background image

www.geologicacarpathica.com

GEOLOGICA CARPATHICA

,  JUNE  2016,  67,  3,  223–238                                                                                                                                

doi: 10.1515/geoca-2016-0015

Calcareous nannofossils of the Jurassic/Cretaceous boundary 

strata in the Puerto Escaño section (southern Spain)            

— biostratigraphy and palaeoecology

ANDREA SVOBODOVÁ

1,2

 and MARTIN KOŠŤÁK

 2

1

Institute of Geology, The Czech Academy of Sciences, v.v.i., Rozvojová 269, 165 00 Prague 6 - Lysolaje; asvobodova@gli.cas.cz

2

Institute of Geology and Palaeontology, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2;  

andrea.svobodova@natur.cuni.cz, martin.kostak@natur.cuni.cz

(Manuscript received  July 14, 2015; accepted in revised form March 10, 2016)

Abstract: We obtained material from the Puerto Escaño section (southern Spain) to study the Jurassic/Cretaceous       

(J/K) boundary interval. The same samples had already been processed for magnetostratigraphic studies and biostrati-

graphic zonation based on calpionellids and ammonites (Pruner et al. 2010), but not for calcareous nannofossils. The aim 

of this study was to process the samples using micropalaeontological analysis and to compare and calibrate results for 

calcareous nannofossils with existing magnetostratigraphic and other biostratigraphic data. The calcareous nannofossil 

assemblage was dominated by the genera WatznaueriaCyclagelosphaeraNannoconusConusphaera and Polycostella

Several nannofossil bioevents were recorded on the basis of the distribution of stratigraphically important taxa, including 

zonal and subzonal markers. Based on the lowest occurrences (LO) of M. chiastiusN. globulus minorN. wintereri

N. steinmanii minorN. steinmannii steinmanniiN. kamptneri minor and N. kampteri kamptneri, two nannofossil 

subzones (NJT 15b, NJT 17a) and two nannofossil zones (NJT 16, NK-1) were recognized. The paper introduces new 

palaeoecological data based on geochemical analysis and macrofauna occurrences.

Key words: Jurassic/Cretaceous boundary, southern Spain, Tethys, biostratigraphy, calcareous nannofossils, 

palaeoecology.

Introduction

The existence of two different temperate Realms in the 

Northern hemisphere (the Tethyan and the Boreal) during the 

J/K boundary interval was associated with the occurrence of 

different biotic elements in the two Realms due to their spe-

cific climatic and palaeoceanographic conditions (Zakharov 

et al. 2014). Also from this point of view, the J/K boundary 

is the last System boundary remaining to be defined. For the 

clarification and precise determination of the J/K boundary 

strata, several markers have been suggested as keys for the 

correlation — namely calpionellids, calcareous nannofossils, 

magnetostratigraphy (base M18r, M19.1n, M19n.1r), ammo-

nites, palynomorphs, geochemistry (Wimbledon et al. 2011). 

One of the possible markers of the J/K boundary interval is 

based on the Calpionella alpina ‘acme zone’. This marker  

was identified in the Puerto Escaño section approximately  in  

the middle part of the M19n magnetozone (Pruner et al. 

2010) and it is partly re-interpreted here. The Jurassic/Creta-

ceous (J/K) boundary interval is currently one of the most 

studied, because no appropriate stratotype for the base of the  

Cretaceous  has  yet  been  defined  despite  an  extensive  re-

search effort (e.g., Hoedemaeker et al. 1998; Houša et al. 

1999, 2004; Lakova et al. 1999; Oszczypko et al. 2004; Mi-

chalík et al. 2009; Reháková et al. 2009; Channell et al. 

2010; Grabowski et al. 2010; Lukeneder et al. 2010; Mi-

chalík & Reháková 2011; Wimbledon et al. 2011, 2013; 

Wimbledon 2014).

Globally, plankton assemblages with rock-forming poten-

tial developed during this time interval. The remarkable 

radiation of the some groups, especially nannoconids and 

calpionellids, significantly increases their biostratigraphical 

value. Moreover, the richness of different fossil groups (am-

monites, calcareous nannofossils, calpionellids) offers the 

opportunity to compare and calibrate different biozonations 

and bioevents, improving the knowledge of Jurassic and Cre-

taceous biochronology (Marino et al. 2004). This study is fo -

cused on calcareous nannofossil biostratigraphy, an essential 

component of standard multidisciplinary J/K boundary re-

search.

According to Pruner et al. (2010), the lithological succes-

sion of the Puerto Escaño section in southern Spain shows 

relatively continuous sedimentation with minor incidence of 

hiatuses, conditions favourable for study of  palaeomagnetic 

 polarity. They also reported rich fossil assemblages of 

calpionellids and ammonites; calpionellids, in particular, 

were very well preserved, highly diversified, and with a full 

record of their evolution.

The ammonite fauna of this section has been evaluated by 

Olóriz (1978); Olóriz & Tavera (1989, 1990); Tavera et al. 

(1994); Olóriz et al. (1995, 2004). Lithology, development 

and associated ichnofabric assemblages were investigated by 

Caracuel  (1996);  Caracuel  et  al.  (2000).  The  first  relevant 

geochemical data (stable isotopes) from this section, cali-

brated by bio- and magnetostratigraphy were given by Žák 

et al. (2011).

background image

224                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

The aim of this paper is to describe the Late Jurassic– Early 

Cretaceous calcareous nannofossil assemblage from Puerto  

Escaño, and to discuss its biostratigraphy and possible 

palaeoecological  affinities.  We  compare  these   calcareous 

nannofossil results with the magnetostratigraphic and bio-

stratigraphic (ammonites, calpionellids) data of Pruner et al. 

(2010) to define the J/K boundary interval.

Geological setting

The section at Puerto Escaño, in the province of  Córdoba, 

south-eastern Spain (Fig. 1) is located in the External 

Subbetic, which was positioned during the Late Jurassic and 

Early Cretaceous in a more distal, rather epioceanic environ-

ment, located in the S-E Iberian subplate palaeomargin (Co-

imbra  et  al.  2014a).  Generally,  the  Subbetic  Zone  is  a 

complex tectonostratigraphic unit which, palaeogeographi-

cally, was part of the pelagic domain of the southern passive 

margin of the Iberian Plate. Palaeoenvironmental characteris-

tics, based on geochemistry of carbonates, were recently 

provided by Coimbra et al. (2014a,b) and Coimbra et al. 

(2015).

According to Pruner et al. (2010), the Upper Jurassic to 

lowermost Cretaceous deposits in the studied section (spe-

cifically  GA-7,  UTM  30SUG44859)  consist  of  upper Am-

monitico Rosso and related facies, ranging from well-bedded 

limestones  to  clayey  nodular  limestone  horizons  reflecting 

deposition on a distal, epioceanic swell. The section  studied is 

dominated by wackestone showing microfacies with 

variable contents of radiolarians, calcareous dinoflagellates, 

planktonic crinoids, planktonic and benthic foraminifers, 

calpionellids, ostracods, cephalopods, echinoderms (plates 

and spines), sponge spicules and pelagic bivalves, among 

others. Macroscopic fossil remains are mostly ammonites, 

and less abundant components are belemnites, brachiopods 

and echinoids. Their occurrence is concentrated into several 

limited horizons (beds — see below). Tavera et al. (1994) 

also reported relatively abundant calcareous nannofossils 

from this section.

Fig. 1. Location of the studied section (A). The position of section GA-7 at Puerto Escaño with roads in the surroundings (B). Black area 

 represents the Betic Cordillera. Maps modified from Pruner et al. 2010.

background image

225

CALCAREOUS NANNOFOSSILS OF THE J/K PUERTO ESCAÑO SECTION (S SPAIN)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Material and methods

Calcareous nannofossils

We used the same rock material as in the previous study by  

Pruner et al. (2010) for calcareous nannofossil analysis. 

These were unused, very small fragments from samples in 

the same stratigraphic interval (an 8.1m-thick part of the sec-

tion straddling the upper Tithonian and lower Berriasian), 

and numbering. These remnants provided enough material 

for detailed micropalaeontological analysis of the nannofos-

sils. Samples numbered from No. 5 to No. 42 (Fig. 2) were 

chosen from throughout the profile (Fig. 2).

Calcareous nannofossils were analysed in 51 smear slides 

prepared using the standard techniques described by Švábe-

nická (2001), under an Olympus BX51 light microscope 

using an immersion objective with a magnification of 100×. 

Digital images of nannofossil specimens were taken with an  

Olympus DP70 digital camera. At least 200 specimens were 

counted on each slide, to obtain relative abundances and 

semiquantitative information about nannofossil species di-

versity.  Each  slide  was  then  scanned  for  identification  of 

scarce, but biostratigraphically important, species.

The set of smear slides is stored at the Institute of  Geology 

and  Palaeontology  (Chlupáč´s  museum  of  Earth  history), 

Faculty of Sciences, Charles University in Prague as item 

(IGP/2015/PE001).

Preservation of calcareous nannofossils was characterized 

using the abbreviations described by Bown (1992):

VP (very poor)=extreme etching

P (poor)=etching and overgrowth; obscured, damaged, or 

destroyed central area structures

M (moderate)=moderate etching or overgrowth.

