Several spot analyses were made per single mona-

zite grain if possible. The monazites analysed were located 

most of all in the matrix and only single grains within biotite 

flakes. Minerals were analysed by electron microprobe using 

a Cameca SX100 electron microprobe housed at the Dionýz 

Štúr State Geological Institute, Bratislava (Slovak Republic). 

The microprobe was calibrated with synthetic and natural 

standards: P — apatite, Si — wollastonite, Al — Al

2

O

3

,      

Pb — cerusite, Th — ThO

2

, U — UO

2

, Ca — wollastonite, 

Fe — forsterite, S — barite, As — GaAs and REE plus Y 

were calibrated on phosphates REEPO

4

 and YPO

4

, respec-

tively.  The  microprobe  is  equipped  with  large  (parabolic) 

 analysing crystals LLIF and LPET that ensure a few times 

higher sensitivity then conventional (planar) ones. Monazite 

dating strongly depends on the precise measurement of the 

Pb, which reaches only low to trace concentrations in mona-

zites. The measurement method was therefore adjusted for 

getting maximum counts especially for Pb. An accelerating 

voltage of 15 kV and beam current of 120 nA were applied. 

The beam diameter of 3 to7 mm was preferred. The counting 

time was 100 s for Pb, 75 s for U and 45 s for both Y and Th. 

Pb was measured at PbMα   line, U at U

1

, and Th at  

Th. An overlap of PbMα with Y

1

 and U with ThMβ 

was  resolved  via  empirical  correction  (Åmli  and  Griffin 

1975).

Before measurement of monazites of unknown age a set of 

so-called age standards were measured. A collection of mona-

zite standards include monazites of various ages and compo-

sitions which were dated using SHRIMP: pegmatite from 

Madagascar  (495  Ma),  granite  form  Veikkola  (1825  Ma), 

granite  from Aalfang, Austria  (327  Ma),  gneiss-migmatite 

from  Dürstein/Wachau,  Austria  (341  Ma),  monzogranite 

from Nakae, Japan (77 Ma). Age standards provide additional 

tests for accuracy of microprobe calibration and measure-

ment conditions. Some more details on the monazite dating 

method are given by Konečný et al. (2004). A statistical ap-

proach following Montel et al. (1996) was used to obtain re-

sulting ages from spot microprobe analyses.

Results

Mineral composition of pebbles

The rock pebbles analysed in all localities studied are rep-

resented by mica-schists. The texture and mineral composi-

tion is alike in all samples. The texture of the schists 

representing  the  Tylicz  (Tyl2,  Tyl14)  and  Piwniczna -

Mniszek sections (Mn1) is typical monotonous schistose tex-

ture  characterized  by  parallel  alignment  of  fine-  to 

medium-grained mica flakes (mainly biotite, muscovite) in-

tercalated with quartz, plagioclase feldspar (albite and oligo-

clase),  orthoclase  and  accompanying  minerals  like  garnet, 

apatite, monazite, zircon, TiO

2

 polymorph (Fig. 3A–C and 

E–H), pyrite and xenotime. Muscovite is more abundant than 

biotite in the Tyl2 sample, whereas biotite flakes dominate 

among micas in the Tyl14 and Mn1 samples. Garnet grains 

are scarce in all the mentioned schist pebbles. Garnet grains 

follow schistose fabric forming fine anhedral grains of about 

50–100 µm across rarely reaching 250 µm (Fig. 3A–C, F). 

Apatite occurs as relatively large subhedral or anhedral 

grains (up to 200 µm across) occurring mainly in the matrix 

and less frequently within biotite flakes (Fig. 3A–B, E–F, H) 

or as inclusions in feldspars. Monazite is a typical con-

stituent of the pebbles from the Tylicz and Piwniczna -

Mniszek sections. It occurs in the form of subhedral or 

anhedral crystals up to 150 µm long prevailingly in the ma-

trix, rarely hosted by biotite or feldspar (Fig. 3E, G). Zircon, 

similarly to monazite, occurs in between quartz or feldspar 

background image

261

MICA-SCHIST PEBBLES FROM EOCENE CONGLOMERATES (OUTER CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271 

Fig. 3. Microphotographs of the studied mica-schist pebbles. Pictures A–D — plane polarized light; pictures E–H — YAGBSE. Abbrevia-

tions: Ap — apatite; Bt — biotite; Grt — garnet; Mnz — monazite ; Pl — plagioclase feldspar; Qz — quartz; TiO

2

 — TiO

2

 polymorph; 

Zrn — zircon. 

background image

262                                                                                                   

OSZCZYPKO, SALATA

 

and KONEČNÝ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271

grains or as inclusions in 

biotite  (Fig.  3B,  E,  G).  The 

schist from the Zarzecze sec-

tion  (Zar3)  is  composed  of 

similar minerals to the peb-

bles from the other localities 

studied. Biotite dominates 

among micas, accompanied 

by quartz and feldspars. Gar-

net grains are much bigger 

than those from the Tylicz 

and Piwniczna-Mniszek peb-

bles forming porphyroclasts 

reaching up to 1mm across. 

Mica and garnet yield fea-

tures of deformation showing 

a  N-S  alignment  (Fig.  3D). 

Garnet grains are partly bro-

ken down and fragmented. 

Monazite and apatite are less 

frequent than in the Tylicz 

and Piwniczna-Mniszek schist 

pebbles.

Garnet from pebbles from 

the Tylicz and Piwniczna 

-

Mniszek sections is not zonal 

in terms of main elements. 

Almandine molecule prevails 

in the garnet in all mica- 

schists studied reaching up to 

80 mol %. They are accompanied by lesser amounts of py-

rope and spessartine. Pyrope and spessartine in mica schists 

from  Tylicz  (Tyl2)  and  Piwniczna-Mniszek  (Mn1)  usually 

do not exceed 15 mol % each. The spessartine molecule 

amount in sample Tyl14 is slightly elevated in respect to 

Mn1 and Ty2 samples reaching up to 26 mol %. The grossu-

lar content in the mica-schists from Tylicz and Piwniczna- 

Mniszek is very low, usually not exceeding 5 mol %. The 

garnet population from a mica-schist pebble from the 

Zarzecze section (sample Zar3) differs in composition com-

pared to other samples studied. The garnet from the Zarzecze 

section displays zonality expressed in elevated grossular and 

spessartine molecule amounts in the core (up to 23 mol % 

and 9 % respectively) at the expense of pyrope and almandine 

molecules (Table 1). Garnet chemistry from the mica-schists 

of Tylicz and Piwniczna-Mniszek suggests that it was 

formed in low P/T metamorphic environment, while the 

composition of garnet from Zarzecze implies higher P/T 

metamorphic conditions of its formation (Fig. 4).

