background image

GEOLOGICA CARPATHICA, FEBRUARY 2008, 59, 1, 45—58

www.geologicacarpathica.sk

Biostratigraphy of Middle Miocene (Sarmatian) wetland

systems in an Eastern Alpine intramontane basin (Gratkorn

Basin, Austria): the terrestrial gastropod approach

MATHIAS HARZHAUSER

1

, MARTIN GROSS

2

 and HERBERT BINDER

1

1

Natural History Museum Vienna, Burgring 7, A-1010 Vienna, Austria;  mathias.harzhauser@nhm-wien.ac.at

2

Landesmuseum Joanneum, Raubergasse 10, A-8010 Graz, Austria;  martin.gross@museum-joanneum.at

(Manuscript received February 27, 2007; accepted in revised form June 13, 2007)

Abstract: A rare late Sarmatian terrestrial gastropod fauna is described from the Gratkorn Basin. This intramontane
basin developed during the Miocene at the junction between the Eastern Alps and the Pannonian Basin System. During
the mid-Sarmatian, a considerable drop of the relative sea level, probably coinciding with uplift in the Eastern Alps,
caused the Paratethys Sea to retreat from marginal basins and embayments. An alluvial plain developed in the
Gratkorn Basin, indicated by fluvial gravel and paleosol formation. A moderately diverse gastropod fauna of 17
species inhabited this alluvial plain. The composition corresponds to Sarmatian faunas from southern Germany and
the North-Alpine Foreland Basin. Taxonomically, it can clearly be distinguished from superficially similar and
ecologically equivalent faunas of the Pannonian. Thus, we document the value of terrestrial gastropods as a
biostratigraphic tool to date the lithologically often very similar freshwater systems in Miocene intramontane basins.
The clausiliid Pseudidyla martingrossi Harzhauser & Binder and the camaenid Pleurodonte michalkovaci Binder &
Harzhauser are introduced as new gastropod species.

Key words: Middle Miocene, Austria, Eastern Alps, Styrian Basin, Gratkorn Basin, biostratigraphy, terrestrial gastropods.

Introduction

The high-frequency oscillations of the Central Paratethys
Sea have recently been revealed by well-log analysis and
integrated stratigraphy (Harzhauser & Piller 2004; Piller &
Harzhauser 2005). Within that system, a major 4

th

 order

drop of the relative sea-level at ca. 12 Ma was recognized,
being reflected by the progradation of gravels far into the
Vienna and Styrian Basins. No coeval non-marine deposi-
tional environments in marginal settings of the Eastern
Alps have been described until now. This lack of informa-
tion is mainly based on the difficulties in dating the lim-
nic-fluvial sediments in the various small basins, such as
the Gratkorn Basin. Tectonics and poor outcrop condi-
tions render even a small-scale lithostratigraphic correla-
tion uncertain. Terrestrial mollusc faunas might thus be
the only biostratigraphic tool available. However, the Mio-
cene  terrestrial mollusc fauna is still poorly analysed in
terms of stratigraphy.

Late Middle Miocene terrestrial mollusc faunas from the

circum-Paratethyan hinterland are rare. Early Sarmatian as-
semblages are recorded from two Lower Austrian localities
in the North-Alpine Foreland Basin (Reisperbachtal –
Papp 1952; Hollabrunn – Schütt 1967). A late Sarmatian
wetland fauna is known from the Austrian Eisenstadt-So-
pron Basin (Harzhauser & Kowalke 2002). Papp (1958)
recorded an allochthonous fauna (not determinable at spe-
cies level) from upper Sarmatian strata of the central Styri-
an Basin in south-eastern Austria. In addition, Szalai
(1928), Boda (1959) and Kókay (2006) described species
from various Hungarian localities in the Bakony region

and the Bükk Mountains. Răcă tie (formerly Rákosd) in
the Deva region in Romania is another important Sarma-
tian locality described in detail by Gaál (1911) and Szalai
(1928). Partly coeval assemblages are also documented
from the Steinheim Basin in southern Germany (Finger
1997 and references). All so-called Sarmatian localities in
the Eastern Paratethyan region that yield terrestrial gastro-
pods, such as Chisinau in Romania (Simionescu & Barbu
1940), actually represent Bessarabian and/or Khersonian
faunas, which are already of Late Miocene age. In contrast,
the Late Miocene development around Lake Pannon is
much better resolved on the basis of numerous and rich lo-
calities (see Lueger 1981 and Harzhauser & Binder 2004
for localities and references). Due to the few records and
the difficulties in identifying terrestrial gastropods, many
earth-scientists neglect this group of molluscs. The strati-
graphic and paleoecological value of terrestrial gastro-
pods, although generally accepted for the Pleistocene, is
thus still underestimated for the European Miocene. This
study therefore emphasizes the applicability of terrestrial
gastropods for Miocene stratigraphy if they fit into an in-
tegrated stratigraphic context.

Geologic frame

The investigated gastropod fauna originates from the

clay pit St. Stefan in the Gratkorn Basin, a small satellite
basin, approximately 7 km long and 3 km wide, beyond
the north-western margin of the Styrian Basin (Fig. 1). Pa-
leozoic rocks (mainly carbonates and phyllites) roughly

background image

46

HARZHAUSER, GROSS and BINDER

encircle the Gratkorn Basin. It opens to embayments of the
Styrian Basin only in the south-west. Our knowledge
about the basin filling is restricted to rare outcrops and
shallow drillings north-east of Gratkorn.

In general, the lowermost part of the exposed, approxi-

mately 190-m-thick rock column consists of very coarse-
to medium-grained, polymictic gravels/conglomerates
with some rounded, outsized gneiss boulders ( > 1 m

3

).

These coarse gravels extend from the Gratkorn Basin to
the south-east into the transition to the Styrian Basin (Clar
1938; Winkler-Hermaden 1957; own data). There, they are
underlain by marine lower Sarmatian marls (Elphidium
reginum to Elphidium hauerinum Zone; see Clar 1938;
Flügel 1958, 1959; own data; Figs. 1 and 2).

In the Gratkorn Basin, the basal clastics are overlain by

up to 20-m-thick, occasionally plant-bearing pelites. Al-
ternations of gravels/conglomerates, sands and pelites fol-
low above. In the adjacent transition to the Styrian Basin,
cm-thick intercalations of oolites are documented from
that level (own data). The topmost strata are formed by
medium- to fine-grained, mainly quartz-rich gravels/con-
glomerates with minor sandy and pelitic intercalations of
Pannonian age. Matrix-supported breccias and red earth
occur attached to the Paleozoic basement and are inter-
preted as heterochronous Miocene talus deposits (see Clar
1933; Flügel 1975 and own mapping; Fig. 1).

Lithology and fossil content

The clay pit St. Stefan is situated 0.7 km east of Gratkorn

(10 km northwest of Graz; 15

°20’55” E/47°08’15” N;

Fig. 3).  Poorly sorted silts with numerous disarticulated
skeletons, isolated bones and teeth of amphibians, reptiles
and mammals, calcareous endocarps of Celtis (hackberry)
and the herein discussed gastropod fauna are exposed at
the base of the pit. This mottled layer is intensively bio-
turbated. Root traces and ferruginous concretions are com-
mon, indicating the development of a paleosol. In the
northern part of the pit, this layer is overlain by more than
1.5-m-thick, matrix-supported, polymictic debris flow
gravels, which taper off to the South.  Gravels and paleosol
are superimposed by more than 15-m-thick pelites with
several intercalated lignitic layers, especially in the lower
part of the section. Tree stumps several meters in height
occur sporadically. While the leaf flora of the pelites is
rather poor, more than 30 fruit and seed taxa, alongside 11
freshwater ostracod species (Meller & Gross 2006; Gross
in print), are recorded. Gastropod operculi (Bithynia) and
fish fragments (cyprinids) are abundant in these fine clas-
tics. Some layers contain mass occurrences of the fossil
legume  Podocarpium podocarpum. Two beds in particu-
lar yielded well-preserved specimens of freshwater crabs
(Potamon proavitum; Gross & Klaus 2005). The ostracod

Fig. 1. a – Position of the Styrian Basin (S.B.) within the Pannonian Basin System. b – Geological sketch of the Styrian Basin. c – Sim-
plified geological map of the north-western margin of the Styrian Basin (based on Kollmann 1965; Ebner 1983; Flügel & Neubauer
1984; Riepler 1988; Kröll et al. 1988; Gross et al. 2007 and own data).

background image

47

BIOSTRATIGRAPHY OF SARMATIAN  EASTERN ALPINE BASIN (AUSTRIA): THE GASTROPOD APPROACH

assemblages of these fine clastics – as well as the pota-
monid crabs – indicate the formation of a shallow, some-
times richly vegetated, freshwater lake within a warm, per-
haps subtropical climate.

