background image

www.geologicacarpathica.com

GEOLOGICA CARPATHICA

, JUNE 2016, 67, 3, 239–256   

doi: 10.1515/geoca-2016-0016

Upper Cretaceous to Lower Miocene of the Subsilesian Unit  

(Western Carpathians, Czech Republic):                   

stratotypes of formations revised.

MIROSLAV BUBÍK

1 

, JURAJ FRANCŮ

1

, HELENA GILÍKOVÁ

1

, JIŘÍ OTAVA

1

                                   

and LILIAN ŠVÁBENICKÁ

1

Czech Geological Survey, Leitnerova 22, 602 00 Brno, Czech Republic;  

miroslav.bubik@geology.cz, juraj.francu@geology.cz, helena.gilikova@geology.cz, jiri.otava@geology.cz

2

Czech Geological Survey, Klárov 131/3, 118 21 Praha, Czech Republic; lilian.svabenicka@geology.cz

(Manuscript received June 11, 2015; accepted in revised form March 10, 2016)

Abstract: Type sections/areas for all four formations distinguished in the sedimentary succession of the Subsilesian 

Unit on Czech territory were revisited and described. New data on lithology, sedimentology, fossil record, biostratigraphy, 

heavy-minerals and geochemical proxies are based on observations and analysis of these sections. The historical type 

section of the Frýdek Formation was destroyed during railway construction in 19

th

 century. Outcrops of Campanian to 

Maastrichtian marls and sandstones on the southwestern slope of “Castle hill” at Frýdek, are proposed as a new type 

section. The Ostravice riverbed in Frýdlant nad Ostravicí was originally designated as the type area, not mentioning 

the particular section. This area, even when supplemented with Sibudov Creek, does not show all typical facies of   

the formation. The outcrops range from lowermost Eocene to Eocene–Oligocene transition. In the original description  

of  the  Menilite  Formation  Glocker  mentioned  several  localities  in  the  area  covering  the  Ždánice,  Subsilesian  and  

Silesian units, not mentioning the principal one. The single sections, each not exceeding a thickness of 2 m, are not  

sufficient to be a type section. Instead of that, we propose the area between Paršovice and Bystřice pod Hostýnem,   

covering the historical localities, as the type area. The type locality of the Ženklava Formation is an outcrop in an unnamed 

creek in Ženklava according to the original definition. It seems to be reasonable to extend the type section to the whole 

500 m long section of the creek with the outcrops that better illustrate the lithological variability of the formation. New 

biostratigraphic data allow assignment to late Egerian (Eggenburgian?).

Key words: Subsilesian Unit, Outer Flysch Carpathians, Cretaceous, Palaeogene, Miocene, lithostratigraphy, biostratigraphy, 

heavy minerals, geochemistry.

Introduction

Geological studies of the Outer Flysch Carpathians in 

northern Moravia and Silesia started around the middle of  

the 19

th

 Century. Generations of geologists accumulated 

a huge complex of knowledge. The delimitation of the Sub-

silesian Unit as a distinct nappe was done relatively late in 

connection with the development of micropalaeontology and 

biostratigraphy  after  the  Second World War  (Książkiewicz 

1951; Hanzlíková et al. 1953). Formal lithostratigraphic sub-

division of the sedimentary succession in the studied area  

into four formations was finished by Eliáš (1993, 1998). This 

complex of knowledge, nevertheless, contains a number of 

inadequate  definitions  and  synonyms  that  caused  further 

 confusion. Inadequate description and confusion about the 

type locality led to the question of what actually is the Žen-

klava Formation. If we are correct, no attempt has been made 

since Glocker’s geological studies in 1843 to choose a defi-

nite type locality from seven localities mentioned in the 

original paper. Finally, neither a detailed description, nor de-

tails of the position of the type sections for the Frýdek and 

Frýdlant formations have been published since these forma-

tions were described. These problems still need to be fixed 

for the sake of a definite and stable lithostratigraphy.

Type sections are an essential clue in the case of any doubt 

about the nature and position of a lithostratigraphic unit. Any 

revision or redefinition of units has to be based on study of  

the type section that serves as the standard documenting the 

true nature of the unit erected by the original author. 

In today’s open Europe the borderlines play a much smaller 

role then in the past. It is no longer acceptable that geological 

units stop at these borders just because of the isolation and 

traditionalism of national geological communities. Projects 

of European geological maps will demand more correlation 

and unification and the type sections may be needed for such 

a task.

The  main  objective  of  this  paper  is  to  provide  adequate 

description of the type sections for all four valid formations 

of the Subsilesian Unit in its western sector (Moravo-Silesian 

Beskydy and its foothills) and select one type section from 

several original localities where needed.

Geological setting

The  Subsilesian  Unit  is  a  part  of  the  Outer  Group  of  

Nappes of the Outer Flysch Carpathians. It is exposed in 

a zone along the margin of the Outer Flysch Carpathians and 

background image

240                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

also in several tectonic windows within the Silesian Nappe 

(Fig. 1). The zone runs for a distance of about 100 km from 

the vicinity of Kelč in Moravia to the vicinity of Bielsko- 

Biała  in  Poland  (Eliáš  1998).  In  the  broader  concept  of 

Polish authors the unit extends even much further to the 

Eastern Carpathians with possible equivalents in Ukraine 

(Ślączka et al. 2006). Eliáš (1998) compared this eastern sec-

tor of the Subsilesian Unit with the Kelč facies of the Sile-

sian Unit. He interpreted the western continuation of the 

Subsilesian Unit as a part of the Eastern Alpine Helveticum.

Roth and Hanzlíková (1967) unified the Ždánice Unit and 

Waschbergzone in the South with the Subsilesian Unit in the 

North under the term “Ždánice-Subsilesian Unit”. They ar-

gued with uniform facies development during the Late Creta-

ceous–Eocene. The Subsilesian Unit can still be understood 

as a distinct tectonic unit based on its specific structural fea-

tures. Intense compression and the load of the robust and 

competent overlying Silesian Nappe deformed the sediments 

much more intensively compared with the same sediments in 

the  Ždánice  sector,  outside  the  influence  of  the  Silesian 

Nappe.  The  pelitic  formations  of  the  Subsilesian  Nappe 

possess complicated structure with frequent tectonic slices, 

lenses,  flat  overturned  folds  and  zones  of  tectonic  breccia 

(Roth 1971; Menčík et al. 1983). The complexity of defor-

mation increases at the base of the nappe. The upper part of 

the nappe includes slices of the overlying Silesian Unit.

The  sedimentary  succession  of  the  Subsilesian  Unit  in 

Czech territory is subdivided into four formations: the Frý-

dek,  Fýdlant,  Menilite  and  Ženklava  fms.  (see  Fig.  2). 

In Polish teritory the subdivision into formations was pro-

posed by Olszewska (1997) on the basis of an unpublished 

lithostratigraphy elaborated by the working group of 

 

A. Wójcik for the general map of Poland. They distinguish 

(from  base):  Frýdek  Fm.,  Węglówka  Fm.,  Bachórz  Fm. 

(=“Hieroglyphic Beds”), Znamirowice Fm. (=”Globigerina 

Marls”), and Rudawka Rymanowska Fm. (=Menilite Fm.). 

These  formations  are  not  widely  accepted  and  various  au-

thors distinguish numerous informal units not assigned to 

any  formation  (e.g.  Waśkowska  2011;  Cieszkowski  et  al. 

2012).

The sedimentary succession of the unit was deposited on 

the northern slope of the Silesian Basin and on the Subsile-

sian Ridge (Golonka 2011). Particularly the grey marls and 

siltstones of the Frýdek Formation in the western sector of 

the Subsilesian Unit represent typical slope facies. Red and 

variegated  marls  of  Węglówka  type  were  deposited  under 

oligotrophic conditions and low sedimentary rates what indi-

cate the setting of a submarine elevation (Subsilesian Ridge).

Material

Biostratigraphical, petrographical, mineralogical and 

 geochemical data mentioned in description of the type sec-

tions are based mostly on newly collected rock samples. The 

small reference samples (rock pieces) are stored at sample 

depository of the Czech Geological Survey in Brno. Micro-

palaeontological residues, picked microfossils, thin sections 

and heavy mineral samples are stored in the same place. 

Field observations including description of exposures, litho-

logy, structures, GPS position, and photodocumentation are 

recorded in the documentation database of the CGS.

Fig. 1. Overview tectonic map with situation of type sections and 

areas in the Subsilesian Unit in Moravia.

Fig. 2. Lithostratigraphic chart with stratigraphic ranges of studied 

sections.

background image

241

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Methods

During the field observations the most complete sections 

were measured and described bed-by-bed. GPS position of 

sections was recorded using Garmin 60CSx (Table 1). The 

geological layer in the situation maps is based on the on-line 

geological map 1:50,000 of the Czech Geological Survey 

(www.geology.cz) but modified according to new field ob-

servations. The samples for microfossils were disintegrated 

in solution of sodium bicarbonate and washed on sieves of 

mesh size 0.063 mm. Microfossils from hard carbonate rocks 

were retrieved by an acetolysis using 80 % acetic acid fol-

lowing Lirer (2000). Microfossils were manually picked under 

binocular microscope. Smear slides for calcareous nannofos-

sils were prepared using a decantation method (Švábenická 

2012). Nannofossil data were correlated applying Upper 

Cretaceous UC (Burnett 1998) and Palaeogene NP (Martini 

1971)  and  NNT  (Varol  1998)  nannoplankton  zones.  

Photodocumentation of microfossils was done using an SEM 

microscope Jeol JSM-6380 microscope Nikon SMZ1500 

equipped with camera ProgResCT3. Nannofossils were ob-

served and documented using a Nikon Microphot-FXA 

transmitting light microscope. For study of heavy minerals 

the psammitic rocks were crushed and the size fraction 

0.063–0.25 mm washed on sieves. Heavy minerals were sepa-

rated from the sieved fraction using tetrabromethane 

 

(C

2

H

2

Br

4

). When needed, opaque magnetic minerals were 

removed using a magnetic separator. The translucent heavy 

minerals were quantitatively analysed from counts between 

200 and 1200 grains. The recorded % value reflects a grain 

number. The ZTR maturity index expresses total percentual 

quantity of zircon, tourmaline and rutile grains in the associa-

tion. The index increases with both chemical and mechanical 

maturity of the psammitic fraction. Total inorganic carbon, 

total  organic  carbon  and  total  sulphur  (TIC, TOC  and TS) 

were analysed using the ELTRA elementar analyser. Nanno-

fossil slides, thin sections and heavy mineral fractions were 

prepared at the CGS laboratory in Prague. Processing of fora-

minifer samples and geochemical analysis were done at the 

CGS laboratory in Brno.

 Frýdek Formation

History of studies

Hochstetter (1852) was the first to study the geology of the 

outcrop on the right bank of the Ostravice River below the 

Frýdek castle/chateau. Based on this outcrop he introduced 

a new stratigraphic unit “Friedek-Mergel” or “Friedek 

Schichten”, now classified as the Frýdek Formation. Origi-

nally he characterized the strata as 

20 to 30 feet thick ash grey marls, 

sandy  in  places,  containing  fine 

mica, frequent calcite veins, pyrite 

nodules and small gypsum crystals 

covering crack surfaces. At the base 

of the outcrop he reported a one-foot 

thick bank of calcareous sandy con-

glomerate composed of quartz 

grains, mica and coal fragments. 