The scale for the estimate of nannofossil total abundance 

was modified after Casellato (2010):

A (abundant): >11 specimens per field of view

C (common): 1–10 specimens per field of view

F (few): 1 specimen every 1–5 fields of view

R (rare): 1 specimen every 6 or more fields of view.

The individual abundances for each species per sample 

were  counted  according  to  the  classification  proposed  by 

Bown (1992):

R (rare)=1–2 specimens

F (few)=3–10 specimens

C (common)=11–100 specimens

A (abundant)=more than 100 specimens (out of 200 specimens).

A full list of the calcareous nannofossil taxa found in this 

study is given in alphabetical order in Appendix A. The listed  

calcareous nannofossils are indexed according to Perch- 

Nielsen (1985) and Bown & Cooper (1998). Biostratigraphic 

data were interpreted with reference to the nannofossil zona-

tion of Casellato (2010), commonly used for the Upper Ju-

rassic and the Lower Cretaceous in the Tethyan/ 

 

Mediterranean area.

Macrofossil record and geochemistry

The abundance of the macrofossils, also including the 

benthic assemblage is based on a simple quantitative analy-

sis, calculating the number of specimens recorded in a 

1m-wide unit of the bed. An abundance exceeding 5–10 

specimens or fragments per unit is considered herein to be 

significantly high (in relation to other beds within the pro-

file,  where  almost  no  benthic  fauna  has  been  recorded). 

Higher belemnite abundance (≥3–4 per unit) should be con-

sidered as a bio-event and it is reported in the “Palaeoecolo-

gy” chapter.

Stable  isotope  curves  have  been  published  by  Žák  et  al. 

(2011) and they are reduced herein into a single column 

18

O — Fig. 3) as δ

13

C values (varying from 1.14 to 1.53 ‰ 

V-PDB):  they  show  no  significant  expressions  suitable  for 

palaeoecological interpretations (see below).

We have used additional AAS geochemical methods as 

a tool for recognizing possible terrigeneous (siliciclastic 

SiO

2

 and Al

2

O

3

) input within the Puerto Escaño section. All 

analysis (concentrated to oxide and element detections) was 

carried out using a VARIAN (type SpectrAA 280 FS) instru-

ment at the Faculty of Science, Charles University in Prague 

(Laboratories of the Geological Institutes).

Results

In the samples studied, calcareous nannofossils were rare 

to abundant and very poorly to moderately well preserved. In 

total, 35 calcareous nannofossil taxa were identified (Fig. 2). 

The most common component of the assemblage is the genus 

Watznaueria, forming nearly 58 % of the nannofossils, in-

cluding W. barnesiae (Fig. 4/1), W. manivitiae (Fig. 4/2), W. 

communis (Fig. 4/3), W. fossacincta (Fig. 4/4) and W. britan­

nica (Fig. 4/5). W. barnesiae was present in all samples and 

ranged from 38 % to 59 % of the total assemblage. The 

highest abundance of this species was recorded in bed 19.

The percentages of W. manivitiae ranged from 3 % to 17 % 

of the total assemblage and the highest abundances were re-

corded from beds 11 to 22. W. britannica formed approxi-

mately 2 % of the total assemblage, while W. fossacincta and 

W. communis occurred only sporadically, representing ~0.5 

% of the genus Watznaueria.

The second most common genus is Cyclagelosphaera spp. 

(~27 % of all identified nannofossils), particularly C. margerelii 

(Fig. 4/6), C. deflandrei (Fig. 4/7) and C. argoensis (Fig. 4/8). 

Other abundant genera are: Conusphaera spp. (~7 %) repre-

sented by C. mexicana mexicana (Fig. 4/19, 20) and C. mexi­

cana  minor,  Nannoconus spp. (~4 %) represented by 

Nannoconus sp. (Fig. 5/1), N. infansN. erbae (Fig. 5/2, 3), 

N. puer (Fig. 5/4, 5), N.  globulus  minor  (Fig. 5/6–9),  

N. globulus globulus (Fig. 5/10–13), N. wintereri (Fig. 5/14–17), 

N. steinmannii minorN. steinmannii steinmannii (Fig. 5/18–21), 

N. kamptneri minor, and N. kamptneri kamptneri (Fig. 5/22, 

23), and finally Polycostella beckmannii (Fig. 4/22, 23), rep-

resenting more than 2 % of the total nannofossil assemblage. 

Three nannoliths - Conusphaera spp., Nannoconus spp. and 

Polycostella sp. showed the most significant fluctuations in 

the nannofossil assemblage, as shown in previous studies 

(e.g., Tremolada et al. 2006a). The percentage representation 

and peaks in abundance of these most abundant genera 

across the studied profile are presented in Fig. 6.

background image

226                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Fig. 2. Lithology, magnetostratigraphy, biostratigraphy (calpionellid, ammonite and calcareous nannofossil zonation) and vertical distribu-

tion of nannofossil species of the Puerto Escaño section. Open circles indicate uncertain species identification. Biozonal (ammonite, calpionel-

lid)  and  magnetozonal  data  after  Pruner  et  al.  2010  (modified).  Nannofossil  zones  follow  Casellato  (2010).  The  expected  J/K  boundary  

interval is marked in grey. CNZ — calcareous nannofossil zonation; CZ — calpionellid zonation; CAAZ — Calpionella alpina “acme zone”; 

?CPAZ — Crassicollaria parvula “acme zone”; PZ — Praetintinnopsella Zone; 

*

 — beds studied for calcareous nannofossils (this work).

background image

227

CALCAREOUS NANNOFOSSILS OF THE J/K PUERTO ESCAÑO SECTION (S SPAIN)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Fig. 3. Puerto Escaño section (after Pruner et al. 2010) — magnetostratigraphy, lithology, benthic organisms occurrence, belemnite rela-

tively abundant horizons, geochemical analysis of the bulk rock samples (ratio of oxides CaO, SiO

2

 and Al

2

O

3

) and the stable isotpe signals 

of the δO

18

 curve (after Žák et al. 2011) in relation to the calcareous nannofossil (this paper), calpionellid and ammonite Zones (Pruner et 

al. 2010). CNZ — calcareous nannofossil zonation; CZ — calpionellid zonation.

background image

228                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Fig. 4. Calcareous nannofossils from the Puerto Escaño section. Cross polarized light; scale bar represents 5 µm. 1 — Watznaueria bar­

nesiae; sample 25-1 t. 2 — W. manivitiae; sample 25-2 b. 3 — Watznaueria communis; sample 23-3. 4 — W. fossacincta; sample 41.      

5 — W. britannica; sample 24 b. 6 — Cyclagelosphaera margerelii; sample 25-1 t. 7 — C. deflandrei; sample 24 b. 8 — C. argoensis;  

sample 30.      9, 10 — Cruciellipsis cuvillieri; 9 — sample 25-2 t, 10 — sample 28. 11–13 — Diazomatolithus lehmanii; 11 — sample  

26-2, 12 — sample 41, 13 — sample 39. 14, 15 — Hexalithus  noeliae; sample 13. 16 — Microstaurus  chiastius; sample 25-2 t.              

17 — Zeugrhabdotus embergeri; sample 40. 18 — Z. cooperi; sample 41. 19, 20 — Conusphaera mexicana mexicana; 19 — sample 22 b,  

20 — sample 26-3 b.     21 — Pentalith; sample 25-2 t. 22, 23 — Polycostella beckmannii; sample 11. 24 — Lithraphidites carniolensis

sample 26-3 t.

Discussion

Biostratigraphy

Generally,  calcareous  nannoflora  represent  an  important 

source of biostratigraphic data for the Mesozoic and Cenozoic 

ages. Indeed, in some multiproxy studies, the most signifi-

cant stratigraphic data were obtained by the analysis of cal-

careous nannofossils (e.g. Halásová et al. 2012).

Despite the relatively poor preservation of the calcareous 

nannofossils in our material, several biostratigraphic events 

have been defined. The lowest occurrence (LO) of M. chias

­

Other nannoliths represented by Faviconus multicolumna­

tusAssipetra infracretaceaHexalithus noeliae (Fig. 4/14, 

15), Lithraphidites carniolensis (Fig. 4/24) and an unidenti-

fied  pentalith  (one  specimen,  Fig.  4/21)  occurred  less  fre-

quently, as did other members of the coccolithophorids such as 

Zeugrhabdotus embergeri (Fig. 4/17), Z. cooperi (Fig. 4/18), 

Z.  erectus,  Rhagodiscus asper,  Diazomatolithus  lehmanii 

(Fig. 4/11–13), Cruciellipsis  cuvillieri  (Fig. 4/9, 10), Dis­

corhabdus ignotus,  Microstaurus  chiastius  (Fig. 4/16)  and 

Biscutum constans. The preservation and total abundance of 

calcareous nannofossils and the individual abundances for 

each species are summarized in Fig. 7.

background image

229

CALCAREOUS NANNOFOSSILS OF THE J/K PUERTO ESCAÑO SECTION (S SPAIN)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Fig. 5. Calcareous nannofossils from the Puerto Escaño section. XPL — cross polarized light, PPL — plane polarized light. Scale bar repre-

sents 5 µm. 1 — Nannoconus sp., cross section; sample 25-2 b, XPL. 2, 3 — N. erbae; 2 — sample 23-3, XPL; 3 — sample 23-3, PPL     

