background image

www.geologicacarpathica.com

GEOLOGICA CARPATHICA

, JUNE 2016, 67, 3, 211–222

doi: 10.1515/geoca-2016-0014

Gemstone deposits of Serbia

ZORAN MILADINOVIĆ

1

, VLADIMIR SIMIĆ

1

, RADE JELENKOVIĆ

1

 and MILOJE ILIĆ

2

 

1

University of Belgrade, Faculty of Mining and Geology, Djušina 7, 11000 Belgrade, Serbia; 

zoran.miladinovic@rgf.bg.ac.rs

2

Gemological Association of Serbia, Rovinjska 12, 11000 Belgrade, Serbia

(Manuscript received November 2, 2015; accepted in revised form March 10, 2016)

Abstract: Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Neverthe-

less, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last  

50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province  

and the most significant metallogenic units at the existing level of knowledge are the Fruška Gora ore district, Cer ore 

district, Šumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most 

important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. 

Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (chryso - 

prase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky 

white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gem-

stones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, 

carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This  

paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simpli-    

fied gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gem-

stone varieties.

Key words: gemstone, genetic-industrial classification, metallogenic localization, genetic types.

Introduction

Gemstones are a group of different minerals and rocks quite 

sensitive to personal taste and the aesthetic quality of not 

only  raw  material  but  the  final  processing  as  well.  Gem - 

stones  are  classified  either  a  subgroup  of  non-construction 

industrial minerals (Dill 2010), a subgroup of deposits of in-

dustrial crystals (Vakanjac 1969), or a subgroup of industrial 

minerals (Kužvart 1984). 

The search for gemstone deposits in Serbia has attracted 

very limited attention in the past, although opal and  silicified 

wood from some localities were used in Neolithic time (Bogo- 

savljević  Petrović  2005;  Bogosavljević  Petrović  &  Marković 

2014), as well as in the early Byzantine period, when in Justi-

niana Prima (Spieser 2012) amethyst and agate from the Raso-

vača deposit were used for mosaic as can still be seen today.

Geological prospection for gemstones in the second half of 

last century has been focused mostly on recording interesting 

locations observed during exploration of other mineral re-

sources (metallic and non-metallic). In very rare cases exten-

sive and detailed explorations were performed with 

estimation of ore reserves, like the most explored gemstone 

area in Serbia-Lece area, due to the Pb-Zn-Au deposit Lece 

that was explored and exploited during last half century or 

more.  Despite  officially  explored  deposits,  production  of 

gemstones has never begun. Overview of the exploration re-

sults and a list of all at that time known gemstone deposits 

was  summarized  by  Vakanjac  (1978),  Malešević  et  al.  

(1985) and Ilić et al. (1998).

Regional prospection and novel studies of gemstones in 

Serbia restarted in 2002, mostly in the Lece volcanic com-

plex and Fruška Gora Mt. (Ilić et al. 2004; Miladinović et al. 

2005) but also on Avala and Kosmaj Mt. (Ilić et al. 2010).

The quality of raw gemstone material has been certified by 

lapidary processing techniques, and their attractiveness has 

been successfully tested in the Serbian market.

Geological setting and metallogenic zoning 

The geological setting of Serbia is very diverse with nu-

merous geological formations, some of them prospective re-

garding gemstone minerals and rocks (e.g., ophiolites, 

Tertiary acid to intermediate volcanic complexes, some 

 granitoide complexes, etc.). The mineral resources of Serbia 

have recently been summarized by Jelenković et al (2008), 

but gemstones were not included, so this paper is mostly 

dealing with geological features significant for gemstone ori-

gin and localization.

The main geotectonic units of Serbia include (Dimitrijević 

1997,  Schmid  et  al.  2008,  Chiari  et  al.  2011):  The  Adria-   

 derived  units  (Dinarides),  the  Vardar  zone,  the  Europe-      

 derived Dacia Mega Unit (Serbo-Macedonian Massif and 

Carpatho-Balkanides),  the  mixed  European  and  Adriatic-   

affinity Tisza Mega-Unit (completely covered by thick sedi-

mentary rocks of the Pannonian basin in Serbia), and the 

Moesian platform with external foredeep (Fig. 1).

The Dinarides consist of the following units: East Bos-

nian-Durmitor Unit, Dinaric (External) Ophiolite Belt, and 

Drina-Ivanjica Unit. The East Bosnian-Durmitor Unit in-

cludes a Palaeozoic basement, covered by unmetamorphosed 

Triassic to Palaeogene neritic and pelagic carbonate se-

background image

212                                                                                                   

MILADINOVIĆ, SIMIĆ, JELENKOVIĆ

 

and ILIĆ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

quences topped by widespread Late Cretaceous to Miocene 

siliciclastic foredeep deposits (Chiari et al. 2011). Anisian to 

Ladinian porphyrite is typical for that unit. Towards the east 

it is overthrust by the Dinaric or External Ophiolite belt 

(Dimitrijević  1997),  made  up  of  Jurassic  ophiolite  and  sub- 

ophiolite melange. The Drina-Ivanjica Unit consists of 

 Palaeozoic metamorphic complex overlain by Permian to 

Early Triassic shale and sandstone, and Middle Triassic to 

Early Jurassic predominantly carbonate sediments, followed 

by Middle Jurassic radiolarites. In the SW part of Serbia 

effusive Oligocene to Miocene magmatic rocks of calc-alka-

line affinity (Cvetković et al. 2004; Schefer et al. 2010) oc-

cur occasionally.

The Vardar zone represents a complex assemblage of con-

tinental and oceanic-derived units (Chiari et al. 2011 and refe-

rences therein). The oceanic-derived units consist of 

a sub-ophiolite melange overthrust by ophiolites with a meta-

morphic sole at its base. Metamorphic Adria-derived units of 

the Jadar-Kopaonik-Studenica areas are exposed below the 

oceanic-derived units (Zelić et al. 2010). The Europe-derived 

continental units include metamorphic and sedimentary 

rocks of the Sava zone (Ustaszewski et al. 2010). The whole 

Vardar zone is characterized by widespread intrusive and ef-

fusive Oligocene to Pliocene magmatic rocks of calc-alka-

line affinity (Cvetković et al. 2004; Schefer et al. 2010).

The Europe-derived Serbo-Macedonian Unit (as part of the 

Dacia Mega Unit) overthrust the Vardar zone. The Serbo- 

Macedonian Unit includes a medium- to high-grade meta-

morphic Neoproterozoic to Early Palaeozoic gneissic 

basement and sub-greenschist to epidote-amphibolite grade 

Palaeozoic successions. The Serbo-Macedonian Unit, par-

ticularly the southern part, was intruded by calc-alkaline in-

trusive and effusive magmatic rocks of the Oligocene age 

(Pamić  &  Balen  2001).  Further  towards  the  east,  the  Car-

patho-Balkanides of the Dacia Mega Unit are subdivided  

into Supragetic/Getic nappes, the Ceahlau-Severin ophiolite- 

bearing  nappes,  and  the  Danubian  nappes  (Dimitrijević  

1997; Matenco 2015). The Supragetic/Getic nappes consist 

of Neoproterozoic to Palaeozoic metamorphic rocks, which 

are unconformably overlain by Late Carboniferous to Permian 

continental clastics and Mesozoic rocks (Dimitrijević 1997; 

Iancu et al. 2005). The Mesozoic rocks include Middle Trias-

sic carbonate platform followed by detrital Late Triassic to 

Early Jurassic strata, Middle Jurassic carbonates and radio- 

larites, Late Jurassic to Early Cretaceous pelagic series and 

Albian to Cenomanian Molasse-type deposits. Geticum was 

intruded  by  Palaeozoic  granitoids  and  Late  Cretaceous  

Timok magmatic complex and Ridan-Krepoljin zone effu-

sives.