Hochstetter (l.c.) also reported in de-

tail finds of Baculites ammonite fau-

na within the marls. Based on these 

finds  Hohenegger  (1852)  assigned 

the “Baculiten-Schichten” to the 

Gault and later (1861) correlated 

them  with  the  “Plänermergel”  (Tu-

ronian–Coniacian) of the Bohemian 

Cretaceous Basin. Finally Liebus 

and Uhlig (1902) produced a sys-

tematic description of the ammo-

nites and recognized the “upper 

Senonian” age of this fauna. 

 

 

Růžička and Beneš (1949) conducted 

the  first  micropalaeontological  in-

vestigations and reported rich Upper 

Cretaceous foraminifer fauna. Eliáš 

and  Hanzlíková  (1964)  informed 

about the results of petrographical 

and microbiostratigraphical study. 

Based on planktonic foraminifers, 

they assigned the strata at “Castle 

hill” to the Maastrichtian. Systematic 

study of foraminifers was done by 

Table 1: Overview of the studied sections and their GPS position.

locality

section/ 

point

map 

sheet

latitude-longitude

formation

beginning

end

Frýdek

MB001

25-221

N49 41 05.0  E18 20 46.2

N49 41 03.1  E18 20 49.9

Frýdek Fm.

MB026

25-221

N49 41 09.4  E18 20 34.8

N49 41 08.4  E18 20 37.9

Frýdlant n. 

O.

MB006

25-223

N49 35 03.3  E18 21 55.9

Frýdlant 

Fm.

MB007

25-223

N49 35 07.3  E18 21 55.7

N49 35 04.9  E18 21 55.7

MB008

25-223

N49 35 11.4  E18 21 54.9

N49 35 10.1  E18 21 55.5

MB009

25-223

N49 35 19.5  E18 21 56.5

N49 35 18.0  E18 21 55.7

MB010

25-223

N49 35 29.0  E18 21 58.1

N49 35 24.3  E18 21 55.9

MB021

25-223

N49 34 39.2  E18 22 02.8

MB022

25-223

N49 34 41.4  E18 22 01.6

MB023

25-223

N49 34 41.4  E18 22 01.6

MB024

25-223

N49 35 16.3  E18 21 57.9

N49 35 14.3  E18 21 58.5

Sibudov

MB011

25-223

N49 34 51.0  E18 22 48.5

N49 34 51.1  E18 22 49.6

MB012

25-223

N49 34 49.3  E18 22 43.1

N49 34 50.5  E18 22 43.2

MB013

25-223

N49 34 46.4  E18 22 25.1

MB014

25-223

N49 34 45.0  E18 22 16.7

N49 34 44.4  E18 22 17.3

Dolní 

Těšice

MB032

25-141

N49 29 34.1  E17 48 04.1

Menilite 

Fm.

MB033

25-141

N49 29 16.3  E17 47 58.9

Rakov

MB034

25-141

N49 29 09.0  E17 42 22.6

MB035

25-141

N49 29 03.6  E17 42 30.3

MB036

25-141

N49 29 04.6  E17 42 45.7

MB037

25-141

N49 29 02.7  E17 42 52.3

MB038

25-141

N49 29 19.4  E17 43 05.2

MB039

25-141

N49 29 11.9  E17 43 05.9

MB040

25-141

N49 29 04.7  E17 42 24.0

Paršovice

MB041

25-141

N49 30 10.0  E17 42 18.4

N49 30 10.1  E17 42 19.4

Sovadina

MB001

25-134

N49 25 12.0  E17 39 26.0

MB002

25-134

N49 25 19.2  E17 39 28.7

Horní 

Těšice

MB043

25-141

N49 29 29.6  E17 47 42.7

N49 29 29.3  E17 47 41.8

MB044

25-141

N49 29 32.6  E17 47 33.0

N49 29 32.2  E17 47 33.1

MB046

25-141

N49 29 26.4  E17 47 42.6

Ženklava

MB046

25-213

N49 33 44.8  E18 06 03.1

N49 33 44.5  E18 06 09.2

Ženklava 

Fm.

MB047

25-213

N49 33 44.9  E18 06 09.7

N49 33 45.5  E18 06 11.7

MB048

25-213

N49 33 46.2  E18 06 13.1

MB049

25-213

N49 33 46.3  E18 06 16.9

MB050

25-213

N49 33 46.8  E18 06 19.8

MB051

25-213

N49 33 46.7  E18 06 22.8

background image

242                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Hanzlíková (1969 and 1972), later supplemented with evalua-

tion of calcareous nannofossils (Hanzlíková et al. 1982).

Description of outcrops

The south-western steep slope of the “Castle hill” in Frý-

dek has outcrops at two locations (Fig. S1 in the Supplemen-

tary Material file): below Hasičská street (section MB001) 

and below an orchard (section MB026). The slope is covered 

by dense growth of bush and trees.

MB001. At the present time, claystones and sandstones 

crop out in a few small flat isolated outcrops (Fig. 3A) over 

a distance of 96 m. Brown grey silty marls prevail over sand-

stones.  The  grey  laminated  fine-grained  calcareous  sand-

stones occur in banks up to 1 m thick. Locally, sandstone 

banks are deformed by gravity folds. The measured bedding 

dip indicates fold deformation (280/35°, 313/48°, 152/65°).

MB026. The isolated exposures are situated in a steep up-

per part of a railway cut below the old orchard over a dis-

tance of 70 m. At the north-western end of the cut, slope 

debris of coarse-grained biodetritic sandstone was observed. 

The largest exposure in the middle part of the cut represents 

an 8.5 m thick continuous section (Fig. S2 in the Supplemen-

tary Material file). Brown grey silty marls prevail over the 

grey marls and isolated banks of grey calcareous sandstone. 

Some sandstone banks are deformed to gravity folds 

(Fig. 3B). 

Lithology and sedimentology

Grey brown calcareous silty marls are the prevailing rock 

type in the outcrops. Brownish grey weathered fine- to me-

dium-grained calcareous sandstones occur in isolated banks 

10 to 100 cm thick (Fig. 4). According Eliáš and Hanzlíková 

(1964) claystones comprise 50–

60 % of silt and 5–10 % of sand. 

Greywacky sandstones comprise 

30–45 % of calcite, 20–30 % of 

clay matrix, 25–45 % of subangu-

lar quartz, 1–2 % of feldspars, 

1–2 % of bioclasts, 1 % of clayey 

clasts and accessoric muscovite, 

biotite, chlorite, pyrite, glauconite, 

siderite and dolomite.

Fine-grained calcareous sand-

stone to sandy limestone 

(MB001Z4) shows in thin section 

carbonate basal cement, that cor-

rodes clastic grains. Silicification 

is observed in places. Well-sorted 

clasts comprise monocrystallic 

and aggregate grains of quartz 

(dominant), bioclasts (about 

10 mod. %: mainly small calca-

reous benthic foraminifera, calci-

fied sponge spicules, inoceramid 

prisms and phytodetrite), K-feld-

spar and plagioclase (20 mod. %), 

glauconite (3–5 mod. %), musco-

vite, biotite and chlorite 

(1 mod. %). Plagioclases prevail 

over K-feldspars. They used to be 

both sericitized.

Coarse-grained calcareous 

sandstone to sandy limestone 

(sample MB026A2; Fig. 5) has 

carbonate basal cement corroding 

clastic grains. The clastic compo-

nent comprises sub-oval to sub- 

angular grains of monocrystallic 

and aggregate of quartz ranging 

between 0.5 and 0.75 mm 

 

 

 

(dominant), K-feldspar and pla-

gioclase (20 mod. %), bioclasts 

(20 mod. %: mainly bryozoans, 

coralline algae, echinoid spines, 

small calcareous benthic fora-

Fig. 3. Outcrops of the Frýdek Formation at Frýdek: A — calcareous sandstone at the type section 

(MB001), photograph: M. Bubík, 2012; B — Gravity fold consisting of calcareous sandstone be-

low an orchard (MB026), photograph: M. Bubík, 2014.

Fig. 4. Lithology and sedimentology of the MB026 Frýdek below an orchard with samples indi-

cated by asterisk.

background image

243

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

minifera and plant debris), sub-oval pebbles of gneisses and 

mica schists (7 mod. %), muscovite, biotite, chloritized 

biotite and chlorite (5 mod. %), glauconite (2–3 mod. %) and 

rarely lithoclasts of carbonatized volcanite, granitoids and 

quartzites.

The sandstones represent turbidites with wavy lamination, 

ripple marks and burrowings. Silty marls with positive gra-

dation were probably also deposited from turbidite currents. 

Gravity folds indicate high sedimentary rate and submarine 

slope failures that may locally disturb the stratigraphic order 

of strata. Hemipelagic sedimentation is indicated by the pre-

sence of deep-sea agglutinated foraminifer fauna (Saccorhiza, 

Bathysiphon, Arthrodendron) in the terminal part of graded 

marl rhythms. 

Fossil record and biostratigraphy

Hohenegger (1861) reported from the type locality a mol-

lusc fauna with Baculites faujasi Lam., Belemnites lanceola­

tus Sow., Turrilites cf. undulatus Sow., Pinna nodulosa 

Reuss and 

Inoceramus latus Mant. and compared it with the 

Turonian–Coniacian fauna of the Bohemian Cretaceous Ba-

sin. Based on revision of an old collection from Frýdek, Lie-

bus and Uhlig (1902) described stratigraphically important 

ammonites  Baculites hochstetteri Liebus and Puzosia  aff. 

planulata Sow. indicating upper Senonian age. No ammo-

nite finds have been reported since these times. Marls of the 

Frýdek Formation contain rich foraminiferal taphocoenosis. 

Hanzlíková (1969) assigned the Frýdek Formation based on 

the finds of Abathomphalus mayaroensis from test trenches 

on the slope of the Castle hill to the upper Maastrichtian. 

Later revision of biostratigraphy supplemented by calcareous 

nannofossils revealed that the main part of the section is lo-

wer Maastrichtian (Hanzlíková et al. 1982). The authors con-

sidered that the finds of Abathomphalus mayaroensis at the 

base of the section could come from another tectonic slice.

Newly collected micropalaeontological samples gave 

 taphocoenosis dominated by small planktonic foraminifera 

Fig. 5.  Thin  section  of  coarse-grained  biodetritic  sandstone  with 

calcareous algae, bryozoans and benthic foraminifer Gyroidinoides 

sp. (sample Frýdek MB026A2).

(Heterohelix, Macroglobigerinelloides and Rugoglobigerina). 

Benthic foraminifera are represented by tiny calcareous taxa: 

Quinqueloculina sp., Buchnerina sp., Patellina sp., Cribro­

conica sp., Praebulimina reussiP. triangularisEouvigerina 

serrataGlobimorphina sp., Pyramidina cimbricaAlabamina 

dorsoplanaRotorbinella supracretaceaPullenia marssoni

Pararotalia cf. bandyiGyroidinoides spp., Gavelinella spp. 

etc. accompanied by scarce agglutinated forms 

 Spiroplectammina spp. Sample MB001Z3). The coarser size 

fraction of residues contains usually robust forms of benthos 

like  Lenticulina  cf.  discrepans,  Nodosaria spp., Siphono­

dosaria spp., Hemirobulina hamuloides,  Praebulimina 

petroleana,  Allomorphina obliqua,  Nuttallinella  florealis

Remesella varians and keeled plankton Globotruncana spp. 

