background image


Eocene micromorphic brachiopods from north-western







Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland;


Hungarian Natural History Museum, Department of Geology and Paleontology, H-1431 Budapest, P.O.Box. 137, Hungary;

(Manuscript received January 11, 2007; accepted in revised form June 13, 2007)

Abstract: Seven micromorphic brachiopod species belonging to six genera are identified in Middle and Upper
Eocene deposits from north-western Hungary. One species is new, namely Argyrotheca tokodensis sp. nov. The
species Novocrania bayaniana (Davidson, 1870), Orthothyris pectinoides (von Koenen, 1894), Argyrotheca michelottina
(Davidson, 1870) and Lacazella mediterranea (Risso, 1826) are reported for the first time from the Hungarian Eocene
localities, while Terebratulina tenuistriata (Leymerie, 1846) and Megathiris detruncata (Gmelin, 1791) were already
noted from the Eocene deposits of Hungary.

Key words: Hungary, Eocene, Tethys, Brachiopoda, Novocrania, Terebratulina, Orthothyris, Megathiris, Argyrotheca,
Lacazella, new species.


The Eocene brachiopods of Hungary are poorly known.
Meznerics (1943), in her paper on Tertiary brachiopods,
listed the following species from the Eocene deposits of
Hungary:  Hemithiris polymorpha (Massalongo, 1850),
Terebratulina striatula Sowerby, 1829, T. plana Mezne-
rics, 1943, Megathiris decollata (Chemnitz, 1785), Ma-
gellania hilarionis (Davidson ex Meneghini, 1870), M.
hilarionis var. novalensis (Fabiani, 1913), M. (s.l.) hantke-
ni Meznerics, 1943 and M. ? gibbosa Meznerics, 1943.
Since this publication, Hungarian Eocene brachiopods
have never been re-described or revised. The aim of the
present paper is to describe a new Eocene brachiopod fau-
na from north-western Hungary. This material contains
only micromorphic forms.

It is worth mentioning that another Eocene brachiopod

assemblage from the nummulitic limestones of the Ba-
kony Mts, Transdanubian Central Range, Hungary now
under study (Bitner, Dulai & Galácz, in preparation) has a
quite different composition, characterized by larger-sized,
smooth terebratulides.

Geological setting and the studied material

During the Early Paleogene, the Alcapa terrain (the area

north of the Zagreb-Zemplén line, including the Alps, the
Carpathians and the Pannonian Basin) was situated to the
south-west of its present position (Kázmér et al. 2003). Four
large basins (Outer Carpathian Flysch Basin, Inner Car-
pathian Flysch Basin, Transylvanian Basin and Hungarian
Paleogene Basin) which existed within this terrain had con-
nection with each other and the world oceans. One of these

basins, the Hungarian Paleogene Basin, which included the
present-day Transdanubian Central Range and Northern
Hungarian Range, was connected to the northern Italian ba-
sins through the so-called Slovenian corridor, as proved by
sedimentological and paleontological data (Báldi 1984,
1986). All the studied Eocene brachiopod-bearing deposits
belong to the Transdanubian Central Range (Fig. 1). The
Paleogene formations of this area were deposited during
one large sedimentary cycle (Báldi-Beke & Báldi 1991).

The studied area became emergent after the Cretaceous

and no marine sediments of the Paleocene and Early
Eocene age are known. Several transgressive-regressive se-
quences characterize the Middle Eocene which attains a
thickness of 200—400 m. The transgressions arrived from
S-SW, therefore the sedimentation started at the Zala Ba-
sin and Southern Bakony during the early Lutetian
(Császár 1997) (Fig. 2). The sea reached the NE-Bakony
and Tatabánya Basin during the early Bartonian, while it
reached the Buda Mountains and Northern Hungarian
Range in the Priabonian (Báldi-Beke 1984).

The initial coal-bearing, terrigenous Darvastó Forma-

tion passes upward into the Middle Eocene Szőc Lime-
stone, known from the Southern Bakony to the Vértes Mts.
The grey or yellowish grey limestone is interpreted as hav-
ing been deposited in shallow, warm water and under nor-
mal salinity conditions (sublittoral platform facies) (Ko-
pek 1980). The large foraminifers (Nummulites,  Alveolina,
Assilina,  Discocyclina) are often rock-forming. The Szőc
Limestone also contains numerous but not diverse larger-
sized brachiopods, which will be the subject of a separate
paper (Bitner, Dulai & Galácz, in preparation). However,
micromorphic brachiopods were also found in the marly
layers of this formation, both in outcrops and boreholes
(Magyarpolány-40, Ajka, Pénzesgyőr, Hárskút HKt/c, Du-

background image



dar-218, Úrhida-1) (see Figs. 1, 2). The overlying (or some-
times interfingering) Middle and Upper Eocene Padrag
Marl Formation is a grey, silty marl interpreted as shallow
bathyal. In the Eastern Bakony Mts, this formation is

Fig. 1. Sketch map, showing the location of the studied outcrops
and boreholes.

Fig. 2. Lithostratigraphic units of the Hungarian Middle and Upper Eocene (modified after Császár 1997). The numbers indicate the
following localities and boreholes: 1 – Magyarpolány-40; 2 – Ajka; 3 – Pénzesgyőr, Ree-hegy; 4 – Hárskút, Hkt/c; 5 – Dudar-218;
6 – Balinka-224 and -239; 7 – Úrhida-1; 8 – Úrhida; 9 – Mogyorósbánya-87; 10 – Tokod; 11 – Neszmély; 12 – Budapest, Csillag-
hegy; 13 – Buda Hills, Buda Marl.

present in the boreholes Balinka-224 and Balinka-239 but
the same formation also crops out in the Gerecse Mts (Mo-
gyorósbánya-87, Tokod) (see Figs. 1, 2). The Upper
Eocene (Priabonian) Szépvölgy Limestone consists of
grey limestone and calcareous marl interpreted as sublit-
toral platform facies. Brachiopods were found at several
localities in this formation (Úrhida, Neszmély, Budapest,
Csillag-hegy). Tectonically enhanced subsidence (Fodor
et al. 1992) produced a thin limestone sequence, overlain
by thick marl of shallow bathyal origin. The Upper
Eocene—Lower Oligocene Buda Marl can be observed in
the Buda Hills and the Northern Hungarian Range. The
lower part of the formation consists of marl of shallow
bathyal origin, and sometimes contains a large amount of
bryozoans. One specimen comes from the Buda Marl of
the Buda Hills, but the exact locality is unknown.

The investigated brachiopod material, consisting of 262

specimens (166 articulated specimens and 96 separate
valves), comes from 7 outcrops, namely Ajka (one sam-
ple), Pénzesgyőr, Ree-hegy (12 samples), Úrhida (one sam-
ple), Tokod (4 samples), Neszmély (one sample), Buda-
pest, Csillag-hegy (3 samples), and Budapest, Buda Hills
(without exact locality, one sample), and from 7 bore-
holes, namely Magyarpolány-40 (one sample), Hárskút,
Hkt/c (one sample), Dudar-218 (5 samples), Balinka-224
(one sample), Balinka-239 (one sample), Úrhida-1 (two
samples) and Mogyorósbánya-87 (2 samples) (Figs. 1, 2)
in the Szőc Limestone, Padrag Marl, Szépvölgy Limestone
and Buda Marl Formations. Most of the studied specimens
are articulated (63.6 %), nevertheless some specimens are
damaged and a few are eroded.