(the same specimen). 4, 5 — N. puer; 4 — sample 25-2 b, XPL; 5 — sample 25-2 b, PPL (the same specimen). 6–9 — N. globulus minor;   

6 — sample 25-1 b, XPL; 7 — sample 25-1 b, PPL (the same specimen); 8 — sample 25-1 t, XPL; 9 — sample 25-1 t, PPL (the same spec-

imen); 10–13 — N. globulus globulus; 10 — sample 25-1 t, XPL; 11 — sample 25-1 t, PPL (the same specimen); 12 — sample 30, XPL;    

13 — sample 30, PPL (the same specimen). 14 –17 — N. wintereri; 14 — sample 35, XPL; 15 — sample 35, PPL (the same specimen);     

16 — sample 40, XPL; 17 — sample 40, PPL (the same specimen). 18–21 — N. steinmannii steinmannii; 18 — sample 35, XPL; 19 — sam-

ple 35, PPL (the same specimen); 20 — sample 35, XPL; 21 — sample 35, PPL (the same specimen). 22, 23 — Nannoconus kamptneri  

kamptneri; 22 — sample 35, XPL; 23 — sample 35, PPL (the same specimen). 24 — Faviconus multicolumnatus; sample 13.

the NJT 17b Subzone, that continues to the LO of N. stein­

mannii minor sensu Casellato (2010). Unfortunately, this 

bioevent has not been identified in the studied section and 

the LO of N. steinmannii minor has been observed in the 

middle parts of the Calpionella Zone and the Jacobi Zone 

and corresponds to the LOs of N. steinmannii steinmannii

N. kamptneri minor and N. kamptneri kamptneri (Figs. 6, 7), 

that indicates the beginning of the NK-1 Zone (sensu Bra-

lower et al. 1989). In the interval between the LO of N. win

­

tereri and the LOs of N. steinmannii minorN. steinmannii 

steinmannii,  N. kamptneri minor and N. kamptneri kampt­

neri, the Calpionella alpina ‘acme zone’ and the beginning 

tius  indicating  the  beginning  of  the  NJT  16  Zone  sensu      

Casellato (2010) was recorded in the middle part of the 

M20n magnetozone, at the end of the Chitinoidella Zone and 

in the middle part of the Transitorius  Zone  (Tavera  et  al. 

1994). The LO of N. globulus minor is found in the middle 

part of the M19r magnetozone and indicates the beginning of 

the  NJT  17  Zone  sensu Casellato (2010). The LOs of 

N. globulus globulus and C. cuvillieri were recorded in the 

lower part of the M19n magnetozone, in the middle part of 

the Crassicolaria Zone and at the beginning of the Jacobi 

Zone. In the upper part of the Crassicolaria Zone, the LO of 

N. wintereri was observed. This indicates the beginning of 

background image

230                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Fig. 6. Lithology, magnetostratigraphy and biostratigraphy (calcareous nannofossil zonation). Includes representation of selected nanno-

fossil genera in the Puerto Escaño section as a percentage and the main recorded bioevents. Lithology and magnetozonal data after Pruner 

et al. 2010 (modified). Nannofossil zones follow Casellato (2010). * — beds studied for calcareous nannofossils (this work); LO — lowest 

occurrence.

background image

231

CALCAREOUS NANNOFOSSILS OF THE J/K PUERTO ESCAÑO SECTION (S SPAIN)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

of the Calpionella Zone were observed (Pruner et al. 2010). 

It should be noted, that the LO of N. kamptneri minor usually 

appears a little above the LO of N. steinmannii minor, but in 

this paper it occurs together with the LOs of N. steinmannii 

steinmannii and N. kamptneri kampteri in bed 35. This anoma-

ly can be explained by the very poor preservation and ex-

treme etching of calcareous nannofossils between beds 32 

and 34 (Fig. 7). Moreover, the appearance of these four spe-

cies together suggests the presence of a hiatus.

In the previous study by Tavera et al. (1994), the zonal 

scheme proposed by Bralower et al. (1989) was used. How-

ever, the zonation of Bralower et al. (1989) and specifically 

the  definition  of  subzones  NJK-A,  NJK-B  and  NJK-C  is 

based on the lowest occurrences of species with relatively 

delicate structures (Umbria granulosa granulosa and Rote­

lapillus laffittei) which may disappear from the association 

as a result of preservational effects (Tavera et al. 1994). The 

material studied in Tavera et al. (1994) was also not well pre-

served and U. granulosa and R. laffittei taxa have not been 

recorded. Indeed, only the NJK-D subzone based on the LO 

of N. steinmannii minor was determined. This subzone is cor-

related with the lowermost Berriasian (Tavera et al. 1994), 

corresponding to the NKT Zone sensu Casellato (2010). In 

comparison, two additional nannofossil subzones (NJT 15b, 

NJT 17a) and two nannofossil zones (NJT 16, NK-1) were 

recognized in this study. Moreover, the time interval of the 

NJT 17 and NKT Zones sensu Casellato (2010) has been ob-

served. 

Correlation of the main bioevents with magnetostrati-

graphic data (Pruner et al. 2010) is given in Fig. 8, where the 

comparison with other studied sections of the J/K boundary 

is shown. The LO of N. wintereri has been recorded in the 

M19n magnetozone in Puerto Escaño, as well as in Le Chouet, 

Brodno, Foza and Torre de’ Bussi sections. In Fiume Bosso, 

this bioevent has been observed in M18r and in Barlya sec-

tion in M17r magnetozone. Similarly, the LO of N. steinman­

nii minor within the M19n magnetozone has been recorded in 

Puerto Escaño, as well as in Le Chouet, Lokut and Torre 

de’ Bussi sections. This bioevent has been recorded in M17n 

zone in Foza and Fiume Bosso and in M18r in  Barlya sec-

tion. The LO of N. steinmannii steinmannii in M19n magne-

tozone was observed only in Puerto Escaño section, then in 

M17r zone in Foza and Fiume Bosso sections.

Palaeoecological interpretations

This chapter is divided into four major parts: the calcareous 

nannofossils palaeoecology, macrofossil record, new addi-

tional geochemical data and remarks on the key Bed 28 (J/K 

boundary sensu Pruner et al. 2010).

Remarks on selected Late Jurassic calcareous nannofossils

In some cases, calcareous nannofossils provide only spo-

radic information about the palaeoecological conditions of 

a depositional area. But there is also evidence reported from 

the literature that calcareous nannoplankton may give impor-

tant information regarding the trophic levels of the superfi-

cial oceanic water, about the water temperature or salinity 

(e.g., Erba 1992; Tremolada et al. 2006b; Aguado et al. 

2008, Mattioli et al. 2008). Some palaeoecological aspects 

can also be presented from our study.

Generally, the most dominant genera in studied material 

are  Watznaueria,  Cyclagelosphaera,  Nannoconus,  Conus

­

phaera and Polycostella (see chapter Results). This compo-

sition of calcareous nannofossil assemblages across J/K 

boundary interval is typical for “low latitudes“ sections and 

has been already observed in previous studies (e.g. Tavera et 

al. 1994; Bornemann et al. 2003; Tremolada et al. 2006a; 

Michalík et al. 2009; Lukeneder et al. 2010).

The most common taxon recorded is Watznaueria 

barne­siae, representing 48 % of the entire taphocoenosis. This 

species is not susceptible to dissolution and is resistant to dia-

genetic alteration (Hill 1975; Thierstein 1980; Roth 1981; 

Roth & Bowdler 1981; Roth & Krumbach 1986). Roth & 

Krumbach (1986) described assemblages containing more 

than 40 % of W. barnesiae as heavily altered by diagenesis. 

However, the genus Watznaueria is generally considered to 

be the robust and most successful Mesozoic coccolitho-

phore, in terms of abundance, across the widest range of en-

vironments. By some authors Watznaueria is considered to 

be an opportunistic, r-strategist taxa (e.g., Tremolada et al. 

2006a; Lees et al. 2006; Tantawy et al. 2009; Colombié et al. 

2014; Suchéras-Marx et al. 2015). It is ubiquitous and domi-

nant through most of the Mesozoic, further illustrating its 

wide palaeoecological tolerance. In the fossil record, W. bar­

nesiae displays a eurytopic, ecologically robust form, and 

was one of the first species to settle new habitats. In an eco-

logical sense, it is similar to a recent species, Emiliania hux­

leyi. Together with Cyclagelosphaera, these two genera are 

stratigraphically long-ranging (Jurassic–earliest Palaeocene) 

and morphologically conservative, characteristics of gene-

ralist rather than specialist taxa (e.g., Mutterlose & Wise 

1990; Street & Bown 2000; Melinte & Mutterlose 2001; 

Bown & Concheyro 2004; Lees et al. 2004). Both are con-

sidered to be cosmopolitan taxa and Lees et al. (2006) sug-

gest, that C. margerelii lived in a higher trophic position 

than  W. barnesiae and was more r-selected, possibly with 

more extreme nutrification affinities.

Species such as Biscutum constansDiscorhabdus ignotus

Diazomatolithus lehmanii and Zeugrhabdotus erectus oc-

curred only sporadically in our samples. These species indi   cate 

eutrophic environments and preferred higher nutrient 

 

levels in the oceanic surface water (Roth 1981; Roth & 

Bowdler 1981; Roth & Krumbach 1986; Bornemann et al. 