Claystones from the top of graded rhythms (samples MB026 

B3, B4, B5) contained abundant large agglutinated taxa 

Saccorhiza  sp.,  Bathysiphon  spp. and Arthrodendron  sp.  

Preliminary results of planktonic foraminifer study does not 

allow biostratigraphical subdivision within the upper Cam-

panian–Maastrichtian interval.

The foraminifer fauna is accompanied by abundant calcite 

prisms from destroyed inoceramid shells. Less common are 

sponge spicules, calcispheres, coalified plant debris (tissues, 

seeds, and cuticles), echinoid elements and ostracods. Rarely 

calcified radiolarians and pyritized planktonic diatoms occur. 

Newly studied calcareous nannofossils enable us to distin-

guish three stratigraphic levels:

1) upper Campanian UC15e

TP

 zone with Eiffellithus       

eximius and Zeugrhabdothus diplogrammus (sample 

MB001Z1);

2) upper Campanian UC16a–b

BP

 zone with Broinsonia 

parca constricta and Monomarginatus quaternarius (sample 

MB026B5);

3) lower Maastrichtian UC17–18 Reinhardtites levis and 

Biscutum magnum (samples MB026B4 and MB001Z3).

The  oldest  level  contains  low-latitude  taxa Uniplanarius 

spp., Ceratolithoides spp.  (Fig. 6) and Prediscosphaera 

grandis together with high-latitude Prediscosphaera stoveri 

and Monomarginatus quaternarius. In the uppermost Cam-

panian low-latitude taxa disappear (species of genus Unipla­

narius) or occur scarcely (Ceratolithoides aculeus) while 

high-latitude taxa increase in quantity (

Micula staurophora, 

Kamptnerius magnificus). 

Heavy mineral assemblage

In the heavy-mineral fraction from sandstones opaque 

minerals prevail over the translucent. The fine-grained sand-

stone from the MB001 section contained garnet-zircon-rutile 

assemblage with minor tourmaline and staurolite, while the 

MB026 contained garnet-tourmaline-zircon assemblage with 

minor rutile, apatite and staurolite (Table 2). The ZTR matu-

rity index shows medium values between 46 and 53 %. Simi-

lar assemblages were also recorded in the Frýdek Formation 

west of the type area.

Geochemical proxies

The  typical  brown  grey  pelitic  rock  from  the  Frýdek 

MB001 section shows rather low total organic carbon (TOC) 

of 0.53 % (Table 3), sulphur (TS) of 0.25 % and increased 

background image

244                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

inorganic carbon (TIC) that corresponds to marl (CaCO

3

 of 

34 %). The exposed rocks in the Frýdek type area are partly 

weathered and the analytical data may be thus affected.

Remarks

The  original  type  outcrop  below  the  Frýdek  castle  was 

very probably destroyed during the construction of a railway 

finished in 1871. The slope directly below the castle seems 

to be artificially reshaped because of landslide risk and no 

outcrops can be seen there. The location of    Hanzlíková’s 

test trenches is unknown and no map or coordinates were 

given (Hanzlíková 1969 and Hanzlíková et al. 1982).

Reworked microfossils and the disturbed stratigraphic or-

der of strata make the type area inappropriate for biostrati-

graphical study and the local zones of Hanzlíková (1969) can 

hardly be accepted. Hanzlíková et al. (1982) admitted a dis-

Fig. 6. Marker nannofossils from the Subsilesian Unit. 1 — Broinsonia parca constricta, Frýdek MB026B5; 2 — Eiffellithus eximius,  Frý -

dek MB001Z1; 

3 — Biscutum magnum, Frýdek MB026B4; 4 — Reinhardtites levis, Frýdek MB026B4; 5 — Monomarginatus   quaternarius

Frýdek MB026B5; 6 — Micula staurophora, Frýdek MB026B4; 7 — Uniplanarius sissinghii, Frýdek MB001Z1; 8 — Uniplanarius tri fi­

dus, Frýdek MB0001Z1; 9 — Ceratolithoides aculeus, Frýdek MB001Z1; 10 — Prediscosphaera grandis, Frýdek MB001Z1; 11 — Pre­

discosphaera stoveri, Frýdek MB026B4; 12 — Dictyococcites bisectus, Frýdlant MB009; 13 — Reticulofenestra umbilicus, Frýdlant 

MB007;  14 — Reticulofenestra minuta,  Paršovice  MB041D;  15, 16 — Reticulofenestra ornata, Rakov MB036A; 17 — Reticulofenestra  

lockeri,  Dolní  Těšice  MB032;  18 — Coccolithus formosus, Frýdlant MB008; 19 — Helicosphaera bramlettei, Frýdlant MB009;                 

20, 21 — Helicosphaera intermedia, Frýdlant MB008; 22 — Chiasmolithus solitus, Frýdlant MB009; 23 — Chiasmolithus altus, Paršovice 

MB041D; 24 — Sphenolithus spiniger, Frýdlant MB009; 25 — Neococcolithus dubius, Frýdlant MB009; 26 — Pontosphaera obliquipons

MB041D;  27 — Pontosphaera sigmoidalis, Frýdlant MB009; 28 — Pontosphaera latoculata–magna, Rakov MB036A; 

                               

29 — Pontosphaera latelliptica, Rakov MB036A; 30 — Pontosphaera pax, Dolní Těšice MB032. 1–14, 16–21, 24, 26–30 — cross-polarized 

light, 15, 22, 23 and 25 — plane-polarized light.

background image

245

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

turbance by faults (tectonic slices). Newly observed gravity 

folds apparently caused the overturned position of some in-

tervals of the section (Fig. S2 in the Supplementary Material 

file  and  Fig.  4).  Some  marls  contained  reworked  shallow- 

water fauna of bryozoans, cidarids and serpulids (sample 

MB026A). A single specimen of Maastrichtian 

 

Abathomphalus intermedius was found together with a late 

Campanian nannofossil assemblage in the sample MB001Z2. 

The sample MB026B5 contained late Campanian nannofos-

sils and sample MB026B4 early Maastrichtian although they 

came from two limbs of a single fold. All these observations 

may mean that the strata at the type area are to a smaller or 

larger extent part of a slump body. 

Frýdlant Formation

History of studies

Eliáš (1993) defined the Frýdlant Formation as a replace-

ment for the terminologically inappropriate name “Submeni-

litic  Formation”  sensu  Menčík  et  al.  (1983). 

He did not designate explicitly the type section but 

just mentioned “environs of Frýdlant nad 

 

 

 

 

Ostravicí,  in  particular,  Ostravice  riverbed” 

which should be accepted as the type area. 

Müllerová (1961) published the first biostrati-

graphic evaluation of the outcrops in this area 

based on foraminifers. She assigned the strata 

to the Late Eocene of the Subsilesian Unit. Un-

fortunately, she did not specify the position of 

studied samples along the river. Some outcrops 

in the Ostravice riverbed were assigned by 

mistake to the Menilite Formation on geologi-

cal  maps  (Roth  1964,  Menčík  and  Tyráček 

1985,  Menčík  1987).  Menčík  et  al.  (1983) 

speculated about the presence of the Šitbořice 

Member (Menilite Fm.) in Frýdlant referring 

to an unpublished report by Eva Hanzlíková on 

the biostratigraphy of the Menilite Formation. 

Nevertheless,  Hanzlíková  wrote  about  clay-

stones underlying the menilite cherts (no longer 

exposed).

Description of outcrops

In the Ostravice valley at Frýdlant nad Os-

travicí  light  grey  mottled  marlstones  and 

brown grey mudstones are exposed in a series 

of outcrops. Varicoloured clays/claystones in 

Sibudov creek and a facies of dark grey clay-

stones south of its tributary are also a part of 

the same area (Fig. S3 in the Supplementary 

Material file).

MB006. Dark grey brown calcareous mud-

stone with poorly preserved bivalve fauna is 

exposed in the high riverbank of the Ostravice.

MB007.  Light brown grey marlstone out-

crops along the right riverside (Fig. 7C).

MB008. Low outcrops in the riverbed near 

the right bank consist of grey brown calcareous 

claystone.

MB009. Extensive outcrops in the riverbed consist of bio-

turbated light brown grey marlstones (Fig. 7A).

MB010. Extensive outcrops in the riverbed and high right 

bank consist of the same marlstones as at MB009. The bio-

turbated marlstones (Fig. 7B) are interbedded with dark 

brown grey mudstones several metres thick.

 MB011. Small, disturbed outcrops of green grey, brown 

grey and grey non-calcareous clays are situated in the bed of 

Sibudov creek. The clays include a lens-like turbidite layer 

up to 4 cm thick of grey calcareous glauconitic sandstone 

with ripple marks.

MB012. Green grey, brown grey and grey non-calcareous 

clays with hairy laminae of silty sandstone are exposed in 

meanders of Sibudov creek.

MB013. Green brown non-calcareous silty claystone ex-

posed in a small right stream cut. 

MB014. Brown grey non-calcareous silty clay exposed in 

a left stream cut includes 20 cm thick lens-like concretion of 

grey non-calcareous pelocarbonate (Fig. 8).

Table 2: Quantitative analysis of the translucent heavy minerals in psammites. 

Values  express  the  relative  number  of  grains  in  %.  ZTR  —  maturity  index  (see 

Methods for details).

Table 3: Total inorganic carbon (TIC), organic carbon (TOC) and sulphur (TS) in 

typical lithotypes from the type localities.

locality

Frýdek

Frýdek

Sibudov

Rakov

Ženklava 

Ženklava

sample

MB001Z4

MB026

MB011

MB037

MB046

MB050

garnet total

41.42   

43.02

0.00

12.22

96.14

92.69

zircon idi.

5.02

4.88

20.00

2.89

0.08

0.14

zircon ov.

21.76

7.54

68.00

41.11

0.08

0.14

apatite

1.26

5.10

1.50

1.11

1.48

2.90

rutile

21.34

8.43

8.50

22.78

1.07

1.79

tourmaline

5.65

25.06

0.00

3.11

0.49

1.93

epidote

0.00

0.00

0.00

0.33

0.08

0.00

staurolite

2.30

3.99

0.00

6.22

0.08

0.00

amphibole

0.00

0.00

0.00

1.11

0.00

0.00

titanite

0.00

0.44

0.50

0.11

0.08

0.00

kyanite

0.00

0.00

0.00

7.33

0.00

0.28

monazite

0.42

0.22

0.00

0.11

0.16

0.00

chromspinel

0.21

0.00

0.50

0.11

0.16

0.00

glaucophane

0.00

0.00

0.00

0.33

0.08

0.00

brookite

0.63

0.44

0.50

0.00

0.00

0.00

sillimanite

0.00

0.00

0.00

0.89

0.00

0.00

anatase

0.00

0.22

0.50

0.00

0.00

0.00

other

0.00

0.66

0.00

0.22

0.00

0.14

grain count

484

451

200

901

1217

729

ZTR (%)

53.1

45.9

96.5

69.8

1.7

4.0

locality

sample

lithology

TIC

TOC

TS

formation

Frýdek

MB001Z3

claystone

4.06

0.53

0.25

Frýdek Fm.

Frýdlant n. O.

MB007

marlstone

6.33

<0.05

0.40

Frýdlant Fm.

MB010

marlstone

5.98

0.18

0.62

MB021

claystone

<0.05

1.39

1.31

Rakov

MB036

chert

3.28

1.34

0.19

Menilite Fm.