The material under study is housed in the collections of

the Department of Geology and Paleontology of the Hun-
garian Natural History Museum, Budapest under the in-
ventory numbers 2006.16.1—2006.48.1, with the excep-
tion of Novocrania bayaniana (collection of the
Hungarian Geological Institute, E.5174).

background image



Systematic part

Phylum:  Brachiopoda Duméril, 1806

Subphylum:  Craniiformea Popov, Bassett,

Holmer & Laurie, 1993

Class:  Craniata Williams, Carlson, Brunton,

Holmer & Popov, 1996

Order:  Craniida Waagen, 1885

Superfamily:  Cranioidea Menke, 1828

Family:  Craniidae  Menke, 1828

Genus:  Novocrania Lee & Brunton, 2001

T y p e   s p e c i e s :  Patella anomala Müller, 1776.

Novocrania bayaniana (Davidson, 1870)

Fig. 3.1—2

1870 Crania Bayaniana Davidson, p. 464, pl. 21, fig. 20, 20a
1901 Crania Bayaniana Davidson – Oppenheim, p. 260
1908 Crania bayaniana Davidson – Fabiani, p. 60
1913 Crania bayaniana Davidson – Fabiani, p. 11, pl. 4, fig. 19
1992 Crania bayaniana Davidson – Altichieri, p. 214, pl. 2,

figs. 9, 10

M a t e r i a l : One dorsal valve from Budapest, Buda

Hills (E.5174).

D i m e n s i o n s : Length 6.0 mm, width 6.2 mm.
R e m a r k s : The investigated material, although poorly

preserved and very limited, is consistent with the speci-
mens from the Upper Eocene of Italy, described as Crania
bayaniana (see Davidson 1870; Fabiani 1913; Altichieri
1992). The valve is weakly convex with a posterior mar-
gin straight and beak situated posterocentrally. The shell
surface is eroded but concentric growth lines and fine pus-
tules are visible on the better preserved parts. The margin-
al rim is very broad, tuberculate. The posterior adductor
muscle scars are large, rounded and widely separated. The
anterior adductor scars are small, transversally oval and
joined medially.

N. bayaniana can be distinguished from other Eocene

craniid species by its very wide marginal rim. From the
Middle Eocene Crania fabianii Dainelli in Fabiani 1913,
of NE Italy, N. bayaniana differs also in being much

smaller and in its shell surface which in C. fabianii lacks
any pustules (Fabiani 1913; Dainelli 1915).

The investigated specimen is easily distinguishable

from another Italian Late Eocene species, Venetocrania
euganea Bitner & Dieni, 2005. The latter species has a
rough, irregular shell surface and a different muscle scar
pattern with very large posterior adductor muscle scars
and anterior adductor muscle scars in the form of narrow,
high ridges (Bitner & Dieni 2005).

This is the first record of N. bayaniana from Hungary.
O c c u r r e n c e : This species was previously noted from

the Upper Eocene of Italy (Davidson 1870; Altichieri

Subphylum:  Rhynchonelliformea Williams, Carlson,

Brunton, Holmer &  Popov, 1996

Class:  Rhynchonellata Williams, Carlson, Brunton,

Holmer &  Popov, 1996

Order:  Terebratulida  Waagen, 1883

Superfamily:  Cancellothyridoidea Thomson, 1926

Family:  Cancellothyrididae Thomson, 1926

Subfamily:  Cancellothyridinae Thomson, 1926

Genus:  Terebratulina d’Orbigny, 1847

T y p e   s p e c i e s :  Anomia retusa Linnaeus, 1758.

Terebratulina tenuistriata (Leymerie,  1846)

Fig. 4.1—8

2000 Terebratulina  tenuistriata (Leymerie) – Bitner, p. 118—120,

figs. 2, 3, 4A—F, 5A—G (cum syn.)

M a t e r i a l : 39 complete specimens, five ventral valves

and five dorsal valves from Ajka; 30 complete specimens,
6 ventral valves and 2 dorsal valves from Pénzesgyőr,
Ree-hegy; fragment of ventral valve from the borehole
Hárskút; 68 complete specimens and one dorsal valve
from the borehole Dudar-218; one complete specimen
from the borehole Balinka-224; 6 complete specimens and
one broken dorsal valve from the borehole Úrhida-1; three
complete specimens from Úrhida; one complete specimen
from the borehole Mogyorósbánya-87; three juvenile
complete specimens from Budapest, Csillag-hegy, Ibolya
street. Many specimens are eroded, in some cases damaged
and/or crushed. There are also many fragments.

D i m e n s i o n s   (in  mm):

Fig. 3.  1—2 – Novocrania bayaniana (Davidson, 1870), dorsal
valve, E.5174, Upper Eocene, Budapest, Buda Hills; 1 – outer
view, 2 – inner view. Scale bar: 2 mm.

R e m a r k s : The presence of this species in the Eocene

of Hungary was already reported by Meznerics (1943) who
described it under the name Terebratulina striatula Sow-
erby, 1829. However, the specific name striatula  is not

background image



Fig. 4.  1—8 – Terebratulina tenuistriata (Leymerie, 1846). 1 – Dorsal view of complete specimen, 2006.17.1, Pénzesgyőr, Ree-
hegy 65/91, Middle Eocene; 2—3 – Complete specimen, 2006.19.1, Pénzesgyőr, Ree-hegy 65/79, Middle Eocene, 2 – ventral view,
3 – dorsal view; 4—6 – Complete specimen, 2006.18.1, Pénzesgyőr, Ree-hegy 65/78, Middle Eocene, 4 – ventral view, 5 – dorsal
view, 6 – lateral view; 7 – Dorsal view of complete specimen, 2006.33.1, Úrhida, Upper Eocene; 8 – Dorsal view of complete specimen,
2006.21.1, Ajka, Middle Eocene. 9—16 – Orthothyris pectinoides (von Koenen, 1894), Neszmély, Upper Eocene. 9—12 – Complete
specimen, 2006.23.1, 9 – ventral view, 10 – dorsal view, 11 – lateral view, 12 – anterior view; 13—16 – Complete specimen, 2006.24.1,
13 – ventral view, 14 – dorsal view, 15 – lateral view, 16 – anterior view. Scale bars: 1 – 0.5 mm, 2—16 – 1 mm.

background image



valid for the specimens from the Eocene, the name tenui-
striata  having priority  (Bitner 2000; see also Owen 1988).

Terebratulina tenuistriata is one of the commonest spe-

cies in the studied material (more than 100 specimens).
The investigated specimens are consistent with those hith-
erto described (Leymerie 1846; Doncieux 1905, 1926; El-
liott 1938; Bitner 2000), however they do not reach their
size. The maximum observed length in the studied materi-
al is 10.5 mm. This species shows great variability in out-
line, from nearly circular, subpentagonal to elongate oval,
a feature also observed in other populations of this species
(Doncieux 1905, 1926; Bitner 2000). Both valves bear nu-
merous, fine, smooth costae which are less numerous and
clearly granular in young individuals.