The Danubicum is composed of Neoproterozoic to Palaeo-

zoic metamorphic rocks and Palaeozoic ophiolites ( Zakariadze 

et al. 2006) in the Poreč-Stara Planina zone, unconformably 

overlain by Middle Carboniferous to Middle Jurassic conti-

nental clastics with subordinate carbonate rocks, Late Juras-

sic carbonate rocks and Albian to Late Cretaceous clastic to 

carbonate sedimentary rocks, occasionally with volcano-sedi-

mentary sequences (Dimitrijević 1997).

The  Ceahlau-Severin  ophiolite-bearing  nappes  (Krajina 

zone) are relics of an oceanic rift (Matenco et al. 2010). The 

basement is made of ophiolite complex (Matenco 2015), 

while sedimentary cover consists of Early to Late Cretaceous 

Sinaia and Mokranje Flysch, and Miocene to Pliocene deposits.

The Moesian platform with external foredeep in Serbia is 

covered by thick Miocene to Pliocene and Quaternary sedi-

ments and, hence, of no interest regarding gemstones.

Gemstones in Serbia occur within four regional metallo-

genic units (Janković 1977, 1990; Janković et al. 1997; Je-

lenković  et  al.  2008):  1)  Dinaric  Metallogenic  Province 

(DMP), covering western and south-western Serbia, 2) Ser-

bo-Macedonian Metallogenic Province (SMMP) in the cen-

tral  part  of  Serbia,  3)  Carpatho-Balkan  Metallogenic  

Province (CBMP) in the eastern part of Serbia, and 4) Da-

cian  Metallogenic Province (DcMP). The relationships be-

tween the metallogenic units and the main geotectonic units 

of Serbia are summarized in Figure 1. Smaller metallogenic 

units are marked in Figure 2.

Since the geology of Serbia is so diverse and complex, 

only lithological and structural units of great significance for 

Fig. 1. Main geotectonic and metallogenic units of Serbia (modified 

after  Dimitrijević  1997;  Schmid  et  al.  2008;  Chiari  et  al.  2011).       

 

1 — Panonian Basin, 2  —  Budva-Cukali  Zone,  3 — High Karst  

Unit,  4  —  Pre-Karst  &  Bosnian  Flysch  Unit,  5 — East  Bosnian- 

Durmitor Thrust Sheet, 6 — Dinaric Ophiolitic Belt, 7 — Western 

Vardar Ophioliic Unit, 8 — Drina-Ivanjica Thrust Sheet, 9 —  Jadar-  

Kopaonik Thrust Sheet, 10 — Sava Zone, 11 — Eastern Vardar 

Ophiolitic Unit, 12 — Serbo-Macedonian Unit, 13 — Getic Unit,  

14 — Danubian Nappes, 15 — Ceahlau-Severin Unit, 16 — Central 

Balkan & Prebalkan Units, 17 — Moesian Platform, 18 — External 

Moesian Foredeep.

background image

213

GEMSTONE DEPOSITS OF SERBIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Fig. 2. Simplified metallogenic map of Serbia with distribution of gemstone deposits (numbers of deposits correspond to numbers in Table 1)

background image

214                                                                                                   

MILADINOVIĆ, SIMIĆ, JELENKOVIĆ

 

and ILIĆ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Table 1: List of gemstone deposits and occurrences and their localities in Serbia.

At the current state of geological exploration and knowledge, 

21 gemstones with numerous varieties and subvarieties, were 

selected and studied in more detail (Table 2). 

Based on all available data genetic-industrial classification 

of most significant Serbian gemstones is proposed (Table 2). 

Serbian gemstones and their varieties are presented and clas-

sified according to their genetic type and corresponding pro-

ductive geological formation.

the formation and distribution of gemstone deposits are taken 

into consideration and presented in the map (Fig. 2).

Genetic-industrial classification of gemstone deposits

More than 150 gemstone mineral deposits and occurrences 

with different level of exploration are located in Serbia.       

No.

Gemstone deposits

1

Kozje brdo (agate; chalcedony – colourless, bluish, purple; jasper – brown red, quartz – rock crystal, carbonate-silica breccia and onyx)

2–4

A group of deposits in the eastern part of Fruška Gora: 2 – Neradin (carbonate-silica breccia and onyx, chalcedony – colourless, jasper – brown, serpentinite);   

3 – Hopovo (agate, carbonate-silica breccia); 4 – Jazak (carbonate-silica breccia)

5–7

A group of deposits in the western part of Fruška Gora: 5 – Letenka (common opal, carbonate-silica breccia); 6 – Duge Luke (carbonate-silica breccia, 

chalcedony, jasper); 7 –  Grabovo (common opal, quartz – rock crystal, jasper, carbonate-silica breccia)

8

A group of deposits in the eastern part of Cer Mt (beryl – aquamarine, schorl, quartz – rock crystal, morion, smoky quartz)

9

Pinosava-Resnik (landscape jasper)

10

Avala (serpentinite)

11

Babe (quartz – rock crystal, jasper)

12

Ropočevo (marble breccia)

13–17

A group of fluorite deposits near Krupanj: 13 – Ravnaja; 14 – Pantelići; 15 – Kućište; 16 – Jovanovići; 17 – Teletići

18

Kameniti Oglavak (common opal)

19–21

A group of deposits near Aranđelovac: 19 – Bukovik (beryl – aquamarine, quartz – rock crystal, morion); 20 – Vagan (beryl – aquamarine); 21 – Onjeg (schorl)

22–27

A group of deposits: 22 – Gaj-Lazine (chalcedony, jasper, common opal); 23 – Ugljarevac (chalcedony – colourless, carnelian; jasper; common opal);             

24 – Varnica (jasper, colourless chalcedony); 25 – Ramaća (common opal, chalcedony); 26 – Dobrača (common opal, jasper, quartz – rock crystal, chalcedony, 

magnesite-silica breccia); 27 – Kovijanica (common opal, chalcedony)

28–29

A group of deposits: 28 – Vučkovica (chalcedony, agate, common opal, carbonate-silica onyx); 29 – Donja Vučkovica (chalcedony, common opal)

30–32

A group of deposit near Gornji Milanovac: 30 – Srezojevci (jasper, chalcedony – colourless, carnelian); 31 – Boblija (jasper – orbicular jasper, picture jasper; 

agate; chalcedony – carnelian, sard, colourless; common opal); 32 – Kremenac (jasper, chalcedony, common opal)

33

Kremenjača (agate, jasper – landscape and picture, chalcedony)

34

Sirča (carbonate-silica onyx, chalcedony)

35

Teočin (quartz – rock crystal, milky quartz)

36

Cvetin Vrh (jasper, chalcedony, common opal)

37

Tometino polje (picture jasper)

38

Lozovik (marble onyx)

39

Antina Čuka (listvenite, serpentinite, green quartz)

40

Rgotina-Jelašnica (agate)

41–47

A group of deposits near Niš: 41 – Rujnik, 42 – Kremenac, 43 – Crni vrh, 44 – Rujnik–Igralište, 45 – Siterak, 46 – Torina, 47 – Humska čuka (chalcedony, 

jasper, common opal)

48

Braneško Polje (dendritic opal, chalcedony)

49

Ribnica (common opal)

50

Barice (travertine onyx)

51

Drenovska reka (jasper)

52

Akmačići (jasper)

53

Banjica (marble onyx)

54

Lojanik (silicified wood)

55

Popina (jasper)

56–60

A group of deposits near Veluće monastery: 56 – Veluće, 57 – Pečeni grob, 58 – Žuti kamen, 59 – Ilijina glava, 60 – Punoševići (opal, jasper, chalcedony)

