background image


Lower Badenian biostratigraphy and paleoecology: a case

study from the Carpathian Foredeep (Czech Republic)






Czech Geological Survey, Leitnerova 22, 658 69 Brno, Czech Republic;


Czech Geological Survey, Klárov 131/3, P.O.Box 85, 118 21 Praha, Czech Republic;

(Manuscript received June 21, 2006; accepted in revised form December 7, 2006)

Abstract: The biostratigraphy and paleoecology of the Middle Miocene, Lower Badenian deposits were studied in two
boreholes (Ivaň-1 and Vranovice-1) situated in the southern part of the Carpathian Foredeep, Czech Republic. Plank-
tonic foraminifers document the M5b Zone of Berggren et al. (1995). Presence of Uvigerina macrocarinata Papp
et Turnovsky  and  Praeorbulina glomerosa circularis (Blow) indicates “Lower Lagenid Zone” sensu Grill (1941).
Calcareous nannofossils with Helicosphaera waltrans, H. walbersdorfensis and Sphenolithus heteromorphus give evidence
for the NN5 Zone of calcareous nanoplankton (Martini 1971). Quickly changeable paleoenvironment, especially sea-
level fluctuation and non-stable conditions are documented by five types of microfauna: 1. shallow-water foraminifers
accompanied by fragments of molluscs and bryozoans – shallow sublittoral (infralittoral), 2. joint occurrence of
agglutinated and calcareous benthic foraminifers – circalittoral to upper bathyal, 3. euryoxybiont foraminifers indicate
low oxygen content in bottom water of the deeper sublittoral (circalittoral), 4. dominance of planktonic foraminifers with
pyritized tests – low oxygen sea, circalittoral to upper bathyal, 5. mixed assemblages of shallow- and deep-water
foraminifers document slumps. Generally, relatively shallow epicontinental sea of normal salinity with nutrient supply is
supported by coastal nannoflora with higher numbers of Reticulofenestra minuta, Coccolithus pelagicus, and helicosphers.
Low abundances of sphenoliths and scarce occurrence of discoasters may imply cooler surface waters. High numbers of
reworked nannofossils reflect transgression.

Key words: Middle Miocene, Lower Badenian, Carpathian Foredeep, paleoecology, biostratigraphy, foraminifers,
calcareous nannofossils.


The problems of the biostratigraphic classification of the
Middle Miocene, Lower Badenian (Langhian of the Medi-
terranean classification) deposits in the western part of the
Central Paratethys, explicitly in the Carpathian Foredeep
and adjacent area of the Alpine Molasse Basin have been
under discussion for a long time and have not been satis-
factorily solved yet. The specific development of these
strata reflects an important phase in the genesis of the Al-
pine Molasse at the Lower-Middle Miocene boundary in
the foreland of the Alpine-Carpathian chain and on the
slopes of the Bohemian Massif in NE Austria and the SE
part of the Czech Republic (that is in the southern Car-
pathian Foredeep). Different opinions on the evolution,
definition and chronostratigraphic correlation of the indi-
vidual lithostratigraphic units are represented by the Aus-
trian and Czech schools. They relate to the genesis of
deposits, their relationship to the underlying strata, and
their fossil content including biostratigraphic and conse-
quently chronostratigraphic correlation in the regional
concept of the Central Paratethys. To obtain new informa-
tion, two boreholes Ivaň IK-1 and Vranovice VK-1 were
drilled in South Moravia, Czech Republic (Fig. 1). The sed-
iments were investigated by means of study of foraminifers
and calcareous nannofossils and provided data for further
biostratigraphic and paleoenvironmental interpretations.

Geological setting

The Carpathian Foredeep is a peripheral foreland basin

bordering the front of the Carpathian orogene belt. It was
formed as a result of flexural down bending of the passive
margin of the European Platform represented in this part
by spur of the Bohemian Massif. The Foredeep is filled by
Lower and Middle Miocene deposits of alternately ma-
rine, brackish and fresh-water origin.

Previous studies

The Lower Badenian sediments of the Carpathian Fore-

deep, Czech Republic and their biostratigraphic correla-
tion according to foraminifers and calcareous
nannoplankton have been presented by Švábenická &
Čtyroká (1998, 1999), Čtyroká & Švábenická (2000), and
Švábenická (2002). Similar problems has also been re-
searched in the adjacent area of the Molasse Basin in Low-
er Austria by Rögl et al. (2002), Ćorić (2003), Ćorić &
Švábenická (2004) and Ćorić & Rögl (2004) and the Styri-
an Basin (Spezzaferri et al. 2004). The paleoecology and
biostratigraphy of foraminifers have been studied by Spez-
zaferri (2004). A summary of the stratigraphy and bios-
tratigraphic correlation was published by Ćorić et al.

background image




Two boreholes, Ivaň IK-1 and Vranovice VK-1 were

drilled in 2004. From the geological point of view, they
were situated close to the Lower-Middle Miocene boundary
that was recognized on the surface during geological map-
ping (Fig. 2). Boreholes were drilled at a distance of 3.7 km
from each other in a NNE-SSW direction. They reached the
depth of 60 m and the profiles were fully cored. Sediments
were sampled approximately in 5 meters intervals with re-
spect to their lithofacial character and sudden changes in li-
thology. For lithology of boreholes see Fig. 3.


The sediments were soaked in warm water with sodium

carbonate for one day for dissaggregation, and then
washed under running water through 63  m mesh sieves.
Foraminifers were picked from the fraction, identified with a

binocular microscope WILD. Approximately 200 speci-
mens were used for quantitative analyses.  The ratio plank-
ton/benthos (p/b) was counted as a percentage of
planktonic specimens in the assemblage – p/(p+b)*100.
Graphs of p/b were constructed as well as graphs of percent-
ages of all species and graphs of percentages of benthic spe-
cies. The graphs of constance of benthic and planktonic
species were framed account on inclusive evaluation of the
assemblages. Groups of agglutinated foraminifers, deep-
and shallow-water foraminifers and euryoxybiont foramini-
fers were interpreted according to paleoecological studies
of Murray (1991), Kaiho (1994), Spezzaferri & Ćorić
(2001), and Spezzaferri et al. (2002, 2004).