O c c u r r e n c e :  Terebratulina tenuistriata is a very

common and widely distributed species in the Eocene of
Europe, being known from Great Britain (Elliott 1938),
through Belgium (Davidson 1874; Vincent 1893), France
(Leymerie 1846; Doncieux 1905, 1926), Spain (Bitner
2000), Italy (Davidson 1870), to Poland (Barczyk 1973;
Popiel-Barczyk & Barczyk 1987) and Bulgaria (Gochev
1933). From Hungary it was noted by Meznerics (1943)
from the localities of Bajót, Budapest-Zugliget, Szentgál.

Family:  Chlidonophoridae Muir-Wood, 1959

Subfamily:  Orthothyridinae Muir-Wood, 1965

Genus:  Orthothyris Cooper, 1955

T y p e   s p e c i e s :  Orthothyris radiata Cooper, 1955.

Orthothyris pectinoides (von Koenen, 1894)

Fig. 4.9—16

1894 Terebratulina  pectinoides v. Koenen, p. 1354—1355, pl. 99,

figs. 8—9

1975 Terebratulina 

pectinoides von Koenen – Zelinskaya,

p. 116—118, pl. 13, figs. 5—19

2005 Orthothyris  pectinoides (von Koenen) – Bitner & Dieni,

p. 108—109, figs. 5, 6B—N

M a t e r i a l : Five complete specimens from the borehole

Dudar-218; three complete specimens (one crushed) from

D i m e n s i o n s   (in  mm):

D e s c r i p t i o n : The shell is small, subcircular to elon-

gate oval in outline, with wide, nearly straight hinge line.
The shell is biconvex to concave-convex in profile. The
anterior commissure is rectimarginate to broadly, incipi-
ently sulcate. The surface is ornamented by coarse costae
and costellae arising by bifurcations that vary in number
from 16 to 26. The interarea is well developed with strong

beak ridges. The pedicle opening is small, triangular, of
hypothyrid type. The deltidial plates form elevated, nar-
row ridges. The internal structures were not studied be-
cause of the paucity of the material.

R e m a r k s : The investigated specimens agree very well

with those hitherto described (von Koenen 1894; Zelin-
skaya 1975; Bitner & Dieni 2005). They differ, however,
from the Italian specimens which are smaller and have
fewer ribs (Bitner & Dieni 2005).

This species, originally described by von Koenen

(1894), was assigned by him to the genus Terebratulina. It
differs, however, strongly from any Terebratulina species
in having differentiated interarea with distinct beak ridg-
es, wide, straight hinge line and triangular, hypothyrid fo-
ramen bordered by deltidial plates in the form of elevated
ridges. Based on external and internal similarities to the
Late  Cretaceous genus Orthothyris (Cooper 1955, 1973),
it was transferred by Bitner & Dieni (2005) into that ge-
nus. The species O.  pectinoides is very similar to the Late
Cretaceous type species O. radiata Cooper, 1955, howev-
er, it differs in being smaller and having bifurcating ribs
that are single in O. radiata.

The specimens from the Eocene of Tonga described by

Cooper (1971) in open nomenclature as terebratulinid
gen. and sp. indet. are very similar in outline, ornamenta-
tion, beak character and convexity to O. pectinoides. Coo-
per (1971) also indicated the similarities of his material to

O c c u r r e n c e : This is the first record of this species

from Hungary. It was already noted from the Eocene of
Germany (von Koenen 1894), Ukraine (Zelinskaya 1975)
and Italy (Bitner & Dieni 2005).

Superfamily:  Megathyridoidea Dall, 1870

Family:  Megathyrididae Dall, 1870

Genus:  Megathiris d’Orbigny, 1847

T y p e   s p e c i e s :  Anomia detruncata Gmelin, 1791.

Megathiris detruncata (Gmelin, 1791)

Fig. 5.1—4

1990 Megathiris detruncata (Gmelin) – Bitner, p. 135—138, text-

figs. 3—4, pl. 3, figs. 1—8; pl. 6, figs. 1—7 (cum syn.)

1990 Megathiris detruncata (Gmelin) – Popiel-Barczyk & Bar-

czyk, p. 175—178, text-figs. 10—11, pl. 6, figs. 6—11; pl. 7,
figs. 1—13

2003 Megathiris detruncata (Gmelin) – Bitner & Moissette,

p. 473—474, fig. 6G—H

2003 Megathiris detruncata (Gmelin) – Logan, p. 239—240
2004 Megathiris detruncata (Gmelin) – Bitner & Dulai, p. 74, 76,

pl. 3, figs. 11—15

M a t e r i a l : Two complete, poorly preserved specimens

from Budapest, Csillag-hegy (Ibolya street).

D i m e n s i o n s   (in  mm):

background image



R e m a r k s : This species was previously reported from

the Eocene strata of Hungary by Meznerics (1943). The in-
vestigated material is very poorly preserved and limited in
number (only two specimens), however, it is identified as
Megathiris detruncata by its characteristic transverse out-
line, long, straight hinge line and ornamentation of single,
rounded ribs. The specimens under study represent young
individuals as indicated by their small size.

O c c u r r e n c e : The stratigraphical range of M. detrun-

cata is from the Eocene to Recent. Meznerics (1943) re-
corded this species from the Upper Eocene Nummulites
limestone of Bakonybél. In the Eocene it was also found
in Italy (Davidson 1870; Sacco 1902; Fabiani 1908,
1913). It is one of the commonest species in the Middle
Miocene of the Central Paratethys (Dreger 1889; Barczyk
& Popiel-Barczyk 1977; Bitner 1990; Popiel-Barczyk &
Barczyk 1990; Bitner & Dulai 2004). Today it is common
in the Mediterranean and eastern North Atlantic (Brunton

& Curry 1979; Logan 1979, 1983, 1988, 1993, 2003; Lo-
gan et al. 2004; Álvarez & Emig 2005), as well the Carib-
bean Sea (Cooper 1977).

Genus:  Argyrotheca Dall, 1900

T y p e   s p e c i e s :  Terebratula cuneata Risso, 1826.

Argyrotheca michelottina (Davidson, 1870)

Fig. 5.5—6

2000 Argyrotheca vidali (Mallada) – Bitner, p. 122, 124,

figs. 4G—N, 5H—P, 6 (cum syn.)

M a t e r i a l : One crushed complete specimen from the

borehole Magyarpolány-40; one complete specimen and
one ventral valve from Ajka.