Horní Těšice

MB043Š4

chert

<0.05

0.87

0.21

MB043Š6

claystone

<0.05

3.03

0.23

MB044E

marl

4.46

4.35

0.13

Dolní Těšice

MB032A

marlstone

7.89

1.73

<0.05

MB032B

claystone

4.99

1.95

<0.05

Ženklava

MB047A

claystone

<0.05

2.39

1.95

Ženklava Fm.

MB047B

claystone*

0.55

3.2

2.34

MB050

claystone

0.44

1.47

<0.05

MB051

clay

1.10

1.14

0.24

* concretion

background image

246                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

MB021.  Small cut along 

a right tributary to the Ostravice 

river exposed dark grey non-cal-

careous silty claystone intercala-

ted with 2 mm thick siltstones 

(Fig. 7D).

MB022. Small outcrop of grey 

non-calcareous silty claystone 

among the roots of an old tree.

MB023.  Small exposure of 

mottled (bioturbated) pale brown 

marlstone.

MB024.  High right riverbank 

of the Ostravice with brown grey 

and grey brown calcareous mud-

stones with light Chondrites bur-

rows.

Lithology and sedimentology

Generally the Frýdlant Forma-

tion in the type area consists of 

three lithofacies:

1) Whitish weathered, light 

brown grey mottled marlstones 

intercalated with brown grey cal-

careous mudstones — silty clay-

stones (MB006–MB010, MB023, 

MB024). Locally intensively bio-

turbated horizons were observed. 

Rare slump layers consisting of 

brown grey mudstone matrix 

with  intraclasts  of  marlstone    

occur.

2) Dark grey non-calcareous 

silty claystones (MB021). 

3) Grey, brown grey and green 

grey non-calcareous clays with 

hairy-thin  laminae  of  silt-      

stone and sandstone (MB011– 

MB014).

A thin section of the light grey 

marlstone (sample MB010) 

shows prevailing matrix com-

posed of clay minerals and car-

bonate. Silty admixture is 

composed of subangular to angu-

lar quartz about 0.05 mm in 

diameter (dominant), K-feldspar 

and plagioclase (minor), and 

phyllosilicates: muscovite, bio-

tite, chlorite and glauconite (5–

10 mod. %). Bioclasts (mainly 

foraminifer tests) form about 

40 mod. % of the clastic compo-

nent.

Sandstones are very rare and 

usually form laminae up to 

10 mm. The only sandstone sam-

ple useful for microscopic study 

Fig. 7.  Frýdlant  Formation  at  Frýdlant  nad  Ostravicí:  A — bedded bioturbated marlstones 

(MB009); B — Chondrites–Planolites ichnofabric in the marlstone (MB010); C — platy brown 

grey calcareous mudstones (MB007); D — dark grey non-calcareous claystones (MB021). Photo-

graphs: M. Bubík, 2012–2014.

Fig. 8. Lithology and sedimentology of the Frýdlant Formation at selected sections in Frýdlant 

nad Ostravicí; samples indicated by asterisk.

background image

247

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

was medium-grained calcareous sandstone from Sibudov 

Creek (MB011; Fig. 9). The rock is poorly sorted and textural-

ly immature. Basal-type cement is composed of carbonate, 

which corrodes clastic grains. Psammitic clasts comprise 

about 0.3 mm (exceptionally 0.9 mm) angular quartz grains 

(dominant), glauconite (about 5 mod. %), feldspars (up to 

5 mod. %), chlorite (2–3 mod. %), micas (up to 2 mod. %), 

bioclasts (foraminifers, bryozoans; about 1 mod. %) and 

rarely sub-oval to oval lithoclasts of gneisses and basic vol-

canites. Monocrystallic quartz prevails over aggregate 

quartz. K-feldspar prevails over plagioclase.

Fossil record and biostratigraphy

The Frýdlant Formation is poor in macrofauna. Unidenti-

fied bivalves found in grey brown silty marlstones are proba-

bly reworked from shallower habitats (MB006). Intensive 

but monotonous Chondrites–Thalassinoides ichnofabric in 

mottled marlstones indicate a low-diversity burrowing infau-

nal community (MB010). In the intercalations of much-less 

bioturbated grey brown mudstones light-coloured Chon

­

drites intricatus is common (MB010, MB024).

Middle to Late Eocene marlstones contain abundant fora-

minifers. Benthic taxa prevail over planktonics. Calcareous 

benthics  Homalohedra apiopleura, Siphonodosaria gracil­

lima, Biapertorbis alteconicus, Svratkina perlata, Cibici­

doides grimsdalei, Cibicides amphisyliensis, Nuttallides 

truempyi, Bolivina spp., Angulogerina spp., Globocassidulina 

spp.,  Reussella sp. prevails over agglutinated forms Rhab

­

dammina spp., Bathysiphon robusta, Dolgenia lata, Reticu­

lophragmium gerochi, R. amplectens, Spiroplectammina 

navarroana, Karrerulina coniformis etc. Foraminifer micro-

fauna is accompanied by sponge spicules, echinoid spines 

and pyritized diatoms “

Coscinodiscus”. Brown grey calca-

reous mudstones also contain frequent prasinophyte cysts 

Tasmanites sp.

Non-calcareous dark grey and varicoloured claystones 

contain  a  flysch-type  agglutinated  foraminifer  assemblage 

with  Saccorhiza sp., Hyperammina nuda, Bathysiphon 

gerochi, Nothia sp., Lagenammina sp., Ammosphaeroidina 

pseudopauciloculata, 

Spiroplectammina 

navarroana,      

Karrerulina  spp.  etc.  Silicified  cores  of  radiolarians 

 (Spumellaria)  and  pyritized  planktonic  diatoms  are           

common.

The following stratigraphic levels were recognized based 

upon planktonic foraminifers and calcareous nannofossils:

1) lowermost Eocene with solely agglutinated foraminifer 

assemblages containing Pseudonodosinella elongata 

(Fig. 10.1) , Rzehakina minima (Fig. 10.2) and Plectorecur

­

voides parvus (dark grey non-calcareous mudstones MB022, 

varicoloured non-calcareous clays MB011, MB013 and 

MB014);

2) Lutetian–Bartonian transition: calcareous nannofossils 

of the NP16 zone with Sphenolithus spiniger, Chiasmolithus 

solitus, and rare Reticulofenestra umbilicus — Fig. 6; plank-

tonic foraminifera of the E10–E11 biochron with Acarinina 

medizzai, A. bullbrooki and Jenkinsina columbiana — Fig. 10 

(MB007, MB009);

3) Bartonian–Priabonian transition: calcareous nannofos-

sils of the NNTe11B zone (lower part of NP18) with Heli­

cosphaera bramlettei, Neococcolithus dubius and 

Dictyococcites bisectus — Fig. 6; planktonic foraminifers 

younger than mid E13 zone with Turborotalia increbescens  

— Fig. 10 (MB006).

4) Eocene–Oligocene transition: calcareous nannofossils 

of the NP21 zone with Coccolithus formosus, Helicosphaera 

cf. intermedia, H. euphratis and Pontosphaera obliquipons  

— Fig. 6 (MB008).

Heavy mineral assemblage

The  only  available  sandstone  sample  for  heavy  mineral 

analysis was medium-grained calcareous sandstone (Sibudov 

MB011). The heavy mineral fraction was strongly dominated 

by opaque minerals. The zircon-rutile assemblage of translu-

cent heavy minerals has a very high content of zircons, espe-

cially  oval  shaped  (Table  2).  The  ZTR  maturity  index  is 

therefore high (96.5 %) and indicates a chemically mature 

source area and mechanical destruction of mesostable and 

unstable minerals.

Geochemical proxies

The TOC and TS values (Table 3) in mottled marlstones 

from Ostravice riverbed (MB007, MB010) are relative low 

and indicate oxic bottom conditions during the deposition. 

Dark grey claystone from the Frýdlant MB021 outcrop dif-

fers by elevated TOC and TS and very low carbonate content 

that illustrate dysoxic bottom conditions and negligible car-

bonate content.

Remarks

Eliáš  (1993)  characterized  the  environs  of  Frýdlant  nad 

Ostravicí as an area with „illuminative sections of four fun-

damental facies of the formation“, this means facies of mot-

tled claystones, black grey claystones, variegated claystones 

and Stráž-type sandstones (Menčík et al. 1983), but does not 

mention the fifth facies of submarine slumps (Eliáš 1998). In 

fact just two of these facies were confirmed during detailed 

field  observations  in  the  type  area:  mottled  claystones  and 

black grey claystones. The first mentioned facies comprises 

Fig. 9. Thin  section  of  calcareous  sandstone  with  glauconite  and 

foraminifer Lenticulina, XPL, sample Sibudov MB011.

background image

248                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

light-weathering marlstones (MB009, MB010). These marl-

stones at first sight recall the Dynów Marlstones of the Meni-

lite Formation which confused various authors of geological 

maps (Menčík et al. 1983, Menčík & Tyráček 1985, Menčík 

1987). Brown grey mudstones were also used in the past as 

a diagnostic rock type for the Menilite Formation. From this 

point of view the type area is inappropriate. The environs of 

Třinec, where all five mentioned facies are exposed in nu-

merous natural outcrops, would be a better choice for the 

type area. Revision of the Frýdlant Formation should be con-

sidered.

Menilite Formation

History of studies

The Menilite Formation is an important lithostratigraphic 

marker in Carpathian lithostratigraphy. It was first described 

in Moravia and its type section/area should be accepted only 

here. Glocker (1844) introduced the Menilite Formation 

based  on  outcrops  in  the  area  roughly  between  Kelč  and 

Bystřice  pod  Hostýnem.  His  initial  find  of  the  diagnostic 

rock type — laminated menilite chert — was situated in the 

small village of Mrlínek about 2 km north of Bystřice pod 

Hostýnem. Subsequently he found menilite cherts and other 

associated rock types further to the west near Sovadina, near 

Lhotsko and at Horní Těšice, Dolní Těšice, Rakov and Paršo-

vice near Kelč. Glocker did not designate the type section be-

cause in his times the concept of the type section still did not 

exist. Incidentally, the area of Glocker’s field observations 

covers outcrops of the Menilite Formation in three different 

tectonic  units:  Ždánice,  Subsilesian  and  Silesian  nappes. 

This was a very happy choice, because the type area allows 

comparison of common features and differences between 

facies of the Menilite Formation in various tectonic units. 

In the 170 years since Glocker’s times, no attempt has been 

undertaken to find and describe the original historical locali-

ties in detail. Jurášová (1974) described calcareous nanno-

fossils as well as reporting the planktonic-foraminifer 

assemblage  of  the  Subchert  Member  from  Horní  Těšice. 

Nothing more was published about the stratigraphy or 

palaeontology of these localities. 

Description of outcrops

Among  the  historical  localities  of  Glocker  (1844)  Horní 

and Dolní Těšice belong to the Subsilesian Unit. Rakov, Par-

šovice, Lhotsko and Sovadina belong to the Ždánice Unit. 

No outcrop of the Menilite Formation and even no rock 

debris were newly observed in ploughed fields near Lhotsko. 