Smear slides were prepared using a decantation method.

Examination was carried out using an oil-immersion-ob-
jective Nikon light-polarized microscope at 1000  mag-
nification. Quantitative data are based on approximately
500 specimens on each slide. Reworked nannofossils were
omitted in proportional evaluation of the Miocene species
in the assemblage.

Fig. 1. Location of the Ivaň-1 and Vranovice-1 boreholes.

background image



Fig. 2. Idealized structural-tectonic cross-section of the SE part of the Carpathian Foredeep, Czech Republic (from Adámek et al. 2003,

Fig. 3. Schematic lithology of the Ivaň-1 and Vranovice-1 boreholes.

background image



Biostratigraphic data were correlated with planktonic for-

aminiferal zones by Berggren et al. (1995) and nannoplank-
ton standard NN zones by Martini (1971) and MNN zones
by Fornaciari et al. (1996). Central Paratethys regional stag-
es and their comparison with nannoplankton NN zones (Ta-
ble 1) and biostratigraphic evaluation of planktonic
foraminifers are used according to Cicha et al. (1998).


Ivaň IK-1 Borehole


Foraminifers are relatively well preserved and especially

planktonic specimens are pyritized. Small tests dominate.
The plankton/benthos ratio ranges between 60—92 % and
usually reaches about 80 % (Fig. 4). Assemblages are char-
acterized by rare occurrence of Praeorbulina sicana (de
Stefani) accompanied by species Praeorbulina  glomerosa
circularis, P. g. glomerosa Blow, Globorotalia  bykovae
(Aisenstat), Gl. peripheroronda Blow et Banner, Globi-
gerinoides quadrilobatus (d’Orbigny),  Glob. trilobus
(Reuss) and Glob. bisphericus Todd (Table 2). An interval
with abundant specimens of Globigerinoides div. sp. was
recognized in the interval 23.9—46.95 m. A diversified
spectrum of benthic foraminifers is formed by the taxa
Uvigerina  macrocarinata, U. semiornata d’Orbigny, U.
acuminata  Hosius,  Bolivina hebes Macfadyen, Anguloge-
rina  esuriensis Hornibrook, Bulimina  striata  d’Orbigny,
Amphimorphina haueriana Neugeboren, Pyramidulina
raphanistrum (Linne) and others. The taxa Bolivina di-
latata  Reuss, Siphonodosaria scabra (Reuss), Globocas-
sidulina oblonga (d’Orbigny) and Hansenisca soldanii
(d’Orbigny) reach higher values of constance.

Table 1: Correlation of Early and Middle Miocene with Central
Paratethys stages by Cicha et al. (1998) and Gradstein et al.
(2004), modified.

Fig. 4. Plankton/benthos ratio of the Ivaň-1 and Vranovice-1

Tests of foraminifers are pyritized practically in the

whole profile up to 27.3 m. Autochthonous foraminifers
are rarely accompanied by reworked, well preserved speci-
mens from the Lower Miocene (Karpatian) strata such as
Globigerina ottnangiensis Rögl (Cicha et al. 1998). More-
over, washing residues provided radiolarians, fragments of
echinoid spines, molluscs, ostracods, fish bones and teeth,
otoliths, numerous pyritized centric diatoms and rare frag-
ments of sponge spicules. Crystalline pyrite was recorded
in the depth of 60.0 m.

Calcareous nannofossils

Calcareous nannofossils were present in the interval of

48.25—12.45 m and the underlying strata were barren of
this fossil group.

A smear slide prepared from an intraclast (48.25 m) con-

tains abundant anorganic material and only rare and
strongly damaged nannofossil oryctocoenoses – re-
worked specimens reach up to 90 % (Fig. 5). Autochtho-
nous component is represented by Helicosphaera carteri,
H. waltrans, H. ampliaperta, Sphenolithus heteromor-
phus, fragments of Braarudosphaera bigelowii, and others
(Table 3).

The interval of 48.00—46.45 m also provided poor and

poorly preserved nannofossils. Placoliths are strongly etched
and mechanically damaged, while the distal rays of discoast-
ers are usually broken. The assemblages are characterized by

background image



Fig. 5. Proportion of the autochthonous and reworked component
in nannofossil oryctocoenoses, Ivaň-1 and Vranovice-1 boreholes.

the presence of Helicosphaera waltrans accompanied by H.
ampliaperta and sporadic Sphenolithus heteromorphus, and
by dominance of Coccolithus pelagicus (70—90 %). Helico-
sphers  form about 15 %, and Reticulofenestra minuta occurs
occasionally. Moreover, 5-rayed symmetrical discoasters are
present on rare occasions. The Miocene part of oryctocoenos-
es fluctuates between 25—40 %, the rest is formed by re-
worked nannofossils from the Upper Cretaceous and
Paleogene sediments. Anorganic material prevails.

The character of assemblages changes in the overlying

strata. Nannofossil abundance is markedly higher and speci-
mens are usually medium well preserved. The proportion of
reworked specimens rapidly decreases and the percentage
of the autochthonous part of oryctocoenoses fluctuates be-
tween 70—95 %. The assemblages are characterized by high
numbers of Reticulofenestra minuta (55—20 %) and Cocco-
lithus pelagicus (65—30 %). Helicosphers form 12—20 %.
Species  Helicosphaera waltrans and rare Sphenolithus
heteromorphus occur continuously. The first specimens of
Helicosphaera walbersdorfensis and Umbilicosphaera ja-
fari were recorded in the depth of 46.20 m (Fig. 6).