Paleobotanic investigations and studies of the verte-

brate fauna are ongoing (G. Daxner-Höck, Vienna and B.
Meller, Vienna). Unpublished paleomagnetic analyses re-
corded normal polarity for the pelites of St. Stefan (Moser
1997). Very coarse gravels are developed below the base
of this outcrop, as indicated by own geological mapping
of the surroundings as well as by shallow borings at the
nearby motorway and within the pit (unpublished logs
and Peer 1998). Coarse gravels have been previously re-
ported from the top of the clay pit but are no longer visi-
ble (Flügel 1995).

The problem of dating intramontane freshwater deposits

Despite the proximity of the Gratkorn Basin to the Styri-

an Basin, any biota typical for the marine Paratethys or the
brackish Lake Pannon – such as molluscs, foraminifers
and ostracods – are missing. Geochronologically date-
able tuffitic layers, like in the adjacent Stallhofen embay-
ment (Ebner et al. 1998, 2000), are absent too. Earlier con-
clusions based on lithological correlations were often
contradictory and assigned these strata to the Early, Mid-
dle or Late Miocene (see Hilber 1893; Clar 1938; Winkler-
Hermaden 1957; Ebner 1983; Flügel 1997; Moser 1997).
The proposed stratigraphic position as indicated above
(Geologic frame) is based solely on lithostratigraphic corre-
lations with adjacent outcrops of the Styrian Basin and can-
not exclude errors due to fault zones obscured by the vege-
tation. Recently, a vague dating of the Gratkorn Basin fill
as Middle Miocene was based upon the occurrence of

Podocarpium, which seems to vanish in the Pannonian Ba-
sin realm at the end of the Sarmatian (Hably 1992; Meller &
Gross 2006). Similarly, the preliminary investigations of the
mammal fauna from the basal beds of the clay pit point to a
Sarmatian or early Pannonian age (personal communica-
tion, G. Daxner-Höck, Vienna). The present contribution
tries to solve this problem by focusing on the terrestrial gas-
tropod assemblage of the paleosol.

Material and sample preparation

The gastropods were obtained by washing approximate-

ly 30 kg of dried sediment from the basal layer of the clay
pit St. Stefan (sieves: 250/500/1000/2000 µm). Diluted
hydrogen superoxide was used for a better disintegration
of the bulk sample. The preservation of the shells is excel-
lent, showing even delicate micro-sculpture. Fragmenta-
tion seems to have occurred mainly during the washing
procedure. The predominance of small-sized shells is thus
at least partly artificial. Large-sized shells such as Pleuro-
donte michalkovaci nov. sp. are deformed due to diagene-
sis and are only available if collected separately in the
field. The described material is stored in the collection of
the Natural History Museum in Vienna (NHMW
2006z0236/0001-0005) and the Landesmuseum Joanne-
um in Graz (Inv. No. 203458).

Systematic Paleontology

The authorship of all species-level taxa is also indicated

in the references; higher taxonomic categories follow
Falkner et al. (2001) and Bank et al. (2001).

Fig. 2. Stratigraphy of the late Middle and Late Miocene (especially of the Sarmatian and early Pannonian; Styrian Basin) and strati-
graphic position of the investigated clay pit St. Stefan (based on Harzhauser & Piller 2004 and Lourens et al. 2004).

background image

48

HARZHAUSER, GROSS and BINDER

Class:  Gastropoda Cuvier, 1795

Order:  Architaenioglossa Haller, 1890

Family:  Aciculidae Gray, 1850

Genus:  Platyla  Moquin-Tandon, 1856

Platyla  callosiuscula  (Andreae, 1904)

(Fig. 4.1—2)

1904  Acme callosiuscula – Andreae: 14, fig. 13
1976  Acicula (Platyla) callosiuscula – Schlickum: 3, pl. 1, fig. 4

D e s c r i p t i o n : Only fragments of the last whorls are

available. These are characterized by a conspicuous, broad
varix-like lip-callus terminating the aperture. This callus
is more or less rectangular in cross-section with a slight

concavity on the back. This concavity was also stressed
by Andreae (1904), who described the callus as duplicate.
Whorls are moderately high with smooth shell surface and
narrow, slant adsutural band.

R e m a r k s :  Platyla callosiuscula appears during the

Middle Miocene, being recorded from Opole in Poland
(Andreae 1904). During the Sarmatian it is widespread in
the North-Alpine Foreland Basin and southern Germany
(Schütt 1967; Schlickum 1976). No Late Miocene record
of this conspicuous species is known to the authors.

Order:  Neotaenioglossa Haller, 1892

Family:  Bithyniidae Troschel, 1857

Genus:  Bithynia Leach, 1818

Bithynia sp.

R e m a r k s : A single fragment of a calcified operculum

was found. Its outline does not differ from that of the Late
Miocene  Bithynia jurinaci (Brusina, 1884); no clear iden-
tification, however, is possible. The scarceness of the
aquatic bithyniids indicates that these gastropods were
only rare elements in the assemblage.

Order:  Pulmonata Cuvier in Blainville, 1814

Family:  Planorbidae Rafinesque, 1815

Genus:  Gyraulus Charpentier, 1837

Gyraulus  vermicularis (Stoliczka, 1862)

(Fig. 4.3—3a)

1862  Planorbis vermicularis – Stoliczka: 5, pl. 17, fig. 1
2002  Gyraulus vermicularis – Harzhauser & Kowalke: 75, pl. 2,

fig. 14

D e s c r i p t i o n : Tiny, planispiral, moderately involute

shell fragment with inflated, round whorls, without angu-
lation, increasing rapidly in width. Protoconch ornament-
ed by indistinct spiral cords which are connected with
small transverse bows. Teleoconch sculpture consisting of
a dense pattern of strongly prosocyrt growth lines of irreg-
ular strength.

R e m a r k s :  The fragment is reminiscent of the endemic

Gyraulus steinheimensis (Hilgendorf, 1867) and displays
an identical protoconch sculpture (see Nützel & Bandel
1993). Differences are the larger size of the Steinheim spe-
cies, its more numerous whorls and the less increasing
width of the early whorls.

Gyraulus vermicularis is known so far only from late

Sarmatian deposits of the Styrian Basin and the Eisen-
stadt-Sopron Basin (Stoliczka 1862; Harzhauser & Kowal-
ke 2002).

Order:  Stylommatophora Schmidt, 1855

Family:  Valloniidae Morse, 1864

Genus:  Vallonia Risso, 1826

Vallonia subpulchella (Sandberger, 1874)

(Fig. 4.4—4a)

Fig. 3. Schematic profile of the clay pit St. Stefan (paleobotanic
contents based on unpublished data of B. Meller, Vienna).

background image

49

BIOSTRATIGRAPHY OF SARMATIAN  EASTERN ALPINE BASIN (AUSTRIA): THE GASTROPOD APPROACH

1874 Helix (Vallonia) subpulchella – Sandberger: 544, pl. 29,

figs. 3a—c

2002 Vallonia subpulchella – Harzhauser & Kowalke: 76, pl. 10,

figs. 1—2

2004 Vallonia subpulchella – Harzhauser & Binder: 16, pl. 6,

figs. 5—6

R e m a r k s :  The fragmentary specimen displays the pro-

toconch and parts of the first teleoconch whorl. Size and
sculpture corresponds fully to equivalent parts of Middle
and Late Miocene shells of Vallonia subpulchella as de-
scribed by Harzhauser & Kowalke (2002) and Harzhauser &
Binder (2004). Due to the perfect preservation of the proto-
conch surface, a delicate sculpture of disconnected spiral
cords is visible. This sculpture was undescribed up to now
because specimens from the upper Sarmatian of the Eisen-
stadt-Sopron Basin in Harzhauser & Kowalke (2002) bear
only faint remnants of these spirals due to abrasion.