D i m e n s i o n s   (in  mm):

Fig. 5.  1—4 – Megathiris detruncata (Gmelin, 1791), Budapest, Csillag-hegy (Ibolya street), Upper Eocene. 1—2 – ventral and dorsal
views of complete specimen, 2006.28.1; 3—4 – ventral and dorsal views of complete specimen, 2006.29.1. 5—6 – Argyrotheca
michelottina  (Davidson, 1870), ventral and dorsal views of complete specimen, 2006.30.1, Magyarpolány-40, 72.3—72.5, Middle
Eocene.  7—8 – Lacazella mediterranea (Risso, 1826), Budapest, Csillag-hegy (Ibolya street), Upper Eocene, complete specimen
2006.34.1; 7 – ventral view, 8 – dorsal view. Scale bars: 1 mm.

background image



R e m a r k s : The specimens described by Davidson

(1870) as Terebratulina  michelottina display externally
all the features of the genus Argyrotheca and not those of
Terebratulina. As a result Bitner (2000) transferred this
species into the genus Argyrotheca and synonymized it
with  A. vidali. As the specific name michelottina has nev-
er been associated with the genus name Argyrotheca, and
in turn A. vidali was a well-known species in the Eocene
deposits of Spain (Abrard 1926; Calzada & Urquiola
1994), the rules of priority were not applied in this case.
However, the reversal of precedence according to Art.
23.9.1 of the ICZN (1999) can be applied only under very
particular conditions which have not been fulfilled in the
case of A. vidali, thus the specific name michelottina has
priority over the name vidali.

A. michelottina is very rare in the investigated material,

however, it is an easily distinguishable species of Argy-
rotheca due to its characteristic oval elongate shape and
ornamentation of wide, rounded ribs. It is consistent with
the Spanish material (Calzada & Urquiola 1994; Bitner
2000). This is the first occurrence of this species in the Pa-
leogene deposits of Hungary.

O c c u r r e n c e : Eocene of Italy (Davidson 1870; Fabi-

ani 1908, 1913; Dainelli 1915) and Spain (Calzada &
Urquiola 1994; Bitner 2000).

Argyrotheca tokodensis sp. nov.

Figs. 6, 7.1—12, 8.1—8

H o l o t y p e : 2006.37.1 (Fig. 7.6—9).
T y p e   h o r i z o n : Middle Eocene, Bartonian.
T y p e   l o c a l i t y : Tokod, north Hungary.
E t y m o l o g y : From Tokod, referring to the type locality.

D i a g n o s i s :  Argyrotheca of small size, subsquare in

outline with straight hinge line usually equal to the maxi-
mum width, ornamented by 12—16 single, delicate, round-
ed ribs; dorsal valve medium septum very high, triangular
in profile with numerous serrations.

M a t e r i a l : One complete specimen from the borehole

Balinka-239; one dorsal valve from the borehole Mogyo-
rósbánya-87; 52 complete specimens, 21 ventral valves
and 51 dorsal valves from Tokod. Some specimens are
strongly crushed, many are broken; there are also many

D i m e n s i o n s   (in  mm):  (see also Fig. 6)

D e s c r i p t i o n : The shell is small (maximum length

3.5 mm), ventribiconvex, coarsely endopunctate, variable
in outline, from subsquare to transversely oval, usually
wider than long. The hinge line is long and straight, usual-
ly equal to the maximum width. The shell surface is orna-
mented by 12—16 single, delicate, rounded ribs. In some
specimens the ribs are so weak that they are almost imper-
ceptible. The growth lines are numerous but indistinct in
many specimens. In juvenile individuals the shape is sub-
triangular with hinge line shorter than the maximum width
and the surface is nearly smooth (Fig. 7.1). The anterior
commissure is rectimarginate. The ventral beak is high,
suberect with a large interarea with distinct growth lines
but without radial ornamentation. The large pedicle open-
ing is of hypothyrid type, restricted by two narrow deltidi-
al plates. Ventral valve interior with short but wide teeth
lying parallel to hinge line. The pedicle collar is wide,

Fig. 6. Intraspecific variability of Argyrotheca tokodensis sp. nov. Scatter diagrams plotting length/width (A), length/thickness (B) and
width/thickness (C). N = number of specimens.




background image



supported by a median septum. Anteriorly to the septum
there are two or three shallow, ovoid depressions to ac-
commodate a dorsal septum. Dorsal valve interior with
high, relatively narrow inner socket ridges and small but

Fig. 7.  1—12 –  Argyrotheca  tokodensis sp. nov., Tokod, Middle Eocene. 1 – Dorsal view of immature complete specimen,
2006.35.1, paratype; 2—3 – Complete specimen, 2006.38.1, paratype, 2 – ventral view, 3 – dorsal view; 4—5 – Complete specimen,
2006.39.1, paratype, 4 – ventral view, 5 – dorsal view; 6—9 – Complete specimen, 2006.37.1, holotype, 6 – ventral view, 7 – dorsal
view, 8 – lateral view, 9 – anterior view; 10—11 – Complete specimen, 2006.40.1, paratype, 10 – ventral view, 11 – dorsal view;
12 – Dorsal view of complete specimen, 2006.36.1, paratype. Scale bars: 1 – 0.5 mm, 2—12 – 1 mm.

distinct cardinal process (Fig. 8.3—5,8). The hinge plates,
ventrally concave, are attached laterally to the inner sock-
et ridges and converge medially to define a shallow hol-
low in front of cardinal process. The median septum is

background image



Fig. 8.  1—8 – Argyrotheca  tokodensis sp. nov., Tokod, Middle Eocene, paratypes. 1—2 – Inner views of ventral valves, 1-2006.42.1,
2-2006.43.1; 3—4 – Inner views of dorsal valves, 3 – 2006.44.1, 4 – 2006.45.1; 5—6 – Dorsal valve, 2006.46.1, 5 – inner
view, 6 – enlargement of anterior part of 5 to show attachment of the loop to septum; 7 – Lateral view of dorsal valve interior to
show high septum with numerous serrations, 2006.47.1; 8 – Inner view of dorsal valve, 2006.48.1. Scale bars: 0.5 mm.

high and triangular in profile, beginning at about one-
third of the dorsal valve length and sloping towards the
anterior margin with numerous serrations (Fig. 8.7). The
loop is preserved only anteriorly where it is attached to
the septum.

R e m a r k s :  Argyrotheca  tokodensis sp. nov. is the com-

monest species in the studied material. It is easily distin-
guishable from A. michelottina by its subsquare outline
and finely ribbed ornamentation.

Numerous species of Argyrotheca have been described

from Paleogene deposits of Europe. Nevertheless, in many
cases it is difficult to estimate the validity of those species
because of insufficient description, often not presenting
internal structures, and poor illustrations. In extreme cases
new species were identified on the basis of a single valve
(e.g. Cossmann 1902).

In outline the studied specimens are similar to A. batal-

leri Abrard, 1926 from the Eocene of north-eastern Spain
(Abrard 1926; Calzada & Urquiola 1994) but they differ in
being smaller and having much more delicate ornamenta-
tion. In outline and ornamentation the specimens from

Hungary are similar to those from the Paris Basin de-
scribed by Morgan (1883) as Cistella douvillei. The
French forms, however, have more numerous ribs (15—20),
and their internal structures are unknown. The specimens
from Tokod resemble in shell outline and ornamentation
the Upper Paleocene species Argyrotheca sabaratensis
Pajaud, 1970 (in Pajaud & Tambareau 1970) but the latter
species is smaller than A. tokodensis and its interior details
are unknown. In ornamentation A. tokodensis displays
similarities to A. megapora Zelinskaya, 1975, differing
somewhat in outline, beak character and in having a high-
er brachial septum. The investigated specimens of A.
tokodensis also resemble in shell outline the Upper
Eocene species A. piperipyxis Elliott, 1954 (Elliott 1954;
Popiel-Barczyk & Barczyk 1987). They differ, however,
from the latter species in their larger size, more numerous
ribs and hinge line usually equal to the maximum width.