Vranovice VK-1 borehole


Generally, foraminifers are well preserved and pyritized

tests are found only on rare occasions (Table 4). Planktonic
species  Praeorbulina  glomerosa circularis and P.  glome-
rosa glomerosa are present in low numbers in the whole

Fig. 6. Abundance patterns of selected calcareous nannofossils of the Ivaň-1 borehole. FO – first occurrence, FCO – first continuous

background image



Table 2: Distribution of foraminifers in the Ivaň-1 borehole.   Continued on next pages.

background image



Table 2:  Continued.

profile,  Praeorbulina  sicana  and  Praeorbulina  glomerosa
(Blow)  scarcely  in  the  lower  part  of  the  section  in
the  intervals  of  59.90 m,  52.95—52.80 m  and  37.20 m.  The
taxa  Globorotalia  bykovae,  Gl.  peripheroronda  Blow  et




Glob.  trilobus  (Reuss),  Glob.  bisphericus  Todd,  Tenuitelli-
  angustiumbilicata  (Bolli),  Globigerinella  regularis
(d’Orbigny),  Globigerina  bulloides  d’Orbigny,  G.  prae-
Blow,  G.  diplostoma  (Reuss)  quantitatively  pre-

vail  over  other  planktonic  species.  The  percentage  of
Globorotalia  div.  sp.  (about  40 %)  dominates  in  the  inter-
val  of  24.55—21.90 m.  The  benthic  species  Uvigerina
  occurs  in  the  whole  profile  and  at  the
depth  of  12.60 m  and  30.55 m  was  found  in  higher  num-
bers.  The  constancy  of  taxa  Bolivina  dilatata,  B.  plicatel-
(Cushman),  Siphonodosaria  scabra,  Asterigerinata
  (d’Orbigny),  Globocassidulina  oblonga,  Hanse-





background image



Table 3: Distribution of calcareous nannofossils in the Ivaň-1 borehole and the biostratigraphic interpretation. Abundance of Miocene
nannofossil species and reworked nannofossil specimens: A – abundant (>10 specimens per 1 field of view of the microscope), C – com-
mon (10—5 specimens per 1 field of view), F – few (4—1 specimens per 1 field of view), R – rare ( < 10 specimens per 10 fields of view),
VR – very rare ( < 1 specimens per 10 fields of view), f – fragments, r – reworked from the older Miocene strata. Preservation of calca-
reous nannofossils: M – moderate (etching or mechanical damage is apparent but majority of specimens are easily identifiable), P – poor
(etching and especially mechanical damage is intensive making identification of some specimens difficult), VP – very poor (etching and
mechanical damage is very intensive, specimens mostly in fragments). Estimates of the abundance of nannofossils in samples: VH – very
high ( > 50 specimens per 1 field of view of the microscope), H – (50—30 specimens per 1 field of view), M – moderate (30—10 speci-
mens per 1 field of view), L – low (10—1 specimens per 1 field of view), VL – very low ( <10 specimens per 10 fields of view). * zones
(Martini 1971) attributed to interval Karpatian-Badenian of the Central Paratethys stages (see Table 1).

(d’Orbigny) and Melonis pompilioides (Fichtel et Moll)  ris-
es above 80 %. The character of assemblages and plankton/
benthos ratio varies between 0.45—85.20 % and quickly
changes during the whole profile. According to the charac-
ter of foraminiferal assemblages four intervals have been
recognized: 1. abundance of plankton taxa (60.0—52.50 m),
2. dominance of benthic taxa (52.0—29.65 m), 3. abundance
of plankton taxa (24.70—21.90 m), 4. fluctuating, rather
higher values of the plankton/benthos ratio (12.60—4.60 m).
The next negligible variations were observed in shorter in-
tervals. Distinctive divergences of several centimeters were
recorded in the plankton/benthos ratio and total pattern of
assemblages (see Fig. 4).

Reworked taxa of foraminifers Globigerina ottnangien-

sis Rögl, Pappina div. sp. and Cassigerinella sp. were
scarcely recorded. Foraminifers were complemented by
fragments of molluscs, bryozoans, ostracods, sponge spi-
cules, echinoid spines and locally radiolarians, pyritized
centric diatoms and fish bones.

Calcareous nannofossils

Calcareous nannofossils were abundant and medium

well preserved through the whole profile. Except in the in-

tervals 52.50—49.40 m, 40.05 m, and 31.80—29.65 m
where the quantity of specimens strongly decreases and
the mode of nannofossil preservation is very poor. The as-
semblages are characterized by abundance of Reticu-
lofenestra minuta forming up to 70 % of the autochthonous
Miocene component (Fig. 7). The percentage of Cocco-
lithus pelagicus fluctuates between 10—35 %. The lower-
most part of profile (60.00—59.90 m) provided high
numbers of excellently preserved Micrantholithus  sp.  and
few  Braarudosphaera bigelowii (Table 5). In the overly-
ing strata these pentaliths were found in low numbers and
especially the genus Micrantholithus  only in fragments.
The species Helicosphaera waltrans occurred continuous-
ly up to 31.60 m (see Fig. 7), higher it was found sporadi-
cally.  Sphenolithus heteromorphus was present in almost
the whole profile but in very low numbers. Usual part of
assemblages is represented by Helicosphaera walbersdor-
fensis, H. carteri and other helicosphers, Reticulofenestra
pseudoumbilicus ( < 5 µm), genera Calcidiscus  and  Umbili-
cosphaera  including the relatively common U.  jafari,  and
others. Discoasters are almost absent. The Miocene part of
the oryctocoenoses forms about 90 % and it is comple-
mented by reworked specimens from the Upper Creta-
ceous, Paleogene and older Miocene strata (see Fig. 5).

background image



Table 4: Distribution of foraminifers in the Vranovice-1 Borehole.   Part 1 of 4.

background image



Table 4: Part 2 of 4.

background image



Table 4: Part 3 of 4.

background image



Table 4:  Part 4 of 4.

Table 5: Distribution of calcareous nannofossils in the Vranovice-1 borehole and the biostratigraphic
interpretation. For explanation see Table 3.

background image



Fig. 7. Abundance patterns of selected calcareous nannofossils in the Vranovice-1 borehole. LCO – last continuous occurrence.

Moreover, slides provided high numbers of remnants of
diatoms, sponge spicules and plant tissues.


Foraminifers with Praeorbulina sicana and Praeorbuli-

na  glomerosa circularis document the Middle Miocene,
M5b Zone of planktonic foraminifers sensu Berggren et al.
(1995) that is correlated with the Lower Badenian in the
Central Paratethys regional stages (see Table 1). This in-
terval corresponds to deposition of the Grund Formation
sensu Roetzel & Pervesler (2004) and the “Lower La-
genidae Zone” that was defined by Grill (1941) in the Mo-
lasse Basin and Carpathian Foredeep.