Family:  Pupillidae Turton, 1831

Genus:  Pupilla  Fleming, 1828

Pupilla iratiana (Dupuy, 1850)

(Fig. 5.1—3)

1850  Pupa Iratiana – Dupuy: 310, pl. 15, fig. 7
1997  Pupilla iratiana – Finger: 18, pl. 12, figs. A—B

D e s c r i p t i o n :  Stout, cylindrical shell of 5 convex te-

leoconch whorls with a coarse sculpture of oblique ribs

formed by growth lines. Protoconch consisting of about
1.3 whorls; initial cap with vague honeycomb pattern
passing into a hammered surface on the following part.
Demarcation between protoconch and teleoconch abrupt,
coinciding with the onset of a prominent axial ribbing.
The last whorl develops a weak concavity along the mid-
dle line and terminates in a wide aperture with a thin pari-
etal tooth and a slightly adapically decentred, swollen
columellar fold. A small palatal denticle appears deep in-
side the aperture. Umbilicus wide and deep.

R e m a r k s :  Isolated early teleoconch whorls are abun-

dant; due to their trochoid outline they might be mistaken
for a Discus,  Janulus or Strobilops. These taxa, however,
lack the hammered sculpture of the protoconch. The
coarse sculpture and the stout outline distinguish Pupil-
la iratiana from the syntopic Truncatellina lentilii
(Miller, 1900). Pupilla iratiana is a Middle Miocene
species known from Sansan in France (Fischer 2000),
Várpalota in Hungary (Kókay 2006) and Steinheim in
Germany (Finger 1997).

Family:  Vertiginidae Fitzinger, 1833

Genus:  Truncatellina  Lowe, 1852

Truncatellina lentilii (Miller, 1900)

(Fig. 5.5—6)

1900  Pupa (Isthmia) Lentilii – Miller: 406
1967  Truncatellina lentilii – Schütt: 206, fig. 7

Fig. 4.  1—2 – Platyla callosiuscula (Andreae, 1904); 3—3a – Gyraulus vermicularis (Stoliczka, 1862); 4—4a – Vallonia subpulchella
(Sandberger, 1874).

background image

50

HARZHAUSER, GROSS and BINDER

D e s c r i p t i o n :  Elongate, cylindrical shell with 4—5

moderately convex teleoconch whorls. Depressed trochoid
protoconch with coarsely hammered sculpture on the ini-
tial part. This sculpture weakens distinctly within the first
protoconch whorl. Dense and prominent growth lines on
the first teleoconch whorl, decreasing rapidly in strength.
High last whorl terminating in a flap-like aperture with al-
most straight outer lip. A small but distinct parietal tooth
appears deep inside the aperture. Columella swollen; um-
bilicus wide.

R e m a r k s : Similar to Pupilla iratiana, the isolated

protoconchs of Truncatellina lentilii are common in the
samples, being superficially reminiscent of a Strobilops
(see above).

The Late Miocene Truncatellina suprapontica Wenz &

Edlauer, 1942 differs considerably in its coarser sculpture
and the more pointed and narrower protoconch (see
Harzhauser & Binder 2004). Truncatellina lentilii is virtu-
ally restricted to the Middle Miocene, occurring at Undorf
(Germany), in the Steinheim Basin (Finger 1997) and the
North-Alpine Foreland Basin (Schütt 1967).

Genus:  Negulus  Boettger, 1889

Negulus gracilis Gottschick & Wenz, 1919

(Fig. 5.4)

1919  Negulus suturalis gracilis – Gottschick & Wenz: 9, pl. 1,

figs. 12—13

2004  Negulus gracilis – Harzhauser & Binder: 126, pl. 6, figs. 9—10

D e s c r i p t i o n : Despite the fragmentary preservation,

identification is possible due to the characteristic sculp-
ture, which does not differ at all from conspecific speci-
mens from the Late Miocene of the Vienna Basin (coll.
NHM; Harzhauser & Binder 2004). It consists of delicate,
thin, widely spaced, prominent prosocline axial ribs and
much weaker, densely spaced secondary ribs in the inter-
spaces. The height of the body whorl corresponds to that
of the Late Miocene material and suggests a total height
of about 2 mm.

Remarks: The species appears in the late Middle Mio-

cene, when it is also known from the Sarmatian of the Aus-
trian North-Alpine Foreland Basin (Schütt 1967), the
Bakony Mountains in Hungary (Kókay 2006) and the
Steinheim Basin in Germany. It persists into the Late Mio-
cene, being a common element in terrestrial deposits of
the Pannonian (Lueger 1981; Harzhauser & Binder 2004).

Genus:  Vertigo  Müller, 1773

Vertigo angulifera Boettger, 1884

(Fig. 5.7—8)

1884  Vertigo (Alaea) angulifera – Boettger: 271, pl. 4, fig. 10
1919  Vertigo (Alaea) angulifera – Gottschick & Wenz: 18, pl. 1,

figs. 36—37

1967 Vertigo (Vertilla) angulifera angulifera – Schütt: 207, fig. 9

D e s c r i p t i o n : Stout, small-sized shells with 5 strongly

convex whorls. Early protoconch displays a very weakly

Fig. 5.  1—3  – Pupilla iratiana (Dupuy, 1850); 4  – Negulus gracilis Gottschick & Wenz, 1919; 5—6  – Truncatellina lentilii (Miller,
1900); 7—8 – Vertigo angulifera Boettger, 1884; 9—10 – Gastrocopta (Sinalbinula) sandbergeri Stworzewicz & Prisyazhnuk, 2006.

background image

51

BIOSTRATIGRAPHY OF SARMATIAN  EASTERN ALPINE BASIN (AUSTRIA): THE GASTROPOD APPROACH

hammered surface which is lost on the later parts of the
protoconch. Transition to the teleoconch marked by an in-
distinct rim. An irregular, dense sculpture of oblique
growth lines is usually developed on the first two teleo-
conch whorls and close to the aperture; along the middle
parts of the shell the sculpture is indistinct. A deep furrow
is developed on the body whorl, causing a shallow con-
cavity in the outline of the aperture. Deep umbilicus. The
sub-trigonal aperture bears two prominent but rather thin
parietal teeth and a blunt columellaris. A large palatal
tooth reaches far into the aperture, almost touching the
posterior parietal tooth.

R e m a r k s : The species is a common element in the

Middle Miocene of Central Europe. It is reported from the
Badenian (MN6) of Hungary  (Gál et al. 2000) and from the
Sarmatian of the Steinheim Basin (Finger 1997) and the
North-Alpine Foreland Basin (Schütt 1967). The Middle
to Late Miocene Vertigo callosa (Reuss, 1852) differs
clearly in its stout ovoid outline, the less incised sutures
and the broader parietal teeth. Vertigo angulifera might
thus be a stratigraphically important species, which – at
least in the Central Paratethys area – allows a distinction
between Sarmatian and Pannonian deposits.

Family:  Gastrocoptidae Pilsbry, 1918

Genus:  Gastrocopta  Wollaston, 1878

Genus:  Sinalbinula Pilsbry, 1916

Gastrocopta (Sinalbinula) sandbergeri

Stworzewicz & Prisyazhnyuk, 2006

(Fig. 5.9—10)

1875  Pupa (Vertigo) suevica – Sandberger: 654
2006 Gastrocopta (Sinalbinula) sandbergeri – Stworzewicz &

Prisyazhnyuk: 167, figs. 1, 2A—E

D e s c r i p t i o n :  Moderately slender shell of 5 convex

whorls, pointed apex and weak sculpture of growth lines.
Expanded aperture with extended columellar lip covering
the lower third of the last whorl’s base. Strong apertural
sculpture consisting of a large, protruding, biplicated pari-
etal tooth accompanied by a weaker infrapalatalis, a prom-
inent, slightly adapically inclined columellar fold fol-
lowed by a basalis of almost same strength. Outer lip
structured by a protruding inferior palatal tooth, a slightly
weaker superior palatalis and a small suprapalatalis (fol-
lowing the terminology of Lueger 1981).

R e m a r k s : Stworzewicz & Prisyazhnyuk (2006) intro-

duced  Gastrocopta sandbergeri as a new name for the
nomen nudum Pupa suevica of Sandberger (1875).  This
species already appears during the early Middle Miocene
in Poland (Stworzewicz & Prisyazhnyuk 2006) and is a
common species in the Sarmatian of Steinheim (Finger
1997). The early Sarmatian shell described by Schütt
(1967) from the North-Alpine Foreland Basin as Gastrocop-
ta suevica differs considerably in its elongate outline and
the weak aperture structures. Gastrocopta sandbergeri
seems to be restricted to the Middle Miocene; superficially
similar shells from the Late Miocene (partly described as G.

suevica, e.g. Schlickum 1976) represent Gastrocopta noule-
tiana (Dupuy, 1850) or Gastrocopta serotina (Ložek, 1964)
(see Lueger 1981; Harzhauser & Binder 2004).