The high, serrated median septum of A.  tokodensis is

very similar to that observed in Recent A. cordata (Risso,
1826) from the Mediterranean (see Logan 1979: pl. 5,
fig. 8; Álvarez & Emig 2005: fig. 47D) but the new species

background image



lacks the prominent row of submarginal ridges nodded at
their extremities in the interior of the dorsal valve of the
Mediterranean species.

O c c u r r e n c e : In the Eocene deposits of Balinka-239

and Mogyorósbánya-87 boreholes and Tokod, north-west-
ern Hungary.

Order:  Thecideida Elliott, 1958

Superfamily:  Thecideoidea Gray, 1840

Family:  Thecideidae Gray, 1840

Subfamily:  Lacazellinae  Backhaus, 1959

Genus:  Lacazella Munier-Chalmas, 1881

T y p e   s p e c i e s :  Thecidea mediterranea Risso, 1826.

Lacazella mediterranea (Risso, 1826)

Fig. 5.7—8

1826 Thecidea mediterranea Risso, p. 394, pl. 12, fig. 183
1861 Thecidium mediterraneum (Risso) – Lacaze-Duthiers, p. 259,

pls. 1—5

1870 Thecidium Mediterraneum (Risso) – Davidson, p. 407,

pl. 21, fig. 17a,b

1881 Lacazella mediterranea (Risso) – Munier-Chalmas, p. 279
1901 Thecidium mediterraneum Risso – Oppenheim, p. 259—260
1908 Thecidium mediterraneum Risso – Fabiani, p. 61
1913 Thecidea (Lacazella) mediterranea Risso – Fabiani, p. 39—40,

pl. 4, fig. 18a

1970 Lacazella mediterranea (Risso) – Pajaud, p. 128, text-

figs. 50, 52, pl. 1, fig. 4; pl. 5, fig. 4; pl. 7, fig. 3; pl. 10,
figs. 1—6; pl. 11, fig. 3; pl. 12, fig. 2; pl. 16

1972 Lacazella mediterranea (Risso) – Pajaud & Plaziat, p. 455,

text-fig. 7, pl. 2, fig. 4

1979 Lacazella mediterranea (Risso) – Logan, p. 73—75, text-

fig. 22, pl. 10, figs. 1—8

1987 Lacazella mediterranea (Risso) – Popiel-Barczyk & Bar-

czyk, p. 101, pl. 3, figs. 3—11

2005 Lacazella mediterranea (Risso) – Bitner & Dieni, p. 109—110,

fig. 4I—K

M a t e r i a l : One complete specimen from Budapest,

Csillag-hegy (Ibolya street).

D i m e n s i o n s : Length 3.0 mm, width 2.6 mm, thick-

ness 1.7 mm (2006.34.1).

R e m a r k s : The very limited material (only one speci-

men) prevents any study of internal structures, neverthe-
less based on external features such as outline, profile,
beak area, and shell surface, the investigated specimen
corresponds very well to Lacazella mediterranea (see Pa-
jaud 1970; Logan 1979). Thecidellina, although similar
externally to Lacazella, differs from the latter genus by
bearing no trace of a pseudodeltidium on ventral interarea.
The ventral interarea in the studied specimen is triangular,
flat with visible pseudodeltidium. The shell is very small
(length 3.0 mm), triangular in outline, slightly biconvex
with ventral valve much more convex, the dorsal one is
nearly flat. The shell surface is smooth, rare growth lines
are indistinct. This is the first occurrence of this species in
the Paleogene deposits of Hungary.

O c c u r r e n c e :  Lacazella mediterranea has a very long

stratigraphical range from the Upper Paleocene (Pajaud &

Plaziat 1972) to Recent. In the Eocene deposits it has been
recorded from Italy (Davidson 1870; Sacco 1902; Fabiani
1908, 1913; Pajaud 1970; Bitner & Dieni 2005), Germany
(von Koenen 1894; Oppenheim 1901) and Poland (Popiel-
Barczyk & Barczyk 1987). Today this species lives in the
Mediterranean being restricted to its south-western part
(Logan 1979; Logan et al. 2004; Álvarez & Emig 2005).


The investigated Eocene brachiopods from north-west-

ern Hungary contain seven micromorphic species. Two of
them, namely Terebratulina tenuistriata (Leymierie) and
Megathiris detruncata (Gmelin), were previously recorded
from the Eocene beds of Hungary (Meznerics 1943). The
species  Novocrania bayaniana (Davidson), Orthothyris
pectinoides (von Koenen), Argyrotheca michelottina
(Davidson)  and  Lacazella mediterranea (Risso) are report-
ed for the first time from Hungary, and the species Argy-
rotheca tokodensis has been described as a new taxon.
The latter species and T. tenuistriata are most common
and they constitute 91.5 % of all the material. The other
species occur in a small number of one to eight specimens.
The investigated brachiopods were collected in 7 outcrops
and in cores from 7 boreholes. The species composition in
particular localities differs considerably. Being the most
common,  A. tokodensis sp. nov. occurs in abundance only
in one locality, Tokod; but single specimens were also
found in two boreholes, Balinka-239 and Mogyorósbá-
nya-87. All the specimens of A. tokodensis are from the
shallow bathyal Padrag Marl Formation. The second most
common species, T. tenuistriata is much more widespread;
it is reported from 4 outcrops and from 5 boreholes. Most
of these specimens are from the shallow water Szőc Lime-
stone and Szépvölgy Limestone Formations but there are
few specimens also from the Padrag Marl Formation. Very
often only one species is found in a particular locality.
The locality of Csillag-hegy (Budapest) shows the greatest
diversity with three species, T. tenuistriata,  M. detruncata
and  L. mediterranea present. In the investigated material
brachiopods from the locality of Ajka are represented by
two species, T. tenuistriata and A. michelottina. From the
same locality, Meznerics (1943) reported three additional
species,  Magellania hilarionis, and  two species created
by herself, M. hantkeni and M. gibbosa. It is difficult to es-
timate the validity of these last two species because the in-
ternal structures were not examined and the material is
lost, being not available for study.