61

Koprivnica (fluorite)

62

Jarandol (howlite)

63–65

A group of common opal deposits near Duga Poljana: 63 – Šarski Potok, 64 – Šaransko Vrelo, 65 – Lazine

66–67

A group of deposits near Leposavić: 66 – Donje Jarinje, 67– Kremenjački Potok (common opal, chalcedony, jasper)

68

Trepča (quartz – rock crystal, rodochrosite)

69–71

A group of deposits in Drenica: 69 – Čikatovo, 70 – Baks (common opal, chrysoprase); 71 – Gladno Selo (silicified wood)

72–74

A group of deposits on Goleš Mt: 72 – Glavica (common opal – chrysopal, hony opal, milky opal, dendritic opal; chalcedony – chrysoprase), 73 – Medvece 

(opal – milky, cacholong), 74 – Mirena (common opal)

75–76

A group of deposits on Mt Jastrebac: Pribežička Kosa, Hajdučki Izvor (kyanite)

77

Dobrotić (beryl – aquamarine)

78–79

A group of deposits near Prokuplje: 78 – Rgaja, 79 – Čukara (kyanite)

80–83

A group of deposits: 80 – Gajtan–Crvodik (jasper, chalcedony); 81 – Bučumet (jasper, chalcedony); 82 – Bučumetska Padina (jasper, chalcedony);                  

83 – Kameno Rebro (chalcedony, jasper); 

84–86

A group of deposits: 84 – Lece (quartz – amethyst); 85 – Rasovača (quartz – amethyst, agate, jasper); 86 – Vrtače (chalcedony, jasper); 

87

Kladanci (jasper, chalcedony)

88–91

A group of deposits: 88 – Caričin Grad–Sekicol, 89 – Caričina–Mijajlica, 90 – Svinjarica-Dubrava, 91 – Svinjarički potok (chalcedony, jasper)

92

Sijarinska banja (marble onyx)

93

Mutivode (chalcedony, jasper)

94

Klobukar (chalcedony, common opal)

95

Crni kamen (chalcedony)

96

Beli Kamen (magnesite-silica breccia)

97–99

A group of deposits near Vranjski Priboj: 97 – Kremen I, 98 – Kremen II, 99 – Jovička reka (jasper, chalcedony)

100–101 A group of deposits near Gornji Stajevac: 100 – Surlica I, 101 – Surlica II (chalcedony, jasper)

background image

215

GEMSTONE DEPOSITS OF SERBIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Table 2: Genetic-industrial classification of gemstones in Serbia.

Geology and mineralogy of selected gemstone deposits

Selected Serbian gemstone deposits have been described 

here in the shortest possible form, as the most representative 

ones for their genetic types. In numerous deposits in Serbia 

the dominant types of gemstones are silica minerals.

The quality of raw minerals from selected deposits was 

tested using lapidary cutting and polishing techniques. 

Genetic type

Ore-bearing geological 

formation

Host rock

Deposits and occurrences

Gemstones

I Hydrothermal 1. Jurassic ultramafic 

rocks 

Serpentinite

Kozje Brdo (Fruška Gora)

Chalcedony (colourless, purple, bluish); agate, 

carbonate-silica breccia and onyx, serpentinite

Ramaća (Kragujevac)

Opal (different coloured varieties, multicoloured)

Vučkovica (Kragujevac)

Magnesite-dolomite-silica breccia (variegated); agate 

(bluish); serpentinite-magnesite breccia

Boblija, Kremenac (Gornji Milanovac) Jasper (variegated, orbicular); chalcedony (carnelian, 

different colour varieties); opal (green)

Murgulska Reka (Lukovska Banja)

Ankerite (azure blue)

Harzburgite

Goleš – Mirena

Opal (brown)

Dobroševac

Opal (different colour varieties); chalcedony (different 

colour varieties)

Serpentinite

Kuna Ljuget (Podujevo)

Opal (green and brown)

Klobukar (Novo Brdo)

Opal (brown); chalcedony (different colour varieties)

Antina Čuka (Kučevo)

Quartz (green), serpentinite

Gaj – Lazine (Kragujevac)

Opal (different colour varieties) 

Chalcedony (different colour varieties)

2. Tertiary volcanic 

complexes

Andesite

Rasovača (Lece volcanic complex)

Amethyst, agate, jasper

Lece (Lece volcanic complex)

Amethyst, agate, jasper

Bučumet, Bučumetska padina, 

Gajtan-Crvodik (Lece volcanic complex)

Jasper and jasper-chalcedony (diverse colour varieties)

Dacite

Kremenjača (Borač-Kotlenik volcanic 

complex)

Agate, chalcedony (bluish and pinkish), jasper (picture 

jasper, different colour vaieties), 

Kameniti Oglavak (Venčane)

Opal (different colour varieties)

3. Tertiary sediments

Sandstone, conglomerate Popina (Vrnjačka Banja)

Jasper (different colour varieties)

Dolomitic limestone, 

marlstone

Magnesite deposit Beli Kamen 

(Strezovce)

Silica (quartz-chalcedony) breccia (black); magne-

site-silica breccia; silicified dolomite (brown)

Marlstone, shale

Jarandol

Howlite

4. Mesozoic sediments

Dolomite

Teočin (Gornji Milanovac)

Quartz (rock crystal, milky quartz)

5. Palaeozoic 

metamorphic rocks

Schists and marbles

Trepča (Pb-Zn deposit Stari Trg)

Quartz (rock crystal), calcite, rodochrosite

6. Plutonic complexes of 

Palaeozoic to Tertiary 

age

Limestone

Ravnaja, Pantelići, Kućište, Jovanovići, 

Baletići (Krupanj)

Fluorite

II Pegmatite- 

pneumatolitic

1. Plutonic complexes of 

Palaeozoic and Cainozoic 

age

Pegmatite (Tertiary)

Parlog (Cer), Bukovik (Aranđelovac)

Beryl (aquamarine), tourmaline (schorl), quartz (rock 

crystal)

Cer, Rašće, Onjeg (Aranđelovac), 

Tourmaline (schorl)

Pegmatite (Palaeozoic)

Rekovac, Staro Selo (Kragujevac), 

Komša (Kučevo)

Quartz (rock crystal)

Šumane, Ornica (Lebane), Bujanovac

Tourmaline (schorl)

III Infiltration

1. Weathering crust on 

ultramafic rocks of 

Palaeogene age

Harzburgite

Goleš - Glavica 

Opal (chrysopal, dendritic opal, different colour 

varieties), chrysoprase

Medvece

Opal (milky white, dendritic)

Baks (Drenica)

Opal (green, brown, dendritic)

Gladno Selo (Drenica)

Silicified wood

Serpentinite

Ugljarevac (Kragujevac)

Opal (different colour varieties); chalcedony (grey with 

brown specks)

Dobrača (Kragujevac)

Chalcedony (brown-black); silicified magnesite 

(multicoloured)

Veluće (Trstenik)

Opal (different colour varieties); chalcedony (different 

colour varieties)

Mataruge (Mataruška Banja)

Opal (different colour varieties); chalcedony (different 

colour varieties)

Lojanik (Mataruška Banja)

Silicified wood

IV Sedimentary  Placer

Alluvial sediments

Lešnička reka (Cer)

Beryl (aquamarine)

Elluvial, deluvial and 

proluvial sediments

Vrtače, Kameno Rebro (Lece volcanic 

complex)

Jasper (multicoloured), carnelian, jasper-chalcedony 

(multicoloured)

Parlog (Cer)

Beryl (aquamarine); quartz (rock crystal, smoky quartz)

Klobukar (Novo Brdo)

Opal (brown); chalcedony (multicoloured)

V Metamorphic 1. Crystalline schists of 

Precambrian and 

Palaeozoic age

Gneiss and micaschist

Crni Vrh (Jagodina), Pribežička Kosa, 

Hajdučki Izvor (Jastrebac), Rgaja, 

Čukara (Prokuplje),

Kyanite

Ogošte (Gnjilane)

Garnet (almandine)

Metamorphogene 

pegmatites

Dobrotić (Prokuplje)

Beryl-aquamarine

background image

216                                                                                                   

MILADINOVIĆ, SIMIĆ, JELENKOVIĆ

 

and ILIĆ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Kozje Brdo

One of the most significant regions with gemstone depo -

sits in Serbia is the Fruška Gora ore district, located on the 

Fruška Gora Mountain. Seven gemstone deposits have been 

found  in  this  district  (Antonović  et  al.  1985;  Antonović 

1996; Ilić et al. 2002; Miladinović et al. 2005). Apart from 

the  aforementioned  there  are  numerous,  still  insufficiently 

explored gemstone mineralizations. 