Monazite composition and age

The contents of Th and U and LREE like La, Ce and Nd 

show restricted ranges in all the samples analysed. The Th 

content  changes  in  the  range  of  0.03–0.09  (cations/4oxy-

gens)  and  U  content  from  0.004  to  0.010  (cations/4  oxy-

gens). However, the Th and U amounts concentrate mostly 

around 0.05±0.02 and 0.007±0.02 cations/4 oxygens respec-

tively (Fig. 5A, B). The La amount oscillates in the range of 

0.18–0.23, Ce in the range of 0.38-0.45 and Nd content con-

centrates  around  0.17  cations/4  oxygens  (Fig.  5C–E).  The 

REE curve slightly slopes down towards HREE with Eu nega-

tive anomaly visible in most of the monazites analysed 

Table 1: Representative analyses of garnet from the pebbles studied. Oxides in [wt. %], molecular 

garnet end-members in [mol %].

Fig. 4. Garnet composition in the mica-schists studied and its P/T 

conditions of forming (diagram adapted from Win et al. 2007).

Element/analysis Zar3 core Zar3 rim Mn1 core

Mn1 rim

Tyl2

Tyl2

Tyl14

Tyl14

SiO

2

 [wt%]

37.51   

37.62

37.85

37.76

39.86

39.10

38.95

39.38

TiO

2

0.08

0.22

0.01

0.00

0.14

0.00

0.00

0.00

Al

2

O

3

20.78

20.85

21.32

21.28

19.02

19.47

19.62

19.46

Cr

2

O

3

0.02

0.00

0.01

0.05

0.00

0.12

0.00

0.19

Fe

2

O

3

0.25

0.00

0.49

0.46

0.00

0.00

0.03

0.00

FeO

28.44

36.20

31.20

30.34

32.43

32.55

27.21

27.84

MnO

4.08

0.32

5.42

6.89

6.63

7.09

10.71

9.72

MgO

0.84

2.40

3.36

2.90

0.99

0.72

2.50

2.50

CaO

8.48

3.17

2.01

2.08

0.93

0.95

0.81

0.91

Total

100.48

100.79

101.68

101.75

100.00

100.00

99.82

100.00

Numbers of cations calculated on the basis of 12 oxygen atoms
Si [apfu]

3.005

3.009

2.993

2.993

3.215

3.168

3.136

3.159

Ti

0.005

0.013

0.001

0.000

0.008

0.000

0.000

0.000

Al

1.962

1.966

1.988

1.988

1.808

1.860

1.862

1.840

Cr

0.001

0.000

0.001

0.003

0.000

0.008

0.000

0.012

Fe

3+

0.015

0.000

0.029

0.027

0.000

0.000

0.000

0.000

Fe

2+

1.906

2.425

2.063

2.010

2.188

2.206

1.834

1.868

Mn

0.276

0.022

0.363

0.462

0.453

0.487

0.730

0.660

Mg

0.101

0.286

0.396

0.342

0.119

0.087

0.300

0.299

Ca

0.728

0.272

0.170

0.177

0.080

0.082

0.070

0.078

Total

7.997

7.990

8.005

8.005

7.872

7.898

7.933

7.915

End-members [mol %]
Almandine

62.9

80.4

68.9

67.2

75.9

76.6

60.6

62.6

Andradite

1.1

0.5

0.7

0.7

0.0

0.0

0.0

0.0

Grossular

23.2

8.7

4.9

5.1

3.0

2.5

2.5

2.2

Pyrope

3.4

9.7

13.2

11.4

4.4

3.1

10.7

10.8

Spessartine

9.3

0.7

12.1

15.4

16.7

17.4

26.1

23.8

Uvarovite

0.1

0.0

0.0

0.1

0.0

0.4

0.0

0.7

background image

263

MICA-SCHIST PEBBLES FROM EOCENE CONGLOMERATES (OUTER CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271 

Fig. 5. Frequencies of Rare Earth Elements in monazites from the studied pebbles: A — Th; B — U; C — La; D — Ce; E — Nd;                 

F — compiled chondrite-normalized REE plots of the monazites analysed (the grey field); the dashed line in the diagram represents REE 

plots for spots 1-6 within the grain Tl14-mnz13 shown in Fig. 8 (normalization according to McDonough & Sun 1995).

background image

264                                                                                                   

OSZCZYPKO, SALATA

 

and KONEČNÝ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271

(Fig. 5F). Some monazites in sample Tyl2 show enrichment 

in Si (up to 1.16 wt. % of SiO

2

) (Table 2). This may be the 

effect of cation substitution in monazite structure or of 

quartz micro-inclusions present in monazite grains (Pyle et 

al. 2001). All of the monazites analysed (Fig. 6) represent 

huttonite-cheralite  solid  solutions  (e.g.  Spear  &  Pyle  2002 

and references therein). The monazites analysed are  generally 

compositionally alike. The difference in the ThO

2

 content 

within all monazite populations studied does not exceed 

3.5 wt. % for each sample studied, while the difference in the 

UO

2

 concentration does not exceed 0.8 wt. %. The difference 

in the UO

2

 content, considering various spots within a single 

monazite grain, is mostly lower than 0.1 wt. %, rarely 

reaching about 0.2 wt. %, while variation of ThO

2

 within 

singular grains may reach up to 2 wt. % (Table 2). Changes 

in chemical composition within single grains are irregular or 

patchy, but there is no difference between the chondrite nor-

malized REE plots representing various spots in a grain (e.g., 

grain Tyl14-mnz13 in Fig. 5F).

There is no significant difference in the composition and 

age of monazites occurring in the matrix or as inclusions 

within biotite. The calculated spot ages for the analysed 

monazites indicate Variscan Devonian/Carboniferous to Per-

mian time-span. The average ages are very similar for mona-

Table 2: Selected microprobe analyses of monazites from the samples studied. Monazite number (=Mnz No.) refers to monazite grain 

analysed; spot number (=spot No.) refers to analytical spot within a grain. Representative analyses within a grain are marked. The data refer 

to monazite grains shown in Fig. 8.

Sample label

Tyl2

Tyl14

Mn1

Zar3

Mnz No.

Mnz 2

Mnz 4

Mnz 1

Mnz 13

Mnz 2

Mnz 20

Mnz 3

Mnz 4

Mnz 8

Spot No.