Joint occurrence of Helicosphaera waltrans (Fig. 9.1—3)

and Sphenolithus heteromorphus (Fig. 10.19—22) indi-
cates Zone NN5. The short interval of the horizon with H.
waltrans (Švábenická 2002) is correlated with the lower
Middle Miocene, Lower Badenian of Central Paratethys
stage (Ćorić & Švábenická 2004).

The correlation with the Langhian stratotype section of

the Mediterranean (Fornaciari et al. 1997) is rather problem-
atic because of the following phenomena: 1. joint occur-
rence of Helicosphaera waltrans and H. walbersdorfensis
(continuous and relatively common) that was observed
both in the Ivaň-1 and Vranovice-1 boreholes (see Figs. 6
and 7),  2. absence of genus Orbulina. According to Forna-

ciari et al. (1997) the first occurrence of common H. wal-
bersdorfensis indicates the base of Subzone MNN5b and
this event is described chronologically higher, after the
last occurrence of H. waltrans and first occurrence of
Orbulina suturalis Brön.

On the other hand this correlation corresponds to the re-

sults presented from the Roggendorf-1 borehole, Molasse
Basin, Lower Austria (Ćorić & Rögl 2004) where the first
occurrence of Helicosphaera waltrans is mentioned at the
depth of 280 m together with H. walbersdorfensis, where-
as the first occurrence of Orbulina suturalis and Praeor-
bulina glomerosa circularis follows in the overlying strata
at 7—10 m.

Paleoecological interpretation

Foraminiferal assemblages including the plankton/

benthos ratio indicate a marine paleoenvironment of the
middle to outer shelf (Murray 1976).

The following microfaunal taphocoenoses reflecting pa-

leoenvironmental changes of depositional area have been

1. The dominance of shallow water foraminifers with As-

terigerinata  planorbis,  Amphistegina mammilla (Fichtel
et Moll), Elphidium  fichtelianum (d’Orbigny), E. crispum
(Linne),  Nonion  communis (d’Orbigny), Quinqueloculina
akneriana d’Orbigny, Q. buchiana d’Orbigny, Borelis sp.

background image



Fig. 8. Biostratigraphically
significant foraminifers in the
Ivaň IK-1 and Vranovice
VK-1 boreholes, Middle
Miocene (Lower Badenian),
Carpathian Foredeep. 1,2  –
Globigerinoides bisphericus
Todd, Ivaň-1, 46.0 m. 3  –
Globigerinoides trilobus
(Reuss),  Ivaň-1, 46.5 m. 4 –


circularis (Blow), Ivaň-1,
12.55 m.  5  –  Praeorbulina
gl. circularis (Blow), Ivaň-1,
47.1 m.  6 – Praeorbulina
gl. glomerosa Blow, Ivaň-1,
12.47 m.  7 – Paraglob-
orotalia mayeri (Cushman et
Ellisor),  Ivaň-1, 46.7 m. 8, 9
– Pullenia bulloides (d’Orbig-
ny), Vranovice-1, 4.6 m. 10 –
Pappina breviformis (Papp et
Turnovsky), Ivaň-1, 48.25 m.
11 – Elphidium  crispum
(Linne), Vranovice-1, 6.3 m.
12 – Spirorutilus  carinatus
(d’Orbigny), Vranovice-1,
6.3 m.  13 – Martinottiella
karreri (Cushman), Ivaň-1,
48.25 m. 14 – Uvigerina mac-
rocarinata Papp et Turnovsky,
Vranovice-1, 12.6 m.

accompanied by fragments of bryozoans and molluscs
(Vranovice-1 borehole in the depths 6.3 m, 12.6 m,
14.4 m, 39.8 m, 40.05 m, 52.2 m and 52.95 m) gives evi-
dence for shallower sublittoral (infralittoral) after Pokorný
et al. (1992). Foraminifers indicate well-oxygenated warm-
er waters of normal salinity. Pioneer assemblages of bryo-
zoans reflect time-limited suitable conditions for their life
run (Zágoršek et al. 2005). Bryozoans lived in warm and
shallow (infralittoral) sea water with high energy waves.

2. A higher number of agglutinated foraminifers Semi-

vulvulina  pectinata (Reuss), S. deperdita (d’Orbigny),

Textularia  gramen d’Orbigny, T. pala Czjzek, Spiroruti-
lus  carinatus (d’Orbigny) accompanied by calcareous
benthos with Melonis  pompilioides (Fichtel et Moll), Pul-
lenia  bulloides   (d’Orbigny), Nonion  communis  and Het-
erolepa dutemplei (d’Orbigny) (Vranovice-1 in the depths
6.1 m, 36.8 m, 37.2 m, 39.2 m, 47.5 m and 49.4 m) indi-
cates deeper and colder sea, circalittoral to upper bathyal.
Foraminifers show sea of normal salinity without dysoxic

3. The dominance of deep water euryoxybiont foramini-

fers  Uvigerina  macrocarinata Papp et Turnovsky, U.  semi-

background image



Fig. 9. Calcareous nannofossils in the Ivaň IK-1 and Vranovice VK-1 boreholes, Middle Miocene (Lower Badenian), Carpathian Fore-
deep.  PPL – plane-polarized light, XPL – cross-polarized light. 1—3 – Helicosphaera waltrans, 1, 2 – Ivaň-1, 47.10 m, 3 – Vrano-
vice-1, 47.50 m; 1 – PPL, 2, 3 – XPL. 4 – Helicosphaera mediterranea, Vranovice-1, 47.50 m, XPL. 5, 6 – Helicosphaera euphratis,
Ivaň-1, 34.20 m; 5 – PPL, 6 – XPL. 7—9 – Helicosphaera carteri, Vranovice-1, 7, 8 – 31.60 m, 9 – 4.10 m; 7 – PPL, 8, 9 – XPL.
10 – Helicosphaera scissura, Vranovice-1, 47.50 m, XPL. 11, 12 – Helicosphaera ampliaperta, Vranovice-1, 47.50 m; 11 – PPL,
12 – XPL. 13—16 – Helicosphaera intermedia, Ivaň-1, 34.80 m; 13 – PPL, 14—16 – XPL at 0