Family:  Clausiliidae Gray, 1855

Genus:  Pseudidyla Boettger, 1877

Pseudidyla martingrossi Harzhauser & Binder nov. sp.

(Fig. 6.1—3)

M a t e r i a l :  5 specimens from Gratkorn in Styria/Austria.
H o l o t y p e : Fig. 6.3, NHMW 2006z0236/0005, height:

1.9 mm.

P a r a t y p e : Fig. 6.1, NHMW 2006z0236/0002, height:

3.8 mm.

P a r a t y p e : Fig. 6.2, NHMW 2006z0236/0004, height:

3.1 mm.

T y p e   l o c a l i t y : Gratkorn, Austria; 15

°20’55” E/

47

°08’15” N.

T y p e   s t r a t u m : Paleosol close to the top of the

“Gravels of Gratkorn”.

A g e : Middle Miocene, late Sarmatian (= late Serraval-

lian).

N a m e : In honour of Martin Gross – paleontologist at

the Landesmuseum Joanneum in Graz, who discovered
this new species.

D e s c r i p t i o n :  Small-sized clausiliid; protoconch high

trochospiral consisting of 2 bulbous, smooth whorls,
which are slightly wider than the first teleoconch whorl.
The first three teleoconch whorls are turreted with almost
sub-parallel flanks. Later whorls increase in width. Entire
teleoconch covered by coarse and densely spaced axial
ribs, partly dichotomizing. Last whorl with neck and dis-
tinct neck furrow. Depressed fig-like aperture with wide
sinulus and basal furrow. Superior lamella narrow, long
and slightly curved; followed by 2 very weak peristome
folds on the interlamellar. A prominent inferior lamella is
divided in two branches which terminate shortly before
the margin of the aperture. The surface of the anterior
lamella displays a pattern of tiny nodes, being elongated
parallel to the axis (Fig. 6.2a). The subcolumellar fold
curves down obliquely and terminates in a weak denticle.
The basal furrow is delimitated by this fold on the right
and by an indistinct swelling on the left. A thin, continu-
ous, upper palatal fold and a short middle one are devel-
oped (visible in fractured specimens Fig. 6.2). A knoblike
thickening follows below on the palatal. Anterior margin
everted and forming a thickened lip in adult specimens.

R e m a r k s : Only a few Pseudidyla  species are de-

scribed from the Miocene of Europe (see Nordsieck 1981).
Pseudidyla schultzi Binder, 2004 from the Early Miocene
of Oberdorf (Styria, Austria) differs by its folds on the in-
terlamellar and by additional folds below the inferior
lamella and the palatal plicae. Pseudidyla polyptyx Boet-
tger, 1877 from the early Middle Miocene of Hrušovany
(Czech Republic) and late Early Miocene of Teiritzberg
(Austria) is larger and displays a much weaker axial sculp-
ture. Further, it differs by the interlamellar folds, the pres-
ence of a lower palatal-fold and the absence of a palatal-

background image

52

HARZHAUSER, GROSS and BINDER

swelling (see Binder 2002). Pseudidyla polyptyx suprago-
nypteryx (Schütt, 1967), an early Sarmatian subspecies re-
described by Nordsieck (1981), is clearly distinguished by
the smaller protoconch, consisting of a single whorl, the
broad early teleoconch, the wide aperture, the shorter su-
perior lamella, the smaller inferior lamella and the finer
axial sculpture of the last whorl. Pseudidyla moesingensis
Sandberger, 1875 differs by its divided subcollumelar
lamella and 1—2 folds on the left basal mouth-edge. Pseu-
didyla boettgeri Nordsieck, 1981, from the Middle Mio-
cene of Opole in Poland, is highly reminiscent of the new
species but develops a narrower aperture, a deeper basal
furrow and a correspondingly more pronounced keel.
Pseudidyla moersingensis hollabrunnensis Schütt, 1967
differs by the absence of the two branches of the inferior
lamella. Another similar species is the Late Miocene to
Pliocene  Clausilia strauchiana Nordsieck, 1972, which dif-
fers in its slender teleoconch and shorter superior lamella.

Family:  Punctidae Morse, 1864

Genus:  Punctum Morse, 1864

Punctum parvulum Gottschick, 1920

(Fig. 6.6—6a)

1920 Punctum propygmaeum parvulum – Gottschick: 39
1997 Punctum propygmaeum  parvulum – Finger: 18, pl. 10, figs. G—I

D e s c r i p t i o n : Small-sized, depressed to almost flat

trochoid shell of 1.4 protoconch whorls and only 2 teleo-

conch whorls. Protoconch ornamented by weak spiral
threads covering the flanks and top of the whorls. In the an-
terior third of the whorls, a very delicately hammered sur-
face sculpture appears, being most prominent on the initial
cap. A dense pattern of sigmoidal growth lines, crossed by
weak spiral threads, forms the sculpture of the teleoconch.

R e m a r k s : This species was usually treated as a sub-

species of Punctum propygmaeum (Andreae, 1904) or as a
synonym of that Middle to Late Miocene species (e.g.
Lueger 1981). The protoconch and early teleoconch of
Punctum parvulum from Steinheim (in Finger 1997) and
from Gratkorn differ from that of Punctum propygmaeum
as illustrated by Lueger (1981) from the Late Miocene of
the Vienna Basin. The Sarmatian species develops a more
prominent sculpture of spiral threads and the radial sculp-
ture of the early teleoconch is accentuated by spiral
threads. Moreover, the Late Miocene shells develop an ad-
ditional teleoconch whorl.

Family:  Patulidae Tyron, 1866

Genus:  Discus Fitzinger, 1833

Discus euglyphoides (Sandberger, 1874)

(Fig. 6.4)

1874 Patula (Charopa)  euglyphoides  – Sandberger: 583, pl. 29, fig. 1
2006 Discus euglyphoides – Kókay: 74, pl. 28, figs. 1—2

D e s c r i p t i o n : All available specimens are fragmented

or subadult, consisting of only 2—3 strongly convex teleo-

Fig. 6.  1—3 – Pseudidyla martingrossi Harzhauser & Binder nov. sp., (3 holotype); 4 –Discus euglyphoides (Sandberger, 1874); 5 –
Nesovitrea boettgeriana (Clessin, 1877); 6—6a – Punctum parvulum Gottschick, 1920.

background image

53

BIOSTRATIGRAPHY OF SARMATIAN  EASTERN ALPINE BASIN (AUSTRIA): THE GASTROPOD APPROACH

conch whorls. Outline depressed conical. Adult shell orna-
mented with prominent, dense, regular, prosocline axial
ribs which continue on the base, reaching into the wide,
perspectivic umbilicus. Protoconch consisting of 1

¼ con-

vex whorls with deep sutures and weak, hammered, wrin-
kled surface sculpture.

R e m a r k s :  Discus euglyphoides is known from the

Sarmatian of the Styrian Basin and from the Middle Mio-
cene of Zwiefaltendorf (Schlickum 1976). A further occur-
rence in the Sarmatian of the North-Alpine Foreland Basin
is reported by Schütt (1967), who identified his specimen
as  Discus pleuradrus (Bourguignat, 1881). The Badenian
to Pannonian Discus pleuradrus lacks the strong radial
ribs on the base and is less conical. Its protoconch is less
inflated and bears some adsutural axial wrinkles (see
Harzhauser & Binder 2004). Discus costatus (Gottschick,
1920), which is considered to be a synonym of Discus
pleuradrus by Lueger (1981), differs in its slightly keeled
body whorl and the narrower umbilicus. Discus eugly-
phoides was probably frequently intermingled with Dis-
cus pleuradrus (Bourguignat, 1881), obscuring its range
and geographical distribution.

Family:  Oxychilidae Hesse, 1927

Genus:  Nesovitrea  Cooke, 1921

Nesovitrea boettgeriana (Clessin, 1877)

(Fig. 6.5)

1877  Hyalinia boettgeriana – Clessin: 35
1976 Nesovitrea  (Perpolita) boettgeriana – Kókay: 76, pl. 28,

figs. 13—15

D e s c r i p t i o n : A very small depressed trochoid shell of

2.2 mm diameter. The low protoconch hardly emerges; its
surface is almost smooth except for very delicate spiral
threads close to the suture. The only available specimen
displays a marked rim and constriction separating a totally
smooth part of the protoconch (0.75 whorls) from the
weakly ornamented rest (0.5 whorls). The sculpture on the
teleoconch consists of somewhat irregular growth lines.
The base is not accessible.