3

4

1

2

1

2

1

4

1

2

4

5

8

15

P

2

O

5

27.79

27.92

27.45

27.52

29.24

27.93

27.42

27.68

28.77

29.18

28.53

29.22

29.11

29.19

SiO

2

0.74

0.75

1.16

0.98

0.22

0.17

0.21

0.38

0.44

0.39

0.50

0.26

0.31

0.27

Al

2

O

3

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.01

0.00

La

2

O

3

12.06

12.81

12.01

12.04

12.90

13.41

13.37

13.28

14.27

15.03

13.99

14.51

13.53

14.51

Ce

2

O

3

26.44

27.27

26.23

26.45

26.76

27.76

28.02

26.04

29.20

29.89

27.60

29.68

28.26

29.49

Pr

2

O

3

3.28

3.24

3.16

3.16

3.24

3.35

3.36

3.11

3.19

3.31

3.08

3.28

3.15

3.27

Nd

2

O

3

10.60

10.80

10.34

10.46

11.08

11.31

11.52

11.16

11.72

11.85

11.39

12.16

11.86

11.93

Sm

2

O

3

1.18

1.22

1.22

1.21

1.05

1.03

1.11

1.07

1.95

1.83

2.00

2.26

2.10

1.97

Eu

2

O

3

0.28

0.27

0.26

0.33

0.43

0.32

0.30

0.28

0.11

0.01

0.26

0.24

0.23

Gd

2

O

3

1.53

1.64

1.58

1.62

1.40

1.29

1.33

1.67

1.68

1.68

1.78

1.94

1.83

1.71

Tb

2

O

3

0.08

0.11

0.17

0.17

0.03

0.02

0.00

0.06

0.10

0.06

0.13

0.15

0.12

0.08

Dy

2

O

3

0.95

0.99

1.04

1.04

0.77

0.73

0.68

0.78

0.44

0.50

0.63

0.54

0.65

0.57

Er

2

O

3

0.84

0.85

0.81

0.79

0.78

0.81

0.68

0.82

0.10

0.06

0.09

0.06

0.13

Tm

2

O

3

0.33

0.31

0.36

0.35

0.29

0.37

0.28

0.27

0.04

0.03

0.01

Yb

2

O

3

0.23

0.15

0.22

0.20

0.16

0.17

0.11

0.17

0.02

0.08

0.07

0.06

0.05

0.05

Lu

2

O

3

0.35

0.34

0.39

0.41

0.36

0.44

0.60

0.42

PbO

0.13

0.10

0.16

0.14

0.14

0.12

0.12

0.15

0.11

0.09

0.12

0.06

0.09

0.10

ThO

2

7.11

5.78

8.34

7.55

6.00

5.36

4.92

6.87

4.90

3.91

5.56

2.89

5.50

3.85

UO

2

0.66

0.53

0.66

0.62

0.90

0.75

0.81

1.41

0.87

0.63

1.07

0.45

0.48

0.41

PbO

0.11

0.09

0.14

0.12

0.13

0.11

0.11

0.14

0.10

0.08

0.11

0.05

0.08

0.09

Y

2

O

3

2.61

2.77

2.89

2.91

2.34

2.03

1.69

2.00

1.41

1.28

1.65

1.74

1.97

1.56

CaO

1.14

0.83

1.00

0.98

1.27

1.11

1.01

1.35

0.98

0.74

1.03

0.65

0.99

0.88

Total

98.45

98.74

99.58

99.03

99.50

98.61

97.66

99.12

100.24

100.74

99.26

100.23

100.43

100.28

Oxygen base

16

16

16

16

16

16

16

16

16

16

16

16

16

16

P

3.803

3.805

3.735

3.760

3.913

3.842

3.817

3.800

3.869

3.890

3.865

3.905

3.892

3.899

Si

0.120

0.121

0.187

0.158

0.036

0.028

0.035

0.061

0.070

0.061

0.081

0.042

0.049

0.043

Al

0.000

0.000

0.000

0.000

0.001

0.003

0.001

0.002

0.000

0.000

0.000

0.001

0.001

0.000

La

0.719

0.761

0.712

0.716

0.752

0.803

0.811

0.794

0.836

0.873

0.826

0.845

0.788

0.844

Ce

1.565

1.607

1.544

1.562

1.549

1.651

1.687

1.546

1.698

1.723

1.617

1.715

1.634

1.703

Pr

0.193

0.190

0.185

0.186

0.187

0.198

0.201

0.184

0.184

0.190

0.180

0.188

0.181

0.188

Nd

0.612

0.621

0.593

0.603

0.625

0.656

0.677

0.647

0.665

0.666

0.651

0.686

0.669

0.672

Sm

0.066

0.068

0.068

0.067

0.057

0.058

0.063

0.060

0.107

0.100

0.111

0.123

0.115

0.107

Eu

0.016

0.015

0.014

0.018

0.023

0.018

0.017

0.016

0.000

0.006

0.001

0.014

0.013

0.012

Gd

0.082

0.087

0.084

0.087

0.073

0.070

0.073

0.090

0.089

0.087

0.094

0.101

0.096

0.089

Tb

0.004

0.006

0.009

0.009

0.002

0.001

0.000

0.003

0.005

0.003

0.007

0.008

0.006

0.004

Dy

0.050

0.051

0.054

0.054

0.039

0.038

0.036

0.040

0.022

0.025

0.033

0.027

0.033

0.029

Er

0.043

0.043

0.041

0.040

0.039

0.041

0.035

0.042

0.005

0.003

0.000

0.004

0.003

0.006

Tm

0.017

0.016

0.018

0.018

0.014

0.018

0.014

0.013

0.000

0.002

0.000

0.000

0.002

0.000

Yb

0.011

0.008

0.011

0.010

0.008

0.009

0.006

0.008

0.001

0.004

0.004

0.003

0.002

0.002

Lu

0.017

0.016

0.019

0.020

0.017

0.022

0.030

0.021

0.000

0.000

0.000

0.000

0.000

0.000

Pb

0.006

0.004

0.007

0.006

0.006

0.005

0.005

0.007

0.005

0.004

0.005

0.003

0.004

0.004

Th

0.262

0.212

0.305

0.277

0.216

0.198

0.184

0.253

0.177

0.140

0.202

0.104

0.198

0.138

U

0.024

0.019

0.024

0.022

0.032

0.027

0.030

0.051

0.031

0.022

0.038

0.016

0.017

0.014

Pb

0.005

0.004

0.006

0.005

0.005

0.005

0.005

0.006

0.004

0.004

0.005

0.002

0.003

0.004

Y

0.224

0.237

0.247

0.250

0.197

0.176

0.148

0.173

0.119

0.107

0.141

0.146

0.166

0.131

Ca

0.197

0.143

0.173

0.169

0.215

0.193

0.178

0.235

0.166

0.125

0.177

0.110

0.167

0.149

Total cath.