The type of sediment (mostly marls and marly intercala-

tions in limestones) in which the investigated brachiopods
occur may indicate conditions similar to those of the
white chalk assemblage where micromorphic brachiopods,
capable of using very small, hard objects, dominate the
soft bottom benthos (Surlyk 1972). Ecologically, the spe-
cies described here belong to three categories among
those distinguished by Surlyk (1972). Terebratulina
tenuistriata is a representative of the group of medium-
sized species attached directly to the fine sediment by a

background image



root-like, divided long pedicle (Curry 1981). The bathy-
metric range of extant Terebratulina species is very wide,
however, they are most common at the depth of 100 and
500 m (Curry 1982). The second group constitutes minute
forms attached by a pedicle to small hard objects. Both Ar-
gyrotheca species, M. detruncata and O. pectinoides be-
long to this group. All Recent megathyrids live attached
by a very short pedicle to firm substrates. The extant repre-
sentatives of M. detruncata are reported from depth of 16
to 896 m (Logan 1979, 1988; Logan et al. 2004; Álvarez
& Emig 2005). Recent Argyrotheca species also have a
relatively wide depth range, being known from few meters
to more than 600 m (Logan 1979, 1983, 1988; Logan et
al. 2004; Álvarez & Emig 2005). The functional pedicle
opening of O. pectinoides indicates that this fossil species
also belongs to the pedunculate taxa. The third group con-
tains species cementing to the substrate by a ventral valve
and is represented in the studied material by two species,
Novocrania bayaniana and Lacazella mediterranea. The
Recent  Novocrania anomala (Müller) from the Mediterra-
nean and eastern North Atlantic is usually found in shal-
low-water cryptic habitats, characterized by low light and
low hydrodynamic conditions (Logan 1979; Logan &
Long 2001; Álvarez & Emig 2005). Today the representa-
tives of L.  mediterranea live in the Mediterranean at the
depth of 31—110 m (Logan 1979; Álvarez & Emig 2005),
being regarded as a neoendemic species (Logan et al. 2004).

Although the taxonomic composition of particular

Eocene brachiopod assemblages in Europe can differ
strongly, a great similarity of the fauna is observed and
most species have a very wide geographical distribution,
being known throughout the whole of Europe. T. tenuistri-
ata is the most widely spread species, being reported from
Great Britain to Bulgaria (see above). Also N.  bayaniana,
O. pectinoides,  M.  detruncata,  A. michelottina and L.
mediterranea have a very wide distribution, from Spain
and Italy to Poland, Hungary and Ukraine. The high sea
level in the Eocene, provoked by the sea floor spreading
in the Early Eocene (Briggs 1995), had biogeographical
consequences and provided good conditions for faunal
migrations. Especially similarities of the investigated bra-
chiopods to the Italian fauna can be easily explained by a
direct connection of the Hungarian Paleogene Basin with
the North Italian basins (Báldi 1984). The similarity to the
Eocene brachiopod fauna of the Western Pacific (Cooper
1971) might result from the fact that the Eocene sea of Eu-
rope constituted part of the Tethys Ocean and had direct
connection to this area. In the Late Eocene, due to the col-
lision of India with Asia, the Tethys Ocean was closed and
at the Eocene/Oligocene boundary two new marine basins
arose, the Mediterranean Sea and the intercontinental Para-
tethys Sea in the North (Rögl 1998; Schulz et al. 2005),
completely changing the paleobiogeography of the area.

Acknowledgments: This paper is a contribution to the
joint Hungarian-Polish Project 10 Paleogene and Neo-
gene brachiopods and bivalves from the intra- and fore-
Carpathian basins realized within the framework of bilat-
eral cooperation between the Hungarian Academy of

Sciences and Polish Academy of Sciences. A. Dulai was
supported through a János Bolyai Research Scholarship
and by the Hungarian Scientific Research Fund (OTKA
T 49224). A significant part of the studied brachiopods
were collected several years ago by Dr. Tibor Kecskeméti.
Some of the Tokod specimens were collected by Drs.
Árpád Dávid and Mihály Gasparik. Dr. László Kordos
gave permission to study the collection of the Hungarian
Geological Institute. T. Kecskeméti gave valuable help in
determining the ages of the samples. Drs. Neda
Motchurova-Dekova and Emma Taddei Ruggiero helped
in translations of Italian titles. We are grateful to the re-
viewers, Drs. Fernando Álvarez, Alan Logan and Jozef
Michalík, for their helpful comments and suggestions. A.
Logan kindly improved the language. The specimen in
Fig. 3 was photographed by Mr. M. Dziewiński (Institute of
Paleobiology, Warszawa). The SEM micrographs were tak-
en in the SEM laboratory of the Institute of Paleobiology
(Warszawa) using a Philips XL-20 scanning microscope.


Abrard R. 1926: Note on some brachiopods from the Lutetian of

Catalonia. Ciencia 1, 4, 270—271 (in Spanish).

Altichieri L. 1992: Updating of the brachiopod fauna from the

Veneto region. Mem. Sci. Geol. 44, 211—227 (in Italian).

Álvarez F. & Emig C.C. 2005: Brachiopoda. In: Álvarez F., Emig

C.C., Roldán C. & Viéitez J.M. (Eds.): Lophophorata, Phoronida,
Brachiopoda.  Fauna Iberica, vol. 27. Ramos M.A. et al. (Eds.):
Museo Nacional de Ciencias Naturales, CSIC, Madrid, 57—177.

Backhaus E. 1959: Monographie der cretacischen Thecideidae

(Brach.). Mitt. Geol. Staatsinst. Hamburg 28, 5—90.

Barczyk W. 1973: Brachiopods Terebratulina delheidi Vincent in

the Nummulite Eocene of the Tatra Mts. Acta Geol. Pol. 23,

Barczyk W. & Popiel-Barczyk E. 1977: Brachiopods from the Ko-

rytnica basin (Middle Miocene; Holy Cross Mountains, Po-
land).  Acta Geol. Pol. 27, 157—167.

Báldi T. 1984: The terminal Eocene and early Oligocene events in

Hungary and the separation of an anoxic, cold Paratethys.
Eclogae Geol. Helv. 77, 1—27.

Báldi T. 1986: Mid-Tertiary stratigraphy and paleogeographic evo-

lution of Hungary. Akadémiai Kiadó, Budapest, 1—201.

Báldi-Beke M. 1984: The nannoplankton of the Transdanubian Pa-

leogene formations. Geol. Hung. Ser. Pal. 43, 1—307.

Báldi-Beke M. & Báldi T. 1991: Palaeobathymetry and palaeo-

geography of the Bakony Eocene Basin in western Hungary.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 88, 25—52.

Bitner M.A. 1990: Middle Miocene (Badenian) brachiopods from

the Roztocze Hills, south-eastern Poland. Acta Geol. Pol. 40,

Bitner M.A. 2000: Lower Eocene (Middle Ilerdian) brachiopods

from the Campo region, Central Pyrenees, north-eastern Spain.
Rev. Esp. Paleont. 15, 117—128.

Bitner M.A. & Dieni I. 2005: Late Eocene brachiopods from the

Euganean Hills (NE Italy). Eclogae Geol. Helv. 98, 103—111.

Bitner M.A. & Dulai A. 2004: Revision of Miocene brachiopods of

the Hungarian Natural History Museum, with special regard to
the Meznerics collection. Fragm. Palaeont. Hung. 22, 69—82.

Bitner M.A. & Moissette P. 2003: Pliocene brachiopods from

north-western Africa. Geodiversitas 25, 463—479.