º, 15º and 30º. 17—20 – Helicosphaera

walbersdorfensis, Vranovice-1, 47.50 m; 17, 19 – PPL, 18, 20 – XPL. 21, 22 — Syracosphaera pulchra, Ivaň-1, 47.10 m; 21 – PPL,
22 – XPL. 23, 24 – Pontosphaera discopora, Vranovice-1, 21.90 m; 23 – PPL, 24 – XPL. 25—27 – Pontosphaera multipora,
Vranovice-1, 57.80 m; 25 – PPL, 26, 27 – XPL. 28—30 – Coccolithus pelagicus, Vranovice-1, 49.25 m; 28 – PPL, 29, 30 – XPL.
31 – Rhabdosphaera sicca, Ivaň-1, 5.40 m, XPL. 32, 33 –  Reticulofenestra minuta; 32 – Ivaň-1, 12.55 m; 33 – Vranovice-1,
24.55 m, XPL. 34, 35 – Reticulofenestra pseudoumbilicus <5 µm, XPL; 34 – Iváň-1, 34.20 m; 35 – Vranovice-1, 12.20 m. 36 – Cy-
clicargolithus floridanus, Ivaň-1, 34.80 m,  XPL.

background image



Fig. 10. Calcareous nannofossils in the Ivaň-1 and Vranovice-1 boreholes, Middle Miocene (Lower Badenian), Carpathian Foredeep.
PPL – plane-polarized light, XPL – cross-polarized light. 1—3 – Umbilicosphaera jafari; 1 – Ivaň-1, 12.55 m, PPL; 2, 3 – Vranovice-1,
14.40 m; 2 – PPL, 3 – XPL. 4—6 – Umbilicosphaera rotula, Vranovice-1; 4 – 57.20 m, PPL; 5, 6 – 21.90 m; 4 – PPL, 6 – XPL.
7—10 – Calcidiscus premacintyrei; 7, 8 – Vranovice-1, 55.5 m; 7 – PPL, 8 – XPL; 9, 10 – Ivaň-1, 34.80 m. 11—14 – Calcidiscus
leptoporus; 11, 12 – Vranovice-1, 55.05 m; 11, 13 – PPL, 12, 14 – XPL. 15, 16 – Sphenolithus dissimilis, Ivaň-1, 34.20 m, XPL at 0


and 45

º.  17, 18 – Sphenolithus conicus, Ivaň-1, 46.20 m, XPL at 0º and 45º.  19—22 – Sphenolithus heteromorphus, Vranovice-1,

21.90 m; 19 – PPL, 20—22 – XPL at 0

º, 15º and 45º. 23, 24 – Sphenolithus moriformis, Vranovice-1, 57.20 m, XPL at 0º and 45º.

25  –  Coronocyclus nitescens, Vranovice-1, 47.50 m, PPL. 26 – Discoaster deflandrei, Ivaň-1, 34.80 m, PPL. 27 – 5-rayed sym-
metrical discoaster, Ivaň-1, 47.10 m, PPL. 28—30 – Discoaster exilis, PPL; 28 – Vranovice-1, 57.20 m; 29, 30 – Ivaň-1, 46.20 m.
31—33 – Micrantholithus sp., Vranovice-1, 59.90 m; 31 – PPL, 32, 33 – XPL. 34—36 – Braarudosphaera bigelowii, Vranovice-1,
59.90 m; 34, 35 – “small form” < %  µm, 36 – “large form” >µm; 34 – PPL, 35, 36 – XPL.

background image



ornata d’Orbigny, Pappina  breviformis (Papp et Turn-
ovsky),  Bolivina dilatata Reuss, B. plicatela Cushman, B.
antiqua d’Orbigny, Bulimina  elongata d’Orbigny, B.  stri-
ata d’Orbigny, B.  buchiana d’Orbigny, accompanied by
deep water species Melonis  pompilioides  and  Pullenia
bulloides,  higher number of planktonic foraminifers, and
by pyritized centric diatoms (Vranovice-1 in the depths
5.4 m, 12.2 m, 24.55 m, 24.7 m, 29.65 m, 49.2 m, 57.2 m,
57.8 m, 59.9 m, 60.0 m and in Ivaň-1 in 12.47 m, 20.35 m
and 46.95 m) indicates low oxygen bottom conditions of
deeper sublittoral (circalittoral) (Kaiho 1994; Mullins et
al. 1985).

4. Dominance of planktonic foraminifers (predominance

of pyritized tests) accompanied by Siphonodosaria div.
sp.,  Bolivina div. sp., Pyramidulina raphanistrum (Linne),
Amphimorphina mucronata (Karrer),  Uvigerina div. sp.
and  Lenticulina div. sp. (Vranovice-1 in the depths of
21.9 m, 22.2 m, 23.6 m, 30.55 m, 52.8 m, Ivaň-1 in the
depths of 12.55 m, 20.05 m, 23.9 m, 27.3 m, 34.2 m,
34.3 m, 34.8 m, 46.2 m, 46.7 m, 47.1 m and 48.0 m). Pyri-
tized tests of foraminifers, especially globigerinas, dysox-
ic indicators (Kaiho 1999; Spezzaferri & Ćorić 2001) and
pyritized centric diatoms reflect lower oxygen supply in
bottom water. The assemblages document deeper sea envi-
ronment (circalittoral to upper bathyal) after Pokorný et al.

The presence of Globorotalia bykovae and Praeorbuli-

na glomerosa circularis and higher numbers of specimens
Globigerinoides div. sp. recorded especially in the middle
and upper part of the Ivaň-1 borehole indicate sea of high-
er temperature in the Lower Badenian in comparison with
the Karpatian stage (Spezzaferri & Ćorić 2001).