R e m a r k s :  The shell is reminiscent of the Late Mio-

cene  Nesovitrea disciformis (Lueger, 1981). That species
differs only in its larger size, weaker sculpture and an even
less convex protoconch. Moreover, the conspicuous con-
striction is not developed within the protoconch but at the
transition to the teleoconch (see Nesovitrea disciformis in
Harzhauser & Binder 2004, pl. 11, fig. 14).

Nesovitrea boettgeriana is an Early to Middle Miocene

species, being reported up to now only from southern Ger-
many and Hungary (Clessin 1877; Gál et al. 1999; Kókay
2006).

Family:  Vitrinidae Fitzinger, 1833

Genus:  Oligolimax Fischer, 1878

Oligolimax  sp. (cf. suevica  (Sandberger, 1874))

(Fig. 7.4)

D e s c r i p t i o n : A single protoconch of 0.9 mm diame-

ter is available. The initial part is rather flat and only
weakly emerging from the following whorl, which be-
comes increasingly convex. The ornamentation consists of
a conspicuous spiral pattern of small pits. The spiral rows
are rather irregular and 10 to 20  m apart. The poor regu-
larity of the spiral patterns becomes even less distinct to-
wards the teleoconch.

R e m a r k s : Protoconch information on Oligolimax is

available for the Greek Oligolimax cerigottana (Gitten-
berger) and Oligolimax cepahalonica (Rähle) illustrated
in Gittenberger (1992). Both species differ from the herein
described protoconch in the much more regular arrange-
ment of the spirals. Distinctly more similar is the proto-
conch sculpture of the Italian Oligolimax annularis (Stud-
er, 1820) as illustrated in Manganelli & Giusti (2004),
which differs only in its rugolose growth lines.

A similar protoconch, probably of the same species, is

illustrated as “Vitrina sp.” in Finger (1997) from Stein-
heim in Germany. These protoconchs therefore probably
represent  Oligolimax suevica (Sandberger, 1874), which is
widespread in Sarmatian deposits (e.g. Schütt 1967).

Family:  Limacidae Lamarck, 1801

Genus:  Limax Linnaeus, 1758

Limax sp.

(Fig. 7.1)

R e m a r k s :  Thin limacid shells with parallel margins.

Specimens from the Steinheim Basin described by Finger
(1997) might be conspecific. Limax  sp. in Harzhauser &
Kowalke (2002) from the upper Sarmatian of the Eisen-
stadt-Sopron Basin in Austria is more elongate. Limax ex-
cavatus Andreae, 1904 from the lower Sarmatian of the
North-Alpine Foreland Basin (Schütt 1967) lacks the par-
allel margins but is elliptical in outline.

Family:  Testacellidae Gray, 1840

Genus:  Testacella  Draparnaud, 1801

Testacella schuetti Schlickum, 1967

(Fig. 7.2—3)

1967  Testacella schuetti – Schlickum: 63, fig. 1
1967  Testacella (Testacella) schuetti – Schütt: 218, fig. 19

D e s c r i p t i o n : Small-sized, ear-shaped, robust shells of

elongated ovoid outline. The apex is only weakly protrud-
ing and knob-like. Early shell covered with a weak, dense
ornament of tiny, shallow pits which form a faint radial
striation. This radial sculpture is gradually replaced by
wrinkled axial grooves culminating in distinct growth
lines in adult shells. Aperture elongated, wide with strong-
ly thickened columella and a low parietal swelling. Mus-
cle scar deep, strongly curved and sickle shaped.

R e m a r k s : Only a few Testacella  species are described

from the Middle and Late Miocene of Europe. Most of
them, such as Testacella zelli Klein, 1853 from the Silva-

background image

54

HARZHAUSER, GROSS and BINDER

na beds in Germany (e.g. Schlickum 1976), differ by the
pointed apex. An unidentified Testacella shell from the
Pannonian of Leobersdorf in the Vienna Basin (Lueger
1981) differs by its less elongated outline and the absence
of sculpture. Hence, Testacella schuetti is only known
from Sarmatian deposits of the North-Alpine Foreland Ba-
sin and the Styrian Basin. The abundance of the otherwise
rarely documented species indicates that Testacella
schuetti might have preferred moist settings in wetland
habitats. Correspondingly, the second known occurrence
in the Sarmatian of Lower Austria (Schlickum 1967) was
found in shoreface sands and is one of the most frequent
species there (Schütt 1967).

Family:  Camaenidae Pilsbry, 1895

Genus:  Pleurodonta Fischer von Waldheim, 1807

Pleurodonte  michalkovaci  Binder & Harzhauser nov. sp.

(Fig. 7.5a—d)

M a t e r i a l : 1 specimen from Gratkorn in Styria/Austria.
H o l o t y p e : Fig. 6.5, Joanneum Inv. No. 203458, dia-

meter: 1.9 mm.

T y p e   l o c a l i t y :  Gratkorn, Austria; 15

°20’55”E/

47

°08’15”N.

T y p e   s t r a t u m : Paleosol close to the top of the

“Gravels of Gratkorn”.

A g e : Middle Miocene, late Sarmatian (= late Serraval-

lian).

N a m e : In honour of Michal Kováč, an earth scientist at

the Comenius University, who is a specialist on the geo-
dynamics of the Pannonian realm.

D e s c r i p t i o n :  Depressed and flattened  shell with four

regularly increasing whorls. The smooth earliest part of
the protoconch is followed by a sculptured part compris-
ing delicate, curved ribs with tiny knobs. The first teleo-
conch whorl bears delicate, sickle-shaped axial ribs,
whereas the following whorls display slightly irregular
and less delicate primary and secondary ribs. Immediately
before the aperture, the last whorl abruptly turns down
(60

°). The thickened and reflected mouth-edge forms a lip.

The ovoid peristome covers large parts of the umbilicus.
The micro-sculpture consists of little knobs arranged in
rows and forming wavelike sculpture.

R e m a r k s :  The fossil specimen is partly fractured and

depressed by compaction. Nevertheless, the large proto-
conch with delicate ribs and knobs, the shell outline and
the lip morphology allow an affiliation with the Ca-
maenidae. This gastropod family is widespread in the trop-
ics and occurs in South America, the Caribbean islands
and in eastern Asia and Australasia (Richardson 1985).
The fossil representatives of this group indicate a much
wider distribution during the Cenozoic Era (compare An-
dreae 1904; Binder 2004) and reveal this group as an in-
teresting climate proxy. In Central Europe, the Sarmatian
Pleurodonte  michalkovaci  is among the last representa-
tives of this family aside from a last range expansion dur-
ing the middle Pannonian.

Fig. 7. 1  – Limax sp.; 2—3  – Testacella schuetti Schlickum, 1967; 4  – Oligolimax sp. (cf. suevica  (Sandberger, 1874)); 5a—d  –
Pleurodonte  michalkovaci Binder & Harzhauser nov. sp. (holotype).

background image

55

BIOSTRATIGRAPHY OF SARMATIAN  EASTERN ALPINE BASIN (AUSTRIA): THE GASTROPOD APPROACH

The only comparable species is Galactochilus sarmati-

cus (Gáal, 1911) from the Sarmatian of Răcă tie in Roma-
nia. It differs from Pleurodonte  michalkovaci by its larger
protoconch and by its almost fully covered umbilicus.

Results and discussion

A total of 17 gastropod species are recorded. This low to

moderately diverse assemblage is strongly dominated by
very few taxa. The most frequent species are terrestrial
taxa such as Testacella schuetti Schlickum, 1967, Gastro-
copta (Sinalbinula) sandbergeri Stworzewicz & Prisyazh-
nyuk, 2006, Vertigo angulifera Boettger, 1884, Pupilla
iratiana  (Dupuy, 1850)  and  Truncatellina lentilii (Miller,
1900). All other species are rare and have been document-
ed by 1—5 specimens only. Especially the aquatic gastro-
pods are almost absent. A single fragment of a Bithynia-
operculum and a solitary Gyraulus  vermicularis (Stoliczka,
1862) represent the entire aquatic gastropod fauna. This
composition is not surprising, considering the terrestrial
depositional environment (paleosol). The absence of typi-
cal inhabitants of moist habitats such as carychiids is
highly unusual.