8.053

8.050

8.054

8.055

8.032

8.084

8.084

8.052

8.053

8.043

8.045

8.048

8.042

8.054

Th

6.252

5.078

7.326

6.636

5.275

4.711

4.325

6.037

4.302

3.434

4.885

2.539

4.835

3.385

U

0.578

0.463

0.580

0.545

0.790

0.657

0.711

1.241

0.766

0.558

0.939

0.396

0.421

0.357

Pb

0.106

0.080

0.130

0.112

0.118

0.099

0.101

0.128

0.092

0.077

0.106

0.045

0.073

0.082

Y

2.054

2.178

2.278

2.291

1.842

1.601

1.334

1.576

1.110

1.009

1.299

1.366

1.553

1.226

Th*

8.125

6.577

9.210

8.403

7.844

6.847

6.639

10.059

6.788

5.248

7.931

3.819

6.198

4.552

Age (Ma)

292

273

317

299

339

325

341

286

303

331

301

266

265

405

background image

265

MICA-SCHIST PEBBLES FROM EOCENE CONGLOMERATES (OUTER CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271 

zites from all the mica-schists studied oscillating around 300 

Ma: 303±4.2 Ma (Tyl2) and 313±3.8 Ma (Tyl14) in Tylicz, 

314±4.5 Ma in Piwniczna-Mniszek and 320±11.8 Ma in 

Zarzecze (Table 2; Figs. 7, 8). The differences in age calcu-

lated for spots within single grains do not exceed 50 Ma still 

oscillating around 300 Ma. Age distribution within single 

monazite grains is irregular, showing a patchy pattern 

(Table 2; Fig. 8).

Discussion and conclusions

The set of pebbles

The exotic pebbles in the Eocene deposits of the southern 

part of the Magura Nappe (Tylicz and Krynica zones) have 

been  recognized  in  two  stratigraphic  positions:  1)  in  the  

Mniszek  Shale  Member  (Middle-Upper  Eocene)  of  the 

 Magura Formation (Tylicz and Zarzecze sections); 2) in the 

Piwniczna-Mniszek section belonging to the Piwniczna 

Member of the Magura Fm. (Lower-Middle Eocene).

The thick-bedded sandstones and conglomerates of the 

Mniszek Shale Member, uppermost part of the Piwniczna 

Member of the Magura Formation are located above the 

Middle-Upper Eocene variegated shales of Cyclammina am

-

plectens Grzybowski. These are deposits of channel facies 

with relatively high contents of the Mesozoic carbonate peb-

bles from 18 % in the Zarzecze section (in the west) to 44 % 

at Tylicz (in the east) and similar content pebbles of  flysch 

sandstones  (about  26  %).  The  content  of  crystalline  rocks 

ranges from ca 26 % to 32 % in the Tylicz and Zarzecze sec-

tions respectively. The population of pebbles at Tylicz is rich 

in  medium  grade  metamorphic  rocks  such  as  fine-grained 

gneisses and schists and very poor in igneous rocks, while 

a striking feature of the conglomerates at Zarzecze is the 

high content of vein quartz. The composition of carbonate 

material and microfossil assemblages of the Tylicz and 

Zarzecze  conglomerates  (Middle–Late  Eocene)  indicates 

similarity to both the Jarmuta/Proč and Strihovce exotic peb-

bles (Oszczypko & Olszewska 2010).

The exotic conglomerates of the Piwniczna-Mniszek sec-

tion belonging to the Piwniczna Member of the Magura Fm. 

are located beneath the horizon of variegated shales with Cy

-

clammina amplectens Grzybowski. These conglomerates are 

rich in vein quartz (37 %), flysch clasts (35 %), crystalline 

clasts (25 %) and poor in carbonate clasts (3 %). The exotic 

conglomerates of the Piwniczna Sandstone Mb. (Middle/

Lower Eocene) of the Magura Fm. are an equivalent of con-

glomerates of the lower part of the Strihovce Sandstone (see 

Nemčok 1990a,b; Mišík et al. 1991). These conglomerates 

are rich in granitoids, medium-grade metamorphic gneisses 

and schists, phyllites and quartzites, with a relatively small 

amount of felsic volcanic rocks and Mesozoic carbonates 

(Oszczypko 1975; Mišík et al. 1991; Oszczypko et al. 2006).

Metamorphic rocks found in all sampled conglomerates 

are similar to each other and correspond to medium grade 

Fig. 6. Substitution diagrams for the monazites analysed.

background image

266                                                                                                   

OSZCZYPKO, SALATA

 

and KONEČNÝ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271

Fig. 7. Monazite age histograms and Pb vs. Th* (wt. %) monazite isochrone diagrams.

background image

267

MICA-SCHIST PEBBLES FROM EOCENE CONGLOMERATES (OUTER CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271 

metamorphic conditions of epidote-amphibolite or amphibo-

lite facies. Similar results as for garnet composition and 

 metamorphic conditions of its forming were obtained on the 

basis of numerous analyses of detrital garnets found in the 

Jarmuta (Maastrichtian-Palaeocene) and Szczawnica (Palaeo-

cene-Lower  Eocene)  Formations  (Salata  2004;  Oszczypko 

& Salata 2005). 

Monazite age remarks

According to Spear & Pyle (2002 and references therein) 

a low and restricted range of Th content oscillating around 

0.05, U content up to 0.01 and also La, Ce and Nd averaging 

around 0.20, 0.43 and 0.17 cations/4 oxygens respectively 

Fig. 8. Microphotographs showing representative monazites analysed with distribution of calculated ages. SEM BSE.

are typical for monazites formed in metamorphic conditions. 

Additionally, the REE patterns of metamorphic monazites 

slope down towards HREE (e.g. Catlos et al. 2002; Spear & 

Pyle  2000  and  references  therein). Therefore,  the Variscan 

ages of the monazites analysed are interpreted as docu-

menting metamorphic processes in the source area. There is 

no evidence of a rejuvenation younger then the Variscan 

orogeny  reflected  in  the  calculated  ages. The  irregular  age 

distribution within single grains may reflect different phases 

of metamorphic processes influencing trace element compo-

sition in the monazites analysed. The compositional patchy 

pattern could be caused by several processes that include 

overgrowth, regrowth, intergrowth, replacement and recrys-

tallization during metamorphic events (e.g. Zhu & O’Nions 

background image

268                                                                                                   

OSZCZYPKO, SALATA

 

and KONEČNÝ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271

1999). The currently obtained ages correspond well to earlier 

radiometric ages obtained from mica dating and CHIME  

dating of monazite in a metamorphic rock pebble from      

Tylicz (Poprawa et al. 2004, 2005).