5. Mixed assemblages of shallow-water (Asterigerinata

planorbis  and Amphistegina mammilla) and deep-water
(Melonis  pompilioides and Pullenia  bulloides) benthic
foraminifers (Vranovice-1 borehole, depths 4.6 m, 31.6 m
and 46.45 m). Shallow-water specimens were probably re-
worked from the inner- and middle shelf into a deeper part
of the depositional area. This interpretation corresponds to
conclusions of Spezzaferri (2004). In her opinion sedi-
ments of the Grund Formation from the Grund area, Lower
Austria, paleobathymetrically belong to the outer shelf. In
contrast, Zuschin et al. (2001) non vidi, fide Spezzaferri
(2004) assumes a shallow-water environment much less
than 100 meters in depth based on molluscan assemblages
and shell-beds geometry suggesting proximal tempestites.
Foraminiferal assemblages similar to those of nos. 3, 4 and
5 (see above) were mentioned by Spezzaferri (2004) in the
Grund area of the Austrian Molasse Basin.

Foraminifers found in intraclasts (Ivaň-1 borehole,

48.25 m) can be compared with taphocoenose no. 5 and
from the depth 49.15 m (same borehole) with impover-
ished microfauna.

The microfauna of the Ivaň-1 borehole gives evidence

for the deeper marine environment of the outer shelf
whereas the Vranovice-1 borehole provided more shallow-
water indices (Murray 1976).

To compare nannofossils, three types of oryctocoenoses

were recognized:

1. Nannoflora with helicosphers, umbilicosphers and

small placoliths of Prinsiaceae. Reticulofenestra minuta
quantitatively prevails over Coccolithus pelagicus. These
usually abundant and diversified assemblages reflect epi-
continental waters with higher nutrient supply (Spezzaferri
& Ćorić 2001). Abundance of R. minuta can be a signal of
changes in nutrient dynamics (Gartner et al. 1983, 1984).
Reworked species from the older strata form up to 10 %.
Rare  Sphenolithus heteromorphus and scarce presence or
absence of discoasters may indicate cool surface waters.

2. Higher numbers of pentaliths Micrantholithus  sp.  and

Braarudosphaera bigelowii (Fig. 10.31—36). Reticu-
lofenestra minuta quantitatively prevails over Cocco-
lithus pelagicus, specimens of genera Helicosphaera and
Umbilicosphaera are relatively common. Reworked spe-
cies from the older strata form about 10 %. Generally, rep-
resentatives of the Braarudosphaeraceae are supposed as
shallow depth indicators, document epicontinental sea
and large shelf areas (Perch-Nielsen 1985).

3.  Coccolithus pelagicus quantitatively prevails over

Reticulofenestra minuta, helicosphers including Heli-
cosphaera carteri occur in higher numbers. Reworked
species from older strata quantitatively prevail over the
autochthonous Miocene component. Abundance of C. pe-
lagicus documents a coastal environment with nutrient
supply, intense upwelling and unstable stratified water
column (Spezzaferri & Ćorić 2001).

The data mentioned above show that both microfauna

and calcareous nannofossils indicate similar paleoenvi-
ronmental conditions. Nevertheless, in some cases inter-
pretations are different. For instance, intervals 6.3—14.4 m
and 52.20—52.95 m of the Vranovice-1 borehole provided
shallow water foraminifers accompanied by pioneer as-
semblages of bryozoans and molluscs that reflect warmer
marine infralittoral environment of higher energy of

Poor nannoflora (interval 52.20—52.95 m) where Cocco-

lithus pelagicus quantitatively prevails over Reticulo-
fenestra minuta documents a similar coastal environment
to the microfauna, intense upwelling and unstable
stratified water column, but the extremely rich and
diversified nannoflora from interval 6.3—14.4 m where R.
minuta quantitatively prevails over C. pelagicus indicates
a shallow epicontinental sea. Moreover, rare sphenoliths
and near absence of discoasters indicate cooler surface
waters in both intervals.

Reworked nannofossils originate from the Upper Creta-

ceous and Paleogene strata. Coccoliths from the older Mi-
ocene strata (zone interval NN2—NN4) were observed
rarely. In contrast, tests of reworked foraminifers come
from the Lower Miocene (Karpatian) strata exclusively
and form a negligible component of microfauna orycto-

Nannofossil species Helicosphaera amliaperta was ob-

served in low numbers and continuously in association
with  Helicosphaera waltrans, namely Zone NN5 especial-
ly in the Ivaň borehole (see Table 3).

The percentage of reworked nannofossils in Vranovice-1

borehole is relative low and stable (3—10 % – see Fig. 5)

background image



Fig. 11.  Correlation schema of foraminifers and nannofossils,
Ivaň-1 and Vranovice-1 boreholes. Foraminiferal zones after
Berggren et al. (1995), nannofossil zones after Martini (1971),
nannofossil horizons after Švábenická (2002).

although nearby land and quickly changeable paleoenvi-
ronment are indicated by the presence of remnants of plant
issues, diatoms, sponge spicules, in some intervals also by
bryozoans, molluscs and shallow water foraminifers s.s. On
the other hand, intraclasts and the overlying deposits in a
short interval of the Ivaň-1 borehole (46.20—48.10 m –
see Fig. 5) provided higher numbers of reworked nanno-
fossils fluctuating between 60—90 %. Therefore, the num-
ber of reworked nannofossil specimens may reflect rather
marine transgression and the mobility of depositional area
than shallow water conditions. This observation does not
agree with Spezzaferi & Ćorić (2001) that relatively shal-
low water depths can be documented by the presence of
high numbers of reworked nannofossils.


The foraminifers indicate the Middle Miocene (Lower

Badenian of Central Paratethys regional stages), Zone

M5b, species Uvigerina  macrocarinata  and Praeorbulina
glomerosa circularis “Lower Lagenidae Zone” sensu Grill
(1941). Calcareous nannofossils with Helicosphaera wal-
trans,  H. walbersdorfensis and Sphenolithus heteromor-
phus give evidence for Zone NN5 (Fig. 11).

The first occurrence of nannofossil Helicosphaera wal-

bersdorfensis precedes the first occurrence of foraminiferal
marker species Orbulina suturalis.

Generally, plankton/benthos ratio and benthic foramini-

fers document paleodepths of the middle to outer shelf.