Biostratigraphy

The main problem of the Gratkorn Basin project was to

separate Middle Miocene from Upper Miocene deposits.
The lack of marine taxa typical for Sarmatian deposits and
endemic Lake Pannon molluscs – indicative for the Late
Miocene (Pannonian) – complicated the biostratigraphic
evaluation. The mainly terrestrial gastropod fauna, howev-
er, turned out to be highly significant for the Middle Mio-
cene (Table 1). Only 2 species are also known from Pan-
nonian (Late Miocene) faunas (Vallonia subpulchella,
Negulus gracilis), whilst most taxa are restricted to the
Middle Miocene. Moreover, only 4 taxa al-
ready appear in the early Middle Miocene
(Badenian) and persist into the Sarmatian
(Platyla  callosiuscula, Vertigo angulifera,
Gastrocopta 

(Sinalbinula) sandbergeri,

Nesovitrea boettgeriana).  At least 4 spe-
cies, namely: Pupilla iratiana, Truncatelli-
na lentilii,  Punctum parvulum,  and  Discus
euglyphoide occur during the late Middle
Miocene (late Badenian and Sarmatian).
Finally,  Testacella schuetti and Gyraulus
vermicularis  are restricted to the Sarmatian.
The total assemblage is therefore indica-
tive for the Sarmatian stage.

Biogeography

The still rather punctiform knowledge of

the Miocene terrestrial mollusc fauna and
the usually rather vague stratigraphic cor-
relation hampers the biogeographic analy-
sis. The discrimination of biogeographic

from stratigraphic differences among the Central European
assemblages is often difficult. Nevertheless, the small fau-
na displays only a negligible percentage of endemism.
Among the terrestrial taxa, only Pseudidyla martingrossi
nov. sp. and Pleurodonte michalkovaci nov. sp. are un-
known from other localities. Testacella schuetti had a re-
stricted distribution, being known so far from the North-
Alpine Foreland Basin and the Styrian Basin. Similarly,
the aquatic Gyraulus vermicularis is recorded only from
the Styrian Basin and the Eisenstadt-Sopron Basin. All
other taxa are widespread in Central Europe during the
Middle Miocene. The closest relation exists with the as-
semblages from the Steinheim Basin in southern Germany,
as described by Finger (1997), and with the early Sarma-
tian assemblage from Hollabrunn in the Austrian part of
the North-Alpine Foreland Basin (Schütt 1967). A good
correlation is also evident with the Middle Miocene Silva-
na  beds of southern Germany (e.g. Zwiefaltendorf &
Schlickum 1976). This pattern indicates that the Gratkorn
Basin was settled by a typical Central European terrestrial
fauna. The western extension of the Paratethys Sea into
the North-Alpine Foreland Basin had already retreated to
the Vienna Basin, allowing a southward migration of the
Central European terrestrial gastropod faunas. Neverthe-
less, the Eastern Alps already formed a considerable eleva-
tion and might have acted as a barrier for migration. The
connection of the “southern” fauna with those in the North
was therefore probably only given along the narrow low-
land fringe bordering the Eastern Alps along the Vienna
Basin and the Styrian Basin.

Paleoecology

The paleoecological interpretation of the terrestrial as-

semblage is also difficult. Most of the represented genera
have modern congeners, which together cover a broad
range of environmental requirements. The low percentage

Table 1: Stratigraphic distribution of the Gratkorn Basin mollusc fauna (Sar.  = 
Sarmatian).

background image

56

HARZHAUSER, GROSS and BINDER

of aquatic taxa supports the interpretation of a paleosol for
the basal layer. The most abundant species is the slug
Testacella schuetti. Modern Testacella  species live main-
ly underground as earthworm predators. This implies an at
least moderately moist sol cover on an alluvial plain. Rot-
ting wood and plant-litter in swampy environments or wet
grassland are preferred by modern Nesovitrea, Discus and
some vertiginids. Extant Platyla species inhabit leaf-litter
in moist woodland but may, as the calciphile Platyla gra-
cilis, also occur in screes. Leaf-litter is the typical habitat
of the snaggletooth Gastrocopta  and for Punctum. These
genera and Vertigo, however, may also spread into open
and drier habitats similar to Vallonia, which is frequent in
open and dry grassland. Many European vertiginids and
valloniids are calciphile species. Modern congeners of the
frequent  Truncatellina lentilii (Miller, 1900) and Pupilla
iratiana  (Dupuy, 1850) are xerophile and thermophile
species, which rely on calcium-rich substrates in open
landscapes. For data on extant species see Ložek (1964),
Kerney et al. (1979), Fechter & Falkner (1989), Wiese
(1991) and references therein. The absence of terrestrial
taxa, which are usually frequent along the shores of lakes,
such as Carychium, is enigmatic.

In conclusion, woodland with moist sol offered habitats

for abundant ear-shell slugs, gastrocoptids and vertiginids
along with rarer representatives of Discus and Nesovitrea.
The frequency of Truncatellina lentilii and Pupilla irati-
ana suggest that nearby limestone-screes and sun-exposed
open areas were present as well.

Conclusions

The terrestrial gastropod fauna from the basal beds of

the limnic basin fill of the Gratkorn Basin indicates a Sar-
matian (late Middle Miocene) age of the sediments. The
depositional environment was a vegetated alluvial plain
with a moist sol cover, some sun-exposed open areas and
nearby limestone-screes. The overlying pelites of the clay
pit St. Stefan are interpreted by Gross et al. (2007) to re-
flect the transgression at the beginning of the late Sarma-
tian. While in the open Styrian Basin marine depositional
sediments predominated, a limnic environment developed
in the Gratkorn Basin. The hydrological and geographical
frame for the development of lentic freshwater systems in
intramontane Alpine satellite basins of the Pannonian Ba-
sin complex originated geodynamically during mid-Sar-
matian times. This phase coincided with a period of in-
tense regression at the end of the early Sarmatian. Up to
100 m of sand and gravel were deposited in the Styrian
and Vienna Basins, and the Alpine embayments fell dry.
Erosion and basinward progradation of alluvial-fluvial/
deltaic systems occurred (Harzhauser & Piller 2004; see
Strauss et al. 2006). This drop in relative sea level is wide-
ly recognized in the Eastern Alpine realm and was corre-
lated by several authors with a pronounced uplift of the
basement (e.g. Winkler-Hermaden 1951, 1957; Harzhauser
& Piller 2004). The paleosol at the base of the clay pit St.
Stefan documents a short period of landscape stability on

the alluvial plain. In a more distal position (about 40 km
to the SE), Papp (1958) similarly recorded, close to the top
of the mid-Sarmatian gravels, a small, poorly preserved, al-
lochthonous terrestrial gastropod fauna. In contrast to the
marginal setting of the Gratkorn Basin, these deposits
comprise marine foraminifers and molluscs of the lower
Porosononion granosum Zone (see Kollmann 1965). The
subsequent late Sarmatian transgression caused the sedi-
mentation of marine marls in the deeper parts of the Styrian
Basin, while in the proximal Gratkorn and northwestern-
most Styrian Basin (Graz area) limnic conditions pre-
vailed. The recorded normal polarity for the pelites of St.
Stefan (pers. comm. R. Scholger) is in good correspon-
dence with the Chron C5An.1n around 12 Ma. Several
mixed siliciclastic-oolitic parasequences follow in the ad-
jacent Styrian Basin in the upper Sarmatian (Friebe 1994;
Kosi et al. 2003; Harzhauser & Piller 2004). For a very
brief period, one of these oolite shoals even extended into
the limnic systems at Mariatrost close to the Gratkorn Ba-
sin (Fig. 1, own mapping M.G.), but did not enter this in-
tramontane basin.

Acknowledgments:  This paper is a contribution to the
FWF-Project: P19013 and to the NECLIME Project. For fi-
nancial support the authors would like to thank the Geo-
logical Survey of Austria. Many thanks go to G. Daxner-
Höck (Vienna), H.W. Flügel (Graz), G. Manganelli (Siena)
and R. Scholger (Leoben) for helpful comments and the
“Wietersdorfer & Peggauer Zementwerke” for permission
to study the clay pit. We are especially grateful to Imre
Magyar (MOL, Hungary) for his suggestions and remarks.

References

Andreae A. 1904: Dritter Beitrag zur Kenntnis des Miocäns von

Oppeln i. Schl. Mitt. Roemer-Mus., Hildesheim 20, 1—22.

Bank R.A., Bouchet P., Falkner G., Gittenberger E., Hausdorf B.,

Proschwitz T. von & Ripken T.E.J. 2001: Supraspecific classi-
fication of European non-marine Mollusca (CLECOM Sec-
tions I + II). Heldia 4, 77—128.

Binder H. 2002: Die Land- und Süßwassergastropoden aus dem

Karpatium des Korneuburger Beckens (Niederösterreich; Un-
termiozän).  Beitr. Paläont. 27, 161—203.