2003; Tremolada et al. 2006a,b). Dominance of B. constans 

and Zeugrhabdotus spp. is usually considered indicative of 

upwelling of cold water rich in nutrients (e.g., Mutterlose & 

Kessels 2000; Lees et al. 2005; Hardas & Mutterlose 2007; 

Lowery et al. 2014). Higher abundances of the taxa B. con

­

stans (~11 % of the total assemblage) and Z. erectus (~33 % 

of the total assemblage) have been associated with the oc-

currence of black shales and phosphorite deposition (Kessels 

et al. 2003). However, these species show very low abun-

dances in our samples — only one specimen of each species 

(Fig. 7). It can be explained by high susceptibility to dissolu-

tion of these small coccoliths such as Z. erectusB. constans 

background image

232                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Fig. 7. Age, calcareous nannofossil zonation and calcareous nannofossil range chart of the Puerto Escaño section, including information on 

preservation, total abundance and relative abundance of each taxon. Question marks indicate uncertain species identification of heavily dis-

solved specimens or of nannofossils that occutred only as fragments. Uncertain occurrence was often associated with beds where preserva-

tion was very poor (marked by grey colour) (b=bottom, m=middle, t=top of the bed).

Both situations are probably connected with controlling 

factors, namely shallowing but rather the presence of higher 

nutrient flux. Shallowing should be excluded, maybe excep-

ting that in Beds 10–17 (i.e. lower and middle part of the 

Transitorius ammonite Zone, Fig. 3), where siliciclastic and 

Al

2

O

influx (with some signs of cyclicity) has been detected 

(Fig. 3), but this phenomenon could also be connected with 

periods with higher run-off. Probably, the sequences with 

abundant benthos represent the result of larger nutrient flux 

and subsequent biological productivity. In this context, the 

co-occurrence of Biscutum constansDiscorhabdus ignotus

Diazomatolithus lehmanii and Zeugrhabdotus erectus with 

abundant benthic organisms (Fig. 3) — namely eutrophic 

communities, should indicate some correlation. This should 

also support the results of Bornemann et al. (2003) and 

Tremolada et al. (2006a,b), who suggested these nannofossil 

taxa were dependent on a eutrophic environment. However, 

we assume that more relevant data are needed. We could not 

confirm the hypothesis of Mutterlose & Kessels (2000), Lees 

et al. (2005), Hardas & Mutterlose (2007), Lowery et al. 

(2014) and others relative to the oxygen stable isotope curve, 

as no marked cooling (related to upwelling of cold waters) is 

recorded in the δ

18

O

 

values (Fig. 3). Nevertheless, we agree 

with the conclusion that these taxa represent rather eutrophic 

organisms.

Benthic assemblages with skeleton remains occur in Bed 

complex 10–17 (in the middle part of the Transitorius 

Zone), 22–25 (corresponding approximately to the Duran-

gites  ammonite  Zone),  28  (“Saccocoma  Bed”,  suggested  

J/K boundary), 33 (lower part of the standard Calpionella 

Zone) and 36 (i.e. the middle part of the Calpionella Zone) 

(Fig. 3).

Higher abundances of belemnites (active nektonic ani-

mals) have been recorded in beds 14A, 21, 23, 33B–C, and 

42. Their occurrences partly correlate with the benthos 

presence — namely with more eutrophic conditions (see 

above). It has been suggested that higher belemnite abun-

dances (predominantly hibolithids and pseudobelids) are de-

pendent on the transgressive/regressive tracts (Mitchell 

2005; Wiese et al. 2009), however, the sea-level oscillations 

in the epioceanic development of the Puerto Escaño se-

quence (Olóriz et al. 2004) seems to be under the analytical 

limits and further investigations are needed. In this respect, 

the winnowing effect, concentrating macrofossil records, 

cannot be excluded. On the other hand, the presence of these 

remains only in several horizons suggests that their original 

habitat, in terms of the environment, lithology and geochemi-

cal record in other beds, in which they are missing, is fully 

comparable.

Additional geochemical data 

New geochemical data are based on the AAS silicate analy-

sis (see above), which detects especially oxides and element 

and  D. ignotus (Hill 1975; Thierstein 1980; Roth 1981, 

1983; Roth & Krumbach 1986), because a diagenetic over-

print may imply a decrease in their relative abundance 

(Giraud 2009; Giraud et al. 2013).

Irregular occurrence of Rhagodiscus asper and Lithraphi­

dites carniolensis began in bed 26, which corresponds to the 

NJT 17a nannofossil subzone, close below the J/K boundary 

interval. Erba (1987) and Erba et al. (1992) interpreted these 

species as thermophilous warm-water taxa indicating warm 

surface water that was poor in nutrients. In this context, there 

is also increased abundance of Nannoconus spp. in this part 

of the section (Fig. 6). Nannoconids have been characterized 

as typical Tethyan taxa of warm, low-latitude,  carbonate- 

shelf environments. Similar to Watznaueria are considered 

to be r-selected taxa, moreover robust and not susceptible to 

dissolution (Street & Bown 2000; Melinte & Mutterlose 

2001; Bown & Concheyro 2004; Tremolada et al. 2006b). 

These extinct ‘incertae sedis’ nannofossils are often inter-

preted as living in the lower photic zone (e.g., Erba 1994; 

Bornemann et al. 2003; Herrle 2003; Barbarin et al. 2012). 

The  ecological  affinities  of  other  abundantly  represented 

species, Conusphaera and Polycostella, are unknown, except 

considering  Conusphaera to be a warm water taxon (e.g., 

Melinte & Mutterlose 2001; Mutterlose et al. 2005).  However, 

Bornemann et al. (2003) proposed for them an ecological 

setting similar to that of Nannoconus, due to some similari-

ties in the skeletons of these taxa.

Macrofossil abundance

The ammonite fauna has been studied in great details by 

numerous authors (Olóriz & Tavera 1989; Tavera et al.  

1994; Pruner et al. 2010; etc.) and the belemnite record (sta-

ble  isotopes)  has  partly  been  investigated  by  Žák  et  al. 

(2011). However, the presence and abundance of the macro-

fauna,  predominantly  benthic  filter  feeders  and  substrate 

feeders (i.e. brachiopods, echinoids, less abundant bivalves, 

echinoderms, sponges) is of great interest. Their presence/

absence is shown in Fig. 3. The constant sedimentation rate 

(i.e. 1–5 mm/ky; 2.87 mm/ky with standard deviation 

1.17 mm/ky for the whole section; Pruner et al. 2010) as well 

as palaeocological conditions — namely a very low variation 

of geochemical content in carbonates (also supported by the 

stable isotope data; Žák et al. 2011, Fig. 3) within the lime-

stone beds through the whole section do not suggest any rapid 

changes either in sedimentology (and bathymetry, not ex-

ceeding the CCD — supported by almost continuous ammo-

nite record) or in taphonomy. Skeletons of all the above 

mentioned benthic groups as well as belemnites are com-

posed predominantly by calcite. Thus, we assume very low 

fluctuations within the preservation potential of these fossils. 

So, the basic scheme for benthic assemblage distribution 

should be introduced based on simple fact — namely on rela-

tively abundant/absent.

background image

233

CALCAREOUS NANNOFOSSILS OF THE J/K PUERTO ESCAÑO SECTION (S SPAIN)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

SAMPLE

PRESER

VA

TION

TOT

AL

 ABUNDANCE

Assipetra infracr

etacea

Biscutum constans

Conusphaera m. mexicana

Conusphaera mexicana minor

Cruciellipsis cuvillieri

Cyclagelosphaera ar

goensis

Cyclagelosphaera deflandr

ei

Cyclagelosphaera mar

ger

elii

Diazomatolithus lehmanii

Discor

habdus ignotus

Faviconus multicolumnatus

Hexalithus noeliae

Lithraphidites carniolensis

Micr

ostaurus chiastius

Nannoconus sp.