Changeable paleoenvironment, especially sea-level fluc-

tuation and unstable conditions are documented by five
types of microfauna: 1. shallow water foraminifers accom-
panied by fragments of molluscs and bryozoans – well-
oxygenated warmer waters, infralittoral, probably lagoons,
2. joint occurrence of agglutinated and calcareous benthic
foraminifers – circalittoral to upper bathyal, 3. euryoxy-
biont foraminifers indicate low oxygen bottom water of
sublittoral (circalittoral), 4. dominance of planktonic
foraminifers – lower oxygen supply, circalittoral to upper
bathyal, 5. mixed assemblage of shallow- and deep-water
foraminifers reflects slumping eventually storm events in
depositional area.

A relatively shallow sea of normal salinity with nutrient

supply is also indicated by nannoflora with higher num-
bers of Reticulofenestra minuta, Coccolithus pelagicus,
and helicosphers. Low abundances of sphenoliths and
near absence of discoasters may imply cooler surface wa-

High numbers of reworked nannofossils may reflect ma-

rine transgression.

In some cases, interpretations based on microfauna, or

foraminifers and calcareous nannofossils may offer differ-
ent paleoenvironmental conclusions.

On the basis of lithology and biostratigraphy sediments

of the Ivaň-1 borehole are stratigraphically older and were
deposited in the deeper marine environment in compari-
son with the Vranovice-1 borehole.

Acknowledgments: The financial support of the Grant
Agency of the Czech Republic (Project No. 205/04/2142
“Evaluation of sediments on the Karpatian-Badenian
boundary in the southern part of the Carpathian Fore-
deep”, Project leader Pavla Tomanová Petrová) is grateful-
ly acknowledged. Thanks to Kamil Zágoršek, for his
necessary discussions on paleoecology and bryozoans.
The authors would like to thank F. Rögl, S. Ćorić, E.
Halásová and an anonymous reviewer who constructively
led to significant improvement of the manuscript.


Adámek J., Petrová P. & Švábenická L. 2003: Preliminary results

of the investigations at the Karpatian-Lower Badenian bound-
ary in the Carpathian Foredeep. Geol. Výzkumy na Moravě a
ve Slezsku 10, 16—19 (in Czech).

Berggren W.A., Kent D.V., Swisher C.C., III. & Aubry M.-P. 1995:

A revised Cenozoic geochronology and chronostratigraphy.
SEPM, Spec. Publ. 54, 129—212.

background image



Cicha I., Rögl F., Rupp Ch. & Čtyroká J. 1998: Oligocene-Miocene

Foraminifera of the Central Paratethys. Abh. Senckenberg.
Naturforsch. Gessell. 549, 1—325.

Ćorić S. 2003: Calcareous nannofossil biostratigraphy of the Mühl-

bach section (Gaindorf Formation, Lower Badenian), Lower
Austria. Ann. Naturhist. Mus. Wien 104A, 15—21.

Ćorić S. & Rögl F. 2004: Roggendorf-1 borehole, a key-section for

Lower Badenian transgressions and the stratigraphic position
of the Grund Formation (Molasse Basin, Lower Austria). Geol.
Carpathica 55, 2, 165—178.

Ćorić S. & Švábenická L. 2004: Calcareous nannofossil biostratig-

raphy of the Grund Formation (Molasse Basin, Lower Aus-
tria).  Geol. Carpathica 55, 2, 147—153.

Ćorić S., Harzhauser M., Hohenegger J., Mandic O., Pervesler P.,

Roetzel R., Rögl F., Scholger R., Spezzaferri S., Stingl K.,
Švábenická L., Zorn I. & Zuschin M. 2004: Stratigraphy and
correlation of the Grund Formation in the Molasse Basin,
northeastern Austria (Middle Miocene, Lower Badenian).
Geol. Carpathica 55, 2, 207—215.

Čtyroká J. & Švábenická L. 2000: Biostratigraphic evaluation of

Badenian deposits on the Olomouc map-sheet (foraminifers
and calcareous nannofossils). Zpr. Geol. Výzk. v roce 1999,
17—20 (in Czech with Englich abstract).

Fornaciari E., Di Stefano A., Rio D. & Negri A. 1996: Middle Mi-

ocene quantitative calcareous nannofossil biostratigraphy in
the Mediterranean region. Micropaleontology  42, 1, 37—63.

Fornaciari E., Rio D., Ghibaudo G., Massari F. & Iaccarino S.

1997: Calcareous plankton biostratigraphy of the Serravallian
(Middle Miocene) stratotype section (Piedmont Tertiary Basin,
NW Italy). Mem. Sci. Geol. 49, 127—144.

Gartner S., Chen M.P. & Stanton R.J. 1983—1984: Late Neogene

nannofossil biostratigraphy and paleoceanography of the
northeastern Gulf of Mexico and adjacent areas. Mar. Micro-
paleont. 8, 17—50.

Gradstein F.M., Ogg J.G. & Smith A.G. 2004: A geologic time

scale 2004. Geol. Sur. Canada, Miscellaneous Report 86.

Grill R. 1941: Stratigraphische Untersuchungen mit Hilfe von Mik-

rofaunen im Wiener Becken und den benachbarten Molasse-
Anteilen.  Oel und Kohle 37, 595—602.

Kaiho K. 1994: Benthic foraminiferal dissolved-oxygen index and

dissolved-oxygen levels in the modern ocean. Geology 22,

Kaiho K. 1999: Effect of organic carbon flux and dissolved oxy-

gen on the benthic foraminiferal oxygen index (BFOI). Mar.
Micropaleontology 37, 67—76.

Kováč M., Andreyeva-Grigorovich A.S., Brzobohatý R., Fodor L.,

Harzhauser M., Oszczypko N., Pavelic D., Rögl F., Saftic B.,
Sliva  . & Stráník Z. 2003: Karpatian paleogeography, tecton-
ics and eustatic changes. In: Brzobohatý R., Cicha I., Kováč
M. & Rögl F. (Eds.): The Karpatian. A Lower Miocene stage
of the Central Paratethys. Masaryk Univ., Brno, 49—72.