Briggs J.C. 1995: Global biogeography. Developments in pala-

background image



eontology and stratigraphy. Elsevier, Amsterdam, 14, 1—452.

Brunton C.H.C. & Curry G.B. 1979: British brachiopods. Synopses

of the British Fauna (New Series) 17, 1—64.

Calzada S. & Urquiola M.M. 1994: On Argyrotheca (Brachiopo-

da) species from the Upper Eocene. Batalleria 4, 17—25 (in

Chemnitz J.H. 1785: Neues systematisches Conchylien-Cabinet.

Bauer & Raspe, Nürnberg, 8, 1—372.

Cooper G.A. 1955: New Brachiopoda from Cuba. J. Paleontology

29, 1, 64—70.

Cooper G.A. 1971: Eocene brachiopods from Eua, Tonga. Geol.

Surv. Prof. Pap. 640—F, F1—F9.

Cooper G.A. 1973: Fossil and Recent Cancellothyridacea (Brachi-

opoda).  Tohoku Univ. Sci. Rep., 2


 ser. (Geol.), Spec. Vol.  6

(Hatai Memorial Vol.), 371—390.

Cooper G.A. 1977: Brachiopods from the Caribbean Sea and adja-

cent waters. Stud. Trop. Oceanogr. 14, 1—211.

Cossmann M. 1902: Catalogue ilustré des coquilles fossiles de


ène des environs de Paris. Ann. Soc. Roy. Mal. Belgique

36, 9—100.

Császár G. (Ed.) 1997: Basic lithostratigraphic units of Hungary.

Charts and short descriptions. Magy. Áll. Földt. Intéz., Buda-
pest, 1—114.

Curry G.B. 1981: Variable pedicle morphology in a population of

the Recent brachiopod Terebratulina septentrionalis.  Lethaia
14, 9—20.

Curry G.B. 1982: Ecology and population structure of the Recent

brachiopod  Terebratulina from Scotland. Palaeontology 25,

Dainelli G. 1915: Friulian Eocene. Geological and palaeontological

monograph.  Mem.  Geografiche, Firenze, 1—721 (in Italian).

Dall W.H. 1870: A revision of the Terebratulidae and Lingulidae.

Amer. J. Conchol. 6, 88—168.

Dall W.H. 1900: Some names which must be discarded. Nautilus

14, 4, 44—45.

Davidson T. 1870: On Italian Tertiary Brachiopoda. Geol. Mag. 7,

359—370, 399—408, 460—466.

Davidson T. 1874: On the Tertiary Brachiopoda of Belgium. Geol.

Mag. 1, 150—159.

Doncieux L. 1905: Catalogue descriptif des fossiles nummulitiques

de l’Aude et de l’Hérault. Premi

ère partie. Montagne Noire et

Minervois.  Ann. Univ. Lyon, nouv. sér. I, 17, 1—184.

Doncieux L. 1926: Catalogue descriptif des fossiles nummulitiques

de l’Aude et de l’Hérault. II (3). Corbi

ères septentrionales.

Ann. Univ. Lyon, nouv. sér. I, 45, 1—80.

Dreger J. 1889: Die tertiären Brachiopoden des Wiener Beckens.

Beitr. Paläontol. Oesterreich-Ungarns 7, 179—192.

Duméril A.M.C. 1806: Zoologie analytique ou méthode naturelle

de classification des animaux. Allais, Paris, 1—344.

Elliott G.F. 1938: A London Clay Brachiopod. Proc. Geol. Assoc.

49, 128—134.

Elliott G.F. 1954: New Brachiopoda from the Eocene of England,

France and Africa. Ann. Mag. Naturhist., 12


 Ser. 7, 721—728.

Elliott G.F. 1958: Classification of thecidean brachiopods. J. Pale-

ontology 32, 373.

Fabiani R. 1908: Palaeontology of the Colli Berici. Mem. Soc. Ital.

Sc. (detta dei XL), ser. 3, 15, 44—248 (in Italian).

Fabiani R. 1913: Tertiary brachiopods from the Veneto region.

Mem. Ist. Geol. R. Univ. Padova 2, 3—42 (in Italian).

Fodor L., Magyari Á., Kázmér M. & Fogarasi A. 1992: Gravity-

flow dominated sedimentation on the Buda paleoslope (Hun-
gary): record of Late Eocene continental escape of the Bakony
unit.  Geol. Rdsch. 81, 695—716.

Gray J.E. 1840: Synopsis of the contents of the British Museum.



 edit., London, 1—370.

Gmelin J.F. 1791: Caroli a Linné. Systema Naturae. Tom I. Pars VI.

13 edition,  Beer, Lipsiae, 3021—3909.

Gochev P. 1933: Paläontologische und stratigraphische Untersu-

chungen über das Eocän von Varna. Zeitsch. Bulgar. Geol.
Gesell. 5, 1—82 (in Bulgarian with German abstract).

International Commission on Zoological Nomenclature 1999: Inter-

national Code of Zoological Nomenclature, 4


 edition. Inter-

national Trust for Zoological Nomenclature, London, 1—306.

Kázmér M., Dunkl I., Frisch W., Kuhlemann J. & Ozsvárt P. 2003:

The Palaeogene forearc basin of the Eastern Alps and Western
Carpathians: subduction erosion and basin evolution. J. Geol.
Soc., London 160, 413—428.

Koenen A. von 1894: Das Norddeutsche Unter-Oligocän und seine

Mollusken-Fauna.  Abh. geol. Spec.-Karte Preuss. u. Thuring.
Staat. 10, 6, 1250—1392.

Kopek G. 1980: L’Éoc

ène de la partie nord-orientale de la Mon-

tagne du Bakony (Transdanubie, Hongrie). Ann. Hung. Geol.
Inst. 63, 1, 1—176.

Lacaze-Duthiers H. 1861: Histoire naturelle des Brachiopodes vi-

vants de la Méditerranée. Premi

ère monographie: Histoire de

la Thécidie (Thecideum  mediterraneum).  Ann. Soc. Nat., Zool-
ogie (série 4) 15, 259—330.

Lee D.E. & Brunton C.H.C. 2001: Novocrania, a new name for the

genus  Neocrania Lee & Brunton, 1986 (Brachiopoda, Cranii-
da), preoccupied by Neocrania Davis, 1978 (Insecta, Lepi-
doptera). Bull. Nat. Hist. Mus. London, Geol. 57, 5.

Leymerie M.A. 1846: Mémoire sur le terrain 

à Nummulites (Epi-

crétacé) des Corbi

ères et de la Montagne Noire. Mém. Soc.

Géol. France 2, 1, 8, 337—373.

Linnaeus C. 1758: Systema Naturae. 10


 edition, Holmiae, Stock-

holm, 1—824.

Logan A. 1979: The Recent Brachiopoda of the Mediterranean Sea.

Bull. Inst. Océanogr. Monaco 72, 1—112.

Logan A. 1983: Brachiopoda collected by CANCAP I-III expedi-

tions to the south-east North Atlantic, 1976—1978. Zool. Med.
Leiden 57, 165—189.