Nannoconus erbae

Nannoconus globulus globulus

Nannoconus globulus minor

Nannoconus infans

Nannoconus k. kamptneri

Nannoconus kamptneri minor

Nannoconus puer

Nannoconus steinmannii minor

Nannoconus s. steinmannii

Nannoconus winter

er

ei

Pentalith

Polycostella beckmannii

Rhagodiscus asper

W

atznaueria barnesiae

W

atznaueria britannica

W

atznaueria communis

W

atznaueria fossacincta

W

atznaueria manivitae

Zeugr

habdotus cooperi

Zeugr

habdotus ember

geri

Zeugr

habdotus er

ectus

CALCAREOUS NANNO

-

FOSSILS ZONA

TION

 ST

AGE

42

P C - - R - - - C C R - - - - - F - - R - - R - R - - - - - C F - R C - F -

NK-1

LOWER BERRIASIAN

BERRIASIAN

41

P C - - R - - - C C R - - - R - F - R F - - - - F - R - - - C F - R C R - -

40

P C - - F - - - C C - - - - R - C - F F - - - - F - F - - R C F - F C - R -

39

P C - - F - - - C C R - - - R - F - R F - - R - - - F - - - C F - - C - R -

38 t

VP F -   F - - - C C - - - - - - C - - R - - - - - - R - - - A R - - C - - -

38 b

VP R - - F - - - C C - - - - - - C - R - - - R - - - R - - - A - - - C - R -

37

VP C - - C R - - C C - - - - R - C - R R - - - - - - R - - - A R - - C - R -

36

P C - - C R - - C C - - - - R - C - R R - - F - F R - - - - C F - - F - R -

35

M A - - R R - - C C F - - - - - C - F R - R F - C F R - - R C F - - F R R -

34

VP C - - F - - - C C - - - - - - F ?R - ?R - - - - - - R - - - A R - R C - - -

NJT

 17    /    NKT

 

J/K

33B

P C R - C F - - C F - - - - - - F - R - - - - - - - - - - - C R - R C - R -

33A

VP C - - C F - - C C - - - - - - C - - R - - - - - - - - - - C R - - C - R -

32 t

P C R - C R - - C C - - - R R - F - R R - - - - - - - - - - C F - R C - - -

32 m VP R - - R R - - C C R - - - - - F - ?R - - - - - - - - - R - A R - R C - - -
32 b

VP C - - F F - - C C - - - - - - C ?R R R - - - R ?R - F - - - A R - - F - - -

31

P C - - F F - - C C - - - - R - F - R R - - - R - - R - - - C R - R C R - -

30

M C - - F F - R C C - - - - - - C R R F - - - R - - R - - R C R - R C R - -

29

VP C R - C C - - C C R - - - - - F - - R - - - - - - R - - - C R - F C - - -

28

P F - - C C R - C C - - - - - - F - - R - - - - - - - - - - C F - - C - - -

27

P C - - C C - - C C R - - - - - F - R R - - - R - - R - - - C F R - C - - -

26-3 t P C - - F F - - C C  

- - - R - F - - R - - - - - - - - - R C F - - C - R -

NJT

 17a

UPPER TITHONIAN

T  I  

T  H  O  N  I  

A

  N

26-3 b P C - - C C - - C C - - - - - - F - R R - - - - - - - - - - C F - - C - R -
26-2

P F - - C C - - C C R - - - ?R - F - R R - - - - - - - - ?R - C - - - C - - -

26-1

P C - - C C - - C C - - - - - - F - - - - - - - - - - - - - C F - R C - R -

25-2 t M C - - C F R - C C - - - - - R - - R R - - - - - - - ?R - - C F - - C - - -
25-2 b M C - - F F - - C C R - - - - - F - - R R - - R - - - - - - C F - - C - - -
25-1 t P C - - C F - - C C - R - - - - - - R R - - - - - - - - - - C R - - C - R -
25-1 b P C R - C F - - C C - - - - - - - - - R - - - R - - - - - - C R - - C - - -
24 t

VP C - - R F - - C C - - - - - - R - - - - - - - - - - - R - A R - - C - - -

24 b

P C - - F F - - C C R - - - - - - R - R - - - - - - - - ?R - C R R R C - - -

23-3 VP F - - F F - - C C - - - - - - - R - R ?R - - - - - - - - - A F R - C - - -
23-2

P C - - F C - - C C - - - - - - - - ?R ?R - - - - - - - - - - C F - - C - - -

NJT

 16

 

MIDDLE TITHONIAN

23-1

P C - - F F - - C C R - - - - - R - - - - - - - - - - - F - C F - - C - R -

22 t

P C R - C F - - C C R - - - - - R - ?R ?R - - - - - - - - R - C R - - C - - -

22 m M C R - C F - - C C - - - - - R R - - ?R ?R - - - - - - - F - C F - - C - - -
22 b

P F R - F F - - C C - - - - - - R - - - - - - - - - - - F - C R - R C - - -

21

P F - R R F - - C C R - - - - R ?R - - - - - - - - - - - F - C F - R C - - -

20 t

P F R - R R - - C C R - - - - - - - - - - - - - - - - - F - A F - - C - - R

20 b

P F R - R F - - C C - - - - - R - - - - ?R - - - - - - - F - A R - R C - - -

19

VP R R - - - - - C C R - - - - - - - - - - - - - - - - - C - A R - R C - - -

18

VP F R - - ?R - - C C ?R - - - - R R - - - - - - - - - - - C - A R - - C - - -

17

P C F - R - - - C C - - - - - ?R - - - - - - - - - - - - F - A F - - C - - -

16

VP  C F - R - - - C C - - - - - - - - - - - - - - - - - - C - A R - F C - - -

15

VP C F - - - - - C C R - - - - R - - - - - - - - - - - - C - A R - R C - - -

14

VP C F - - - - - C C R - - R - R ?R - - - - - - - - - - - C - A F - - C - - -

13

M A R - F R - - C C - R R R - - - - - - - - - - - - - - C - A F - R C - - -

11/12 VP C R - - R - - C C R - - - - - - - - - - - - - - - - - C - A F - R C - - -
11

P F F - - R - - C C R - - ?R - R - - - - - - - - - - - - C - A F - - C - - -

10

VP C - - - - - - C C - - - - - - - - - - - - - - - - - - C - A F - R C - - -

NJT

 15

15b

9

P C R - - - - - C C - - - - - - - - - - - - - - - - - - C - A F - - C - R -

8

P A R - - R - - C C - - - - - - - - - - - - - - - - - - C - A F - F C - - -

background image

234                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Fig. 

8. 

Correlatio

of 

selected 

sequences 

showing 

the 

M20–M17 

interval; 

W

imbledon 

et 

al. 

(2013), 

modified. 

Revised 

from 

W

imbledon 

et 

al. 

(201

1). 

Brodno 

columns 

based 

on 

data 

in 

Houša 

et

 al. 

(2007)* 

and 

Michalík 

et 

al. 

(2009)**. 

Data 

1–4 

in 

Tethys 

(base 

of 

B. 

jacobi

 Subzone, 

base 

of 

Alpina 

Subzone, 

top 

of 

M19n.2n, and 

base 

of 

Ferasini 

Subzone) 

and 

their 

approximate 

posi

-

tions at Nordvik (column after Houša et al. 2007). 

The Barlya column is based on data provided by Platon 

Tchoumatchenco 

(unpublished magnetozones by B. Galbrun). Lókút after Grabowski 

 

et al. (2010). 

The lowest occurences (LOs) of biostratigrafically significant calcareous nannofossils in the Puerto Escaño section (this work) are indicated in red.

background image

235

CALCAREOUS NANNOFOSSILS OF THE J/K PUERTO ESCAÑO SECTION (S SPAIN)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

components of the sediment. Three major events representing 

marked inputs of terrigeneous material were detected at the 

levels of the beds 8, 30-31 and 40-41 (Fig. 3). Positive curve 

excursions of oxides SiO

and Al

2

O

3

 are accompanied by 

marked increases (however, at the lower concentrations) of 

FeO, K

2

O, TiO

2

 and Na

2

O, as well as marked increases of 

U

238

, Th

232

, Pb

208

 and other rare elements (unpublished 

data), clearly documenting a terrigeneous input. A positive 

(however, not so straightforward) correlation between the in-

crease of calcareous nannoplankton diversity and the terrige-

neous input is indicated in the beds 13, 29-31 and 40-41, but 

less marked in the in beds 22 and 35 levels. Higher terrige-

neous input should be evidence of weathering and/or the re-

gression  trend.  In  the  studied  profile,  we  should  recognize 

three major sequences with higher terrigeneous input — 

namely bed 8 (and overlying beds 9-14A), beds 29-31 and 

the upper part of bed 40 into the lower part of bed 41. The al-

most identical chemical composition of oxides and element 

content probably proves the same source area. However, its 

position within the Subbetic Basin margin is unknown.

The stable isotope data were precisely analysed by Žák et 

al. (2011). The δ

18

O curve (Fig. 3), shows minor positive ex-

cursions in beds 8, 12, 23, 27-32, 34 and 40 levels, and the 

major negative peak has been recorded in bed 26-3 (Fig. 3). 

Only the peak in the Bed 12 corresponds to the higher abun-

dance of Polycostella sp. (Fig. 6) and the positive excursion 

at level 34 corresponds to abundance increase of Conus

­

phaera spp. In this respect, we cannot estimate any signifi-

cant correlation between the calcareous nannofossil diversity 

development and the temperature changes, as only limited 

variations in the δ

18

O curve have been recorded.

Remarks on the key Bed 28

Bed 28 (J/K boundary sensu Tavera et al. 1994; see also 

Pruner et al. 2010) contains a large accumulation of smaller 

globular (spherical) Calpionella alpina (Pruner et al. 2010). 

Bed 28 (“Saccocoma Bed” herein, Fig. 3) also contains ex-

tremely large, calcitic skeletal debris of Saccocoma skele-

tons, and thus, the reworking of smaller calpionellids cannot 

be excluded. However, there is no sign of siliciclastic input 

in this horizon, and the highest ratio between Ca-oxide and 

minimum SiO

2

 and Al

2

O

input is recorded in this bed 

(Fig. 3). The opposite trend is visible in the overlying beds, 

beds 29-31, where the marked decrease of Ca-oxide and in-

crease of siliciclastics input (represented by SiO

2

), as well as 

an increase of Al

2

O

seems to prove a run-off increase due to 

an acceleration of weathering and/or rather a regressive se-

quence. The regression hypothesis should be supported by 

the presence of a marked increase in crassicollarian abun-

dance (C.  parvula  —  parvula Acme  zone,  “CPAZ”  sensu 

Pruner et al. 2010), suggested to have been reworked from 

older upper Tithonian limestones and incorporated into the 

micrite matrix of the Alpina Subzone (Wimbledon et al. 