The  small  quarry  in  Mrlínek,  where  Glocker  (1844) 

Fig. 10. Selected marker foraminifers from the Maastrichtian to lowermost Miocene of the Subsilesian Unit. 1 — Pseudonodosinella elon­

gata, Frýdlant MB022; 2 — Rzehakina minima, Frýdlant MB022; 3, 4 — Reticulophragmium gerochi, Frýdlant MB008; 5–8 — Rugoglo­

bigerina rugosa, Frýdek MB001Z3; 9–12 — Turborotalia increbescens, Frýdlant MB006; 13 — Jenkinsina columbiana, Frýdlant 

MB009A; 14 — Pseudohastigerina naguewichiensis, Paršovice MB041F; 15, 16 — Acarinina medizzai, Frýdlant MB009B; 17 — Acarin­

ina cf. medizzai, Paršovice MB041F; 18 — Turborotalita quinqueloba, Ženklava MB051; 19–20 — Cassigerinella chipolensis, Ženklava 

MB051. 1–5, 8, 10–12 — optical microscope; 6–7, 9, 13–20 — SEM microscope. Scale bars: 1–12 — 100 µm, 13–20 — 40 µm.

background image

249

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

discovered menilite cherts, does not exist any more and its 

location  is  forgotten.  Newly  observed  outcrops  at  Mrlínek 

will be described in another paper dealing with type sections 

of the Silesian Unit.

Dolní and Horní Těšice area (Fig. S4 in the Supplementary 

Material file):

MB032 Dolní Těšice. In an entry of a badger burrow on 

a side of a small hill, pale brown laminated marlstone with 

a 3 cm intercalation of brown marl was observed. The marl-

stone debris on the slope contains the remains of sharks and 

fish including articulated fish skeletons. (Dynów Mb.)

MB033  Dolní  Těšice.  Debris of the pale brown marl-

stone and menilite chert covers the surface of the ploughed 

field. Isolated fish and shark remains are common. (Dynów 

Mb.)

MB043  Horní  Těšice.  Light  brown  silicified  claystones 

with few menilite chert intercalations were newly excavated 

beneath loam in a series of 6 test pits along an old road over 

a distance of 18 m. (Chert Mb.)

MB044 Horní Těšice. The right cut of a small stream ex-

posed slices and buddines of clays and marls of various levels 

of the Eocene within a strongly tectonically disturbed zone. 

A block of grey brown silty marl/marlstone to siltstone of the 

Subchert Member was found in this zone (Fig. 11).

MB046 Horní Těšice. Pale brown marlstone crops out in 

the steep landslide scarp. (Dynów Mb.)

Rakov area (Fig. S5 in the Supplementary Material file):

MB034 Rakov. Debris of brown grey laminated menilite 

cherts on the ploughed field. (Chert Mb.) 

MB035 Rakov. Eluvial clay with debris of grey non-cal-

careous siltstones and few brown grey menilite cherts on the 

ploughed field (Chert Mb.+Němčice Fm.?).

MB036 Rakov. Small abandoned quarry opened on 

a small hill exposes pale grey brown marlstone intercalated 

with dark brown grey non-calcareous mudstone and banks of 

brown laminated menilite chert (Fig. 11). (Dynów Mb.)

MB037 Rakov. Debris of grey brown laminated and brec-

ciated menilite cherts on a ploughed field. The cherts con-

tained  rare  lenses  of  fine-grained  glauconitic  sandstone. 

(Chert Mb.)

MB038 Rakov. Small outcrop of menilite chert on the 

margin of a ploughed field. (Chert Mb.)

MB039 Rakov.  Abandoned quarry(?) exposes pale brown 

grey siliceous “shale”. (Chert Mb.)

MB040 Rakov. Debris of siliceous “shale”, menilite 

cherts and Dynów-type marlstone (in proportion 10:7:3) on 

the ploughed field. (Chert Mb.+Dynów Mb.)

Paršovice  area  (Fig. S6 in the Supplementary Material 

file):

MB041 Paršovice. Cut around house foundations exposed 

green calcareous and non-calcareous clays and light brown 

grey  sandy  marl  (Němčice  Fm.  with  Sheshory  Mb.)  and 

overlying laminated light grey brown marl intercalated with 

dark brown clay (Subchert Mb.).

G041 Paršovice. Dark brown menilite chert on ploughed 

field. (Chert Mb.)

G042  Paršovice.  Menilite  cherts  on  ploughed  field.  

(Chert Mb.)

O099 Paršovice. Pale beige marlstone in a road cut near 

a cemetery. (Dynów Mb.)

Sovadina area  (Fig. S7 in the Supplementary Material 

file):

MB001 Sovadina. Abundant debris of various types of 

brown  and  grey  menilite  cherts  covers  a  ploughed  field. 

(Chert Mb.)

MB002 Sovadina. Debris of light grey brown marl and 

claystone were found in a pile dug from a water well. 

 (Dynów  Mb.)

Lithology and sedimentology

Generally, the Menilite Formation consists mainly of 

pelitic, carbonate and siliceous sedimentary rocks of pelagic 

origin and rich in organic matter (Fig. 12). The Formation 

can be divided into four formal members in all tectonic units 

based on characteristic rock types (Stráník 1981). The basal 

Subchert  Member  is  characterized  by  brown  marls.  The 

overlying Chert Member contains “menilite cherts”, which 

may be more precisely classified as opal silicites. The over-

lying Dynów Member consists mainly of Dynów-type marl-

stone,  which  can  also  be  classified  as  nannofossil  clayey 

limestone. A thin section of the marlstone (sample MB032) 

shows sporadic phosphatic fish remains and very rare sub-

angular quartz in highly prevailing fine matrix. Intercalated 

thin laminae of graded siltstone contain 0.005–0.01 mm 

sub-angular to angular quartz grains and rarely small chips of 

muscovite and aggregates of glauconite. The Šitbořice Mem-

ber in the upper part of the Formation consists mainly of 

brown and light grey claystones. 

Small lithological differences between different units re-

flect  different  original  positions  within  the  Silesian  Basin. 

The  Subchert  Member  in  the  Subsilesian  Unit  consists  of 

dark grey-brown silty marls and siltstones, while in the 

Ždánice Unit we find pale grey brown laminated marls inter-

calated with dark brown claystones. The Chert Member in 

the Subsilesian Unit consists predominantly of claystones 

intercalated with laminated menilite cherts, while in the 

Ždánice Unit menilite cherts dominate over silicified clay-

stones. The Dynów-type marlstone is nearly identical in both 

units. In the Ždánice Unit it includes up to 55 cm thick lay-

ers of laminated menilite chert and thin intercalations of silty 

claystone. Exact comparison is, anyway, limited by fragmen-

tary sections. At present time the Šitbořice Member is not 

exposed in the type area. Slightly calcareous grey, brown and 

dark grey clays of this member were encountered in a shal-

low borehole between Býškovice and Opatovice nearby.

While  the  Subchert  and  Šitbořice  members  comprise 

hemipelagites, the menilite cherts were deposited originally 

as diatom oozes and the Dynów-type marlstones as coccolith 

oozes.  Turbidites  are  a  subordinate  component  of  all  four 

members and usually form several mm thick graded laminae 

of siltstone or very fine sandstone, less frequently with rip-

ples. Gravity folds of mm to m scale were frequently ob-

served in the laminated menilite cherts and marls of the 

Dynów Member (Fig. 11B).

background image

250                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Fossil record and biostratigraphy

Abundant fish remains are a characteristic feature of the 

Menilite  Formation.  The  Chert  Member  in  Horní  Těšice 

(MB043)  contained  fish  scales  identified  as  (?)Sardinella 

sardinitesPalimphyes? sp. and an unidentified representa-

tive of Myctophidae.  In  the  Dynów  Member  near  Dolní 

Těšice (MB032 and MB033) the 

following  isolated  fish  remains 

were found: (?) Sardinella sar­

dinites (Heckel), Gadidae indet., 

Zaenopsis? sp., Oligophus 

 moravicus (Pauca), articulated 

specimens of Scopeloides glaris

­

sianus (Agassiz) and gill rakers 

of shark 

Keasius parvus Leriche. 

Fish otoliths were recovered 

from the Subchert member at 

Paršovice (MB041).

The  Sheshory  Marl  directly  

underlying the Menilite Forma-

tion  at  Paršovice  (sample 

MB041D) contained the plank-

tonic foraminifera Chiloguem­

belina ototara, Pseudohastigerina 

naguewichiensis, Tenuitella spp.

Subbotina eocaena, S. angiporoi­

des, S. utilisindex, Globigerina 

officinalis, Dentoglobigerina ga­

lavisi, D. tripartita, Globotur­

borotalita ouachitaensis etc. and 

benthic foraminifera Dolgenia 

lata, “Rhizammina” sp., Bolivina 

spp., Lobatula lobatula, Svratkina 

perlata, Gyroidinoides, Melonis, 

Cibicidoides, Biapertorbis, Val­

vulineria, Oridorsalis  etc.  The 

abundant  and  diversified  cal-  

careous-nannofossil assemblage 

(30 taxa) is dominated by the ge-

nus  Reticulofenestra (mainly 

R. minuta) and contains repre-

sentatives of Helicosphaera, 

Pontosphaera, Zygrhablithus and 

Lanternithus indicative for shal-

lower  habitats.  The  assemblage 

can be assigned to the upper part 

of the NP22 zone (Kiscellian) 

with  Reticulofenestra umbilicus 

and Chiasmolithus altus.

The  Menilite  Formation  has 

characteristic assemblages of 

foraminifers and calcareous nan-

nofossils specific for each mem-

ber  of  the  formation.  The 

assemblages are more or less of 

low  diversity.  The  Subchert 

Member  at  Paršovice  (samples 

MB041E and F) contained 

a planktonic foraminifer assem-

blage with Globigerina  officinalis,  G.  praebulloides, 

Pseudohastigerina naguewichiensis, Tenuitella gemma and 

Chiloguembelina ototara of the Eocene-Oligocene transition 

(biochron E16–O1). Benthic foraminifer assemblage com-

prises representatives of Cibicidoides, Bolivina and Angulo­

gerina prevailing over Globocassidulina subglobosa, 

Fig. 11. Menilite Formation in the type area: A — grey brown platy claystone of the Subchert 

Member (Horní Těšice MB044); B — Dynów Marlstones interbedded with menilite cherts with 

synsedimentary fold (Rakov MB036). Photograph: M. Bubík, 2014.

Fig. 12. Lithology and sedimentology of the Menilite Formation in the type area; samples indicated 

by asterisk.

background image

251

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Biapertorbis biaperturatus, Reussella sp. and the last ele-

ments of flysch-type agglutinated fauna: Hyperammina? sp., 

Ammodiscus sp., Paratrochamminoides sp. in less calcareous 

horizons (sample F). Compared with the underlying Sheshory 

Marl, the calcareous nannofossil assemblage with 19 taxa 

contains more Coccolithus spp. but less shallow-water ele-

ments like Pontosphaera spp., Helicosphaera spp. and 

Chiasmolithus altus (MB041F). It can be assigned to the up-

per part of the NP22 zone with Reticulofenestra umbilicus. 

The laminated marl has abundant pteropods Spiratella? sp. 

on bedding planes (sample E). Marlstone of the Subchert 

Member  from  Horní  Těšice  (MB044E)  contained  poor 

planktonic foraminifer fauna with Globigerina  officinalis 

and Tenuitella brevispira. The benthic assemblage comprises 

Bolivina vaceki, Globocassidulina subglobosa, Cibicidoides 

sp. and Biapertorbis sp. Calcareous nannofossils from Horní 

Těšice were described by Jurášová (1974).

The  soft  claystones  of  the  Chert  Member  from  Horní 

Těšice  (MB043Š5)  contained  just  scarce  and  fragmentary 

sponge spicules. Foraminifers are primarily missing and 

a single find of a pyrite cast of an unidentified benthic fora-

minifer may be redeposited.