Binder H. 2004: Terrestrial, freshwater and brachyhaline Gastropo-

da from the Lower Miocene deposits of Oberdorf (Styria, Aus-
tria). Ann. Naturhist. Mus. Wien 105 A, 189—229.

Boda J. 1959: Das Sarmat in Ungarn und seine Invertebraten-Fau-

na.  Jb. Ungarischen Geol. Anstalt 47, 569—862.

Boettger O. 1877: Clausilienstudien. Palaeontographica,  N.F. Sup-

pl. 3, 1—122.

Boettger O. 1884: Fossile Binnenschnecken aus den untermiocänen

Corbicula-Thonen von Niederrhein bei Frankfurt (Main). Ber.
Senckenberg. Naturforsch. Gesell. 1884, 258—280.

Bourguignat J.R. 1881: Histoire malacologique de la colline de

Sansan precedee d’une notice geologique et suivie d’un
aperçu climatologique et topographique de Sansan, a l’epoque
des depots de cette colline. G. Masson, Paris, 1—175.

Brusina S. 1884: Die Neritodonta Dalmatiens und Slavoniens nebst

allerlei malakologischen Bemerkungen. Jb. Deutschen Mala-
kozoologischen Gesell. 11, 17—120.

Clar E. 1933: Der Bau des Gebietes der Hohen Rannach bei

background image

57

BIOSTRATIGRAPHY OF SARMATIAN  EASTERN ALPINE BASIN (AUSTRIA): THE GASTROPOD APPROACH

Graz. Mitt. Naturwissenschaftlichen Vereines für Steiermark
70, 24—47.

Clar E. 1938: Sarmat in der Kaiserwaldterrasse bei Graz (nebst Be-

merkungen über die Gliederung des Grazer Pannons). Verh.
Geol. Bundesanst. 1938, 7—8, 154—162.

Clessin S. 1877: Die tertiären Binnenconchylien von Undorf. Cor-

respondenz-Blatt des zoologischen und mineralogischen Vere-
ins in Regensburg 1877, 71—95.

Dupuy D. 1850: Déscription de quelques esp

èces de coquilles ter-

restres fossiles de Sansan. J. Conchyliologie 1, 300—315.

Ebner F. 1983: Erläuterungen zur geologischen Basiskarte

1: 50,000 der Naturraumpotentialkarte “Mittleres Murtal”.
Mitt. Gesell. Geol. Bergbaustudenten Österr. 29, 99—131.

Ebner F., Mali H., Obenholzner J.H., Vortisch W. & Wieser J.

1998: Pyroclastic deposits from the Middle Miocene Stall-
hofen Formation. Jb. Geol. Bundesanst. 140, 4, 425—428.

Ebner F., Dunkl I., Mali H. & Sachsenhofer R.F. 2000: Auf dem

Weg zu einer Tephrochronologie im Miozän des Alpenost-
randes. Mitt. Gesell. Geol. Bergbaustudenten Österr. 43, 38—39.

Falkner G., Bank R.A. & Proschwitz T. von 2001: Check-list of

non-marine molluscan species-group taxa of the States of
Northern, Atlantic and Central Europe (CLECOM I). Heldia 4,
1—76.

Fechter R. & Falkner G. 1989: Weichtiere. In: Steinbach G. (Ed.):

Die farbigen Naturführer. Mosaik, München, 1—287.

Finger I. 1997: Gastropoden der kleini-Schichten des Steinheimer

Beckens (Miozän, Süddeutschland). Stuttgarter Beitr.
Naturkunde, Serie B 259, 1—51.

Fischer J.-C. 2000: La malacofauna de Sansan. In: Ginsburg L.

(Ed.): La faune miocéne de Sansan et son environment. Mém.
Mus. Nat. Hist. Nat. 183, 129—154.

Flügel H. 1958: Aufnahmen 1957 auf Blatt Graz (164). Verh. Geol.

Bundesanst. 1958, 1—3, 208—209.

Flügel H. 1959: Aufnahmen 1958 auf Blatt “Grazer Bergland”

1: 100,000.  Verh. Geol. Bundesanst. 1959, 3, A19—A22.

Flügel H.W. 1975: Die Geologie des Grazer Berglandes. Mitt. Abt.

Geol., Paläont. und Bergbau am Landesmuseum Joanneum,
Spec. Vol. 1, 1—288.

Flügel H.W. 1995: Bericht über geologische Aufnahmen im Paläo-

zoikum und Tertiär auf Blatt 164 Graz. Jb. Geol. Bundesanst.
138, 3, 541—542.

Flügel H.W. 1997: Bericht 1996 über die lithostratigraphische

Gliederung des Miozäns auf Blatt 164 Graz. Jb. Geol. Bundes-
anst. 140, 3, 383—386.

Flügel H.W. & Neubauer F. 1984: Steiermark. Geologie der öster-

reichischen Bundesländer in kurzgefaßten Einzeldarstellungen.
Erläuterungen zur Geologischen Karte der Steiermark. Geol.
Bundesanst., Wien, 1—127.

Friebe J.G. 1994: Gemischt siliziklastisch-karbonatische Abfolgen

aus dem Oberen Sarmatium (Mittleres Miozän) des Steirischen
Beckens.  Jb. Geol. Bundesanst. 137, 2, 245—274.

Gaál I. 1911: A Hunyadmegyei Rákosd szarmatakorú csigafaunája.

Magy. Földt. Intéz. Évk. 18, 1—108.

Gál E., Hír J., Kessler E., Kókay J., Lukás M. & Márton V. 1999:

Middle Miocene fossils from the section of the road at the
Rákóczi Chapel, Mátraszőlős. I. Locality Mátraszőlős 1. Fo-
lia Historico Naturalia Musei Matraensis 23, 33—78 (in Hun-
garian).

Gál E., Hír J., Kessler E., Kókay J. & Márton V. 2000: Middle Mi-

ocene fossils from the section of the road at the Rákóczi Chap-
el, Mátraszőlős. II. Locality Mátraszőlős 2. Folia Historico
Naturalia Musei Matraensis 24, 39—75 (in Hungarian).

Gittenberger E. 1992: A new, late Pleistocene, vitrinid species (Gas-

tropoda Pulmonata: Vitrinidae) from the islet of Andikithira,
Greece.  Basteria 56, 163—167.

Gottschick F. 1920: Die Land- und Süßwassermollusken des Ter-

tiärbeckens von Steinheim am Aalbuch. Archiv für Mollusken-
kunde 52, 33—66, 108—117, 163—177.

Gottschick F. & Wenz W. 1919: Die Land- und Süßwassermol-

lusken des Tertiärbeckens von Steinheim am Aalbuch. 1. Die
Vertiginiden.  Nachrichtsblatt der deutschen Malakozoologis-
chen Gesell. 51, 1—23.

Gross M. in print: A limnic ostracod fauna from the surroundings

of the Central Paratethys (late Middle Miocene/early Late Mi-
ocene; Styrian Basin; Austria). Palaeogeogr. Palaeoclimatol.
Palaeoecol., Spec. Issue.

Gross M. & Klaus S. 2005: Upper Miocene freshwater crabs from

the north-western margin of the Styrian Basin (Brachyura, Pot-
amoidea). Ber. Inst. Erdwissenschaften der Karl-Franzens-Uni-
versität Graz 10, 21—23.

Gross M., Harzhauser M., Mandic O., Piller W.E. & Rögl F. 2007:

A stratigraphic enigma: the age of the Neogene deposits of
Graz (Styrian Basin; Austria). Joannea, Geologie und Paläon-
tologie 9, 195—220.

Hably L. 1992: Distribution of legumes in the Tertiary of Hungary.

In: Herendeen P.S. & Dilcher D.L. (Eds.): Advances in legume
systematics. The Royal Botanic Gardens, Kew, 169—187.

Harzhauser M. & Binder H. 2004: Pannonian molluscs from the

sections Richardhof and Eichkogel in the Vienna Basin (Aus-
tria, Late Miocene). Archiv für Molluskenkunde 133, 109—165.

Harzhauser M. & Kowalke T. 2002: Sarmatian (late Middle Mi-

ocene) gastropod assemblages of the Central Paratethys. Facies
46, 57—82.

Harzhauser M. & Piller W.E. 2004: Integrated stratigraphy of the

Sarmatian (Upper Middle Miocene) in the western Central
Paratethys.  Stratigraphy  1, 65—86.

Hilber V. 1893: Das Tertiärgebiet um Graz, Köflach und Gleisdorf.

Jb. Kaiserl. Königl. Geol. Reichsanst. 43, 2, 281—365.