2013). We agree with this interpretation and we preliminari-

ly suggest the section studied represents a regressive se-

quence (beds 29-31). A similar trend is recorded in the 

uppermost part of bed 40 and especially in the lower part of 

bed 41, where decrease of Ca-oxide and increase of SiO

and 

Al

2

O

(as a product of the laterite weathering) input have 

been detected (Fig. 3).

Conclusions

We have studied the calcareous nannofossils from the 

GA-7 section at Puerto Escaño. Consistent with the results of 

Tavera et al. (1994), the dominant genera in the calcareous 

nannofossil associations of the section are Watznaueria spp., 

Cyclagelosphaera spp., Nannoconus spp. and Conusphaera 

spp. and Polycostella sp.

We have applied the nannofossil zonation of Casellato 

(2010), and recognized several nannofossil LOs (Figs. 6, 7): 

Microstaurus chiastiusN. globulus minorN. globulus globu­

lus and Cruciellipsis cuvillieri,  N. wintereri  and  finally 

N. steinmannii minor, N. steinmannii steinmanniiN. kampt­

neri minor and N. kamptneri kampteri. Moreover, the com-

position of the nannofossil assemblage indicated a warm, 

carbonate-shelf environment with oligotrophic conditions.

The J/K boundary transition has been approximated with 

the LO of N. wintereri to the LOs of N. steinmannii minor, 

 

N. steinmannii steinmannii, N. kamptneri minor and N. kampt­

neri kamptneri. This interval is located between beds 27 and 

35. Consistent with Pruner et al. (2010), the J/K boundary 

lies in approximately the upper middle part of the M19n 

magnetozone and includes the Calpionella alpina ‘acme 

zone’ (Fig. 2).

The co-occurrence of taxa Biscutum constansDiscorhab

­

dus ignotus,  Diazomatolithus lehmanii and Zeugrhabdotus 

erectus  with  abundant  benthic  organisms  should  confirm 

their preferences for higher nutrient levels.

The diversity of calcareous nannofossils at higher levels 

partly corresponds to the levels with terrigeneous input, well 

documented by geochemical methods.

Here we suggest that the increase in abundance of Crassi

­

collaria parvula (i.e. — Parvula Acme zone, “CPAZ” sensu 

Pruner et al. 2010) is the result of reworking from older up-

per Tithonian deposits, in relation to the regressive sequence 

between beds 29-31.

Acknowledgements:  The authors thanks the Institute of   

Geology  of  the  Czech  Academy  of  Sciences  for  financial 

support (Research Plan RV067985831), the Grant Agency of 

the Czech Republic (Grant No. GACR 16-09979S), the  

Project 7AMB14SK201 supported by the Ministry of Educa-

tion of the Czech Republic and PRVOUK P44. Ladislav Str-

nad (Laboratories of the Geological Institutes, Prague) is 

greatly acknowledged for geochemical analysis. We are in-

debted to William Wimbledon (University of Bristol) for lin-

guistic corrections and valuable comments. We are grateful 

to the journal reviewers Kristalina Stoykova and an anony-

mous reviewer, for insightful comments on an earlier draft.

References

Aguado R., O’Dogherty L. & Sandoval J. 2008: Fertility changes in 

surface waters during the Aalenian (mid-Jurassic) of the 

background image

236                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

Western Tethys as revealed by calcareous nannofossils and 

carbon-cycle perturbations. Mar. Micropaleontol.  68,          

268–285.

Aguado  R.,  Company  M.,  O´Dogherty  L.,  Sandoval  J.  &  Tavera 

J.M. 2014: Late Hauterivian–early Barremian calcareous nan-

nofossil biostratigraphy, palaeoceanography, and stable iso-

tope record in the Subbetic domain (southern Spain). 

Cretaceous Res. 49, 105–124.

Barbarin N., Bonin A., Mattioli E., Pucéat E., Cappetta H., Gréselle 

B., Pittet B., Vennin E. & Joachimski M. 2012: Evidence for 

a complex Valanginian nannoconid decline in the Vocontian 

basin (South East France). Mar. Micropaleontol. 84–85, 

37–53.

Bornemann A., Aschwer U. & Mutterlose J. 2003: The impact of 

calcareous nannofossils on the pelagic carbonate accumulation 

across the Jurassic-Cretaceous boundary. Palaeogeogr. Palaeo

­

climatol. Palaeoecol. 199, 187–228.

Bown P.R. 1992: New calcareous nannofossil taxa from the Juras-

sic/Cretaceous boundary interval of sites 765 and 261, Argo 

Abyssal Plain. Initial Reports of the Ocean Drilling Program, 

Scientific Results 123, 369–379.

Bown P.R. & Concheyro A. 2004: Lower Cretaceous calcareous 

nannoplankton from the Neuquén Basin, Argentina. Mar.    

 

Micropaleontol. 52, 51–84.

Bown P.R. & Cooper M.K.E. 1998: Jurassic. In: Bown P.R. (Ed): 

Calcareous nannofossil biostratigraphy. Kluwer Academic 

Publishers, Cambridge, 34–85.

Bralower T.J., Monechi S. & Thierstein H.R. 1989: Calcareous nan-

nofossils Zonation of the Jurassic-Cretaceous Boundary inter-

val and correlations with the Geomagnetic Polarity Timescale. 

Mar. Micropaleontol. 14, 153–235.

Caracuel J. 1996: Association of invertebrates, evolution, sedimen-

tation and biostratigraphical interpretations in of an epioceanic 

environment of in the Western Tethys (Upper Jurassic). PhD 

Thesis,  Universidad de Granada,  1–475  (in  Spanish  with     

English summary).

Caracuel J., Monaco P. & Olóriz F. 2000: Taphonomic tools to  

evaluate sedimentation rates and stratigraphic completeness in 

Rosso Ammonitico Facies (epioceanic Tethyan Jurassic). Riv. 

Ital. Paleontol. Stratigr. 106, 3, 353–368.

Casellato C.E. 2010: Calcareous nannofossil biostratigraphy of Up-

per Callovian-Lower Berriasian successions from Southern 

Alps, North Italy. Riv. Ital. Paleontol. Stratigr. 116, 357–404.

Channell J.E.T., Casellato C.E., Muttoni G. & Erba E. 2010: Mag-

netostratigraphy, nannofossil stratigraphy and apparent polar 

wander for Adria-Africa in the Jurassic–Cretaceous boundary 

interval.  Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 

51–75.

Coimbra R., Immenhauser A. & Olóriz F. 2014a:  Spatial 

 geochemistry of Upper Jurassic marine carbonates (Iberian 

Subplate). Earth Sci. Rev. 139, 1–32.

Coimbra R., Rodríguez-Galiano V., Olóriz F. & Chica-Olmo M. 

2014b: Regression trees for modeling geochemical data — An 

application to Late Jurassic carbonates (Ammonitico Rosso). 

Comput. Geosci. 73, 198–207.

Coimbra R., Immenhauser A., Olóriz F., Rodríguez-Galiano 

V., Chica-Olmo M. &  Pufahl P. 2015: New insights into 

 geochemical behaviour in ancient marine carbonates (Upper 

Jurassic Ammonitico Rosso): Novel proxies for interpreting 

sea-level dynamics and palaeoceanography. Sedimentology 62, 

266–302.

Colombié C., Giraud F., Schnyder J., Götz A.E., Boussaha M., Au-

rell M. & Bádenas B. 2014: Timing of sea level, tectonics and 

climate events during the uppermost Oxfordian (planula zone) 

on the Iberian ramp (northeast Spain). Palaeogeogr. Palaeo­

climatol. Palaeoecol. 412, 17–31.

Erba E. 1987: Mid-Cretaceous cyclic pelagic facies from the Um-

brian-Marchean Basin: What do calcareous nannofossils sug-

gest? Int. Nannoplankton Assoc. Newsletter 9, 52–53.

Erba E. 1992: Middle Cretaceous calcareous nannofossils from the 

western Pacific (Leg 129): evidence for paleoequatorial cros-

sings. Proceedings of the Ocean Drilling ProgramScientific 

Results 129, 189–201.

Erba E. 1994: Nannofossils and superplumes: the early Aptian 

“nannoconid crisis“. Paleoceanography 9, 483–501.

Erba E., Castradori D., Guasti G. & Ripepe M. 1992: Calcareous 

nannofossils and Milankovitch cycles: The example of the Al-

bian Gault Clay Formation (southern England). Palaeogeogr. 

Palaeoclimatol. Palaeoecol. 93, 47–69.

Giraud F. 2009: Calcareous nannofossil produktivity and carbonate 

production across the Middle–Late Jurassic transition in the 

French Subalpine Basin. Geobios 42, 699–714.

Giraud F., Reboulet S., Deconinck J.F., Martinez M., Carpentier A. 

& Bréziat C. 2013: The Mid-Cenomanian Event in south-  

eastern France: Evidence from palaeontological and clay mine-

ralogical data. Cretaceous Res. 46, 43–58.