Relatively abundant microfauna was recovered from pale 

brown marls of the Dynów Member from Sovadina 

(MB002A) and Rakov (MB036A). It comprises fish bones, 

sponge spicules, foraminifers and ostracods. The ostracods 

are smooth-shelled forms recalling fresh/brackish-water 

taxa. Together with fish remains they may be autochthonous 

while the foraminifer fauna is very probably completely re-

worked.  The  plankton  comprise  Palaeogene  Globigerina 

praebulloides, G. officinalis, Dipsidripella danvillensis, and 

Cretaceous  Macroglobigerinelloides bollii, Muricohedber

­

gella delrioensis, M. planispira and Heterohelix planata

Benthic foraminifera comprise long-ranging taxa: “Rhizam­

mina” sp., Kalamopsis? sp., Ammodiscus cf. cretaceus

 Globocassidulina subglobosa, Bolivina vaceki, Cibicides 

amphisyliensis, Trifarina sp., Osangularia sp., Cibicidoides 

spp., Escornebovina sp., Gavelinella sp. etc. Low-diversity 

calcareous nannoplankton comprises Reticulofenestra lockeri

R. cf. ornata and Pontosphaera pax (Dolní Těšice MB032) 

or, more typically, bloom of Reticulofenestra ornata accom-

panied by scarce Pontosphaera pax, P. latelliptica and 

P. magna (Rakov MB036A).  Reworked nannofossils from 

older Palaeogene and Upper Cretaceous strata were also re-

corded. Reticulofenestra ornata may have adapted to hyposa-

line waters and Pontosphaera pax to lagoonal habitats 

(Aubry 1990). Blooms of Reticulofenestra ornata were re-

corded within the NP23–NP24 zone interval of the Western 

Carpathians (Švábenická et al. 2007).

Heavy mineral assemblage

Psammitic rocks in the type area of the Menilite Formation 

are practically missing. Rare thin lenses of fine-grained glau-

conitic sandstone from laminated menilite cherts from  Rakov 

(MB037)  were  used  for  the  heavy  mineral  analysis.  The 

quantity of opaque and translucent heavy minerals is nearly 

equal.  The  assemblage  of  translucent  heavy  minerals  was 

surprisingly rich and may be classified as zircon-rutile-gar-

net, with relatively important admixture of metamorphoge-

nous minerals: kyanite, staurolite and tourmaline. Accessoric 

presence of glaucophane indicates a high-pressure metamor-

phic source. Good preservation of mesostable and even un-

stable minerals may be explained by the sealing ability of 

cherts  against  dissolution  and  leaching. The  ZTR  maturity 

index is relatively high and strongly contrasts with very low 

values in the overlying Ženklava Formation.

Geochemical proxies

A marlstone of the Subchert member has the highest TOC 

among the analysed set from the Subsilesian Unit (4.35 %, 

Table 3) indicating the anoxic conditions during the deposi-

tion.  The  siliceous  claystone  of  the  chert  member  showed 

TOC of 3 %. The menilite chert from the Chert Member and 

Dynow Member showed lower TOC which may be affected 

by partial oxidation of the organic matter. Marlstone and 

marl from the Dynów Member (Dolní Těšice MB032) have 

TOC as high as 1.7–2 % which indicates the anoxic condi-

tions  confirmed  by  taphonomic  features  (articulated  fish 

skeletons).  Another  interesting  finding  suggests  that  some 

menilite cherts included in the Dynów Member possess TIC 

indicating a carbonate content of about 27 % and may be 

classified rather as siliceous marlstones (Rakov MB036).  

Remarks

The outcrops of the Menilite Formation at original locali-

ties of Glocker (1844) represent just small fragments of its 

total thickness that may be estimated at about 50 m. None of 

the newly studied outcrops exceeds the thickness of two me-

tres and can hardly be proposed as the type section of the for-

mation. None of the studied outcrops exposes the boundary 

between any of the four members of the formation. For now 

it seems to be reasonable just to accept the type area between 

Paršovice and Bystřice pod Hostýnem. 

Ženklava Formation

History of studies

The Ženklava Formation was introduced by Eliáš (1998). 

In the English summary of the monograph he specified the 

type locality as a creek 150 m southwest of a chapel in Žen-

klava. In the type description of the formation Eliáš (l.c.) did 

not provide any petrographical, sedimentological or micro-

palaeontological data pointing to badly weathered rocks. In 

previously published geological maps the Ženklava Forma-

tion in Ženklava is assigned partly to the Frýdlant Fm., part-

ly to the Menilite Fm. (Menčík & Tyráček 1985; Roth 1989).

Description of outcrops

The type locality is situated on the western border of the 

Ženklava Tectonic Window. Besides the place designated by 

Eliáš (1998), isolated outcrops of the Formation continue up-

stream along the creek (Fig. S8 in the Supplementary Material 

file).

MB046 Ženklava. Brown grey non-calcareous silty clay-

stones with subordinate laminated siltstones and fine-grained 

calcareous sandstones in a few banks up to 20 cm thick are 

exposed in several small isolated outcrops in the creek.

background image

252                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Fig. 14. Type locality of the Ženklava Formation at small creek in 

Ženklava. Tower of the Ženklava chapel visible at the mid top of 

picture. Photograph: M. Bubík, 2014.

Fig. 13. Lithology and sedimentology of the Ženklava Formation at selected isolated outcrops at 

the type area; samples indicated by asterisk (MIC — micropaleontology, GCH — geochemistry).

Fine-grained calcareous sand-

stones are subordinate in banks 

up to 20 cm thick. In thin section 

the calcareous sandstone (sample 

MB046) reveals poorly sorted 

structure. Carbonate cement can 

be classified as pore-type or basal 

in places and corrodes some clas-

tic grains. Sub-angular to sub-

oval sand grains range in size 

between 0.2–0.3 mm. The quartz 

grains (both monocrystallic and 

aggregate) dominate over K-feld-

spar and plagioclase (10–15 

mod. %), muscovite, biotite, 

chloritized biotite, chlorite and 

rarely glauconite. Plagioclase prevails over K-feldspar. Pse-

fitic admixture comprises pebbles of gneisses, mica schists 

and volcanites (volcanic glass?).

Claystones, siltstones and sandstones of the Ženklava For-

mation are mostly muddy turbidites deposited in bathyal. 

The sandstones possess usually planar lamination (Tb) and 

some  siltstones  showed  ripples  (Tc–d).  Gravity  fold  ob-

served at MB050 is evidence of rapid deposition and slope 

failure (Fig. 26). Micropalaeontological analysis of rocks 

from MB048 proved presence of mudflow containing micro-

fossils from older formations of the Subsilesian Unit and 

exotic block of Upper Jurassic limestone.

Fossil record and biostratigraphy

The  prevailing  silty  non-calcareous  claystones  contain 

a pseudoassociation of calcareous and agglutinated foramini-

fers, sponge spicules and fish bones with abundant reworked 

component.  The  reworked  species  Praemurica inconstans, 

Subbotina triloculinoides, Muricohedbergella planispira, 

Macroglobigerinelloides bollii, Haplophragmoides decussa­

tus, Paratrochamminoides olszewskii and Cibicidoides spp. 

came from various levels of the Upper Cretaceous to Eocene 

(sample MB046A). More reworked fauna was recovered 

from  clayey  matrix  of  mudflow  (sample  MB048A).  The 

planktonic foraminifera Rotalipora appenninica, Whiteinella 

baltica, Pseudotextularia elegans, Globotruncanella peta­

loidea, Globotruncana arca, Muricohedbergella mon­

mouthensis, Globanomalina compressa, Catapsydrax 

unicavus and benthic Rzehakina  lata–fissistomata  trans., 

Spiroplectammina navarroana, S. dentata, Dorothia bulletta, 

Ramulina sp., Bolivinoides draco, Nonion troostae, Eouvige­

rina gr. elongata come from various levels of the Albian–

Eocene interval and most of them are common taxa of the 

Frýdek and Frýdlant formations. A block of exotic limestone 

contained the foraminifers Trocholina nodulosa, Paalzowella 

feifeli, Spirillina concava, S. kuebleri, holothurian sclerites

Tasmanites cysts and may be assigned to the Upper Juras-

sic.

The highest proportion of autochthonous foraminifer fau-

na was recorded in the eastern part of the creek — at points 

MB049, MB050 and MB051. Sample MB051 contained 

planktonic foraminifera Cassigerinella chipolensis, Tenuitella 

brevispira, Tenuitellinata angustiumbilicata, and Turboro­

MB047 Ženklava. Black grey platy non-calcareous clay-

stones crop out in the left cut of the stream.

MB048 Ženklava. Dark grey calcareous clays with frag-

ments of clayey limestone bank (block?) crop out in the left 

bank of the creek (Fig. 13).

MB049 Ženklava. Brown grey silty calcareous claystone 

is exposed in the right bank of the creek (Fig. 13).

MB050 Ženklava. Dark grey non-calcareous silty clay to 

clayey siltstone in the left bank of the creek contains gravity 

fold  consisting  of  grey  fine-grained  calcareous  sandstone 

(Fig. 13).

MB051 Ženklava. Weathered soft grey slightly calcare-

ous clay with silty layers crops out in the creek bed (Fig. 14). 

This  outcrop  corresponds  to  the  type  section  according  to 

Eliáš (1998).

Lithology and sedimentology: Brown grey silty non-cal-

careous claystones and siltstones are the dominant lithology. 

Locally platy black grey non-calcareous claystones stained 

on surfaces by limonite may recall claystones of the Menilite 

Formation. Calcareous claystones and clays occur along the 

eastern part of the creek (MB048, MB049, and MB051). 

background image

253

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

talita quinqueloba indicating the late Egerian (Eggenburg-

ian?), accompanied by reworked Heterohelix planata, 

Mur 

cohedbergella planispira, Pseudohastigerina micra, 

Acarinina bullbrooki, A. medizzai and A. pseudotopilensis

The  benthic  component  consists  of  Glomospira charoides, 

“Rhizammina”  sp., Spiroplectammina navarroana, Globo­

cassidulina subglobosa, Bolivina dilatata, Angulogerina sp.,  

Biapertorbis biaperturatus, Escornebovina cf. binominata, 

Epistominella sp., Valvulineria sp., Cibicidoides lopjanicus, 

Cibicides amphisyliensis  etc.  The  taphocoenosis  also  con-

tained frequent pyritized planktonic diatoms “Coscinodis­

cus” sp. Calcareous nannofossils from the same sample are 

completely reworked from the Maastrichtian, Palaeocene, Upper 

Eocene and Lower Oligocene. The following species were 

identified: Coccolithus eopelagicus, C. pelagicus, Cyclicar

­

golithus sp., Dictyococcites bisectus, Discoaster cf. multira­

diatus, Ellipsolithus distichus, Coccolithus formosus, 

R. lockeri, R. minuta, R. ornata, R. umbilicus, Micula stauro­

phora, M. murus and Watznaueria barnesiae.

Heavy mineral assemblage

Two  samples  of  fine-grained  calcareous  sandstone  from 

Ženklava  were  analysed  for  heavy  minerals  (MB046  and 

MB050). The ratio of opaque to translucent heavy minerals 

varies.  The  assemblage  of  translucent  heavy  minerals  is 

clearly garnet type, with high dominance of the index mineral 

(96 and 92 %). Very low ZTR maturity indicates enhanced 

erosion of fresh metamorphic rocks in the source area. 