Possible sources

The plutonic rocks in the Tylicz conglomerate represent 

volcanic-arc granites and syn-collisional granites of S-type, 

which are well known from the Western Carpathians (e.g., 

Petrík  et  al.  1994;  Broska  &  Uher  2001;  Broska  &  Petrík 

2015).  Such  granites  were  also  described  as  protoliths  for 

Carpathian orthogneisses found as pebbles in Palaeocene 

flysch in the Dukla Nappe (Bąk & Wolska 2005). According 

to Pitcher (1982) and Broska and Uher (2001) S-type granites 

are orogenic granites connected with continental collision. 

They can be accompanied by regional metamorphic rocks 

(Pitcher 1982). The Western Carpathian I- and S-type grani-

toids display monazite ages of ~350 Ma and ~340 Ma (Bros-

ka & Petrík 2015 and references therein). Unfortunately, the 

very  small  (up  to  2  cm  across  maximum)  granitic  pebbles 

found in the studied sections did not contain monazites to 

compare the dating. Variscan metamorphism, although docu-

mented in the Tatric (~310 Ma) and Veporic (~340–350 Ma) 

metamorphic units, is not widespread in the Western Car-

pathian domains as mainly Alpine recrystallization events 

are recorded in the area (e.g., Janák 1994; Dallmeyer et al. 

1996;  Janák  &  Plašienka  1999;  Janák  et  al.  2001  and 

references  therein).  The  dates  established  for  the  Western 

Carpathian igneous and metamorphic rocks suit the time-

span established for the dated mica-schist pebbles studied 

here. However, there are some facts that exclude Western 

Carpathian crystalline massifs from the possible source areas 

for the studied conglomerates. They are: i) the total lack of 

sedimentary rocks, derived from the PKB and instead the 

presence of shallow-water limestone of the Urgonian facies, 

typical for the Median Dacides of the Dacia Mega Unit;        

ii)  the  palaeotransport  directions  measured  in  the  sampled 

deposits  indicate  location  of  the  source  massif(s)  in  the 

south-east termination of the Magura Basin, while the small 

dimensions of the mica-schist pebbles suggest a rather distal 

source in relation to their deposition place in the Magura 

Basin and/or their re-deposition. The similar mineral compo-

sition and consistent monazite age distribution and 

palaeocurrent directions of deposits suggest provenance of 

the mica-schists studied from the same source area. The dif-

ferent garnet composition between schists from Tylicz, 

Piwniczna-Mniszek  (low-  to  medium  grade)  and  Zarzecze 

(high-grade)  may  reflect  the  origin  of  the  pebbles  from 

various parts of an inhomogeneous metamorphic body of the 

source area.

Both crystalline and sedimentary rock pebbles are charac-

terized by good roundness, typical for river channel sand and 

marine coastal abrasion. These pebbles could be re-deposited 

in coastal embankments or as channel facies of submarine 

cones.

The exotic conglomerates are located directly below      

(Piwniczna/Mniszek section) and above (Tylicz and Zarzecze 

sections) the variegated shales of the Mniszek Sh. Mb, mani-

festing vertical movements of the Magura Basin basement. 

These movements were accompanied by seismic shocks, 

which triggered gravity-driven debris flows and submarine 

slumps moving forward into the deepest parts of the basin 

(Einsele 2002).

The exact position of the source area for the investigated 

exotic pebbles is speculative. However, the obtained data 

suggest recycling and erosion during the Middle Late Eocene 

to Oligocene an older accretionary wedge and deposition of 

detritus from the SE prolongation of the Marmarosh Massif 

located at the south-eastern boundary of the Magura Basin 

(Lashkievitsch et al. 1995). The supply of carbonate and si-

liciclastic material from a SE source area (part of the Dacia 

Mega  Unit)  was  suggested  by  Oszczypko  and  Oszczypko- 

Clowes (2009) as well as by Oszczypko et al. (2005, 2015). 

The latter solution can be also deduced from the Oligocene?/

Early Miocene (Fig. 9) pre-orogenic palaeogeographic resto-

ration of the Alpine-Carpathian-Panonian realms (Usta-

 szewski et al. 2008).

Currently, the eastern termination of the Magura Nappe is 

situated in the Eastern Carpathians, along the boundary be-

tween Ukraine and Romania (Fig. 1). In this place the  Magura 

Nappe  (Monastyrets  and  Pertrova  subunits)  is  a  few  km   

wide, and it is limited to the north by the Median Dacides 

and its sedimentary cover and from the south by the Pieniny 

Klippen Belt, Neogene volcanic belt and the Miocene  deposits 

of the Pannonian Basin (Aroldi 2001; Schmid et al. 2008; 

Oszczypko et al. 2005, 2015). 

The possible supply to the Magura Basin from the Marma-

rosh Massif is indicated by palaeotransport measurements. 

There are also the similarities between the Jurassic and Lower 

Cretaceous carbonate microfacies of the Marmarosh Massif 

and Marmarosh Klippens with the Eocene microfacies exotic 

pebbles from the Krynica Zone of the Magura Nappe        

and Pieniny Klippen Belt in Poland and Eastern Slovakia 

Fig. 9. Reconstruction of the geotectonic situation in the Alps, 

Carpathians and Dinarides domains in the Early Miocene (based on 

Ustaszewski et al. 2008 and references therein).

background image

269

MICA-SCHIST PEBBLES FROM EOCENE CONGLOMERATES (OUTER CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271 

(Mochnacka  &  Węcławik  1967;  Oszczypko  1975;  Mišík      

et al. 1991a, b; Olszewska & Oszczypko 2010). 

The Crystalline Mesozoic Zone of the East Carpathians 

belongs to Median Dacides (Săndulescu 1984) and is com-

posed of the Bucovinian nappe stack, which is of Cretaceous 

age. In the Ukrainian sector the Marmarosh crystalline mas-

sif is an eastern prolongation of the Median Dacide (Ślaczka 

et  al.  2006). This  massif  displays  a  nappe  structure  and  is 

overthrust upon the Black Flysch or Rachiv units. The Mar-

marosh Massif is composed of Pre-Cambrian gneisses, 

 

Palaeozoic metamorphic schists, Carboniferous/Permian 

coal shales, conglomerates, tuffs, lavas, as well as Mesozoic 

limestones and breccias (Kruglov & Cypko 1988). 