Grabowski  J.,  Michalík  J.,  Pszczółkowski  A.  &  Lintnerová  O. 

2010: Magneto-, and isotope stratigraphy around the Jurassic/

Cretaceous boundary in the Vysoká Unit (Malé Karpaty 

 Mountains, Slovakia): correlations and tectonic implications. 

Geol. Carpath. 61, 4, 309–326.

Halásová E., Vašíček Z., Jansa L., Reháková D. & Skupien P. 2012: 

Lower Cretaceous succession and biostratigraphy near over-

thrust plane of Silesian Nappe (Ostravice River Channel, Outer 

Western Carpathians, Czech Republic). Bull. Geosci. 87, 2, 

383–406.

Hardas P. & Mutterlose J. 2007: Calcareous nannofossil assemblages 

of Oceanic Anoxic Event 2 in the equatorial Atlantic: evidence 

of an eutrophication event. Mar. Micropaleontol. 66, 52–69.

Herrle J.O. 2003: Reconstructing nutricline dynamics of mid-Creta-

ceous oceans: evidence from calcareous nannofossils from the 

Niveau Paquier black shale (SE France). Mar. Micropaleontol. 

47, 307–321.

Hill M.E. 1975: Selective dissolution of mid-Cretaceous (Ceno-

manian) calcareous nannofossils. Micropaleontology 21, 

227–235.

Hoedemaeker P.J., Krs M., Man O., Parés J.M., Pruner P. & Ven-

hodová D. 1998: The Neogene remagnetization and petromag-

netic study of the Early Cretaceous limestone beds from the 

Río Argos (Caravaca, Province Murcia, SE Spain). Geol. Car

­

path. 49, 1, 15–32.

Houša V., Krs M., Krsová M., Man O., Pruner P. & Venhodová D. 

1999: High-resolution magnetostratigraphy and micropaleon-

tology across the J/K boundary strata at Brodno near Žilina, 

western Slovakia summary results. Cretaceous Res.  20,     

699–717.

Houša V., Krs M., Krsová M., Man O., Pruner P., Venhodová D., 

Cecca F., Nardi G. & Piscitello M. 2004: Combined magneto-

stratigraphic, paleomagnetic and calpionellid investigations 

across Jurassic/Cretaceous boundary strata in the Bosso 

 Walley, Umbria, central Italy. Cretaceous Res. 25, 771–785.

Houša  V.,  Pruner  P.,  Zakharov  V.A.,  Košťák  M.,  Chadima  M., 

 Rogov M.A., Slechta S., Mazuch M. 2007. Boreal-Tethyan 

Correlation of the Jurassic-Cretaceous boundary interval by 

magneto- and biostratigraphy. Stratigraphy and Geological 

Correlation 15, 3, 297–309.

Kessels K., Mutterlose J. & Ruffell A. 2003: Calcareous nannofos-

sils from the late Jurassic sediments of the Volga Basin (Rus-

sian Platform): evidence for productivity-controlled black 

shale deposition. Int. J. Earth Sci. 92, 743–757.

Lakova I., Stoykova K. & Ivanova D. 1999: Calpionellid, nannofos-

sil and cacareous dinocyst bioevents and integrated biochro-

background image

237

CALCAREOUS NANNOFOSSILS OF THE J/K PUERTO ESCAÑO SECTION (S SPAIN)

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

nology of the Tithonian to Valanginian in the Western 

Bal kanides,  Bulgaria.  Geol. Carpath. 50, 2, 151–168.

Lees J.A., Bown P.R., Young J.R. & Riding J.B. 2004: Evidence for 

annual records of phytoplankton productivity in the Kim-

meridge Clay Formation coccolith stone bands (Upper Juras-

sic, Dorset, UK). Mar. Micropaleontol. 52, 29–49.

Lees J.A., Bown P.R. & Mattioli E. 2005: Problems with proxies? 

Cautionary tales of calcareous nannofossil paleoenvironmental 

indicators. Mar. Micropaleontol. 51, 4, 333 – 343.

Lees J.A., Bown P.R. & Young J.R. 2006: Photic zone palaeoenvi-

ronments of the Kimmeridge Clay Formation (Upper Jurassic, 

UK) suggested by calcareous nannoplankton palaeoecology. 

Palaeogeogr. Palaeoclimatol. Palaeoecol. 235, 110–134.

Lowery Ch.M., Corbett M.J., Leckie R.M., Watkins D., Miceli 

Romero A. & Pramudito A. 2014: Foraminiferal and nannofos-

sil paleoecology and paleoceanography of the Cenomanian- 

Turonian Eagle Ford Shale of southern Texas. Palaeogeogr. 

Palaeoclimatol. Palaeoecol. 413, 49–65.

Lukeneder A., Halásová E., Kroh A., Mayrhofer S., Pruner P., Re-

háková D., Schnabl P., Sprovieri M. & Wagreich M. 2010: 

High resolution stratigraphy of the Jurassic-Cretaceous boun-

dary interval in the Gresten Klippenbelt (Austria). Geol. Car

­

path. 61, 5, 365–381.

Marino M.C., Andreini G., Baldanza A., D’arpa C., Mariotti N., 

Pallini G., Parisi G. & Petti F.M. 2004: Middle Jurassic–early 

Cretaceous integrated biostratigraphy (ammonites, calcareous 

nannofossils and calpionellids) of the Contrada Diesi section 

(south-western Sicily, Italy). Riv. Ital. Paleont. Stratigr. 110, 

357–372. 

Mattioli E., Pittet B., Suan G. & Mailliot S. 2008: Calcareous nan-

noplankton changes across the early Toarcian oceanic anoxic 

event. In the western Tethys. Paleoceanography 23, PA3208. 

Melinte M. & Mutterlose J. 2001: A Valanginian (Early Creta-

ceous) „boreal nannoplankton excursion“ in sections from Ro-

mania. Mar. Micropaleontol. 43, 1–25.

Michalík J. & Reháková D. 2011: Possible markers of the Jurassic/

Cretaceous boundary in the Mediterranean Tethys: A review 

and state of art. Geosci. Frontiers 2, 4, 475–490.

Michalík J., Reháková D., Halásová E. & Lintnerová O. 2009: The 

Brodno section – a potential regional stratotype of the Jurassic/

Cretaceous boundary (Western Carpathians). Geol. Carpath. 

60, 3, 213–232.

Mitchell S. F. 2005: Eight belemnite biohorizons in the Cenoma-

nian of northwest Europe and their importance. Geol. J. 40, 

363–382.

Mutterlose J. & Wise Jr. S.W. 1990: Lower Cretaceous nannofossil 

biostratigraphy of ODP LEG 113 Holes 692B and 693A, Con-

tinental slope off east Antarctica, Weddell Sea. Proceedings of 

the Ocean Drilling Program, Scientific Results 113, 325–351.

Mutterlose J. & Kessels K. 2000: Early Cretaceous calcareous nan-

nofossils from high latitudes: implications for palaeobiogeog-

raphy and palaeoclimate. Palaeogeogr. Palaeoclimatol. 

Palaeoecol. 160, 347–372.

Mutterlose J., Bornemann A. & Herrle O. 2005: Mesozoic calca-  

reous nannofossils – state of the art. Paläontologische 

Zeitschrift 79/1, 113–133.

Olóriz F. 1978: Kimmeridgian and lower Tithonian in the central 

part  of  Betic  Cordillera  (Subbetic  Zone).  Paleontology.  Bio-

stratigraphy. PhD Thesis, University of Granada, nº 84, v. I-II, 

1–758 (in Spanish with English summary).

Olóriz F. & Tavera J.M. 1989: The significance of Mediterranean 

ammonites with regard to the traditional Jurassic-Cretaceous 

boundary. Cretaceous Res. 10, 221–237.

Olóriz F. & Tavera J.M. 1990: The Jurassic-Cretaceous boundary in 

Southern Spain. Some eco-stratigraphical considerations. 

Transactions Institute of Geology and Geophysics. Siberian 

Branch of the Academy of Sciences, CCCP (USSR), Hayka 

(Nauka), Mockba (Moscow) 699, 64–77.

Olóriz F., Caracuel J. E., Marques B. & Rodríguez-Tovar F.J. 1995: 

Associations of the Tintinnids of the Ammonitico Rosso facies 

in the Siera Norte (Mallorca). Revista Española de Paleon

­

tología Nº Extra Homenaje al Dr. Guillermo Colom, 77–93 (in 

Spanish with English abstract).

Olóriz F., Reolid M. & Rodríguez-Tovar F.J. 2004: Microboring 

and taphonomy in Middle Oxfordian to lowermost Kimmerid-

gian (Upper Jurassic) from the Prebetic Zone (southern Iberia). 

Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 181–197.

Oszczypko N., Malata E., Švábenická L., Golonka J. & Marko F. 

2004: Jurassic-Cretaceous controversies in the Western Car-

pathian Flysch: the “black flysch” case study. Cretaceous Res. 

25, 89–113.

Perch-Nielsen K. 1985: Mesozoic calcareous nannofossils. In: Bolli 

H.M., Saunders J.B. & Perch-Nielsen K. (Eds.): Plankton 

 Stratigraphy.  Cambridge University Press, Cambridge, 

329–426.