Martini E. 1971: Standard Tertiary and Quaternary calcareous nan-

noplankton zonation. In: Farinacci A. (Ed.): Proceedings of
the Second Planktonic Conference, Roma. Edizioni Tecno-
scienza 2, 739—785.

Mullins H.T., Thompson J.B., McDougall K. & Vercoutere T.L.

1985: Oxygen minimum zone edge effects: Evidence from

the central California coastal upwelling system. Geology 13,

Murray J.W. 1976: A method of determining proximity of margin-

al seas to an ocean. Mar. Geol. 22, 103—119.

Murray J.W. 1991: Ecology and palaeoecology of benthic Fora-

minifera. Longman Scientific & Technical, New York, 1—397.

Perch-Nielsen K. 1985: Cenozoic calcareous nannofossils. In: Bolli

H.M., Saunders J.B. & Perch-Nielsen K. (Eds.): Plankton stratig-
raphy. Cambridge University Press, Cambridge, 427—554.

Pokorný V., Houša V., Krhovský J., Marek J., Pacltová B. & Špinar

Z.  1992: General Paleontology. Karolinum, Univerzita Karlo-
va, Praha, 1—296 (in Czech).

Roetzel R. & Pervesler P. 2004: Storm-induced event deposits in

the type area of the Grund Formation (Middle Miocene, Low-
er Badenian) in the Molasse Zone of Lower Austria. Geol.
Carpathica 55, 2, 87—102.

Rögl F., Spezzaferri S. & Ćorić S. 2002: Micropaleontology and

biostratigraphy of the Karpatian-Badenian transition (Early-
Middle Miocene boundary) in Austria (Central Paratethys).
Cour. Forschungsinst. Senckenberg 237, 47—67.

Spezzaferri S. 2004: Foraminiferal paleoecology and biostratigra-

phy of the Grund Formation (Molasse Basin, Lower Austria).
Geol. Carpathica 55, 2, 155—164.

Spezzaferri S. & Ćorić S. 2001: Ecology of Karpatian (early Mi-

ocene) foraminifers and calcareous nannoplankton from Laa
an der Thaya, Lower Austria: a statistical approach. Geol. Car-
pathica 52, 6, 361—374.

Spezzaferri S., Ćorić S., Hohenegger J. & Rögl F. 2002: Basin-scale

paleobiogeography and paleoecology: an example from Kar-
patian (Latest Burdigalian) benthic and planktonic foramin-
ifera and calcareous nannofossils from the Central Paratethys.
Geobios 35 (M. S. 24), 241—256.

Spezzaferri S., Rögl F., Ćorić S. & Hohenegger J. 2004: Paleoenvi-

ronmental changes and agglutinated foraminifera across the
Karpatian/Badenian (Early/Middle Miocene) boundary in the
Styrian Basin (Austria, Central Paratethys). In: Bubík M. &
Kaminski M.A. (Eds.): Proceedings of the Sixth International
Workshop on Agglutinated Foraminifera. Grzybowski Foun-
dation, Spec. Publ. 8, 423—459.

Švábenická L. 2002: Calcareous nannofossils of the Upper Karpa-

tian and Lower Badenian deposits in the Carpathian Foredeep,
Moravia (Czech Republic). Geol. Carpathica 53, 3, 197—210.

Švábenická L. & Čtyroká J. 1998: Foraminifera and nannofossil bio-

stratigraphic correlation of the Karpatian and Lower Badenian
sediments in the Carpathian Foredeep of Moravia (preliminary
results). Zpr. Geol. Výzk. v roce 1997, 166—169 (in Czech).

Švábenická L. & Čtyroká J. 1999: Biostratigraphic correlation (for-

aminifers and nannofossils) of the Karpatian and Lower Bade-
nian sediments in the Alpine-Carpathian Foredeep (Moravia
and Lower Austria). Geol. Carpathica, Spec. Issue 55, 79—80.

Zágoršek K., Petrová P. & Nehyba S. 2005: Tertiary bryozoans

from the VK-1 Vranovice borehole. 6


 Paleontological Semi-

nar in Olomouc, Memorial Vol., Olomouc, 63—65.

Zuschin M., Mandic O., Harzhauser M. & Pervesler P. 2001: Fossil

evidence for chemoautotrophic bacterial symbiosis in the thya-
sirid bivalve Thyasira michelottii from the Middle Miocene
(Badenium) of Austria. Historical Biology 15, 123—134.

background image



Braarudosphaera bigelowii (Gran et Braarud) Deflandre
Calcidiscus leptoporus (Murray et Blackman) Loeblich et Tappan
Calcidiscus premacintyrei Theodoridis
Coccolithus miopelagicus Bukry
Coccolithus pelagicus (Wallich) Schiller
Coronocyclus nitescens (Kamptner) Bramlette et Wilcoxon
Cyclicargolithus floridanus (Roth et Hay) Bukry
Discoaster adamanteus Bramlette et Wilcoxon
Discoaster deflandrei Bramlette et Riedel
Discoaster exilis Martini et Riedel
Helicosphaera ampliaperta Bramlette et Wilcoxon
Helicosphaera carteri (Wallich) Kamptner
Helicosphaera euphratis Haq
Helicosphaera intermedia Martini
Helicosphaera mediterranea Müller
Helicosphaera scissura Müller

Helicosphaera walbersdorfensis Müller
Helicosphaera waltrans Theodoridis
Micrantholithus sp.
Pontosphaera discopora Shiller
Pontosphaera multipora (Kamptner) Roth
Reticulofenestra minuta Roth
Reticulofenestra pseudoumbilicus (Gartner) Gartner
Rhabdosphaera sicca Stradner
Sphenolithus conicus Bukry
Sphenolithus dissimilis Bukry et Percival
Sphenolithus heteromorphus Deflandre
Sphenolithus moriformis (Brönnnimann et Stradner) Bramlette

et Wilcoxon

Syracosphaera pulchra Lohmann
Umbilicosphaera jafari Müller
Umbilicosphaera rotula (Kamptner) Varol


List of nannofossil species in alphabetical order of genera epiteths.