Hilgendorf F. 1867: Über Planorbis multiformis im Steinheimer

Süßwasserkalk.  Monatsberichte der königlichen preussischen
Akademie der Wissenschaften zu Berlin 1866, 474—504.

Kerney M.P., Cameron R.A.D. & Jungbluth J.H. 1979: Die Land-

schnecken Nord- und Mitteleuropas. Ein Bestimmungsbuch
für Biologen und Naturfreunde. Parey, Hamburg, 1—384.

Klein R. 1853: Conchylien der Süßwasserkalkformation Wüttem-

bergs.  Jahreshefte des Vereins für Vaterländische Naturkunde
in Württemberg 9,  203—223.

Kollmann K. 1965: Jungtertiär im Steirischen Becken. Mitt. Geol.

Gesell. Wien 57, 1964, 2, 479—632.

Kosi W., Sachsenhofer R.F. & Schreilechner M. 2003: High

resolution sequence stratigraphy of Upper Sarmatian and Pan-
nonian Units in the Styrian Basin, Austria. Österreichische
Akademie der Wissenschaften, Schriftenreihe der Erdwissen-
schaftlichen Kommissionen 16, 63—86.

Kókay J. 2006: Nonmarine mollusc fauna from the Lower and

Middle Miocene, Bakony Mts., W Hungary. Geol. Hung., Ser.
Palaeontologica 56, 1—196.

Kröll A., Flügel H.W., Seiberl W., Weber F., Walach G. & Zych D.

1988: Erläuterungen zu den Karten über den prätertiären Un-
tergrund des Steirischen Beckens und der Südburgenländi-
schen Schwelle. Geol. Bundesanst., Wien, 1—49.

Lourens L., Hilgen F., Shackleton N.J., Laskar J. & Wilson D.

2004: The Neogene Period. In: Gradstein F.M., Ogg J.G. &
Smith A.G. (Eds.): A geological time scale 2004. Cambridge
University Press, Cambridge, 409—440.

Ložek V. 1964: Quartärmollusken der Tschechoslowakei. Rozpr.

Ústř. Úst. Geol. 31, 1—374.

Lueger J. 1981: Die Landschnecken im Pannon und Pont des Wien-

er Beckens, I. Systematik. II. Fundorte, Stratigraphie, Faunen-
provinzen.  Denkschriften der Akademie der Wissenschaften,
mathematisch-naturwissenschaftliche Klasse 120, 1—124.

Manganelli G. & Giusti F. 2004: Status and relationships of Vitrina

background image

58

HARZHAUSER, GROSS and BINDER

musignani Pirajno, 1842 and Vitrina paulucciae Fischer in
Paulucci, 1878 (Gastropoda: Pulmonata: Vitrinidae). J. Con-
chyology 38, 291—304.

Meller B. & Gross M. 2006: An important piece of a stratigraphic

puzzle?  Podocarpium podocarpum (A. Braun) Herendeen
from the Styrian Basin (Miocene). In: Tessadri-Wackerle M.
(Ed.): Pangeo Austria 2006. Conference series. Innsbruck Uni-
versity Press, Innsbruck, 194—195.

Miller K. 1900: Die Schneckenfauna des Steinheimer Obermiozäns.

Jahreshefte des Vereins für vaterländische Naturkunde in Würt-
temberg 56, 385—406.

Moser B. 1997: Untersuchung junger Rotationen in der tertiären

Überlagerung des Grazer Paläozoikums im nördlichen Bereich
von Graz. Thesis, Univ. Leoben, 1—68.

Nordsieck H. 1972: Fossile Clausilien I. Clausilien aus dem Pliozän

W-Europas.  Archiv für Molluskenkunde 102, 165—188.

Nordsieck H. 1981: Fossile Clausilien, V. Neue Taxa neogener eu-

ropäischer Clausilien, II. Archiv für Molluskenkunde 111,
63—95.

Nützel A. & Bandel K. 1993: Studies on the side-branch planorbids

of the Miocene crater lake of Steinheim am Abbruch (South-
ern Germany). Scripta Geol., Spec. Issue 2, 313—357.

Papp A. 1952: Zur Kenntnis des Jungtertiärs in der Umgebung von

Krems a. d. Donau. Verh. Geol. Bundesanst. 1952, 122—128.

Papp A. 1958: Bemerkungen zur Fossilführung von Jagerberg bei St.

Stefan in der Oststeiermark. Mitteilungen des Museums für
Bergbau, Geologie und Technik am Landesmuseum “Joanneum”
19, 42—44.

Peer H. 1998: Die Tongrube St. Stefan. Geologisch-lagerstätten-

kundliche Untersuchung. Unpublished report, Wietersdorfer &
Peggauer Zementwerke, Peggau, 1—21.

Piller W.E. & Harzhauser M. 2005: The Myth of the Brackish Sar-

matian Sea. Terra Nova 17, 450—455.

Reuss A. 1852: Die tertiären Süßwassergebilde des nördlichen Böh-

mens und ihre fossilen Thierreste. Palaeontographica 2, 1—42.

Richardson L. 1985: Camaenidae: Catalogue of species. Tryonia Mis-

cellaneous Publications of the Department of Malacology of the
Academy of Natural Sciences of Philadelphia 12, 1—479.

Riepler F. 1988: Das Tertiär des Thaler Beckens (Raum Thal-

Mantscha-Tobelbad).  Thesis, Univ. Graz, 1—148.

Sandberger F. 1874, 1875: Die Land- und Süßwasser-Conchylien

der Vorwelt. Kreidel, Wiesbaden, 353—616 (1874), 617—1000
(1875).

Schlickum W.R. 1967: Zwei neue fossile Arten der Gattung Testa-

cella Cuvier. Archiv für Molluskenkunde 96, 63—66.

Schlickum W.R. 1976: Die in der pleistozänen Gemeindekiesgrube

von Zwiefaltendorf a. d. Donau abgelagerte Molluskenfauna
der Silvanaschichten. Archiv für Molluskenkunde 107, 1—31.

Schütt H. 1967: Die Landschnecken der untersarmatischen Rissoen-

schichten von Hollabrunn, N.Ö. Archiv für Molluskenkunde
96, 199—222.

Simionescu J. & Barbu I. 1940: Le faune Sarmatienne de Rou-

manie. Mem. Inst. Geol. Romaniei 3, 1—194.

Stoliczka F. 1862: Beitrag zur Molluskenfauna der Cerithien- und

Inzersdorfer Schichten des ungarischen Tertiärbeckens. Ver-
handlungen der k. k. zoologisch-botanischen Gesellschaft in
Wien 1862, 529—538.

Strauss P., Harzhauser M., Hinsch R. & Wagreich M. 2006: Sequence

stratigraphy in a classic pull-apart basin (Neogene, Vienna
Basin). A 3D seismic based integrated approach. Geol.
Carpathica 57, 3, 185—197.

Studer S. 1820: Kurzes Verzeichniss der bis jetzt in unserm Vater-

lande entdeckten Conchylien. Naturwissenschaftlicher An-
zeiger der Allgemeinen Schweizerischen Gesellschaft für die
Gesammten Naturwissenschaften 3, 11, 83—90, 91—94.

Stworzewicz E. & Prisyazhnyuk V.A. 2006: A new species of Mi-

ocene terrestrial gastropod Gastrocopta from Poland and the
validity of “Pupa (Vertigo) suevica”.  Acta Palaeont. Pol. 51,
165—170.

Szalai T. 1928: Kontinentales Sarmatium von Szentendre. Geolo-

gische Beobachtungen im Szentendre-Visegrader Gebirge
(Ungarn) mit besonderer Rücksicht auf die ungarische terres-
trischen Tertiärbildungen. Neu. Jb. Mineral., Geol. Paläont.
60B, 307—314.

Wenz W. & Edlauer A. 1942: Die Molluskenfauna der oberontis-

chen Süßwassermergel vom Eichkogel bei Mödling, Wien. Ar-
chiv für Molluskenkunde 74, 82—98.

Wiese V. 1991: Atlas der Land- und Süßwassermollusken in

Schleswig-Holstein. Landesamt für Natur und Umwelt des Lan-
des Schleswig-Holstein, Kiel, 1—251.

Winkler-Hermaden A. 1951: Die jungtertiären Ablagerungen an

der Ostabdachung der Zentralalpen und das inneralpine Ter-
tiär. In: Schaffer F.X. (Ed.): Geologie von Österreich. Deutike,
Wien, 414—524.

Winkler-Hermaden A. 1957: Geologisches Kräftespiel und Land-

formung.  Springer, Wien, 1—822.