The Kozje Brdo deposit, as well as the majority of other 

Fruška Gora gemstone deposits, is hosted by the Fruška Gora 

ultramafic massif. That part of ophiolite underwent intensive 

polyphase tectonic deformation (mainly disjunctive), serpen-

tinization, hydrothermal alteration (primarily listvenitiza-

tion) and mineralization (mainly carbonates and silica).    

The Kozje brdo deposit is related to a regional E–W fracture 

zone,  namely  the  Srem  dislocation  (Čičulić-Trifunović  & 

Rakić 1977). Along this fracture zone intensive tectonic ac-

tivity enabled subsequent hydrothermal solutions that 

formed gemstone minerals in the form of veins, veinlets, 

nests and irregular ore bodies. Intermittent tectonic move-

ments brecciated previously formed gemstone ore bodies and 

surrounding rocks, and caused formation of new generations 

of silica and carbonate minerals. Hydrothermal activity in 

this region was closely interrelated with Upper Oligocene–

Miocene tectonic activity and intermediate dacite-andesite 

and  latite  volcanism  (Knežević  et  al.  1991;  Kovács  et  al. 

2007; Vasković et al. 2010; Cvetkov et al. 2012).

The Kozje Brdo gemstone deposit is composed of chalce-

dony (colourless, bluish, purple, agate), quartz (rock crystal 

and milky quartz), jasper (mainly brown), magnesite, dolo-

mite, calcite and ankerite. Microcrystalline magnesite bodies 

formed  at  first,  but  have  been  subsequently  repeatedly  tec-

tonically broken and therefore intensely brecciated. Open 

voids  were  filled  with  carbonate  and  silica  minerals  in  the 

form of parallel bands (onyx), concentric bands (agate), sepa-

rate veins and veinlets and as a cement in breccia. The last 

mineral generation is made of quartz (rock crystal and milky 

quartz) and chalcedony.

The dominant rock in this deposit is carbonate-silica brec-

cia, a magnesite-dolomite-ankerite rock with a high content 

of silica. The basic colour of this rock is yellow-brown with 

lighter and darker colour varieties. The carbonate-silica brec-

cia can also be used as an ornamental or decorative stone at 

the same time.

Carbonate-silica onyx, often accompanying agate, consists 

of parallel bands of mostly carbonate minerals (dolomite, 

calcite, ankerite) alternating with silica minerals (chalcedony 

and quartz). Silica also impregnates carbonate minerals giving 

to the carbonate part of onyx a slightly higher hardness.  

Band colours range from brown to pale green, yellow and 

white.

Agate is mainly a constituent of carbonate-silica breccia 

along with carbonate-silica onyx but it also forms separate 

veins outside of the main ore body in host serpentinite. Kozje 

Brdo agate is characterized by alternating bands of colour-

less, white and bluish bands. Rarely, some agate bands are 

made of microcrystalline quartz. In the central parts of con-

centric agate bands, quartz rock crystal and/or brown to red 

jasper is sometimes formed. Beside typical concentric agate, 

tube agate occasionally occurs.

Kozje brdo jasper is mostly found together with carbonate- 

silica onyx and agate in the central parts of symmetrically 

filled  voids.  Jasper  usually  forms  several  centimetres  thick 

veinlets, but occasionally those veinlets pass into 10 cm  

thick veins. Sometimes jasper forms small isolated nests of 

decimetre dimensions.

The colourless and bluish chalcedonies occur in the form 

of irregular veinlets, stockworks and nests (geodes) of deci-

metre  dimensions.  Colourless  chalcedony  variety  is  more 

 frequent then bluish, which is usually found in deluvial 

placers. Both colourless and bluish chalcedony from Kozje 

brdo, if properly cut en cabochon, resemble moonstone.

Purple chalcedony can be found along far eastern border of 

the Kozje Brdo deposit forming veins and stockwork in ser-

pentinite. The colour of this gemstone displays various 

shades of purple and bluish purple.

Very rarely and only in the southern part of the deposit 

(placers) translucent yellow-brown chalcedony was discovered.

Quartz rock crystal is formed in cavities within veins and 

nests with usually small crystals but uniform in size (around 

one centimetre in length). Larger quartz druses can also be 

found, with crystals reaching the length of 5 to 6 cm.

Ramaća

One of the typical gemstone deposits in the Šumadija metal-

logenic zone is Ramaća (Bogosavljević Petrović 2005). This 

deposit consists of opal forming a significant mass stretching 

in a N-S direction on the surface of around 18 ha. Opal masses 

are located in tectonically broken and hydrothermally altered 

serpentinite. This opal is common opal with conchoidal frac-

ture, vitreous lustre which on fractures tends to grade into 

greasy,  waxy  and  resinous  lustre.  Ramaća  opal  tends  to  be 

very brittle particularly if found close to the surface. Never-

theless,  there  are  sufficient  quantities  of  rough  crack-free 

opal. It is possible that increased brittleness of Ramaća opal 

is  partly  caused  by  inadequate  previous  exploitation.          

The  most  common  colour  of  Ramaća  opal  is  green  (grass 

green) in various shades, brown (various shades), red, varie-

gated. Quartz and chalcedony can be sporadically found in 

filled  cracks.  Intensely  opalized  serpentinites  are  also  very 

attractive and suitable to be used as a gemstone.

Kremenjača

The  Kremenjača  gemstone  deposit  is  located  in  the  SW 

part of Borač volcanic complex, a part of Šumadija metallo-

genic zone. This complex is a part of the Rudnik-Borač-Kot-

lenik Late Palaeogene-Neogene volcanic formation 

(Cvetković  et  al.  2000).  The  oldest  surrounding  rocks  are 

 serpentinites, which are mostly overlain by Tertiary volcanic 

rocks. The central part of the Kremenjača hill is made up of 

dacite and dacite tuff. The tectonic setting of the site is 

marked by N-S and NNW-SSE trending faults (Kurešević et 

al.  2014).  Silica  gem  minerals  at  Kremenjača  form  veins, 

small nests and irregular ore bodies of hydrothermal origin 

along with typical volcanic agate as defined by Moxon (2009).

background image

217

GEMSTONE DEPOSITS OF SERBIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Kremenjača gemstone deposit is made of jasper, chalcedo-

ny (bluish, pale pink), sard, onyx, and agate. Jasper is diffe-

rently coloured: brown (various shades), dark red, purple, 

grey and green. Sometimes it grades into picture jasper and 

even to imperial jasper subvariety. Chalcedony is bluish and 

pale pink. Orange-red carnelian and brown sard are found 

only as small fragments in delluvial deposits. In onyx, white 

translucent to opaque bands alternate with translucent to 

transparent  brown-coloured  bands  (Kurešević  et  al.  2014). 