Generally garnet rich assemblages are typical for proximal 

flysch turbidites. 

Geochemical proxies

The elevated TOC values in the partly weathered pelitic 

rocks of the Ženklava Formation indicate hypoxic conditions 

and in the case of black grey platy claystone (MB047A) even 

anoxic conditions, which is supported by high sulphur con -

tent and presence of abundant isolated fish bones. According 

to  the  TIC  values  the  CaCO

3

 content ranges from 0 % to 

9 %. The upper value allows us to classify the rock as cal-

careous clay (MB051).

Remarks

Abundance of reworked microfossils and garnet associa-

tion of the translucent heavy minerals is a characteristic fea-

ture of the Ženklava Formation at the type locality. At the 

same time it is typical for the Krosno Formation that is 

an analogue of the Ženklava Fm. in each mean. Small and 

fragmentary outcrops in Ženklava sufficiently illustrate the 

lithological variability of the formation only as a whole. It is 

therefore reasonable to extend the type section to the whole 

500 m long section of the creek where Egerian strata are 

exposed. 

Conclusions

In the Subsilesian Unit two original type sections (Frýdek 

and  Ženklava)  and  two  type  areas  (Frýdlant  nad  Ostravicí 

and Kelč area) were studied. These localities form the basis 

for  definition  of  the  four  formal  formations  (Upper  Creta-

ceous–lowermost Miocene) that form the sedimentary suc-

cession of the Subsilesian Unit.

A section near the destroyed historical locality below the 

Frýdek castle/chateau is newly proposed as a type locality of 

the Frýdek Formation.

The particular type section of the Frýdlant Formation was 

not specified by the original author. Due to fragmentary out-

crops the type area is newly specified in an area where facies 

of dark-grey claystones and mottled marlstones were newly 

recorded. Three other fundamental lithofacies of the forma-

tion:  variegated  beds,  Stráž-type  sandstones  and  pebbly 

mudstones were not observed at Frýdlant. The hypotype lo-

calities for these three facies should be selected and studied.

As the original type area of the Menilite Formation be-

tween Paršovice and Bystřice pod Hostýnem has only small 

isolated outcrops not exceeding 2 m in thickness, the particu-

lar type section for the formation cannot be proposed at the 

present moment.

Based on the field observations and study of the Ženklava 

Formation at Ženklava, the extension of the type locality to 

the whole 500 m long creek section is proposed.

None of the discussed type localities or sections in the 

type areas are protected by law, and the stratotype status of the 

outcrops is not subject to protection at the present time. The 

protection is urgently needed and should be managed soon 

for the sake of Carpathian stratigraphy and preservation of 

the geological heritage for the future.

Acknowledgements:  The  study  was  supported  by  internal 

grant CGS No 321170. We are grateful to Růžena Gregorová 

and Tomáš Přikryl for determination of fish remains from the 

Menilite  Formation.  Katarína  Holcová  kindly  assisted  with 

SEM micrographs.

References

Aubry M.P. 1990: Handbook of Cenozoic calcareous nannoplank-

ton. Book 4: Heliolithae (helioliths, cribriliths, lopadoliths, 

and others). Micropaleontology Press, 1–181.

Burnett J.A. (with contrubutions from Gallagher L.T. & Hampton 

M.J.) 1998: Upper Cretaceous. In: Bown P.R. (Ed.): Calca-   

reous Nannofossil Biostratigraphy. British Micropalaeontol. 

Soc. Publ. Ser., Chapman & Hall, London, 132–199.

Cieszkowski M., Golonka J. & Waśkowska A. 2012: An olistolith 

interpretation for the Paleocene Szydłowiec Sandstones in the 

stratotype area (Outer Carpathians, Poland). Austrian J. Earth 

Sci. 105, 1, 240–247.

Eliáš  M.  1993:  Sedimentological  investigation  of  the  Subsilesian 

Unit in the Ostrava region. Zpr. Geol. Výzk. 1991, 40–42. (in 

Czech)

Eliáš  M.  1998:  Sedimentology  of  the  Subsilesian  Unit.  Práce 

Českého geologického ústavu 8, 1–48. (in Czech)

Eliáš  M.  &  Hanzlíková  E.  1964:  Frýdek  Beds  —  type  locality 

on  Castle  hill  in  Frýdek–Místek.  Zpr. Geol. Výzk. 1963,  1,       

255–256. (in Czech)

Glocker E.F. 1844: Die Menilitformation in Mähren. In: Langer L. & 

Schrötter A. (Eds.): Amtlicher Bericht über die einundzwan-

zigste Versammlung deutscher Naturforscher und Aerzte in 

Gratz im September 1843. Andreas Leykam’schen Erben, 

background image

254                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Gratz, 139–141.

Golonka J. 2011: Evolution of the Outer Carpathian Basins. In: Bąk 

M., Kaminski M.A. & Waśkowska A. (Eds.): Integrated micro-

fossil records from the oceans and epicontinental seas. Grzy­

bowski Foundation Spec. Publ. 17, 3–14.

Hanzlíková  E.  1969:  The  Foraminifera  of  the  Frýdek  Formation 

(Senonian). Sbor. Geol. Věd, Paleontol. 11, 7–84.

Hanzlíková E. 1972: Carpathian Upper Cretaceous Foraminiferida 

of  Moravia  (Turonian–Maastrichtian).  Rozpravy  Ústř.  Úst. 

Geol. 39, 1–160.

Hanzlíková E., Menčík E. & Pesl V. 1953: Remarks to stratigraphy  

and tectonics of the Subsilesian and Silesian nappes on the 

Nový  Jičín  map  square.  Zpr. Geol. Výzk. 1952, 15–18. (in 

Czech)

Hanzlíková  E.,  Krhovský  J.  &  Švábenická  L.  1982:  Calcareous 

nannoplankton from the type locality of the Frýdek Forma-

tion (Lower Maastrichtian). Sbor.  Geol.  Věd,  Paleontol.  25,      

127–155.

Hochstetter F. 1852: Notiz über eine Kreideschichte am Fusse 

der Karpathen bei Friedek in k. k. Schlesien. Jb.  K.–K.  Geol.      

Reichsanst. 3, 4, 33–35.

Hohenegger L. 1852: Geognostische Skizze der Nordkarpathen von 

Schlesien und den nächsten Angränzungen (nach dem gegen 

wärtigen Stand puncte meiner Erfahrungen). Jb. K.–K. Geol. 

Reichsanst. 3, 135–148.

Hohenegger L. 1861: Die geognostischen Verhältnisse der 

Nord-Karpathen  in  Schlesien  und  den  angrenzenden Theilen 

von Mähren und Galizien. Erläuterung zu der geognostischen 

Karte der Nordkarpathen. Justus Perthes, Gotha, 1–50.

Jurášová  F.  1974:  Nannoplankton  from  the  Menilitic  Formation 

(Lower Oligocene) at Dolní Těšice. Věst. Ústř. Úst. Geol. 49, 

91–96. 

Książkiewicz  M.  1951:  Explanations  to  the  Sheet  Wadowice.    

General geological map of Poland, scale 1:50 000. Państw. 

Inst. Geol. Warszawa, 1–283. (in Polish)

Liebus  A.  &  Uhlig  V.  1902:  Über  einige  Fossilien  aus  der  kar-

patische Kreide. Beitr. Paläontol. Geol. Österr.–Ungarns u. d. 

Orients 14, 1–2, 113–130. 

Lirer F. 2000: A new technique for retrieving calcareous micro-

fossils from lithified lime deposits. Micropaleontology 46, 4, 

365–369. 

Martini E. 1971: Standard Tertiary and Quarternary calcareous nan-

noplankton zonation. In: Farinacci A. (Ed.): Proc. 2nd Plank-

tonic Conf., Roma, 1970, Vol. 2. Tecnoscienza, 739–765.

Menčík E. 1987: Geological map of the  ČSR. Sheet 25–22 Frýdek-

Místek. Ústřední ústav geologický, Praha. (in Czech)

Menčík E., Adamová M., Dvořák J., Dudek A., Jetel J., Jurková A., 

Hanzlíková  E.,  Houša V.,  Peslová  H.,  Rybářová  L.,  Šmíd  B.,  

Šebesta J., Tyráček J. & Vašíček Z. 1983: Geology of Morav-

skoslezské Beskydy Mts. and Subbeskydian Upland. 

Ústřední 

ústav geologický, Praha, 1–304. (in Czech)

Menčík E. & Tyráček J. 1985: Beskydy Mts. and Subbeskydian Up-

land. Overview geological maps 1 : 100,000. Ústřední Ústav 

Geologický, Praha. (in Czech)

Müllerová J. 1961: Microbiostratigraphy of a shale formation in 

Frýdlant nad Ostravicí. Sborník vědeckých Prací Vysoké školy 

báňské v Ostravě, 7, 4–5, 533–540. (in Czech)

Olszewska B. 1997: Foraminiferal biostratigraphy of the Polish 

Outer Carpathians: a record of basin geohistory. Ann. Soc. 

Geol. Polon., 67, 325–337.

Roth Z. 1964: Geological map of the ČSSR, Map of pre-Quaternary 

formations 1 : 200,000, M–34–XIX Ostrava — M–34–XIII 

Strahovice. Ústřední ústav geologický, Praha. (in Czech) 

Roth Z. 1971: Die Strukturfazies der äußeren Karpaten in Mähren 

und  die  Klassifizierung  ihrer  Hüllendecken  nach  dem  tekto-

nischen Stil. Věst. Ústř. Úst. Geol. 46, 4, 233–236. 

Roth Z. 1989: Geological map of the ČSR. Sheet 25–21 Nový Jičín. 

Ústřední ústav geologický, Praha. (in Czech)

Roth Z. & Hanzlíková E. 1967: Stratigraphy. In: Buday T. (Ed.): 

Regional geology of the ČSSR, Part II: Western Carpathians, 

Vol. 2. Ústřední ústav geologický, Praha, 113–200. (in Czech)

Růžička B. & Beneš V. 1949: Preliminary report on Foraminifera of 

the Frýdek Beds (Upper Cretaceous). Přírodovědecký sborník 

ostravského kraje 10, 3, 253–260. (in Czech)

Ślączka A., Kruglov S., Golonka J., Oszczypko N. & Popadyuk I. 

2006: Geology and Hydrocarbon Resources of the Outer Car-

pathians, Poland, Slovakia, and Ukraine: General Geology. In: 

Golonka J. & Picha F.J. (Eds.): The Carpathians and their fore-

land: Geology and hydrocarbon resources. AAPG Memoir 84, 

221–258.

Straník Z. 1981: Lithofaces and correlations of the Menilite Beds in 

the Carpathian Flysch Belt in Moravia. Zemní Plyn Nafta 26, 

1, 9–18. (in Czech)

Švábenická L. 2012: Nannofossil record across the Cenomanian–

Coniacian interval in the Bohemian Cretaceous Basin and 

Tethyan  foreland  basins  (Outer Western  Carpathians),  Czech 

Republic. Geol. Carpath. 63, 3, 201–217. 

Švábenická L., Bubík M. & Stráník Z. 2007: Biostratigraphy and 

plaeoenvironmental changes on the transition from Menilite 

to Krosno lithofacies (Western Carpathians, Czech Republic). 

Geol. Carpath. 58, 3, 237–262.