The set of Variscan metamorphic rocks within Eastern 

(Romanian) Carpathian basement includes very low to low- 

and medium-grade metamorphic mica-schists, quartz biotite 

paragneisses, amphibolites metamorphosed under green-

schist to almandine-amphibolite facies (see Balintoni 2010 

in Miclăuş et al. 2010). Variscan ages are the most common 

in basement rocks of the Eastern Carpathians and Apuseni 

Mountains. The ages are well established on the basis of ra-

diometric K-Ar and Ar-Ar dating of muscovite and biotite 

concentrates as well as monazite (e.g. Dallmeyer et al. 1999; 

Strutinski et al. 2006; Gröger et al. 2013; Săbău & Negules-

cu  2014  and  references  therein).  The  established  Variscan 

time span of the metamorphic events encloses within 

370–251 Ma (see e.g. Strutinski et al. 2006) with a distinct 

plateau of ages grouping around 300±20 Ma. It is worth 

noting that the area of the East Carpathians is situated out-

side the Alpine metamorphic zone, thus Alpine metamor phic 

rejuvenation is not strongly developed there. However, the 

rejuvenation overprints Alpine ages in the rocks of the Apuse-

ni Mountains (see e.g. Dallmeyer et al. 1999; Strutinski et al. 

2006). The Variscan time-span established for the metamor-

phic micas in the east Carpathians closely agrees with the 

currently obtained data for the Magura Nappe mica-schist 

pebbles. Moreover, since the monazites dated do not show 

Alpine ages it may be supposed that the pebbles studied de-

rive mainly from the East Carpathian domain of the Dacia 

Mega Unit rather than from the more southern parts of it. 

The idea is supported by the garnet composition indicating 

a mainly low grade of metamorphism of the pebbles studied 

(Fig. 4).

Acknowledgements:  The authors express their thanks to 

prof. Monika Kusiak (Institute of Geological Sciences, Polish 

Academy of Sciences, Warsaw) and an anonymous reviewer 

for their valuable remarks on the manuscript. We are also 

grateful to the Editorial Board of Geologica Carpathica for 

comments which helped to improve the paper. This paper 

was financed by the DS fund of the Jagiellonian University 

and by the Polish Ministry of Science and Higher Education 

(grant nr 2 P04D 002 28). 

References

Amli R. & Griffin W. 1975: Microprobe analysis of REE minerals 

using empirical correction factors. Am. Mineral. 60, 599–606.

Aroldi C. 2001: The Pienides in Maramureš. Cluj University Press

1–156.

Balintoni I. 2010: The Crystalline-Mesozoic Zone of the East Car-

pathians. A review. In: Iancu O. G. & Kovacs M. (Eds.): RO1 

— Ore deposits and other classic localities in the Eastern Car-

pathians: From metamorphics to volcanics. Field trip guide.  

20

th

 Meeting of the International Mineralogical Association 

 Budapest.  Acta Mineral. Petrogr., Field Guide Series  19,  

1–55.

Bąk  K.  &  Wolska  A.  2005:  Exotic  orthogneiss  pebbles  from 

Palaeocene  flysch  of  the  Dukla  Nappe  (Outer  Eastern  Car-

pathians, Poland). Geol. Carpath. 56, 3, 205–221.

Birkenmajer  K.  1977:  Jurassic  and  Cretaceous  lithostratigraphic  

units of the Pieniny Klippen Belt, Carpathians. Stud. Geol. 

Polon. 45, 1–159.

Birkenmajer K. & Oszczypko N. 1989: Cretaceous and Palaeogene 

lithostratigraphic units of the Magura Nappe, Krynica Subunit, 

Carpathians. Ann. Soc. Geol. Pol. 59, 145–181.

Birkenmajer K. & Wieser T., 1990: Exotic rock fragments from Up-

per Cretaceous deposits near Jaworki, Pieniny Klippen Belt, 

Carpathians, Poland. Stud. Geol. Polon. 97, 7–67 (in Polish).

Broska I. & Uher P. 2001: Whole-rock chemistry and genetic ty-

pology of the West-Carpathian Variscan granites. Geol. Car-

path. 52, 2, 79–90.

Broska I. & Petrík I. 2015: Variscan thrusting in I- and S-type gra -

nitic rocks of the Tribeč Mountains, Western Carpathians (Slo-

vakia):  evidence  from  mineral  compositions  and  monazite 

dating. Geol. Carpath. 66, 6, 455–471.

Catlos  E.J.  Gilley  L.D.  &  Harrison  T.M.  2002:  Interpretation  of 

monazite ages obtained via in situ analysis. Chem. Geol. 188, 

193–215.

Dallmeyer R.D., Pan D.I., Neubauer F. & Erdmer P. 1999: Tectono-

thermal evolution of the Apuseni Mountains, Romania: resolu-

tion  of  Variscan  versus Alpine  events  with  40Ar/39Ar  ages.   

 

J. Geol. 107, 329–352.

Einsele G. 2002. Sedimentary basins. Second edition. Springer,    

1–792.

Gröger  H.G,  Matthias  T.,  Fügenshuh  B.  &  Schmid  S.M.  2013: 

Thermal  history  of  the  Maramures  area  (Northern  Romania) 

constrained by zircon fission track analysis:Cretaceous meta-

morphism and Late Cretaceous toPaleocene exhumation. 

Geol. Carpath. 64, 5, 383–398.

Janák  M.  1994: Variscan  uplift  of  the  crystalline  basement, Tatra 

Mts., central Western Carpathians: Evidence from 

40

Ar/

39

Ar  

laser probe dating of biotite and P-T-t paths. Geol. Carpath.  

45, 293–300.

Janák M. & Plašienka D. 1999: Deciphering Alpine and Pre-Alpine 

metamorphism in the Western Carpathians: an overview. Geol. 

Carpath., Spec. Iss., 50, 105–107.

Janák M., Plašienka D., Frey M., Cosca M., Schmidt Th., Lupták B. 

& Méres Š. 2001: Cretaceous evolution of a metamorphic core 

complex,  the  Veporic  unit,  Western  Carpathians  (Slovakia): 

P-T conditions and in situ 

40

Ar/

39

Ar UV laser probe dating of 

metapelites. J. Metamorph. Geol. 19, 197–216.

Jaksa-Bykowski C. 1925: Contribution to petrographic characteris -

tic  of  the  Magura  flysch  in  the  area  of  Krościenko  on  the 

 Dunajec  river.  Archive of the Mineralogical Lab of the Scien

-

tific Warsaw Society 1, 123–130 (in Polish).