The  most  common  agate  in  Kremenjača  is  translucent,  co-

lourless, bluish and pale pink with white bands. It was also 

recorded that “fish agate” was found (Malešević 1984, in Ilić 

et al. 1998).

Boblija

This gemstone deposit is located on the Boblija hill near 

Gornji Milanovac in a relatively small mass of intensely tec-

tonized  and  hydrothermally  altered  (silicified)  ultramafics. 

Intense Late Palaeocene-Neogene volcanic activity is typical 

for the wide area, causing hydrothermal origin of gemstones 

(Cvetković et al, 2000). Boblija is the far easternmost part of 

the Maljen-Suvobor ultramafic complex which is intersected 

by numerous fractures of different categories and size, the 

most significant being of NW–SE orientation (Filipović et al. 

1971). 

The Boblija deposit is represented by a large irregular hori-

zontal plate-like ore body and numerous veins and veinlets in 

hydrothermally  altered  (silicified  and  limonitized)  serpen-

tinite (Ilić et al. 2006). Both horizontal ore body and veins 

and veinlets are formed by silica minerals: jasper — varie-

gated and multi-coloured (picture jasper), orbicular jasper 

(Fig. 3G–J, Fig. 4E–F), colourless and bluish chalcedony, 

carnelian, sard and agate (Fig. 4G). Most frequently, different 

colours gradually change over small distances. Darker jasper 

shades (black, brown, dark red) alternate with lighter shades 

(light red, orange, yellow, grey, white). Orbicular jasper has 

very different body colour while orbs are usually white or 

light yellow. In voids, around orbicular spheres, botryoidal 

aggregate surfaces are occasionally covered by small quartz 

crystals (up to 2 mm in length). In some orbicular jaspers, 

agate zone continues over lightly coloured bends or spherulitic 

zone, with alternation of colourless and brown chalcedony.

Cer Mountain

The Cer granitoid complex is located in the N-W part of 

Serbia along the junction between the southern Pannonian 

Basin and Jadar-Kopaonik thrust sheet. It is a complex lacco-

lith-like intrusion (~60 km

2

) of four rock-types (Koroneos et 

al. 2011): metaluminous I-type quartz monzonite/quartz 

monzodiorite (QMZD); peraluminous S-type two-mica 

granite  (TMG),  which  intrudes  QMZD;  Stražanica  grano-

diorite/quartz monzonite (GDS); and isolated mafic enclaves 

(ME), found only in QMZD. The same authors reported the 

age of not later than 21 Ma for QMZD and estimated the age 

of GDS and TMG at 18 and 16 Ma, respectively.

Gemstone mineralization is related to granite-porphyrite, 

lamprophyre and aplite-pegmatite. Gemstone varieties in-

clude beryl (aquamarine type), tourmaline, rock crystal, 

smoky quartz, morion and garnets. 

Quartz and beryl from pegmatites are located at Parlog and 

Mirkovača. As well as occurring in situ they have also accu-

mulated  in  elluvial  placers.  Beryl  from  Mirkovača  is  most 

commonly blue (aquamarine) and rarely light green in colour. 

Aquamarine crystals of gemstone quality are up to 3–4 cm in 

size. They are usually translucent with nice blue colour sui-

table for plain cut (en cabochon, Schuman 2011). Apart from 

these translucent, transparent clear crystals of both blue and 

green aquamarine colour are present. They are quite suitable 

for faceting.

After destruction of primary ore bodies, placer deposits 

were formed with alluvial placers being economically the 

most significant. Alluvial sediments of the Milinska River are 

rich in garnets (pyrope and almandine) which are, unfor-

tunately, usually very small and only occasionally reaching 

size suitable for gemstone cutting. Significant alluvial gem-

stone placers are those in the valleys of the Kamenička and 

Lipovačka rivers.

Lojanik

The silicified wood of Lojanik is both a gemstone deposit 

and a Neolithic archaeological site (Bogosavljević Petrović 

et al. 2014). Lojanik is a hill on the outskirts of the Mataruš-

ka Banja thermal spa, 8 km SW of Kraljevo town. Silicified 

wood occurs within Miocene conglomerates that were de-

posited in the southern part of the Zapadna Morava basin, 

along the tectonic contact with the large serpentinite body of 

Mt. Stolovi (Pavlović et al. 1977).

Lojanik occupies a space of some 5 ha with silicified wood 

in the form of twigs, branches and even logs. Based on ana-

tomical research (Joksimović et al. 1997) the silicified wood 

has the structure of fir (Abies sp.). The predominant form of 

silica in silicified wood is opal, while chalcedony is less fre-

quent. The wood structure is usually well preserved (in sawn 

and polished slabs wood nodes are easily noticeable — 

Fig. 4J). In some specimens it is very hard to distinguish 

macroscopically the original structure in cross-sections, al-

though the outer shape of wood is completely preserved. The 

colour of silicified wood is usually brown, black, grey and 

white.  Silicified  wood  is  mostly  opaque  to  slightly  translu-

cent. Common opal which occurs separately (not related to 

silicified wood) is generally of the same colour as silicified 

wood with the exception that they can also be green (grass 

green  —  Fig.  4C).  Cutting  and  polishing  of  both  silicified 

wood and opal has proven that they can be lapidary raw ma-

terial of good quality.

Goleš Mt. (Glavica deposit)

In weathering crust of the Goleš ultramafic massif, veins 

and veinlets of opal and chalcedony of infiltration origin oc-

cur in the Glavica deposit. This is, at the same time, Ni-Co 

and stockwork magnesite deposit.

The deposit is located in the furthest southwestern part of 

the Goleš peridotite massif within a larger relic of weathering 

crust on peridotite (harzburgite). The thickness of the weathe-

background image

218                                                                                                   

MILADINOVIĆ, SIMIĆ, JELENKOVIĆ

 

and ILIĆ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Fig. 3. Gemstone thin section photomicrographs: A — agate from Kozje Brdo (xpl); B — carbonate-silica onyx from Kozje Brdo (xpl);      

C — agate from Hopovo (xpl); D — carbonate-silica breccia from Letenka (xpl); E — silicified serpentinite — opal from Letenka (xpl),     

F — serpentinite from Neradin (xpl); G — orbicular jasper from Boblija — brown jasper with white orbs (xpl); H — orbicular jasper from 

Boblija — white jasper with dark grey orbs (ppl); I — orbicular jasper from Boblija — white jasper with dark grey orbs (xpl); J — orbicu-

lar jasper from Boblija — red jasper with differently coloured orbs (xpl); K — red jasper from Gajtan–Crvodik (xpl); L — chalcedony 

from Put za Vlasovo (xpl); M — multicoloured jasper–chalcedony from Vrtače (xpl), N — agate from Rasovača (xpl); O — amethyst from 

Rasovača  (xpl);  Carb  —  carbonate  minerals;  Chal  —  chalcedony;  Hem  —  hematite;  Opl  —  opal;  Qtz  —  quartz;  serp  —  serpentinite.      

(A–F — Fruška Gora ore district; G–J — Šumadija metallogenic zone; K–O — Lece-Halkidiki metallogenic zone)

background image

219

GEMSTONE DEPOSITS OF SERBIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

ring crust ranges from 30–60 m with a clear vertical zona-

tion. From the surface downwards the following zones occur: 

1) zone of quartz-opal masses, 2) goethite zone, 3) smectite 

(nontronite) zone with nickel silicates and 4) zone of partially 

disintegrated harzburgite (Maksimović et al. 1994).