Varol O. 1998: Palaeogene. In: Bown P.R. (Ed.): Calcareous nan-

nofossil biostratigraphy. British Micropalaeontol. Soc. Publ.  

Ser., Chapman & Hall, London, 200–224.

Waśkowska A. 2011: Response of Early Eocene deep-water benthic 

foraminifera to volcanic ash falls in the Polish Outer Car -

pathians: Palaeoecological implications. Palaeogeogr. Palaeo­

climatol. Palaeoecol. 305, 50–64.

background image

255

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Planktonic Foraminifera

Abathomphalus mayaroensis (Bolli, 1951) ex Globotruncana

Abathomphalus intermedius (Bolli, 1951) ex Globotruncana

Acarinina bullbrooki (Bolli, 1957) ex Globorotalia

Acarinina medizzai (Toumarkine et Bolli, 1975) ex Globigerina

Acarinina pseudotopilensis Subbotina, 1953

Cassigerinella chipolensis (Cushman et Ponton, 1932) ex Cassi­

dulina

Catapsydrax unicavus Bolli, Loeblich et Tappan, 1957

Chiloguembelina ototara (Finlay, 1940) ex Guembelina

Dentoglobigerina galavisi (Bermúdez, 1961) ex Globigerina

Dentoglobigerina tripartita (Koch, 1926) ex Globigerina

Dipsidripella danvillensis (Howe et Wallace, 1932) ex Globorotalia

Globanomalina compressa (Plummer, 1926) ex Globigerina

Globigerina officinalis Subbotina, 1953

Globigerina praebulloides Blow, 1959

Globotruncana arca (Cushman, 1926) ex Pulvinulina

Globotruncanella petaloidea (Gandolfi,  1955)  ex  Globotruncana 

(Rugoglobigerina)

Globoturborotalita ouachitaensis (Howe et Wallace, 1932) ex Glo­

bigerina

Heterohelix planata (Cushman, 1938) ex Guembelina

Jenkinsina columbiana (Howe, 1939) ex Guembelitria

Macroglobigerinelloides bollii (Pessagno, 1967) ex Globigerinel­

loides

Muricohedbergella delrioensis (Carsey, 1926) ex Globigerina

Muricohedbergella monmouthensis (Olsson, 1960) ex Globorotalia

Muricohedbergella planispira (Tappan, 1940) ex Globigerina

Praemurica inconstans (Subbotina, 1953) ex Globigerina

Pseudohastigerina micra (Cole, 1927) ex Nonion

Pseudohastigerina naguewichiensis (Myatliuk, 1950) ex Globige­

rinella

Pseudotextularia elegans (Rzehak, 1891) ex Cuneolina

Rotalipora appenninica (Renz, 1936) ex Globotruncana

Rugoglobigerina rugosa (Plummer, 1926) ex Globigerina

Subbotina angiporoides (Hornibrook, 1965) ex Globigerina

Subbotina eocaena (Guembel, 1868) ex Globigerina

Subbotina triloculinoides (Plummer, 1926) ex Globigerina

Subbotina utilisindex (Jenkins et Orr, 1973)

Tenuitella brevispira (Subbotina, 1960) ex Globigerina

Tenuitella gemma (Jenkins, 1966) ex Globorotalia

Tenuitella praegemma (Li, 1987) ex Praetenuitella

Tenuitellinata angustiumbilicata (Bolli, 1957) ex Globigerina

Turborotalia increbescens (Bandy, 1949) ex Globigerina

Turborotalita quinqueloba (Natland, 1938) ex Globigerina

Whiteinella baltica Douglas et Rankin, 1969

Benthic Foraminifera

Alabamina dorsoplana (Brotzen, 1940) ex Eponides 

Allomorphina obliqua Reuss, 1851

Ammodiscus cretaceus (Reuss, 1845) ex Operculina

Ammosphaeroidina pseudopauciloculata (Mjatliuk, 1966) ex 

   

Cystamminella

Bathysiphon gerochi Mjatliuk, 1966

Bathysiphon robusta (Grzybowski, 1898) ex Dendrophrya

Biapertorbis alteconicus Pokorný, 1956

Biapertorbis biaperturatus Pokorný, 1956

Bolivina dilatata Reuss, 1850

Bolivina vaceki Schubert, 1902

Bolivinoides draco (Marsson, 1878) ex Bolivina

Cibicides amphisyliensis (Andreae, 1884) ex Truncatulina

Cibicidoides grimsdalei (Nuttall, 1930) ex Cibicides

Cibicidoides lopjanicus (Mjatliuk, 1950)

Dolgenia lata (Grzybowski, 1898) ex Ammodiscus

Dorothia bulletta (Carsey, 1926) ex Gaudryina

Eouvigerina elongata (Cole, 1927) ex Uvigerina

Eouvigerina serrata (Chapmann, 1892) ex Textularia

Escornebovina binominata (Subbotina, 1960) ex Eponides

Globocassidulina subglobosa (Brady, 1881) ex Cassidulina

Glomospira charoides (Jones et Parker, 1860) ex Trochammina

Haplophragmoides decussatus Krasheninnikov, 1973

Hemirobulina hamuloides (Brotzen, 1936) ex Marginulina

Homalohedra apiopleura (Loeblich et Tappan, 1953) ex Lagena

Hyperammina nuda Subbotina, 1950

Karrerulina coniformis (Grzybowski, 1898) ex Gaudryina

Lenticulina discrepans (Reuss, 1863) ex Cristellaria (Robulina)

Lobatula lobatula (Walker et Jacob, 1798) ex Nautilus

Nonion troostae Visser, 1951

Nuttallides truempyi (Nuttall, 1930) ex Eponides

Nuttallinella florealis (White, 1928) ex Gyroidina

Paalzowella feifeli (Paalzow, 1932) ex Trocholina

Pararotalia bandyi (Martin, 1964) ex Rotalia

Paratrochamminoides olszewskii (Grzybowski, 1898) ex Trocham­

mina

Plectorecurvoides parvus Krasheninnikov, 1973

Praebulimina petroleana (Cushman et Hedberg, 1941) ex Bulimina

Praebulimina reussi (Morrow, 1934) ex Bulimina

Praebulimina triangularis (Marie, 1941) ex Buliminella

Pseudonodosinella elongata (Grzybowski, 1898) ex Reophax

Pullenia marssoni Cushman et Todd, 1943

Pyramidina cimbrica (Troelsen, 1945) ex Pseudouvigerina

Remesella varians (Glaessner, 1937) ex Textulariella

Reticulophragmium amplectens (Grzybowski, 1898) ex Cyclammina

Reticulophragmium gerochi Neagu et al., 2011

Rotorbinella supracretacea (Schijfsma, 1946) ex Discorbis

Rzehakina minima Cushman et Renz, 1948

Rzehakina lata Cushman et Jarvis, 1928

Rzehakina fissistomata (Grzybowski, 1901) ex Spiroloculina

Siphonodosaria gracillima (Cushman et Jarvis, 1934) ex Ellipsono­

dosaria

Spirillina concava (Terquem, 1870) ex Cornuspira

Spirillina kuebleri Mjatliuk, 1953

Spiroplectammina dentata (Alth, 1850) ex Textularia

Spiroplectammina navarroana Cushman, 1932

Svratkina perlata (Andreae, 1884) ex Pulvinulina

Trocholina nodulosa Seibold et Seibold, 1960

Calcareous nannofossils

Biscutum magnum Wind et Wise in Wise et Wind 1977

Broinsonia parca constricta Hattner et al. 1980

Cassigerinella chipolensis (Cushman et Ponton, 1932) ex Cassi­

dulina

Ceratolithoides aculeus (Stradner  1961)  Prins  et  Sissingh  in      

Sissingh 1977

Chiasmolithus altus Bukry et Percival , 1971

Chiasmolithus solitus (Bramlette et Sullivan 1961) Locker 1968

Coccolithus eopelagicus (Bramlette et Riedel, 1954) Bramlette et 

Sullivan, 1961

Coccolithus formosus (Kamptner 1963) Wise 1973 

Appendix 1. 

The full names of species mentioned in the text

background image

256                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 239–256 

Coccolithus pelagicus (Wallich, 1871) Schiller, 1930

Dictyococcites bisectus (Hay et al. 1966) Bukry et Percival 1971

Discoaster multiradiatus Bramlette et Riedel 1964

Eiffellithus eximus (Stover 1966) Perch-Nielsen 1968

Ellipsolithus distichus (Bramette et Sullivan 1961) Sullivan 1964

Helicosphaera bramlettei Müller 1970

Helicosphaera  euphratis Haq 1966

Helicosphaera intermedia Martini 1965

Kamptnerius magnificus Deflandre 1959

Micula murus (Martini 1961) Bukry 1973

Micula staurophora (Gardet 1955) Stradner 1963

Monomarginatus quaternarius Wind et Wise in Wise and Wind 1977

Neococcolithus dubius  (Deflandre  in  Deflandre  et  Fert  1954)   

Black 1967

Pontosphaera latelliptica (Báldi-Beke 1974) Perch-Nielsen 1984

Pontosphaera magna Haq 1971

Pontosphaera obliquipons (Deflandre 1954) Romein 1979

Pontosphaera pax (Stradner et Seifert 1980) Aubry 1986

Pontosphaera sigmoidalis (Locker 1967) Aubry 1986

Prediscospaera grandis Perch-Nielsen 1979

Prediscosphaera stoveri (Perch-Nielsen  1968)  Shafik  et            

Stradner 1971

Reinhardites levis Prins et Sissingh in Sissingh 1977

Reticulofenestra lockeri Müller 1970

Reticulofenestra minuta Roth 1970

Reticulofenestra ornata Müller 1970

Reticulofenestra umbilicus (Levin 1965) Martini et Ritzkowski 1968

Sphenolithus spiniger Bukry 1971

Uniplanarius sissinghii Perch-Nielsen 1986

Uniplanarius trifidus (Stradner in Stradner et Papp 1961) Hattner et 

Wise 1980.

Watznaueria barnesiae (Black 1959) Perch-Nielsen 1968

Zeugrhabdothus diplogrammus  (Deflandre  in  Deflandre  et  Fert 

1954) Burnett in Gale et al. 1996

background image

i

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA, 

2016, 67, 3, 239–256 

Supplementary Material File

Situations of outcrops and sample localizations 

Fig. S1. Situation of sections MB001 and MB026 at Frýdek with 

indicated sampling points.

Fig. S2. Outcrop MB026 at Frýdek below an orchard.

Fig. S3. Outcrops of the Frýdlant Formation at Frýdlant nad       

Ostravicí.

background image

ii                                                                                                   

BUBÍK, FRANCŮ, GILÍKOVÁ, OTAVA and ŠVÁBENICKÁ

GEOLOGICA CARPATHICA,

 2016, 67, 3, 239–256 

Fig. S4. Situation of outcrops of the Menilite Formation between Horní and Dolní Těšice.

Fig. S5. Situation of outcrops of the Menilite Formation near Rakov.

background image

iii

STRATOTYPES OF  U. CRETACEOUS–L. MIOCENE FORMATIONS (W CARPATHIANS)

GEOLOGICA CARPATHICA, 

2016, 67, 3, 239–256 

Fig. S6. Situation of outcrops of the Menilite Formation near      

Paršovice.

Fig. S7. Situation of outcrops of the Menilite Formation near       

Sovadina.

Fig. S8. Situation  of  outcrops  of  the  Ženklava  Formation  at      

 Ženklava type area.


Document Outline