Konečný P., Siman P., Holický I., Janák M. & Kollárová V. 2004: 

Method of monazite dating by means of the microprobe.    

 Miner.  Slov. 36, 225–235.

Kruglov  S.S.  &  Cypko A.K.  1988:  Tectonics  of  Ukraine.  Nedra 

 Publishers, Moscow, 1–253 (in Russian).

Książkiewicz  M.  (Ed.)  1962:  Geological  Atlas  of  Poland.  Strati-

graphical-facies issues. Cretaceous and Lower Tertiary in Polish 

Outer Carpathians. Geological Institute, Warsaw (in Polish).

background image

270                                                                                                   

OSZCZYPKO, SALATA

 

and KONEČNÝ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271

Lashkievitsch  Z.M.,  Medvedev A.P.  &  Krupskiy Y.Z.  1995: Tec-

tonomagnetic evolution of Carpathians (in Russian). Naukova 

Dumka, Kiev, 1–113.

Miclăuş C., Baciu D.S. & Iancu O.G. (Eds) 2010: The crystalline- 

mesozoic zone of the East Carpathians. A review. In: Excur-

sion guide of the International Symposium: Geology of 

 

Natural Systems — Geo Iaşi 2010, September 1–4, 2010, Iaşi, 

Romania, 14–21.

Mišík M., Sýkora M. & Jablonský J. 1991a: The Strihovce Con-

glomerate and South-Magura Cordillera. Zapadné Karpaty, 

 

ser. geol. 14, 7–72 (in Slovak). 

Mišík M., Sýkora M., Mock R. & Jablonský J. 1991b: Paleogene 

Proč Conglomerates of the Klippen belt in the Western Car-

pathians, material from Neopieninic Exotic Ridge. Acta Geol. 

Geogr. Univ. Carol., Geol. 46, 1–101. 

Mochnacka K. & Węcławik S. 1967: Paleogene exotic rocks in the 

Paleogene of the Magura Nappe near Tylicz. Sprawozdania 

z Posiedzeń Komisji PAN Kraków XI/2, 805–808 (in Polish).

Montel J.M., Foret S., Veschambre M., Nicollet Ch. & Provost A. 

1996:  Electron  microprobe  dating  of  monazite.  Chem. Geol

131, 37–53.

Nemčok  J.  1990a:  Geological  Map  of  Pieniny,  Ľubovnianska  Vr -

chovina  Highland  and  Čergov  Mts.  Geologický Ústav 

D. Štúra. Bratislava.

Nemčok J. 1990b: Explanations to the Geological Map of Pieniny, 

Ľubovnianska  Vrchovina  Highland  and  Čergov  Mts.  Geol. 

 

Ústav D. Štúra. Bratislava, 1–131.

Olszewska B. & Oszczypko N. 2010: Geological position, sedimen-

tary record and composition of the Tylicz Conglomerate (Late 

Eocene-Oligocene): stratigraphical and paleogeographical im-

plications  (Magura  Nappe,  Polish  Outer  Carpathians).  Geol. 

Carpath. 61, 1, 39–54.

Oszczypko N. 1975: Exotic rocks in the Palaeogene of the  Magura 

nappe between Dunajec and Poprad rivers, Carpathians, 

 

Poland. Ann. Soc. Geol. Pol. 45, 3–4, 403–431 (in Polish).

Oszczypko N. 1992: Late Cretaceous through Paleogene evolution  

of Magura Basin. Geol. Carpath. 43, 6, 333–338.

Oszczypko  N.  &  Oszczypko-Clowes  M.  2006.Evolution  of  the 

Magura  Basin.  In:  Oszczypko  N.,  Uchman  A.  &  Malata  E. 

(Eds.):  Paleotectonic  evolution  of  the  Outer  Carpathian  and 

PieninyKlippen Basins. Inst. Nauk Geol. Uniw. Jagiell., 

Kraków, 132–164. (in Polish).

Oszczypko  N.  &  Oszczypko-Clowes  M.  2009:  Stages  in  Magura 

Basin: a case study of the Polish sector (Western Carpathians). 

Geodyn. Acta 22, 1–3, 83–100.

Oszczypko  N.  &  Oszczypko-Clowes  M.  2010:  Lithostratigraphy  

and biostratigraphy of the Palaeogene to Lower Miocene de-

posits of the Beskid Sadecki Range (Magura Nappe, Western 

Flysch Carpathians, Poland). Acta Geol. Pol. 60, 3, 317–348.

Oszczypko N. & Salata D. 2005: Provenance analyses of the Late 

Cretaceous-Palaeocene deposits of the Magura Basin (Polish 

Western Carpathians) — evidence from a study of the heavy 

minerals. Acta Geol. Pol. 55, 237–267.

Oszczypko N. & Zuber A. 2002: Geological and isotopic evidence  

of diagenetic waters in the Polish Flysch Carpathians. Geol. 

Carpath. 53, 4, 257–268.

Oszczypko N., Dudziak J. & Malata E. 1990: Stratigraphy of the 

Cretaceous through Palaeogene deposits of the Magura Nappe 

in the Beskid Sądecki Range, Polish Outer Carpathians. Stud. 

Geol. Pol. 47, 109–181 (in Polish). 

Oszczypko N., Oszczypko-Clowes M., Golonka J. & Krobicki M. 

2005: Position of the Marmarosh Flysch (Eastern Carpathians) 

and its relation to the Magura Nappe (Western Carpathians). 

Acta Geol. Hung. 48, 3, 259–282.

Oszczypko  N.,  Oszczypko-Clowes  M.,  Golonka  J.  &  Marko  F.  

2005: Oligocene–Lower Miocene sequences of the Pieniny 

Klippen Belt and adjacent Magura Nappe between Jarabina 

and  the  Poprad  River  (East  Slovakia  and  South  Poland)  — 

their tectonic position and paleogeographic implications. Geol. 

Quarterly 49, 4, 379–402.

Oszczypko  N.,  Oszczypko-Clowes  M.  &  Salata  D.  2006:  Exotic 

rocks of the Krynica Zone (MaguraNappe) an their paleogeo-

graphic significance. Geologia 32, 1, 21–45. (in Polish).

Oszczypko N., Ślączka A., Oszczypko-Clowes A. & Olszewska B. 

2015: Where was the Magura Ocean. Acta Geolo. Polon. 65, 

3, 319–344. 