Gem minerals (opal and chalcedony) occur in the form of 

small  veins,  with  thickness  of  1–8  cm  in  weathering  crust 

zones 2, 3 and 4 (Malešević et al. 1985). The most attractive 

of gem varieties from the Glavica deposit are chrysoprase 

and praseopal (Fig. 4K). Their colour originates from admix-

tures  of  Ni-silicates  and  Ni-sepiolite  (Maksimović  et  al. 

1994). Both chrysoprase and praseopal have the same colour 

and it is impossible to distinguish them macroscopically. 

Praseopal is much more common than chrysoprase. Some 

praseopal is hydrophane and can change colour and transpa-

rency with loss of water.

Apart from green opal and chalcedony, particularly inte-

resting varieties are dendritic opals (Fig. 4L), with white, 

green and bluish base colour. They can be opaque (milky 

white with manganese dendrites), translucent to almost 

 transparent. Other opaque opals can display several shades  

of brown, and yellow. Chalcedony usually has very attractive 

orange colour variety.

Lapidary processing of gem minerals (opal and chryso-

prase) from the Glavica deposit revealed very good results. 

As expected for this type of gemstone raw material, the best 

form of cutting is en cabochon whether in standard (round, 

oval, rectangular, Fig. 4K) or free designer forms (Fig. 4L). 

Lece

One  of  the  most  significant  gemstone-bearing  regions  in 

Serbia is the Lece volcanic complex which is situated in the 

southern part of Serbia and covers an area of over 700 km

2

The most characteristic deposits of this area are: Rasovača, 

Bučumet,  Vrtače  and  Kameno  Rebro.  This  volcanic  com-

plex, formed as a result of Tertiary volcanic (intermediate) 

activity, is a part of the Serbo-Macedonian metallogenic 

province  or  Lece–Chalkidiki  metallogenic  zone  (Janković, 

1990;  Serafimovski,  2000).  It  comprises  mostly  andesite 

rocks and their pyroclastic equivalents (Pešut 1976). 

The gemstone deposits of the Lece volcanic complex are 

represented by hydrothermal (epithermal quartz-brecciated 

zones and quartz/agate veins and telethermal deposits — sili-

ceous sinters and volcanic agates), as well as elluvial, dellu-

vial, prolluvial and alluvial placers, which are created by 

degradation of the primary endogene deposits (Miladinović 

et al. 2010; Miladinović 2012).

The mineral composition of gemstone is mainly represented 

by quartz/amethyst (Fig. 3O), chalcedony (“length-fast” and 

“length-slow”, Fig. 3L and N) and jasper (mixture of quartz 

and chalcedony, Fig. 3K and M). Numerous subvarieties (re-

garding colour and textural characteristics) of chalcedony 

(agate, carnelian, sard, black chalcedony, blue chalcedony, 

picture, and moss), jasper (red, brown, picture jasper in varie-

gated colour variations, landscape jasper) and quartz (ame-

thyst and rock crystal) were determined (Miladinović 2012).

Rasovača  deposit  belongs  to  the  group  of  hydrothermal 

(epithermal) gemstone deposits spatially related to brecciated 

quartz veins. This is one of most important deposits in the 

Lece volcanic complex. Gemstones in this deposit occur in 

the same fracture zone 6 km long together with Pb, Zn, Ag 

and Au mineralization (Lece underground mine). Intensive 

tectonic activity made space for the circulation of hydrother-

mal solutions which deposited not only galena, sphalerite, 

pyrite and gold but gem minerals as well. Precious silica 

minerals are represented by amethyst, amethyst-agate, and 

agate. Red jasper appears only in small quantities. Amethyst 

is  characterized  by  a  fine  dark  purple  colour  (Fig.  4M).  

Agate is represented by concentric bands of white, grey, 

 bluish, yellow, brown and red chalcedony (Fig. 4N).

Bučumet  is  the  best  preserved  primary  telethermal  (sili-

ceous sinter) deposit within the Lece volcanic complex.       In 

the  succession  of  andesite  lava  flows  and  pyroclastic  ma-

terial, silica masses formed as plate-like ore bodies. These 

masses are the result of depositing silica around thermal 

springs and geysers. Siliceous masses made of fibrous chal-

cedony, granular quartz and relict opal, have very heteroge-

neous colour varieties. Basically, a very wide range of 

colours appears in a short range. Chalcedony is represented 

by both variegated and uniform colour varieties of white, 

bluish, grey, brown, red and black. Jasper is yellowish- 

brown to reddish-brown.

The Vrtače and Kameno Rebro deposits are placer type de-

posits. While Vrtače is an eluvial deposit in pyroclastic ma-

terial with partially preserved primary ore body, Kameno 

Rebro is a completely delluvial deposit formed outside the 

volcanic complex in the surrounding Proterozoic metamor-

phic complex. Gem minerals which occur in these two de-

posits are of the same type as in the Bučumet — chalcedony 

and jasper (Fig. 4O). It is assumed that the material in the 

Kameno Rebro deposit originates mostly from the eroded 

part of the Bučumet deposit.

Discussion and conclusion

Although  Serbian  gemstone  resources  are  insufficiently 

 explored, over 150 gemstone deposits and occurrences have 

been recorded, most of which are made of silica minerals. 

They belong to gemstone mineral resources of lower market 

value. Mainly ore bodies are close to the surface and exploi-

tation of some of deposits could start very fast. The cause of 

the fact that not a single mine is operating at the moment lies 

not only in lack of tradition in the field but also in rather un-

supportive legislation.

For its size Serbia has very diverse geology which enhances 

its gemstone perspective. Almost every big geotectonic unit 

has the potential to yield gemstone deposits of different     

 genetic types. Five genetic types of gemstone deposits deter-

mined so far in Serbia are: hydrothermal, pegmatite-pneuma-

tolitic,  infiltration  deposits  within  weathering  crust  of 

ultramafics, sedimentary — placer and metamorphic deposits.

The Tertiary volcano-plutonic complexes of the Serbo- 

Macedonian metallogenic province are of major importance 

with numerous hydrothermal gemstone deposits (mainly sili-

ca minerals). Those complexes usually form metallogenic 

subunits  of  Serbo-Macedonian  province:  Lece-Chalkidiki 

background image

220                                                                                                   

MILADINOVIĆ, SIMIĆ, JELENKOVIĆ

 

and ILIĆ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Fig. 4. Selection of partly and completely processed gemstones from Serbia: A — agate bearing carbonate-silica breccia (Kozje Brdo);       

B — agate (Kozje Brdo); C — green opal (Lojanik); D — landscape jasper (Avala); E–F — orbicular jasper (Boblija); G — agate (Boblija),  

H — picture jasper (Tometino Polje); I — dendritic opal (Braneško Polje); J — silicified wood (Lojanik); K — chrysoprase (Glavica);  

L — dendritic opal (Glavica); M — amethyst (Rasovača); N — agate (Rasovača); O — jasper–chalcedony (Vrtače).

background image

221

GEMSTONE DEPOSITS OF SERBIA

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

zone, Šumadija zone, Besna Kobila-Osogovo zone and 

Kopaonik zone. The most interesting volcanic complex 

regarding the number of discovered gemstone deposits is the 

Lece andesitic massif.

Ultramafic rocks in the Jurassic ophiolite complexes of the 

Vardar  zone  possess  significant  gemstone  resources  poten-

tial, confirmed by good results from geological exploration. 