Logan A. 1988: Brachiopoda collected by CANCAP IV and VI ex-

peditions to the south-east North Atlantic, 1980—1982. Zool.
Med. Leiden 62,  59—74.

Logan A. 1993: Recent brachiopods from the Canarian-Cape Ver-

dean region: diversity, biogeographic affinities, bathymetric
range and life habits. Cour. Forschungsinst. Senckenberg 159,

Logan A. 2003: Marine fauna of the Mljet National Park (Adriatic

Sea, Croatia). 3. Brachiopoda. Nat. Croatica 12, 4, 233—243.

Logan A. & Long S.L. 2001: Shell morphology and geographical

distribution of Neocrania (Brachiopoda, Recent) in the eastern
North Atlantic and Mediterranean Sea. In: Brunton C.H.C.,
Cocks L.R.M. & Long S.L. (Eds.): Brachiopods past and
present. The System. Assoc. Spec. Vol. 63, 71—79.

Logan A., Bianchi C.N., Morri C. & Zibrowius H. 2004: The

present-day Mediterranean brachiopod fauna: diversity, life
habits, biogeography and paleobiogeography. In: Ros J.D.,
Packard T.T., Gili J.M., Pretus J.L. & Blasco D. (Eds.): Biolog-
ical oceanography at the turn of the Millenium. Sci. Mar. 68
(Suppl. 1), 163—170.

Massalongo A. 1850: Geognostic sketch on the Prongo valley or

the torrent of Illasi with an essay on the primordial flora of M.
Bolca. Antonelli, Verona, 1—77 (in Italian).

Menke C.T. 1828: Synopsis methodica molluscorum generum om-

nium et specierum earum quae in Museo Menkeano adservan-
tur, 2


 ed. G. Uslar, Pyrmonti, 1—91.

Meznerics I. 1943: Die Brachiopoden des ungarischen Tertiärs.

Ann. Hist.-Natur. Mus. Nat. Hung. 36, 10—60.

Morgan J. de 1883: Note sur quelques esp

èces nouvelles de Mé-

gathyridés.  Bull. Soc. Zool. France 8, 371—396.

Muir-Wood H. 1959: Report on the Brachiopoda of the John Mur-

background image



ray Expedition. Sc. Rep. John Murray Exped. 1933—1934 10,

Muir-Wood H. 1965: Mesozoic and Cenozoic Terebratulidina. In:

Moore R.C. (Ed.): Treatise on invertebrate Paleontology. Part
H. Brachiopoda, H762—H816.

Munier-Chalmas E.P. 1881: Note sommaire sur les genres de la

famille des Thecideidae. Bull. Soc. Géol. France 1880 (séries 3)
8, 279—280.

Müller O.F. 1776: Zoologiae Danicae prodromus, seu animalium Da-

niae et Norvegiae indigenarum characters, nomina, et synonyma
imprimis popularium. Typis Hallageriis, Havniae, 1—282.

d’Orbigny A. 1847: Considérations zoologiques et géologiques sur

les brachiopodes ou palliobranches. Ann. Soc. Nat. (série 3) 8,

Oppenheim P. 1901: Die Priabonaschichten und ihre Fauna im

Zusammenhange mit gleichalterigen und analogen Ablagerun-
gen.  Palaeontographica 47, 1—348.

Owen E.F. 1988: Cenomanian brachiopods from the Lower Chalk

of Britain and northern Europe. Bull. Brit. Mus. (Nat. Hist.),
Geol. Ser. 44, 65—175.

Pajaud D. 1970: Monographie des Thécidées (Brachiopodes). Mém.

Soc. Géol. France, n. s., 112, 1—349.

Pajaud D. & Plaziat J.-C. 1972: Brachiopodes thanétiens du syncli-

nal sud-cantabrique au S-E de Vitoria (Pays basque espagnol).
Étude systématique et interprétation paléoécologique. Bull.
Soc. Hist. Nat. Toulouse 108, 446—473.

Pajaud D. & Tambareau Y. 1970: Brachiopodes nouveaux du

“Sparnacien” des Petites Pyrénées et du Plantaurel. Bull. Soc.
Hist. Nat. Toulouse 106, 312—327.

Popiel-Barczyk E. & Barczyk W. 1987: Eocene brachiopods from

Wola Łużańska and Skalnik in the Central Carpathians. Acta
Geol. Pol. 37, 93—104.

Popiel-Barczyk E. & Barczyk W. 1990: Middle Miocene (Bade-

nian) brachiopods from the southern slopes of the Holy Cross
Mountains, Central Poland. Acta Geol. Pol. 40, 159—181.

Popov L.E., Basset M.G., Holmer L.E. & Laurie J.R. 1993: Phyloge-

netic analysis of higher taxa of Brachiopoda. Lethaia 26, 1—5.

Risso A. 1826: Histoire naturelle des principales productions de

l’Europe méridionale, et particuli

èrement de celles des environs

de Nice et des Alpes Maritimes. F.G. Levrault, Paris, 1—439.

Rögl F. 1998: Palaeogeographic considerations for Mediterranean

and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist.
Mus. Wien 99A, 279—310.

Sacco F. 1902: Brachiopods from the Tertiary terrains of Piemonte

and Liguria. Carlo Clausen, Torino, 1—50 (in Italian).

Schulz H.-M., Bechtel A. & Sachsenhofer R.F. 2005: The birth of

the Paratethys during the Early Oligocene: from Tethys to an
ancient Black Sea analogue? Global and Planet. Changes 49,

Sowerby J. de C. 1826—1829: The Mineral Conchology of Great

Britain; or coloured figures and descriptions of those remains
of testaceous animals or shells, which have been preserved at
various times and depths in the earth. 6, London, 1—236.

Surlyk F. 1972: Morphological adaptations and population structures

of the Danish chalk brachiopods (Maastrichtian, Upper Creta-
ceous). Det Kong. Dan. Vidensk. Selsk., Biol. Skr. 19, 1—57.

Thomson J.A. 1926: A revision of the subfamilies of the Terebratu-

lidae (Brachiopoda). Ann. Mag. Nat. Hist. 9, 18, 523—530.

Vincent E. 1893: Contribution 

à la paléontologie des terrains ter-

tiaires de la Belgique. Brachiopodes. Ann. Soc. Roy. Malacol.
Belgique 28, 38—64.

Waagen W.H. 1883: Salt Range fossils, vol. I, part 4. Productus

Limestone fossils, Brachiopoda. Mem. Geol. Surv. India,
Palaeontol. Indica (series 13) 2, 391—546.

Waagen W.H. 1885: Salt Range fossils, vol. I, part 4. Productus

Limestone fossils, Brachiopoda. Mem. Geol. Surv. India, Pale-
ontol. Indica (series 13) 5, 729—770.

Williams A., Carlson S.J., Brunton C.H.C., Holmer L.E. & Popov L.

1996: A supra-ordinal classification of the Brachiopoda. Phil.
Trans. Roy. Soc. London, series B 351, 1171—1193.

Zelinskaya V.A. 1975: Brachiopods from the Paleogene of Ukraine.

Naukova Dumka, Kiev, 1—148 (in Russian).