Oszczypko-Clowes M. 2001: The nannofossils biostratigraphy of 

the youngest deposits of the Magura Nappe (East the Skawa 

river, Polish flysch Carpathians) and their palaeenvironmental 

conditions. Ann. Soc. Geol. Pol. 71, 139–188.

Oszczypko-Clowes M., Soták J., Oszczypko N. & Šurka J. 2013: 

Biostratigraphic revision of the Magura Unit in the Horná Ora-

va region (Slovakia): constraints for Oligomiocene formations. 

In: Broska I. & Tomašových A. (Eds.): Geological evolution 

of the Western Carpathians: new ideas in the field of inter-re-

gional correlations. GEEWEC 2013, Smolenice. Geological 

Institute SAS, Bratislava, 66–67. 

Petrík  I.,  Broska  I.  &  Uher  P.  1994:  Evolution  of  the  West  Car-

pathian granite magmatism: source rock, geotectonic setting 

and relation to the Variscan structure. Geol. Carpath. 45, 

283–291.

Pitcher W.S. 1982: Granite type and tectonic environment. In: Hsu 

K.J.  (Ed.):  Mountain  building  processes.  Academic Press

London, 19–40.

Plašienka D. 2000: Paleotectonic controls and tentative palinspastic 

restoration of the Carpathian realm during the Mesozoic. Slo

-

vak Geol. Mag. 6, 2–3, 200–204.

Poprawa P., Malata T., Pécskay Z., Banaś M., Skulich J., Paszows-

ki M. & Kusiak M. 2004: Geochronology of crystalline base-

ment of the Western Outer Carpathians sediment source areas 

- preliminary data. Miner. Soc. Pol. — Special Papers, 24, 

329–332.

Poprawa P., Kusiak M.A., Malata T., Paszkowski M., Pécskay Z. 

& Skulich J. 2005: Th–U–Pb chemical dating of monazite and 

K/Ar dating of mica combined: preliminary study of “exotic” 

crystalline  clasts  from  the  Western  Outer  Carpathian  flysch 

(Poland). Miner. Soc. Pol. — Special Papers, 25, 345–351.

Pyle  J.M.,  Spear  S.F.,  Rudnick  R.L.  &  McDonough  W.F.  2001: 

Monazite-xenotime-garnet equilibrium in metapelites and new 

monazite-garnet thermometer. J. Petrol. 42, 11, 2083–2107.

Salata D. 2004: Detrital garnets from the Upper Cretaceous-  

Palaeocene sandstones of the Polish part of the Magura nappe 

and the Pieniny Klippen Belt: chemical constraints. Ann. Soc. 

Geol. Pol. 74, 351–364.

Săbău G. & Negulescu E. 2014: Inheritance, Variscan tectonometa-

morphic evolution and Permian to Mesozoic rejuvenations in  

the metamorphic basement complexes of the Romanian Car-

pathians revealed by monazite microprobe geochronology 

 

EGU General Assembly 2014, Geophys. Res. Abs. 16, 

EGU2014-4324-2.

Săndulescu  M.  1984:  Geotectonics  of  Romania.  Ed. Tehnica

Bucharest, 1–450 (in Romanian).

Ślączka A., Kruglov S., Golonka J., Oszczypko N. & Popadyuk I. 

2006: Geology and hydrocarbon resources of the Outer Car-

pathians, Poland, Slovakia, and Ukraine: General Geology. In: 

Golonka J. & Picha F.J. (Eds.): The Carpathians and their fore-

land: Geology and hydrocarbon resources. AAPG Memoir 84, 

221–258.

Schmid S.M., Bernoulli D., Fügenschuh B., Matenco L., Schuster  

R.,  Schefer  S.,  Tischler  M.&  Ustaszewski  K.  2008:  The  

Alpine- Carpathian-Dinaridic orogenic system: correlation and 

evolution of tectonic units. Swiss J. Geosci. 101, 139–183.

background image

271

MICA-SCHIST PEBBLES FROM EOCENE CONGLOMERATES (OUTER CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 257–271 

Spear  F.S.  &  Pyle  J.M.  2002:  Apatite,  monazite,  and  xenotine  in 

metamorphic rocks. In: Kohn M.L., Rakovan J. & Hughes J.M. 

(Eds.): Phosphates - geochemical, geobiological, and materials 

importance. Rev. Mineral. Geochem. 48, 293–336.

Strutinski C., Puşte A. & Stan R. 2006: The metamorphic basement  

of Romanian Carpathians: a discussion of K-Ar and 40Ar/ 

39Ar  ages.  Studia  Universitatis  Babeş-Bolyai,  Geologia 51, 

1–2, 15–21.

Unrug R. 1968: Kordyliera śląska jako obszar źródłowy materiału 

klastycznego  piaskowców  fliszowych  Beskidu  Śląskiego  i 

Beskidu  Wysokiego  (Polskie  Karpaty  Zachodnie).  Ann. Soc. 

Geol. Pol. 38, 81-164. (In Polish with English Sumary).

Ustaszewski K., Schmid S., Fügenshuh B., Tischler M., Kissling E.  

& Spakman W. 2008: A map-view restoration of the Alpine- 

Carpathian-Dinaridic system for the Early Miocene. Swiss J. 

Geosci. 101, Supp. Issue, 273–294.

Węcławik S. 1969: The geological structure of the MaguraNappe be-

tween Uście Gorlickie and Tylicz, Carpathians (Lower Beskid). 

Prace Geol., PAN, Oddz. w Krakowie 59, 1–96 (in Polish).

Wieser  T.  1970:  Exotic  rocks  from  the  deposits  of  the  Magura 

nappe. Bulletin IG 235, 123–161.

Win K.S., Takeuchi M. & Tokiwa T. 2007: Changes in detrital gar-

net assemblages related to transpressive uplifting associated 

with strike-slip faulting: an example from the Cretaceous Sys-

tem in Kii Peninsula, southwest Japan. Sediment. Geol. 201, 

412–431.

Zhu X.K. & O’Nions R.K. 1999:  Zonation of monazite in meta-

morphic rocks and its implications for high temperature ther-

mochronology: a case study from the Lewisian terrain. Earth 

Planet. Sci. Lett. 171, 209–220.

Żytko K., Gucik S., Ryłko W., Oszczypko N., Zając R., Garlicka I., 

Nemčok J., Eliáš M., Menčik E. & Stránik Z. 1989: Map of the 

tectonic elements of the Western Outer Carpathians and their  

foreland. In: Poprawa D. & Nemčok J. (Eds): Geological atlas  

of the Western Outer Carpathians and their foreland. PIG 

Warszawa, GUDS Bratislava, UUG Praha.