There are especially numerous gemstone deposits in Šumadi-

ja metallogenic zone of Serbo-Macedonian metallogenic 

province, but the entire Vardar zone of the Serbo-Mace-

donian province has a good potential in the domain of ultra-

mafic  complexes.  Significant  gemstone  deposits  are 

discovered in three serpentinite zones of the Fruška Gora 

 district as well as in the Šumadija metallogenic zone and Ko-

paonik metallogenic zone. The underexplored but very inte-

resting  and  rather  large  ultramafic  complex  of 

Maljen-Suvobor has good quality jasper and chalcedony de-

posits. The ultramafic complexes of the Dinaric metallogenic 

province possess the highest potential for gemstone deposits. 

The Zlatibor ultramafic massif is the most interesting in that 

province.

The granitoid intrusives in Serbia are present in all metal-

logenic provinces except the Dacian. The age of those intru-

sives ranges from Permo-Carboniferous to Tertiary. Cer    and 

Bukulja yielded the best gem quality minerals 

 

(beryl — aquamarine) within pegmatites and related placer 

deposits.

The  Carpatho-Balkan  metallogenic  province  seems  to  be 

the least promising based on the number of so far discovered 

deposits within it. This is in strong contrast to the positive 

magmatic, structural, lithological and other metallogenic cri-

teria, suggesting high potential for gemstones. The reason for 

the small number of gemstone localities is that gemstone 

prospecting has never been done in eastern Serbia. Another 

reason that speaks in favour of better gemstone possibilities 

in that part of Serbia is the existence of agate deposits in the 

Romanian and Bulgarian part of the Carpatho-Balkan metal-

logenic  province  (Iancu  et  al.  2009;  Cincov  &  Banusev 

2010).

We consider this metallogenic analysis of Serbian gem-

stone deposits and occurrences as a good starting point for 

further metallogenic studies in Serbia as well as in neigh-

bouring countries, especially in those that share the same 

 metallogenic units. Based on the current level of exploration 

we can establish several similar gemstone deposits in the 

Carpatho-Balkan  metallogenic  region,  particularly  for  the 

most abundant type of Serbian gemstone mineral resources 

— silica gemstone minerals. There is a high level of con-

gruence between infiltration type deposits of opal formed in 

weathering crust on ultramafics: Glavica at Goleš Mountain 

in south Serbia and Hodkovce in eastern Slovakia (Illášová & 

Spišiak 2010). Other good examples are the epithermal  

jasper deposits in Tertiary andesites: Magura Hill in Southern 

Apuseni Mountains in Romania (Constantina & Pop 2003) and 

Bučumet and Vrtače in Lece volcanic complex in Serbia.

Acknowledgement:  This  research  was  partly  financed  by  

the Ministry of Education and Science of the Republic of 

Serbia, Projects OI176006 and OI176016.

References

Antonović A.,  Naumović  D.,  Pešić  D.  &  Žegarac  S.  1985: Agate- 

bearing carbonate onyx in the Fruška Gora Mountain — a new 

jewel-ornamental stone. World Congress on Non-metallic  min-

erals, Belgrade, 2, 151–156.

Antonović  A.  1996:  Jewel-ornamental  stone  in  the  Fruška  Gora 

Mountain.  Bulletin of Geoinstitute  33,  Belgrade,  227–238  (in 

Serbian with English summary).

Bogosavljević  Petrović  V.  2005:  Prehistoric  mines  in  the  central 

 Balkans.  Recueil du musée national à Belgrade, XVIII-1, 

archéologie, 79–113 (in Serbian with extended English sum-

mary).

Bogosavljević  Petrović  V.  &  Marković  J.  2014:  Raw  material   

 studies of West Central Serbia. Journal of Lithic Studies 1, 1, 

55–71.

Chiari  M.,  Đerić  N.,  Garfagnoli  F.,  Hrvatović  H.,  Krstić  M.,  Levi 

N.,  Malasoma  A.,  Marroni  M.,  Menna  V.,  Nirta  G.,  Pandolfi 

L., Principi G., Saccani E., Stojadinović U. & Trivić B. 2011:  

The  geology  of  the  Zlatibor-Maljen  area  (western  Serbia):         

a geotraverse across the ophiolites of the Dinaric-Hellenic 

 collisional  belt.  Ofioliti 36, 2, 137–164.

Cincov Z. & Banusev B. 2010: Agates in Bulgaria. Stiluet EOOD- 

Izdatelstvo, 1–210 (in Bulgarian).

Constantina C. & Pop D. 2003: Brief overview on the SiO

2

 varieties 

of gem-quality from Southern Apuseni Mountains (Romania). 

Acta Mineral.-Petrogr., Abstract Series, Szeged, 1, 21.

Cvetkov V., Lesić V. & Vasković N. 2012: New paleomagnetic re-

sults for Tertiary magmatic rocks of Fruška Gora, Serbia. An-

nales géologiques de la péninsule Balkanique 73, 99–108.

Cvetković  V.,  Knežević  V.  &  Pécskay  Z.  2000:  Tertiary  igneous 

 formations of the Dinarides, Vardar Zone and adjacent re-

gions: from recognition to petrogenetic implications. In: Kara-

mata S. & Janković S. (Eds.): Geology and Metallogeny of the 

Dinarides and the Vardar zone. The Academy of Sciences and 

Arts of the Republic of Srpska, Banja Luka-Serbian Sarajevo, 

245–252.

Dill H.G. 2010: The “chessboard” classification scheme of mineral 

deposits: Mineralogy and geology from aluminum to zirconium. 

Earth Sci. Rev. 100, 1–420.

Dill  H.G.  & Weber  B.  2013:  Gemstones  and  geosciences  in  space  

and  time,  Digital  maps  to  the  “Chessboard  classification  

scheme of mineral deposits”. Earth Sci. Rev. 127, 262–299.

Dimitrijević M.D. 1997: Geology of Yugoslavia. Geological Insti-

tute — GEMINISpec. Publ., Belgrade, 197.

Filipović  I.,  Pavlović  Z.,  Marković  B.,  Rodin  V.,  Marković  O.,  

Gagić N., Atin B. & Milićević M. 1971: Basic geological map 

of SFRJ 1:100,000, sheet Gornji Milanovac. Zavod za geološ-

ka i geofizička istraživanja, Beograd (in Serbian with English 

summary).

Grubić A.  1980: Yugoslavia:  Outline  of Yugoslavian  geology.  26

th

 

Int. Geol. Congr., Paris–Belgrade, Guide-Book: Excursions 

201A, 5–49.

Iancu O.G., Toda D.P. & Iancu G. 2009: Mineral chemistry of some 

agates  from  Gurasada  (Mureş  Valley,  Romania).  Studia Uni-

versitatis Babeş–Bolyai, Geologia 54, 37–41.

Illášová  L.  &  Spišiak  J.  2010:  Slovak  gemstones.  XIX  Congress 

of  Carpathian-Balkan  Geological  Association,  Thessaloniki, 

Greece, 23-26

th

 September, Abstracts volume, Geol. Balcanica 

39, 1–2, 164–165.

Ilić M., Malešević N., Pejčić M. & Miladinović Z. 1998: A review 

of  gem  materials  of  Serbia.  Belgrade, A,  B,  48,  169–201  (in 

 Serbian).

Ilić M., Tošović R., Miladinović Z. & Antonović A. 2002: Gem raw 

materials of the Frushka Gora mountain (Serbia): Geological 

characteristics  and  economic  significance  of  deposits.  XVII

th

 

background image

222                                                                                                   

MILADINOVIĆ, SIMIĆ, JELENKOVIĆ

 

and ILIĆ

GEOLOGICA CARPATHICA

, 2016, 67, 3, 211–222 

Congress  of  Carpathian-Balkan  Geological  Association,  Bra-

tislava, Slovakia 1–4. 09. 2002, Geol. Carpath. 53, spec. iss. 

(CD ROM), 6.