Pruner  P.,  Houša  V.,  Olóriz  F.,  Košťák  M.,  Krs  M.,  Man  O.,  

Schnabl P., Venhodová D., Tavera J.M. & Mazuch M. 2010: 

High-resolution magnetostratigraphy and biostratigraphic zo-

nation of the Jurassic/Cretaceous boundary strata in the Puerto 

Escaño section (southern Spain). Cretacous  Research 31, 

192–206.

Reháková D., Halásová E. & Lukeneder A. 2009: The Jurassic-Cre-

taceous boundary in the Gresten Klippenbelt (Nutzhof, Lower 

Austria): Implications for Micro- and Nannofacies analysis. 

Ann. Naturhist. Mus. Wien 110 A, 345–381.

Roth P.H. 1981: Mid-Cretaceous calcareous nannoplankton from 

the  Central  Pacific:  implications  for  paleoceanography.  In: 

Thiede, J. et al. (Eds.): Initial Report sof the Deep Sea Drilling 

Project 62, 471–489.

Roth P.H. 1983: Jurassic and Lower Cretaceous calcareous nanno-

fossils in the western North Atlantic (Site 534): biostratigra-

phy, preservation, and some observations on biogeography and 

paleoceanography. In. Sheridan R.E., Gradstein F.M. et al. 

(Eds.): Initial Report sof the Deep Sea Drilling Project 76. U.S. 

Government Printing Office, Washington, 587–621.

Roth P.H. & Bowdler J. 1981: Middle Cretaceous nannoplankton 

biogeography and oceanography of the Atlantic Ocean. In: 

Warme J.E., Douglas R.G. & Winterer E.L. (Eds.): The Deep 

Sea Drilling Project: a Decade of Progress. Society of Economic 

Paleontologists and Mineralogists Special Publications  32,  

517–546.

Roth P.H. & Krumbach K.P. 1986: Middle Cretaceous calcareous 

nannofossil biogeography and preservation in the Atlantic and 

Indian Oceans: Implications for paleoceanography. Mar.     

 

Micropaleontol. 10, 235–266.

Street C. & Bown P.R. 2000: Palaeobiogeography of early Creta-

ceous (Berriasian–Barremian) calcareous nannoplankton. Mar. 

Micropaleontol. 39, 265–291.

Suchéras-Marx B., Mattioli E., Gieraud F. & Escarguel G. 2015: 

Paleoenvironmental and paleobiological origins of coccolitho-

phorid genus Watznaueria emergence during the late Aale-

nian-early Bajocian. Paleobiology 41, 3, 415–435.

Švábenická L. 2001: Late Campanian/late Maastrichtian penetra-

tion of high-latitude calcareous nannoflora to the outer western 

Carpathian depositional area. Geol. Carpath. 52, 1, 23–40.  

Tantawy A.A.A., Keller G. & Pardo A. 2009: Late Maastrichtian 

Volcanism in the Indian Ocean: Effects on Calcareous Nanno-

fossils and Planktic Foraminifera. Palaeogeogr. Palaeoclima­

tol. Palaeoecol. 284, 63–87.

Tavera J.M., Aguado R., Company M. & Olóriz F. 1994: Integrated 

biostratigraphy  of  the  Durangites  and  Jacobi  Zones  (J/K 

boundary) at the Puerto Escaño section in the southern Spain 

background image

238                                                                                                   

SVOBODOVÁ and KOŠŤÁK

GEOLOGICA CARPATHICA

, 2016, 67, 3, 223–238 

(Province of Cordoba). Geobios, Mémoire Special nº 17, 

469–476.

Thierstein H.R. 1980: Selective Dissolution of Late Cretaceous and 

Earliest Tertiary calcareous nannofossils: experimental evi-

dence. Cretaceous Res. 2, 165–176.

Tremolada F., Bornemann A., Bralower T.J., Koeberl Ch. & van de 

Schootbrugge B. 2006a: Paleoceanographic changes across the 

Jurassic/Cretaceous boundary: The calcareous phytoplankton 

response. Earth Planet. Sci. Lett. 241, 361–371.

Tremolada F., Erba E. & Bralower T.J. 2006b: Late Barremian to 

early Aptian calcareous nannofossils paleoceanography and 

paleoecology from the Ocean Drilling Program Hole 641C 

(Calicia Margin). Cretaceous Res. 27, 887–897.

Wiese F., Košťák M. & Wood C. J. 2009: The Upper Cretaceous be-

lemnite Praeactinocamax plenus (Blainville 1827) from Lower 

Saxony (Upper Cenomanian, Northwest Germany) and its dis-

tribution pattern in Europe. Paläontologische Zeitschrift 83, 2, 

309–321.

Wimbledon W.A.P. 2014: Warsaw Remarks - Berriasian Progress. 

Volumina Jurassica 12, 1, 107 - 112.

Wimbledon W.A.P., Casellato C.E., Reháková D., Bulot L.G., Erba 

Assipetra infracretacea (Thierstein, 1973) Roth, 1973

Biscutum constans (Górka, 1957) Black, 1967

Conusphaera mexicana (Trejo, 1969) subsp. mexicana  Bralower in Bralower et al., 1989

Conusphaera mexicana (Trejo, 1969) subsp. minor (Bown & Cooper, 1989) Bralower in Bralower et al., 1989

Cruciellipsis cuvillieri (Manivit, 1956) Thierstein, 1971

Cyclagelosphaera argoensis Bown, 1992

Cyclagelosphaera deflandrei (Manivit, 1966) Roth, 1973

Cyclagelosphaera margerelii Noël, 1965

Diazomatolithus lehmanii Noël, 1965

Discorhabdus ignotus (Górka, 1957) Perch-Nielsen, 1968

Faviconus multicolumnatus Bralower in Bralower et al., 1989

Hexalithus noeliae (Noël, 1956) Loeblich & Tappan, 1966

Lithraphidites carniolensis Deflandre, 1963

Microstaurus chiastius (Worsley, 1971) Bralower et al, 1989

Nannoconus sp. Kamptner, 1931

Nannoconus erbae Casellato, 2010

Nannoconus globulus (Brönnimann, 1955) subsp. globulus Bralower in Bralower et al. 1989

Nannoconus globulus (Brönnimann, 1955) subsp. minor Bralower in Bralower et al. 1989

Nannoconus infans Bralower in Bralower et al. 1989

Nannoconus kamptneri (Brönnimann, 1955) subsp. kamptneri Bralower in Bralower et al., 1989

Nannoconus kamptneri (Brönnimann, 1955) subsp. minor Bralower in Bralower et al. 1989

Nannoconus puer Casellato, 2010

Nannoconus steinmannii (Kamptner, 1931) subsp. minor Deres & Achéritéguy, 1980

Nannoconus steinmannii (Kamptner, 1931) subsp. steinmannii Deres & Achéritéguy, 1980

Nannoconus wintereri Bralower & Thierstein in Bralower et al., 1989

Polycostella beckmannii Thierstein, 1971

Rhagodiscus asper (Stradner, 1963) Reinhardt, 1967

Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968

Watznaueria britannica (Stradner, 1963) Reinhardt, 1964

Watznaueria communis Reinhardt, 1964

Watznaueria fossacincta (Black, 1971a) Bown in Bown & Cooper, 1989

Watznaueria manivitiae (Bukry, 1973) Moshkovitz & Ehrlich, 1987

Zeugrhabdotus cooperi Bown, 1992b

Zeugrhabdotus embergeri (Noël, 1958) Perch-Nielsen, 1984

Zeugrhabdotus erectus (Deflandre in Deflandre & Fert, 1954) Reinhardt, 1965

E., Gardin S., Verreussel R.M.C.H., Munsterman D.K. & Hunt 

CH.O. 2011: Fixing a basal Berriasian and Jurassic/Cretaceous 

(J/K) boundary — is there perhaps some light at the end of the 

tunnel? Riv. Ital. Paleont. Stratigr. 117, 295–307.

Wimbledon  W.A.P.,  Reháková  D.,  Pszczółkowski  A.,  Casellato 

C.E., Halásová E., Frau C., Bulot L.G., Grabowski J., Sobień 

K., Pruner P., Schnabl P. & Čížková K. 2013: An account of 

the bio- and magnetostratigraphy of the Upper Tithonian–

Lower Berriasian interval at Le Chouet, Drôme (SE France). 

Geol. Carpath. 64, 6, 437–460. 

Zakharov  V.A.,  Rogov  M.A.,  Dzyuba  O.A.,  Žák  K.,  Košťák  M., 

Pruner P., Skupien P., Chadima M., Mazuch M. & Nikitenko 

B.L., 2014: Palaeoenvironments and palaeoceanography 

changes across the Jurassic/Cretaceous boundary in the Arctic 

Realm: case study of the Nordvik section (North Siberia, Rus-

sia). Polar Research 33, 19714.

Žák K., Košťák  M., Man O. Zakharov V. A., Rogov M. A., Pruner P., 

Rohovec J., Dzyuba O. S. & Mazuch M. 2011: Comparison of 

carbonate C and O stable isotope records across the Jurassic/

Cretaceous boundary in the Tethyan and Boreal Realms.  

Palaeogeogr. Palaeoclimatol. Palaeoecol. 299,    83-96.

Appendix A — Taxonomic index in alphabetical order