Ilić M., Miladinović Z. & Zlatanović G. 2004: Results of explora-

tion  of  gem  minerals  in  the  Lece  Volcanic  Complex  and  the 

neighboring formations in the period 2002–2003. V  Međuna­

rodna  izložba  i  savetovanje  “Kamen  2004”,  Zbornik radova

Aranđelovac, 69–73 (in Serbian).

Ilić  M.,  Simić  V.  &  Miladinović  Z.  2006:  A  contribution  to  the 

knowledge of the gem mineral deposit of Boblija near Gorn-

ji Milanovac. VII  međunarodna  konferencija  Nemetali  2006

 Banja Vrujci, 92–97 (in Serbian).

Ilić  M.,  Miladinović  Z.  &  Zlatanović  G.  2010:  Results  of  recent 

study of gem raw materials in the vicinity of Belgrade. Zbornik 

radova  15.  Kongres  geologa  Srbije, Belgrade, 203–206 (in 

 Serbian).

Janković S. 1977: Major Alpine deposits and metallogenic units in 

the NE Mediterranean and concepts of plate tectonics. In: Jan-

ković S. (Ed.): Metallogeny and plate tectonics in the NE Me-

diiterranean.  UNESCO/IGCP No. 3, Faculty of Mining and 

Geology, Belgrade, 105–172.

Janković  S.  1982:  Yugoslavia.  In:  Dunning  F.W.,  Mykura  W.  &  

Slater D. (Eds.): Mineral deposits of Europe. Vol. 2.  Southeast 

Europe. Mineral. Soc. Inst. of Mining and Metallogeny,      

143–198.

Janković  S.  1990:  The  Ore  deposits  of  Serbia  (Yugoslavia):  Re-

gional metallogenic settings, environments of deposition, and 

types.  Faculty of Mining and Geology, Belgrade, 1–760 (in 

 Serbian).

Jelenković R., Kostić A., Životić D. & Ercegovac M. 2008: Mineral 

resources of Serbia. Geol. Carpath. 59, 4, 345-361.

Joksimović V., Vilotić D., Šoškić B. & Šehovac E. 1997: Silicified 

wood at Mataruška banja (Serbia). 3

rd

 International Conference 

on the development of forestry and wood science/tehnology, 

Faculty of Forestry of Belgrade University, Serbia/Yugoslavia

Belgrade, 383–389.

Knežević V., Széky-Fux V., Steiger R., Pécskay Z. & Karamata S. 

1991: Petrology of Fruška Gora latites-volcanic precursors at 

the southern margin of the Pannonian Basin. Geodinamic evo-

lution of the Pannonian Basin. Proceedings of the International 

Symposium, 243–235.

Kovács I., Csontos L., Szabo C., Bali E., Falus G., Benedek K. & 

Zajacz Z. 2007:. Paleogene–early Miocene igneous rocks and 

geodynamics  of  the  Alpine–Carpathian–Pannonian–Dinaric 

region: an integrated approach. In: Beccaluva L., Bianchini G. 

& Wilson M. (Eds.): Cenozoic Volcanism in the Mediterranean 

Area. Geol. Soc. Am. Spec. Paper 418, 93–112.

Kužvart  M.  1984:  Industrial  minerals  and  rocks.  Developments 

in economic geology  18,  Elsevier, Amsterdam-Oxford-New 

York-Tokyo, 1–454.

Kurešević  L.  &  Dević  S.  2014:  Gemstone  silica  veins  in  Kre-

menjača  volcanic  rocks  (Serbia).  Geol. Macedonica  28,  1, 

33–38.

Maksimović  Z.,  Panto  G.Y.,  Poharc-Logar  V.  &  Logar  M.  1994: 

Mineralogy, chemistry and origin of colour of chrysophrase  

and green opal (prasopal) from Glavica nickel deposit, South 

Serbia. Bull. CVIII de l’AcadSerbe, Class. Sci. math. et nat. 

35, 1–18.

Malešević N., Pejčić M. & Seke L. 1985: Deposits and occurrences 

of semiprecious and ornamental stone of Serbia. [Poludrago i 

ukrasno kamenje Srbije]. Geozavod, Beograd, 15–57 (in Serbi-

an).

Miladinović Z., Stajević B. & Ilić M. 2005: A Brief report on newly 

discovered gem raw materials on Mt. Fruška Gora. VI Međun-

arodna  izložba  i  savetovanje  “Kamen  2005”,  Aranđelovac, 

139–144 (in Serbian).

Miladinović  Z.,  Ilić  M.  &  Simić  V.  2010:  Gemstone  deposits  of 

Lece volcanic complex (South Serbia). XIX Congress of Car-

pathian-Balkan Geological Association, Thessaloniki, Greece, 

23-26

th

 September, Abstracts volume,  Geol. Balcan. 39, 1–2, 

253–254, Sofia.

Miladinović  Z.  2012:  Mineragenetic  characteristics  and  potentiali-

ty of gem mineral resources of Lece volcanic complex (South 

 Serbia).  PhD thesis, University of Belgrade – Faculty of     

 Mining and Geology,  UDK553.89(043.3),  1–210  (in  Serbian 

with English summary).

Moxon T. 2009: Studies on agate: microscopy, spectroscopy, 

 

growth, high temperature and possible origin. Terra Publica-

tions, 1–102.

Pešut D. 1976: Geology, tectonics and metallogeny of Lece massif. 

Memoires du service geologique et geofisique. Vol. XIV, Bel-

grade, 1–59 (in Serbian).

Pavlović M.B., Stevanović P. & Eremija M. 1977: Čačak-Kraljevo 

(or West Morava) basin. In: Petkovic K. (Ed.): Geology of Ser-

bia. II-3, Belgrade, 270–275 (in Serbian).

Schefer  S.,  Cvetković  V.,  Fugenschuh  B.,  Kounov A.,  Ovtcharova 

M.,  Schaltegger  U.,  Schmid  S.M.  2010:  Cenozoic  granitoids 

in the Dinarides of southern Serbia: age of intrusion, isotope 

geochemistry,  exhumation  history  and  significance  for  the 

 geodynamic evolution of the Balkan Peninsula. Int. J. Earth  

Sci. (Geol. Rundsch.) 100, 1181–1206.

Schmid S., Bernoulli D., Fugenschuh B., Matenco L., Schefer S., 

 Schuster  R.,  Tischler  M.  &  Ustaszewski  K.  2008.  The  Alpine- 

Carpathian-Dinaridic  orogenic  system:  correlation  and  evolu-

tion of tectonic units. Swiss J. Geosci. 101, 139–183.

Serafimovski  T.  2000:  The  Lece-Chalkidiki  metallogenic  zone: 

 geotectonic setting and metallogenic features. Geologija 42 

(1999), 159–164.

Spieser J.M. 2012: Justiniana Prima. In: The Encyclopedia of 

An  cient  History.  John Wiley & Sons, DOI: 10.1002/ 

9781444338386.wbeah12127.

Vakanjac  B.  1969: About  classification  of  nonmetallic  mineral  re-

sources. Vesnik zavoda za geol. i geof. istraživanja, knj. XXVII, 

ser. A, Beograd, 377–389.

Vakanjac  B.  1978:  On  precious,  semi-precious  and  ornamental  

stones as raw materials. Annales géologiques de la péninsule 

Balkanique 42, 527-538 (in Serbian with English summary).

Vasković N., Matović V., Erić S. & Arifović A. 2010: Contribution 

to the Tertiary Magmatism in Panonian basin (Serbia): REE  

and HFSE constraints from the volcanics of the Fruška Gora  

Mt. 20

th

 General Assembly, Acta Mineral.Petrogr.,  Abstract 

 Series 6, 533.